ES2630387B1 - Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema - Google Patents
Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema Download PDFInfo
- Publication number
- ES2630387B1 ES2630387B1 ES201600130A ES201600130A ES2630387B1 ES 2630387 B1 ES2630387 B1 ES 2630387B1 ES 201600130 A ES201600130 A ES 201600130A ES 201600130 A ES201600130 A ES 201600130A ES 2630387 B1 ES2630387 B1 ES 2630387B1
- Authority
- ES
- Spain
- Prior art keywords
- cameras
- control
- dimensional
- points
- precision geometric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 17
- 230000000007 visual effect Effects 0.000 claims description 6
- 239000003302 ferromagnetic material Substances 0.000 claims description 2
- 230000005291 magnetic effect Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000003908 quality control method Methods 0.000 description 4
- 230000010339 dilation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D5/00—Control of dimensions of material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/04—Interpretation of pictures
- G01C11/06—Interpretation of pictures by comparison of two or more pictures of the same area
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/04—Interpretation of pictures
- G01C11/06—Interpretation of pictures by comparison of two or more pictures of the same area
- G01C11/12—Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
- G01C11/26—Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken using computers to control the position of the pictures
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño; del tipo basado en fotogrametría, que comprende, unas cámaras (3) para toma de imágenes desde, al menos, dos puntos de vista, unos puntos de control dispuestos en dicha pieza (2) para ser captados por las cámaras (3) y un procesador (6) de las imágenes captadas por las cámaras (3) para medir el desvío de las posiciones reales (7) con respecto a las posiciones previstas (8), y que comprende unos puntos de control (4) tridimensionales y una disposición (9, 9a) de cámaras (3) en número y posición suficiente para que cada punto de control (4) sea tomado simultáneamente por, al menos, tres cámaras (3). La invención también comprende un método para el sistema.
Description
- SISTEMA PARA CONTROL GEOMETRICO DE PRECISiÓN DE PIEZAS TRIDIMENSIONALES DE GRAN TAMAÑO Y METODO PARA DIC!,!e-SI5.TEMA
- 5
- Objeto de la Invención DESCRIPCiÓN
- 10
- La presente invención se refiere a un sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y a un método para dicho sistema. Antecedentes de la invención
- lS
- En la actualidad se conoce y utiliza la técnica de la fotogrametría para determinar las propiedades geométricas de los objetos y las situaciones espaciales a partir de imágenes instantáneas (fotográficas). Asociada un procesador que sea capaz de comparar las posiciones reales con las posiciones ideales o previstas, sirve como control de calidad en la fabricación de piezas, ya que es capaz de determinar si en una pieza fabricada o real existen deformaciones o variaciones de forma con respecto a la ideal o proyectada.
- 20 25
- Su funcionamiento se basa en utilizar, al menos, una camara para la toma de imágenes desde, al menos, dos posiciones no simultaneas, del objeto o pieza a comprobar donde se disponen unos puntos de control para ser captados por dichas camaras, y el procesador de las imágenes captadas por las cámaras que compara las posiciones reales con las ideales. Con una sola toma se pueden medir imágenes en el plano. Utilizando dos tomas se tienen dos puntos de vista de forma similar a la visión estereoscópica, con lo que se pueden obtener mediciones tridimensionales, y se utiliza normalmente a largo alcance, para mediciones cartográficas con vistas aéreas y precisiones bajas, a alcance medio de objetos grandes con precisiones medias, ya corto alcance para objetos pequeños y precisiones altas.
- 30
- Si no se tiene una posición inicial conocida de las cámaras a al menos, alguno de los puntos de control se suele utilizar una referencia con una distancia conocida para cuantificar las distancias y obtener las posiciones de los puntos de control, por ejemplo la distancia a dos hitos geográficos conocidos, o en el plano con una escala gráfica.
- Sin embargo, el uso de la fotogrametria no está extendido en el control de calidad de piezas
- industriales de gran tamaño que requieran altas precisiones, ya que este tipo de mediciones
- precisan realizarse a corta distancia y con precisión del orden de décimas de milímetro,
- características que no son capaces de ser implementadas en fotogrametría según su
- 5
- concepción actual si las piezas a medir implican distancias en las tres dimensiones de los
- puntos de control que no sean pequeñas en comparación con la distancia a la que se
- disponen las cámaras (de hecho los puntos de control se implementan a través de pegatinas
- dispuestas en posición enfrentada a las cámaras, que siendo elementos planos implican que
- el movimiento o variación de posición a medir se desarrolla fundamentalmente en un plano o
- 10
- en un espacio de profundidad reducida respecto a sus otras dos dimensiones.
- Por otro lado, la alta precisión en las mediciones puede ser afectada por diversos factores
- como movimientos, por pequeños que sean, del objeto a medir y de las cámaras entre
- distintas tomas ylo mediciones de distintas piezas, por cambios de temperatura (dilataciones)
- lS
- en la estructura del objeto a medir, o vibraciones por resonancia natural de la estructura del
- objeto a medir.
- Por estas razones, en el control de calidad de la geometría de piezas de precisión se suele
- utilizar la tecnología Laser Tracker, o medición por láser utilizando elementos reflectantes en
- 20
- los puntos de control, para reflejar un haz laser para su detección. El problema es que esta
- tecnología, a pesar de ofrecer precisiones muy elevadas, tiene un rendimiento bajo, ya que es
- lenta y ralentiza las operaciones de control. Además esta tecnología no permite la medición
- simultánea de todos los puntos de control, con lo que se ve afectada por efectos descritos de
- movimiento, cambios de temperatura y vibración .
- 25
- Descripcíón de la invención
- El sistema de la invención tiene una configuración que permite su utilización para la
- comprobación industrial de la geometría de piezas trid imensionales de gran tamaño con alta
- 30
- precisión durante su control de calidad, pudiendo alcanzar precisiones del orden de una
- décima de milímetro, y con una velocidad de proceso muy superior a la de la tecnología Laser
- Tracker, ya que puede trabajar con tomas o imágenes únicas que abarcan múltiples puntos de
- control simultáneamente.
- El sistema es del tipo basado en fotogrametría, que comprende, unas cámaras para toma de
- imágenes, unos puntos de control dispuestos en dicha pieza para ser captados por las
- cámaras, y un procesador de las imágenes captadas por las cama ras para medir el desvío de
- las posiciones reales con respecto a las posiciones previstas, donde de acuerdo con la
- 5
- invención comprende unos puntos de control tridimensionales y una disposición de cámaras
- en número y posición suficiente para que cada punto de control sea tomado simultáneamente
- por, al menos, tres cámaras.
- De este modo, la toma simultanea nos evita errores de variaciones de posición no simultáneas
- 10
- de los puntos de control que pueden darse en tomas sucesivas, y además con este sistema
- las camaras pueden disponerse en distintas posiciones para la misma medición siempre que
- se cumpla la condición de que cada punto de control sea visualizado simultáneamente por, al
- menos, tres cámaras, sin ser necesario, por tanto, que las cámaras se ubiquen siempre en
- posiciones fijas predeterminadas como en los sistemas de medición por láser, aumentando la
- lS
- flexibilidad del sistema
- En el presente documento, como puntos de control tridimensionales se quiere indicar que los
- mismos tienen tres dimensiones en el espacio, y que además tienen una configuración
- geométrica con un centro geométrico en el espacio se puede determinar a partir de su forma
- 2 O
- exterior, de forma que con las imágenes captadas con su observación fotogramétrica desde
- dos puntos de vista se puede calcular exactamente su centro geométrico con las precisiones
- indicadas. El ejemplo más simple seria la forma esférica. Igualmente la toma simultánea
- significa que las cámaras realizan una toma a la vez, de forma que las variaciones de posición
- de los puntos de control serian registrados por todas las cámaras, a diferencia de las tomas
- 2 S
- sucesivas que se realizan actualmente, y que producen errores de medición.
- El método de la invención comprende:
- -disponer una serie de puntos de control tridimensionales en la pieza a controlar,
- ·colocar una disposición de cámaras de fotogrametria de forma que abarquen cada punto de
- 30
- control por, al menos, tres cámaras,
- ·obtener unas imágenes de escena fija y/o de escena variable.
- ·determinar las coordenadas de los centros geométricos de los puntos de control
- tridimensionales de forma redundante respecto de un sistema de referencia predeterminado,
- ·comparar por medio de un procesador los desvios de las posiciones obtenidas con unas
- posiciones correctas predeterminadas respecto del sistema de referencia predeterminado,
- -emitir informe de errores en caso de que los desvíos superen los máximos aceptables,
- -comprobar la correcta posición de los puntos de control en caso de informe de errores,
- -descartar la pieza en caso de informe de errores y posición correcta de los puntos de control.
- 5
- En el presente documento, como imágenes de escena fija se entiende que las cámaras están
- en posición fija y toman imágenes de la escena completa (toda la parte visible de la pieza a
- controlar desde cada cámara) de forma simultanea, de forma que empleando intersecciones
- visuales sobre cada punto realizadas desde un mínimo de tres cámaras o estaciones se
- 10
- obtienen coordenadas de los puntos con redundancia. Como imágenes de escena variable se
- entiende que se emplean una serie de cámaras que pueden rotar alrededor de un punto fijo,
- con zoom variable, que realizan instantáneas simultaneas de cada punto de control de forma
- individual, de forma que empleando intersecciones visuales sobre cada punto realizadas
- desde un mínimo de tres estaciones se obtienen coordenadas de los puntos con redundancia.
- lS
- Precisamente dicha redundancia permite efectuar comprobaciones de las mediciones
- obtenidas para descartar aquellas que sean incongruentes, aumentando la exactitud de la
- medición
- Breve Descripción de los Dibujos
- 20
- Figura 1.-Muestra una vista esquemática del sistema de la invención aplicado en la
- medición de una pieza con una disposición de cámaras de escena fija .
- Figura 2.-Muestra una vista esquemática del sistema de la invención aplicado en la
- 2 S
- medición de una pieza con una disposición de cámaras de escena variable.
- Figura 3 Y 4.-Muestran sendas vistas en detalle de un punto de control del sistema de la
- invención y de su zócalo, donde en la figura 3 la esfera está desacoplada del zócalo y en la
- figura 4 colocada en dicho zócalo.
- 30
- Descripción de la Forma de Realización Preferida
- El sistema de la invención es del tipo basado en fotogrametría , que comprende unas cámaras
- (3) para toma de imágenes, unos puntos de control para ser captados por las cámaras (3)
- dispuestos en dicha pieza (2), un procesador (6) de las imágenes captadas por las cámaras
- (3) para medir el desvío de las posiciones reales (7) con respecto a las posiciones previstas
- (8), y pudiendo comprender también unos puntos o distancias de referencia (5) para calibrar el
- sistema (1) y, donde de acuerdo con la invención, el sistema (1) comprende unos puntos de
- 5
- control (4) tridimensionales y una disposición (9, 9a) de cámaras (3) en número y posición
- suficiente para que cada punto de control (4) sea tomado simultáneamente por, al menos, tres
- camaras (3).
- Se ha previsto que los puntos de control (4) tridimensionales comprendan preferentemente
- 10
- esferas (4a), como se ve en las figuras 3 y 4, e idealmente también unos zócalos (4b) para
- dichas esferas (4a) y unos medios de fijación de dichos zócalos (4b) a la pieza (2) a medir y a
- la propia esfera (4a).Dichos medios de fijación comprenden porciones (4c) magnéticas o
- magnetizadas capaces de fijarse a partes ferromagnéticas de la pieza y a la esfera (4a), que
- igualmente será en este caso de material ferromagnético.
- 15
- Para asegurar que no hay movimiento en las cámaras ni variaciones de posición debidas a
- dilataciones o contracciones por cambios de temperatura y asegurar la precisión, las cámaras
- (3) comprenden sensores de vibración (1 1) (acelerómetros) y/o sensores de temperatura (12),
- de forma que no se realizarán tomas si dichos sensores (11 , 12) detectan vibraciones o
- 20
- temperaturas fuera de rango. Igualmente, para aislar a las cama ras (3) y sensores (11, 12) de
- polvo e inclemencias del entorno se ha previsto que estos elementos se encuentren
- preferentemente dispuestos en el interior de unas carcasas (10) herméticas, dentro de las
- cuales se estabilizara la temperatura. Una vez realizada la disposición de las cámaras para las
- tomas será necesario incorporar el hardware necesario (alimentación) que garantice la
- 2S
- autonomía del sistema. También se prefieren conexiones cableadas (13) entre cámaras (3) y
- procesador (6) en entornos industriales, ya que implican menor mantenimiento, y por tanto
- menores manipulaciones.
- En la figura 1 se muestra una posible primera disposición (9) de cámaras (3) en escena fija,
- 30
- que comprende una pluralidad de cámaras (3) dispuestas en primeras posiciones
- determinadas (20) por las características de la pieza a medir, que abarcan todos los puntos de
- control (4) (y los puntos o distancias de referencia (5) si los hubiera) por al menos tres
- cámaras en una misma toma simultánea.
2 S
En la figura 2 se muestra una posible segunda disposición (9a) de cámaras (3) de escena variable, que comprende una pluralidad de cámaras (3) dispuestas en segundas posiciones determinadas (21) y montadas en soportes rotativos (14) y con zoom (15) variable que abarcan un punto de control (4) individual en cada toma por al menos, tres cámaras.
En cualquiera de las dos disposiciones (9, 9a), la posición óptima de las cámaras (3) es aquella que garantiza que cada punto de control (4) a medir sea observado con un minimo de tres puntos de vista , cuyas visuales formen dos a dos un angula de intersección (o ángulo paraláctico) en el punto de medida 10 más próximo posible a 90 grados.
El método para para control geométrico de precisión de piezas tridimensionales comprende:
-disponer una serie de puntos de control (4) tridimensionales en la pieza (2) a controlar,
-colocar una disposición (9, 9a) de cámaras (3) de fotogrametría de forma que abarquen cada
punto de control (4) por, al menos, tres cámaras (4),
-obtener unas imágenes de escena fija y/o de escena variable,
-determinar las coordenadas de los centros geométricos (40) de los puntos de control (4)
tridimensionales de forma redundante respecto de un sistema de referencia predeterminado,
-comparar por medio de un procesador (6) los desvíos de las posiciones obtenidas con unas
posiciones correctas predeterminadas respecto del sistema de referencia predeterminado,
-emitir informe de errores en caso de que los desvíos superen los máximos aceptables,
-comprobar la correcta posición de los puntos de control (4) en caso de informe de errores,
-descartar la pieza (2) en caso de informe de errores y posición correcta de los puntos de
control (4).
Las disposiciones de cámaras (9, 9a) preferibles serán aquellas tales que cada punto de
control (4) sea observado con un mínimo de tres puntos de vista cuyas visuales formen dos a
dos un ángulo de intersección en el punto de medida lo más próximo posible a 90 grados.
La etapa de obtención de las coordenadas de los centros geométricos (40) de los puntos de
control (4) tridimensionales de forma redundante, comprende obtener dichas coordenadas dos
a dos desde, al menos, dos de las posibles parejas que se pueden configurar en cada grupo
de tres cámaras (3) que captan la posición de cada punto de control (4).
No obstante lo anterior, y puesto que la descripción realizada corresponde únicamente a un ejemplo de realización preferida de la invención, se comprenderá que dentro de su esencialidad podrán introducirse múltiples variaciones de detalle, asimismo protegidas, que podrán afectar a la forma, el tamaño o los materiales de fabricación del conjunto o de sus partes, sin que ello suponga alteración alguna de la invención en su conjunto, delimitada únicamente por las reivindicaciones que se proporcionan en 10 que sigue.
Claims (13)
- REIVINDICACIONES1.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño; del tipo basado en fotogrametría, que comprende, unas cámaras (3) para toma de imágenes desde, al menos, dos puntos de vista, unos puntos de control dispuestos en dicha pieza (2) para ser captados por las cámaras (3) y un procesador (6) de las imágenes captadas por las cámaras (3) para medir el desvío de las posiciones reales (7) con respecto a las posiciones previstas (8); caracterizado porque comprende unos puntos de control (4) tridimensionales y una disposición (9, 9a) de cámaras (3) en número y posición suficiente para que cada punto de control (4) sea tomado simultáneamente por, al menos, tres cámaras (3).
- 2.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según reivindicación 1 caracterizado porque los puntos de control (4) tridimensionales comprenden esferas (4a).
- 3.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según reivindicación 2 caracterizado porque los puntos de control (4) comprenden unos zócalos (4b) para las esferas (4a) y medios de fijación de dichos zócalos (4b) a la pieza(2) a medir y a las esferas (4a).
- 4.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según reivindicación 3 caracterizado porque los medios de fijación de los zócalos (4b) comprenden porciones (4c) magnéticas o magnetizadas, mientras que la piezas (2) y las esferas comprenden partes de material ferromagnético.
- 5.-Sislema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según cualquiera de las reivindicaciones anteriores caracterizado porque las cámaras (3) comprenden sensores de vibración (11).
- 6.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según cualquiera de las reivindicaciones anteriores caracterizado porque las cámaras (3) comprenden sensores de temperatura (12).
- 7.·Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de grantamaño según cualquiera de las reivindicaciones anteriores caracterizado porque las cámaras (3) se encuentran dispuestas en el interior de unas carcasas (10) herméticas.S.-Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran 5 tamaño según cualquiera de las reivindicaciones anteriores caracterizado porque las conexiones entre cámaras (3) y procesador (6) comprenden conexiones cableadas (13).
- 9.-Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según cualquiera de las reivindicaciones anteriores caracterizado porque comprende10 una primera disposición (9) de cámaras (3) de escena fija, que comprende una pluralidad de cámaras (3) dispuestas en primeras posiciones determinadas (20) que abarcan todos los puntos de control (4) por al menos tres cámaras en una misma toma simultanea.
- 10.-Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran15 tamaño según cualquiera de las reivindicaciones 1 a 8 caracterizado porque comprende una segunda disposición (9a) de cámaras (3) de escena variable, que comprende una pluralidad de cámaras (3) dispuestas en segundas posiCiones determinadas (21) y montadas en soportes rotativos (14) y con zoom (15) variable que abarcan un punto de control (4) individual en cada toma por al menos, tres cámaras.20 11 .-Sistema (1) para control geométrico de precisión de piezas (2) tridimensionales de gran tamaño según cualquiera de las reivindicaciones 9 o 10 caracterizado porque las cámaras(3) se encuentran dispuestas de forma que cada punto de control (4) a medir es visto con unminimo de tres puntos de vista, cuyas visuales forman dos a dos un ángulo de intersección en 25 el punto de medida lo más próximo posible a 90 grados.
- 12.-Método para para control geométrico de precisión de piezas tridimensionales de gran tamaño caracterizado porque comprende: -disponer una serie de puntos de control (4) tridimensionales en la pieza (2) a controlar,30 -colocar una disposición (9, 9a) de cámaras (3) de fotogrametría de forma que abarquen cada punto de control (4) por, al menos, tres cámaras (4), -obtener unas imágenes de escena fija o de escena variable, -determinar las coordenadas de los centros geométricos (40) de los puntos de control (4) tridimensionales de forma redundante respecto de un sistema de referencia predeterminado,-comparar por medio de un procesador (6) los desvíos de las posiciones obtenidas con unas posiciones correctas predeterminadas respecto del sistema de referencia predeterminado, -emitir informe de errores en caso de que los desvíos superen los máximos aceptables, -comprobar la correcta posición de los puntos de control (4) en caso de error, y -descartar la pieza (2) en caso de informe de error y posición correcta de los puntos de control (4).
- 13.-Método para para control geométrico de precisión de piezas tridimensionales de gran tamaño según reivindicación 12 caracterizado porque la etapa de obtener unas imágenes de escena fija o de escena variable es sustituida por otra etapa que comprende la obtención de imágenes de escena fija y de escena variable.
- 14.-Método para para control geométrico de precisión de piezas tridimensionales de gran tamaño segun cualquiera de las reivindicaciones 12 o 13 caracterizado porque la disposición de cámaras (9, 9a) se realiza de forma que cada punto de control sea observado con un mínimo de tres puntos de vista cuyas visuales formen dos a dos un ángulo de intersección en el punto de medida lo más próximo posible a 90 grados
- 15.-Método para para control geométrico de precisión de piezas tridimensionales de gran tamaño según cualquiera de las reivindicaciones 12 a 14 caracterizado porque la obtención de las coordenadas de los centros geométricos (40) de los puntos de control (4) tridimensionales de forma redundante se realiza obteniendo dichas coordenadas dos a dos desde, al menos, dos de las posibles parejas que se pueden formar en cada grupo de tres cámaras (3) que captan la posición de cada punto de control (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201600130A ES2630387B1 (es) | 2016-02-17 | 2016-02-17 | Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201600130A ES2630387B1 (es) | 2016-02-17 | 2016-02-17 | Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2630387A1 ES2630387A1 (es) | 2017-08-21 |
ES2630387B1 true ES2630387B1 (es) | 2018-02-26 |
Family
ID=59582089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201600130A Expired - Fee Related ES2630387B1 (es) | 2016-02-17 | 2016-02-17 | Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2630387B1 (es) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO302055B1 (no) * | 1993-05-24 | 1998-01-12 | Metronor As | Fremgangsmåte og system for geometrimåling |
JP4043657B2 (ja) * | 1999-09-06 | 2008-02-06 | ペンタックス株式会社 | 写真測量用画像処理装置、写真測量用画像処理方法および写真測量用画像処理プログラムを格納した記憶媒体 |
EP2189753A3 (en) * | 2008-11-24 | 2011-01-05 | Politechnika Slaska | Assembly stand for mineral cutting head |
DE102011114115A1 (de) * | 2011-09-25 | 2013-03-28 | Zdenko Kurtovic | Verfahren und Anordnung zur Bestimmung der Lage eines Meßpunktes im geometrischen Raum |
-
2016
- 2016-02-17 ES ES201600130A patent/ES2630387B1/es not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2630387A1 (es) | 2017-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11035659B2 (en) | Inertial dimensional metrology | |
ES2931044T3 (es) | Un método de calibración de una unidad de medición inercial | |
EP2869024B1 (en) | Three-dimensional measuring method and surveying system | |
CN105205824B (zh) | 基于高精度辅助相机和球靶标的多摄像机全局校准方法 | |
ES2530264T3 (es) | Procedimiento para la determinación de las coordenadas geográficas de píxeles en imágenes SAR | |
US11435650B2 (en) | Method of determining a path along an object, system and method for automatically inspecting an object | |
US20120257050A1 (en) | Method for Calibrating a Measurement Instrument of an Optronic System | |
ES2694144T3 (es) | Sistema y método de medición para medir un ángulo | |
JP6823482B2 (ja) | 三次元位置計測システム,三次元位置計測方法,および計測モジュール | |
ES2763912T3 (es) | Seguimiento óptico | |
CN106483330A (zh) | 一种基于反光丝线姿态角视觉识别二维风速风向测试方法 | |
CN103424124A (zh) | 基于图像测量技术的无磁惯导单元标定方法 | |
WO2019188961A1 (ja) | ターゲット装置、測量システム | |
IL237971A (en) | A device and method for determining relative orientation between two different locations | |
Brzozowski et al. | Magnetic field mapping as a support for UAV indoor navigation system | |
CN106840108A (zh) | 视觉测量仪和视觉测量方法 | |
ES2630387B1 (es) | Sistema para control geométrico de precisión de piezas tridimensionales de gran tamaño y método para dicho sistema | |
JP6761715B2 (ja) | 測量装置 | |
CN103033181A (zh) | 确定第三目标的光学目标定位器 | |
CN111380563A (zh) | 检测装置、光电经纬仪检测系统、航空机载光学平台检测系统 | |
KR101473730B1 (ko) | 전자광학장비의 위치출력오차 측정방법 | |
CN109029733B (zh) | 一种双红外载荷并联数据采集装置 | |
JP2019191134A (ja) | 測位システム及び測位方法 | |
RU190429U1 (ru) | Устройство для измерения азимута | |
ES2394825B2 (es) | Cruceta auxiliar plegable con sistema de nivelación para rectificación en procedimientos de inspección básica de puentes de fábrica. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2630387 Country of ref document: ES Kind code of ref document: B1 Effective date: 20180226 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20240402 |