ES2422531B1 - Highly viscoelastic and highly resistant agar, and method for its production - Google Patents

Highly viscoelastic and highly resistant agar, and method for its production Download PDF

Info

Publication number
ES2422531B1
ES2422531B1 ES201290084A ES201290084A ES2422531B1 ES 2422531 B1 ES2422531 B1 ES 2422531B1 ES 201290084 A ES201290084 A ES 201290084A ES 201290084 A ES201290084 A ES 201290084A ES 2422531 B1 ES2422531 B1 ES 2422531B1
Authority
ES
Spain
Prior art keywords
agar
extraction
present
unprocessed
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES201290084A
Other languages
Spanish (es)
Other versions
ES2422531R1 (en
ES2422531A2 (en
Inventor
Takahiro MAEGAWA
Akihiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Publication of ES2422531A2 publication Critical patent/ES2422531A2/en
Publication of ES2422531R1 publication Critical patent/ES2422531R1/en
Application granted granted Critical
Publication of ES2422531B1 publication Critical patent/ES2422531B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/256Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seaweeds, e.g. alginates, agar or carrageenan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/60Edible seaweed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Edible Seaweed (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

Agar altamente viscoelástico y altamente resistente, y método para la producción del mismo.#Se describe un método para producir un agar que está provisto de una elevada resistencia a la rotura incluso al tiempo que tiene una elevada viscoelasticidad que no se ha obtenido con los agares convencionales. Llevando a cabo una operación de extracción a partir de un alga de agar sin procesar a un pH de 10 a 13,5 por calentamiento de 70 a 135ºC, seguido de secado; se obtiene un agar, donde un gel con forma de cilindro que comprende un 1,5% en peso de agar con un diámetro de 22 mm y una altura de 18 mm tiene una resistencia a la rotura de 1000 g/cm{sup,2} o mayor y una distancia de rotura de 3,3 mm o mayor a 20ºC.Highly viscoelastic and highly resistant agar, and method for the production thereof. # A method is described for producing an agar that is provided with a high breaking strength even while having a high viscoelasticity that has not been obtained with the agars. conventional. Carrying out an extraction operation from an unprocessed agar seaweed at a pH of 10 to 13.5 by heating from 70 to 135 ° C, followed by drying; an agar is obtained, where a cylinder-shaped gel comprising 1.5% by weight agar with a diameter of 22 mm and a height of 18 mm has a breaking strength of 1000 g / cm {sup, 2 } or greater and a breaking distance of 3.3 mm or greater at 20 ° C.

Description

DESCRIPCION Agar altamente viscoelastico y altamente resistente, y metodo para la produccion del mismo 5 Campo de la invencian La presente invencion se refiere a agar que tiene una elevada resistencia a la rotura y tambien tiene una elevada viscoelasticidad, y a un proceso para la produccion del mismo. 10 Tecnica anterior El agar se conoce como alimento desde hace mucho tiempo, y su estructura quimica principal es una estructura en la cual D-galactosa y 3,6-anhidro-L-galactosa estan conectadas de forma repetida. Se dice que existe un ligero cambio en parte de la estructura y que el agar puede contener una pequefia cantidad de acid° sulfuric° 15 esterificado (Documento 1 que no es patente). Una materia prima de agar son las algas sin procesar tales como Gelidium, Ptenocladia, Gracilaria y Ahnfeltiaplicata, y estas se usan soles o en forma de mezcla de dos o mas tipos. Como ejemplo de la produccion de agar, en primer lugar, se lava el alga sin procesar con agua, posteriormente 20 se extrae con agua caliente de 70 a 120 °C durante 1 a 2 horas en presencia de un acido tal como acido acetic°, acido sulftkico y acido clorhidrico y, posteriormente, se extraen los ingredientes en estado sol que tienen capacidad de coagulaciOn. A continuacion, se Ileva a cabo la filtracion al tiempo que se mantiene una temperature elevada con el fin de separar los componentes extraidos e insolubles. Posteriormente, se enfria el filtrado hasta la obtenciOn de un gel, y se congelan los componentes extraidos gelificados y se funden, y se 25 prensan sobre un filtro para su deshidrataciOn. Ademas, los componentes extraidos se someten a centrifuged° o similar para retirar el agua seguido de secado. En un alga Grad!aria sin procesar, se mejora la capacidad de gelificacion por medio de tratamiento alcalino del alga sin procesar con un agente alcalino tal como desde un bajo % hasta el 20% en peso, normalmente del 4 al 30 10% de hidroxido de sodio a una temperatura de 10 a 120 °C durante 0,5 a 16 horas como pre-tratamiento de extracciOn con agua caliente, aunque el tratamiento alcalino se Ileva a cabo de manera menos frecuente en Gelidium, Pteroclaida y Ahnfeltiaplicata (Documento de Patente 1). No obstante, tras el tratamiento alcalino, el alga de agar sin procesar se lava con agua y, posteriormente, se trata con acido y a continuaciOn se somete a tratamiento adicional de ebulliciOn-y-envejecimiento en condiciones casi neutras. No se sugiere la utilizacion de 35 los ingredientes que son cdraidos tras el tratamiento alcalino, ni la extraccion en condiciones alcalinas. Una solicitud que describe que la extraccion de agar se Ileva a cabo en condiciones alcalinas incluye, por ejemplo, el Documento de Patente 2. El documento describe que "se ajusta el pH de 7 a 9 para obtener un cuerpo de alga humedo, y el agar se extrae a partir del cuerpo de alga hemedo". No obstante, no existe 40 descripcion alguna sobre la extraccion a un valor de pH mas elevado que el del intervalo anterior. 45 Documentos de la tecnica anterior Documentos de patente Documento de Patente 1: JP 7-184608 A Documento de Patente 2: JP 2844065 B Documentos que no son patentes Documento 1 que no es patente: "Food Polysaccharides" (Saiwai Shobo) pag. 113-125 (2001). Descripcion de la invencion 55 Problemas a resolver por la invenciOn Un objeto de la presente invencion es proporcionar agar que tenga tanto viscoelasticidad como una elevada resistencia a la rotura, que no se hayan visto en el agar anterior, y que se pueda utilizer con amplia utilidad, y un proceso para la producciOn del mismo. 50 60 Medios para resolver los problemas Con el fin de resolver los problemas, los presentes inventores han estudiado intensivamente las condiciones para la produce& de agar. Como resultado de ello, los presentes inventores han descubierto que los muy diversos componentes que se extraen a partir de un alga de agar sin procesar en condiciones alcalinas especificas incluyen componentes que pueden conferir al agar una elevada viscoelasticidad y elevada resistencia a la rotura. La presente invencion se ha completado sobre la base de estos descubrimientos. 5 Es decir, la presente invencion se refiere a: 10 (1) Un agar, donde un gel con forma de cilindro que comprende un 1,5% en peso del agar con un diametro de 22 mm y una altura de 18 mm tiene una resistencia a la rotura de 1000 g/cm2 o mayor y una distancia de rotura de 3,3 mm o mayor a 20 °C. (2) Un proceso para producir el agar de acuerdo con (1), que comprende extraer agar a partir de un alga de agar sin procesar a un pH de 10 a 13,5 por calentamiento de 70 a 135 °C, seguido de secado. (3) Un alimento o una bebida que comprende el agar de acuerdo con (1). 15 (4) Un agente de gelificacien que comprende el agar de acuerdo con (1). (5) Un estabilizador de dispersion que comprende el agar de acuerdo con (1). 20 Efecto de la invencian De acuerdo con la presente invencion, se puede obtener facilmente agar que tiene una elevada resistencia a la rotura y que tiene una excelente viscoelasticidad. 25 Modo de !lever a cabo la invencian 1. Preparacion de agar de alga sin procesar En la presente invencion, se pueden usar diversas algas de agar sin procesar. El alga de agar sin procesar a la 30 que se hace referencia en la presente invencion es un alga marina que sirve como materia prima de agar, y los ejemplos de la misma incluyen algas rojas. Entre las algas rojas, se prefieren Gelidium, Pterocladia, Acanthopeftis, Gracilatia, Ahnfeltia, Ceramium y Campylaephor; y Gelidium es particularmente preferida. Esto se debe, en un alga Gelidium sin procesar, a que la resistencia a la rotura en el agar objeto de extraccion es originalmente elevada. El alga de agar sin procesar puede encontrarse en estado hurnedo o en estado seco, 35 pero el agar que tiene una resistencia a la rotura mas elevada tiende a ser obtenido por secado y molienda del alga sin procesar. Ademas, se puede Ilevar a cabo de forma apropiada una operacion tal como un lavado apropiado con el fin de retirar los contaminantes, segun sea necesario, antes de usarla como materia prima. (Opinion sobre el tratamiento alcalino) En las tecnicas anteriores, como pre-tratamiento, en ocasiones se Ileva a cabo un "tratanniento alcalino" sobre el alga de agar sin procesar antes de la extraccien. Por ejemplo, de acuerdo con "Seaweed Industry" de Eiichi Nishide (http:// wwwsoc.nii.ac.jp/isp/pdf-files/38SeaweedIndustry.pdf (peg. 124) del 29 de marzo de 2010), existe una descripcion en la cual, "como resultado del estudio de Koemon Funaki y Yoshio Kojima de la Universidad de 45 Tokyo de Pesc,a, se encontro que cuando se trata el musgo Ceylon en una solucion de hidrOxido de sodio al 1,5 a 2% a 90 °C durante 3 a 4 horas, tiene lugar una reaccien de conversien de sulfato de galactano en 3,6-anhidro-L-galactosa y se mejora drasticamente la resistencia del gel". No obstante, en la presente invencien, el "tratamiento alcalino" antes de la extraccion no es necesario. Ademas, 50 tambien se puede usar una materia prima "tratada con alder, pero no ha sido posible confirmar la influencia del "tratamiento alcalino" en el producto final. Es decir, incluso cuando se Ileva a cabo el "tratamiento alcalino" como pre-tratamiento, se observa poca influencia sobre la "resistencia de gel" (resistencia a la rotura) y la distancia de rotura en el producto final. 55 Adernas, en el Documento de Patente 1 y en "Seaweed Industry", tras Ilevar a cabo el tratamiento alcalino como pre-tratamiento de la materia prima, se desecha el liquid° alcalino. Es decir, el "tratamiento alcalino" al que se hace referencia en el Documento de Patente 1 y en "Seaweed Industry" es una etapa de inmersion del alga de agar sin procesar en una disolucion alcalina para la retirada de la disolucien alcalina. Cuando se hace referenda al "tratamiento alcalino" en este documento, este se refiere a un metodo de retirada final del liquid° alcalino, 60 como se ha descrito anteriormente. 40 Dicho "tratamiento alcalino" es diferente de la extraccion en condiciones alcalinas que se Ileva a cabo en la presente invencien y, como resultado de ello, el agar resultante tiene una propiedad completamente diferente. Es decir, en la extraccien en condiciones alcalinas de la presente invencien, se supone que tiene lugar un fenomeno diferente del "tratamiento alcalino" anterior. 2. ExtracciOn de agar 5 La extraccion de agar de la presente invencion se Ileva a cabo usando una soluciOn acuosa alcalina que es de 10 a 300 veces, mas deseablemente de 20 a 200 veces, respecto al alga de agar sin procesar del punto 1 anterior. Cuando la cantidad de soluciOn acuosa alcalina con respecto at alga de agar sin procesar es demasiado pequena, la cantidad de agar que queda en un residuo del alga de agar sin procesar puede ser grande en una sola extraccion y, por otra parte, cuando la cantidad de solucion acuosa alcalina con respecto at alga de agar sin 10 procesar es demasiado grande, puede resultar necesaria una energia extra en el secado posterior o similar. Ejemplos de agente alcalino usado en la presente invencion incluyen hidrOxido de sodio, hidrOxido de potasio, hidroxido de calcio, carbonato de sodio, bicarbonato de sodio y amoniaco y, entre ellos, se prefieren hidroxido de sodio, hidroxido de potasio e hidroxido de calcio y, en particular, es mas preferible el hidroxido de sodio. 15 Mediante el uso de dicho "agente alcalino preferido", se puede conseguir facilmente un pH objetivo. El pH durante la extracciOn esta en un intervalo de 10 a 13,5, mas deseablemente un pH de 10,5 a 12,5, y de manera aun mas deseable un pH de 11 a 12,5. Cuando el pH durante la extraccion es demasiado bajo, no se puede obtener agar que tenga una resistencia a la rotura y viscoelasticidad suficientemente elevadas. Cuando el 20 pH es demasiado elevado, es posible que el rendimiento se yea reducido. De manera deseable, la concentracion de agente alcalino a usar es de 5 a 300 mM, mas deseablemente de 10 a 250 mM. Cuando la concentracion alcalina es demasiado elevada, el pH del producto puede ser elevado y, en el caso de neutralizaciOn, la concentracion de una sal del producto puede ser elevada. Cuando la concentraciOn de 25 alcali es demasiado baja, el pH puede alejarse del intervalo objetivo durante la extracciOn. La temperatura durante la extracciOn es de 70 a 135 °C, mas deseablemente de 100 a 135 °C, y mas deseable min de 105 a 130 °C. Cuando la temperatura es demasiado baja, la eficacia de extraccion puede verse reducida. Cuando la temperatura es demasiado elevada, con frecuencia el efecto de mejora de la eficacia de extraccion se 30 ve limitado. De manera deseable, el tiempo de extracciOn es de 1 a 50 horas, mas deseablemente de 1 a 20 horas, de manera min mas deseable de 5 a 20 horas. Cuando el tiempo de extraccion es demasiado reducido, puede ocurrir que no se extraigan los componentes activos de manera suficiente. Cuando el tiempo de extracciOn es 35 demasiado prolongado, puede existir influencia sobre la eficacia de producciOn. 3. Tratamiento tras la extracciOn Tras la extracciOn, es deseable aislar los componentes de agar por medio de tierras diatomeas, un filtro de 40 cortina, una prensa filtrante o centrifugado en condiciones de temperatura elevada en las que no se forma gel alguno. En este caso, mediante la adicion de un coadyuvante de filtracion, tal como polvo de celulosa, antes o despues de la extracciOn segun sea necesario, se puede mejorar la capacidad de separacion. El liquid° de agar transparente obtenido en el presente caso se puede secar y pulverizar por diferentes procedimientos. Ejemplos especificos de los procedimientos incluyen liofilizacion natural y deshidratacion por congelaciOn-descongelaciOn 45 por medio de congelacion mecanica. De manera alternativa, tras la deshidratacion por compresion con una prensa filtrante despues de la gelificacion o la insolubilizaciOn con un disolvente organico hidrOfilo (tal como etanol, preferentemente), se puede secar el liquido de agar, o se puede liofilizar directamente el gel o se puede secar en tambor y, posteriormente, pulverizar. 50 Con el fin de mejorar la tonalidad de color del agar resultante, tambien se puede Ilevar a cabo el blanqueo mediante el uso de diferentes agentes de blanqueo que generalmente se usan sobre las algas sin procesar, fracciones filtradas de extracciOn y agar, preferentemente, hipodorito de sodio, agua oxigenada o polvo blanqueante. 55 El agar generado por este procedimiento tiene una propiedad fisica que exhibe una nueva textura en la cual la relaciOn entre la resistencia a la rotura y la distancia de rotura es daramente diferente de la correspondiente a una region exhibida por parte del agar natural anterior y el agar industrial. Como propiedad fisica deseable, en un gel al 1,5% en peso con forma de cilindro (20 °C) con un diametro de 22 mm y una altura de 18 mm, se puede mencionar una resistencia a la rotura de 1000 g/cm2 o mayor y una distancia de rotura de 3,3 mm o mayor. De 60 manera mas deseable, la propiedad fisica es una resistencia a la rotura de 1100 g/cm2 o mayor y una distancia de rotura de 3,5 mm o mayor, y mas deseablemente una resistencia a la rotura de 1200 g/cm2 o mayor y una distancia de rotura de 4 mm o mayor. La resistencia a la rotura y la distancia de rotura mostradas en este documento deben medirse por los metodos descritos en los Ejemplos. Con el fin de que otro agar obtenga la misma resistencia a la rotura que la del producto de la presente invenciOn, es necesario preparar un gel a una concentracion muy elevada. No obstante, incluso si se puede aumentar la resistencia de este modo, no se puede obtener simultaneamente una distancia de rotura como en la presente invencion. Es decir, el producto de la presente invencion adquiere una elasticidad que no tiene el agar normal 5 incluso con el mismo valor de resistencia a la rotura. De este modo, se puede usar el product° de la presente invencion en forma de estabilizador de dispersion de bebidas de coco para las cuales se han usado previamente carragenina y celulosa. Adernas, se puede usar el producto de la presente invenciOn para una bebida de gelatina o un alimento liquid° como sustitutivo de espesantes de polisacarido. Ademas, se puede utilizar ampliamente el producto de la presente invenciOn en productos que requieren elasticidad tales como gelatina, postres que tienen 10 una textura suave preferida inherente al agar, y productos ganaderos y pesqueros tales como salchichas y salchichas vienesas. Ademas, la utilizacion en forma de tipo konjac o fideos, que era dificil en el agar anterior, tambien es posible. En estos usos como estabilizador de dispersion y como agente de gelificacion, no solo es posible el uso de agar de 15 la invencion solo, sino que tambien es posible el uso en un sistema mixto de combinaciOn de un tipo o dos o mas tipos de polisacaridos tales como almid6n, dextrina, celulosa, carragenina, furcelarano, goma guar, goma de algarrobilla, polisacaridos de semilla de tamarindo, goma tara, goma arabiga, goma de tragacanto, goma karaya, pectina, goma de xantano, pululano y goma de gelano o proteinas tales como proteinas de !eche y proteinas de soja y sus fracciones, es decir, usadas en forma de preparaciones. 20 25 A continuacion, se explica de manera nrias especifica la presente invencion por medio de los ejemplos y de los ejemplos comparativos. Ejemplos Estudio 1. Estudio de temperatura de extraccion Ejemplos 1 a 8 30 Se vertio una soluciOn acuosa de hidroxido de sodio 31,6 mM en 7,0 g de alga seca sin procesar de Gelidium recogida en la costa del distrito de Kyushu, hasta obtener una cantidad total de 700 g. En ese momento el pH era de 12,3. Posteriormente, se !level a cabo la extraccion bajo presiOn en autoclave (HICLAVE HV-50, HIRAYAMA) a cada una de las temperaturas mostradas en la Tabla 1 durante 4 horas, respectivamente (cuando la extraccion se Ilevo a cabo a 100 °C o menos, no se Ilevo a cabo presurizado). Tras el tratamiento de extracciOn, se filtro el 35 extracto con un papel de filtro manteniendo la temperatura a 60 °C o mas, para retirar el material insoluble y asi obtener un liquid° de agar transparente. Una vez que el presente liquid° de agar se hubo congelado y fundido, se recupero el precipitado obtenido por medio de centrifugado y se trate) por deshidratacion. Posteriormente, tras el secado al aire, se molio el precipitado para obtener agar. Se evalu6 el agar resultante de acuerdo con la siguiente "mediciOn de resistencia a la rotura y distancia de rotura del gel". 40 Ia 1 Ejemplo 1 Ejemplo 2 Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6 Ejemplo 7 Ejemplo 8 Temperatura de extraccion (°C) 90 100 105 110 115 120 125 130 Resistencia a la rotura 1295,2 1414,4 1418,9 1484,4 1504,3 1581,6 1654,6 1449,8 Distancia de rotura 3,4 3,9 4,5 4,5 4,4 4,3 4,4 4,5 Aceptacion/ Rechazo Acepta- don Acepta- don Acepta- don Acepta- dem Acepta- ciOn Acepta- dem Acepta- ci6n Acepta-ci6n "MediciOn de la resistencia a la rotura y distancia de rotura del gel" 45 Se suspendi6 cada agar en forma de polvo en agua destilada hasta una concentraciOn del 1,5% en peso, y se disolvi6 con un autoclave (120 °C, 10 min.). Tras la disolucion, se dejo reposar para solidificar a 20 °C durante 15 horas, se examine) una pieza de ensayo por medio de un Instron con un palpador con forma de cilindro (0 10 mm) (pieza de ensayo, forma de cilindro con un 50 diametro de 22 mm y una altura de 18 mm) a una velocidad de penetracion de 30 mm/min. Se definio la tensiOn necesaria para la rotura como resistencia a la rotura (gf). Se defini6 la longitud de la distorsiOn generada antes de la rotura como la distancia de rotura (mm). Se adopt6 un promedio de tres puntos como valor medido. La Tabla 1 tambian muestra los resultados de mediciOn de la resistencia a la rotura y la distancia de rotura del gel. Como se muestra en la Tabla 1, se podria obtener un agar que exhibe un resistencia a la rotura suficiente y una 5 distancia de rotura suficiente, dentro del interval° de una temperatura de extracciOn de 70 a 135 °C. Estudio 2. Estudio del pH durante la extraccion Ejemplos 9 a 11, Ejemplos Comparativos 1 a 3 10 Tras anadir 700 ml de agua destilada a 7,0 g de algas de Gelidium sin procesar iguales que las del Estudio 1, se ajust6 el pH a cada valor de pH mostrado en la Tabla 2 con acid° clorhidrico 0,3 N o hidroxido de sodio 0,25 N y se Ilevo a cabo la extraccion presurizada con un autoclave (HICLAVE HV-50 HIRAYAMA) a 120 °C durante 4 horas. Tras el tratamiento de extraccion, se filtro el extracto con un papel de filtro manteniendo la temperatura a 15 60 °C o mas, para retirar las nnaterias insolubles con el fin de obtener un liquido de agar transparente. Una vez que se hubo congelado y fundido el presente liquido de agar, se recupero el precipitado obtenido por centrifugacion, y se trat6 por deshidrataciOn. Posteriormente, tras el secado al aire, se molio el precipitado para obtener agar. 20 Se evaluo el agar resultante de acuerdo con "la medicion de resistencia a la rotura y distancia de rotura de gel" que se muestran en el Estudio 1. La Tabla 2 muestra los resultados de la evaluacion. 25 Tabla 2 Ejemplo Comparativo 1 Ejemplo Comparativo 2 Ejemplo Comparativo 3 Ejemplo 9 Ejemplo 10 Ejemplo 11 pH de extracciOn 5 7 9 11 12 13 Resistencia a la rotura 755,9 807,9 854,6 1272,5 1219,0 1097,2 Distancia de rotura 2,9 3,3 3,4 4,8 5,0 4,0 AceptaciOn/rechazo Rechazo Rechazo Rechazo AceptaciOn Aceptacion AceptaciOn Como se observa en la Tabla 2, se podria obtener un agar que exhibe una resistencia a la rotura suficiente y una distancia de rotura suficiente dentro del intervalo de pH durante la extraccion de 10 a 13,5. 30 Estudio 3. Comparacion con los productos existentes Se midieron un producto "Yamato" que se encuentra disponible comercialmente en Ina Food Industry Co., Ltd. como agar de viscoelasticidad super-elevada, un reactivo de "Agar" fabricado por Wako Pure Chemical Industries Ltd. y la muestra del Ejemplo 8 de la presente invencion de acuerdo con la "medicion de resistencia a la rotura y 35 distancia de rotura del gel" descrita en el Estudio 1, y se represent6 graficamente el desplazamiento de compresion para cada carga de compresion. Los resultados se muestran en la Figura 1. En cada grafica, la rotura tuvo Iugar en un punto del pica, y Ia carga de compresion en este punto se denomin6 resistencia a ia rotura y el desplazamiento de compresion en este punto se denomino distancia de rotura. 40 Como se observa en la Figura 1, el agar de la presente invencion exhibe una resistencia a la rotura mayor que la de los productos convencionales, al tiempo que exhibe un desplazamiento de compresion grande comparable con el del agar suministrado comercialmente como "agar de viscoelasticidad super-elevada". DiscusiOn 45 En el agar normal, se puede aumentar la resistencia a la rotura aumentando la concentraciOn en un gel en algunos casos, pero se reduce la viscoelasticidad (distancia de rotura) debido a esto. Es decir, cuando se aumenta la concentracion, el agar se vuelve duro pero se convierte en fragil debido a esto. De manera general, esto se reconoce como una propiedad fisica peculiar de un gel de agar. En tales circunstancias, existe un producto que motiva que la resistencia a la rotura sea baja pero la viscoelasticidad (desplazamiento de compresion) sea elevada ("Yamato" de Ina Food Industry Co., Ltd.). No obstante, el producto de la presente invencion exhibe viscoelasticidad (desplazamiento de compresiOn) en una cantidad equivalente a la del "agar de viscoelasticidad super-elevada" convencional, al tiempo que tiene una 55 resistencia a la rotura que es 2 veces o mas la correspondiente al producto anterior disponible comercialmente. 50 De este modo, el producto es agar que exhibe una elevada resistencia a la rotura y elevada viscoelasticidad y que tiene propiedades fisicas especiales, que no se ha conocido previamente. Estudio 4. Analisis fundamental de valor de agar de la presente invenciOn 5 Con el fin de obtener datos fundamentales del agar de la presente invenciOn, en primer lugar, se midiel el peso molecular promedio en peso (Pm). Ademas, como valor de propiedad fisica termodinamica, se midiO el punto de fusion del gel de agar por calorimetrla de barrido diferencial (medicion de DSC). A continuacion, se muestra un matodo especifico. A modo de comparacion, tambien se muestran los valores medidos de "Agar" fabricado par 10 Wako Pure Chemical Industries, Ltd. y el Ejemplo Comparativo 2. 15 Peso molecular promedio en peso (Pm): medido de acuerdo con un nietodo GPC por media de HPLC. Se disolvio cada muestra (0,3 g) en 200 ml de agua ultrapura (110 °C, 5 min.) y se midi6 el peso molecular promedio en peso usando una columna (TOSOHTSK-GEL de HPLC, TSK-GEL GMPVVXL). La Tabla 3 muestra los resultados de la medicion del peso molecular promedio en peso (Pm). Tabla 3 Peso molecular promedio en peso (Pm) Agar de la presente invenciOn (Ejemplo 1) 389000 Ejemplo Comparativo 2 143000 "Agar" fabricado por Wako Pure Chemical Industries, Ltd. 154000 20 Medici& DSC: se disolvio cada muestra (3,0 g) en 100 ml de agua ultrapura (120 °C, 10 min.) y se sellaron en un recipiente de muestra sellado fabricado de plata para formacion de gel. Una vez que la temperatura se mantuvo en 10 °C, se midi() el punto de fusion aumentando la temperatura hasta 140 °C. Como muestra patron, se us6 agua destilada. 25 La Figura 2 muestra los resultados de la medicion DSC. De acuerdo con los resultados de la mediciOn de Pm, el Pm del producto de la presente invenciOn era de aproximadamente 390000 como se muestra en la Tabla 3. El Pm del Ejemplo Comparativo 2 de la misma materia prima y del agar disponible comercialmente era de aproximadamente 150000, y se evidenci6 que el agar 30 de la presente invencion es agar que tiene un peso molecular grande. Como se muestra en la Figura 2, el agar de la presente invencion es en gran medida diferente de otras muestras de agar tambian en cuanto a los resultados de la mediciOn de DSC. El punto de fusiOn del producto de la presente invenciOn es mas elevado que el punto de fusion de las otras muestras de agar en 10 °C o mas, y se 35 sugirie que el producto de la presente invenciOn era en gran medida diferente en cuanto al punto de resistencia termica de un gel de agar. Breve descripcion de los dibujos 40 La Fig. 1 es una grafica que compara la carga de compresiOn y el desplazamiento de compresion entre el agar de la presente invenciOn y el agar convencional. 45 La Figura 2 es una grafica que compara el punto de fusion entre el agar de la presente invencion y el agar objeto de comparaciOn. DESCRIPTION Highly viscoelastic and highly resistant agar, and method for the production thereof 5 Field of the invention The present invention relates to agar that has a high resistance to breakage and also has a high viscoelasticity, and a process for the production thereof. . 10 Prior art Agar has been known as food for a long time, and its main chemical structure is a structure in which D-galactose and 3,6-anhydro-L-galactose are repeatedly connected. It is said that there is a slight change in part of the structure and that the agar may contain a small amount of esterified acid sulfuric acid (Document 1 which is not patent). A raw material of agar is unprocessed algae such as Gelidium, Ptenocladia, Gracilaria and Ahnfeltiaplicata, and these are used soles or in the form of a mixture of two or more types. As an example of agar production, first, the unprocessed seaweed is washed with water, then it is extracted with hot water from 70 to 120 ° C for 1 to 2 hours in the presence of an acid such as acetic acid, sulphokic acid and hydrochloric acid and, subsequently, the ingredients are extracted in the sun state that have the ability to coagulate. Next, the filtration is carried out while maintaining a high temperature in order to separate the extracted and insoluble components. Subsequently, the filtrate is cooled until a gel is obtained, and the gelled extracted components are frozen and melted, and pressed on a filter for dehydration. In addition, the extracted components are subjected to centrifuged ° or the like to remove the water followed by drying. In an unprocessed Grad! Arga seaweed, the gelation capacity is improved by means of alkaline treatment of the unprocessed algae with an alkaline agent such as from a low% to 20% by weight, usually from 4 to 30% 10% hydroxide of sodium at a temperature of 10 to 120 ° C for 0.5 to 16 hours as a pre-treatment of extraction with hot water, although the alkaline treatment is carried out less frequently in Gelidium, Pteroclaida and Ahnfeltiaplicata (Patent Document one). However, after the alkaline treatment, the unprocessed agar seaweed is washed with water and subsequently treated with acid and then subjected to further boiling-and-aging treatment under almost neutral conditions. The use of the ingredients that are credited after the alkaline treatment, nor the extraction under alkaline conditions, is not suggested. A request describing that agar extraction is carried out under alkaline conditions includes, for example, Patent Document 2. The document describes that "the pH is adjusted from 7 to 9 to obtain a wet algae body, and the agar is extracted from the body of hemedo algae. " However, there is no description of the extraction at a higher pH value than in the previous range. 45 Prior Art Documents Patent Documents Patent Document 1: JP 7-184608 A Patent Document 2: JP 2844065 B Documents that are not patents Document 1 that is not patent: "Food Polysaccharides" (Saiwai Shobo) pag. 113-125 (2001). Description of the invention 55 Problems to be solved by the invention An object of the present invention is to provide agar that has both viscoelasticity and high resistance to breakage, which have not been seen in the previous agar, and that can be used with wide utility. , and a process for its production. 50 60 Means for solving problems In order to solve problems, the present inventors have intensively studied the conditions for agar production. As a result, the present inventors have discovered that the very diverse Components that are extracted from an unprocessed agar seaweed under specific alkaline conditions include components that can give the agar a high viscoelasticity and high resistance to breakage. The present invention has been completed on the basis of these findings. 5 That is, the present invention relates to: 10 (1) An agar, wherein a cylinder-shaped gel comprising 1.5% by weight of the agar with a diameter of 22 mm and a height of 18 mm has a Breaking strength of 1000 g / cm2 or greater and a breaking distance of 3.3 mm or greater at 20 ° C. (2) A process for producing the agar according to (1), which comprises extracting agar from an unprocessed agar seaweed at a pH of 10 to 13.5 by heating from 70 to 135 ° C, followed by drying . (3) A food or beverage comprising the agar according to (1). 15 (4) A gelling agent comprising the agar according to (1). (5) A dispersion stabilizer comprising the agar according to (1). Effect of the Invention According to the present invention, agar which has a high resistance to breakage and which has excellent viscoelasticity can be easily obtained. Method of the lever according to the invention 1. Preparation of unprocessed seaweed agar In the present invention, various unprocessed agar algae can be used. The unprocessed agar seaweed referred to in the present invention is a seaweed that serves as the raw material for agar, and examples thereof include red algae. Among the red algae, Gelidium, Pterocladia, Acanthopeftis, Gracilatia, Ahnfeltia, Ceramium and Campylaephor are preferred; and Gelidium is particularly preferred. This is due, in an unprocessed Gelidium algae, because the resistance to breakage in the agar being extracted is originally high. The unprocessed agar seaweed may be in the hurnedo state or in the dry state, 35 but the agar having a higher breaking strength tends to be obtained by drying and milling the unprocessed seaweed. In addition, an operation such as proper washing can be carried out appropriately in order to remove contaminants, as necessary, before using it as a raw material. (Opinion on alkaline treatment) In prior art, as a pre-treatment, sometimes an "alkaline treatment" is carried out on the unprocessed agar algae before extraction. For example, according to "Seaweed Industry" by Eiichi Nishide (http: // wwwsoc.nii.ac.jp/isp/pdf-files/38SeaweedIndustry.pdf (peg. 124) of March 29, 2010), there is a description in which, "as a result of the study by Koemon Funaki and Yoshio Kojima of the University of 45 Tokyo in Pesc, a, it was found that when Ceylon moss is treated in a 1.5 to 2% sodium hydroxide solution at 90 ° C for 3 to 4 hours, a conversion reaction of galactane sulfate into 3,6-anhydro-L-galactose takes place and the gel strength is dramatically improved. " However, in the present invention, "alkaline treatment" before extraction is not necessary. In addition, a raw material "treated with alder" can also be used, but it has not been possible to confirm the influence of "alkaline treatment" on the final product. That is, even when "alkaline treatment" is carried out as pre treatment, little influence is observed on the "gel strength" (tear strength) and the breaking distance in the final product.55 In addition, in Patent Document 1 and in "Seaweed Industry", after carrying out the alkaline treatment as a pre-treatment of the raw material, the alkaline liquid is discarded, that is, the "alkaline treatment" referred to in Patent Document 1 and in "Seaweed Industry" is a seaweed immersion stage of unprocessed agar in an alkaline solution for the removal of the alkaline solution.When reference is made to the "alkaline treatment" herein, it refers to a method of final removal of the alkaline liquid, 60 as described above. 40 Said " alkaline treatment "is different from the extraction under alkaline conditions that is carried out in the present invention and, as a result, the resulting agar has a completely different property. That is, in the extraction under alkaline conditions of the present invention, a phenomenon is supposed to take place. different from the previous "alkaline treatment". 2. Agar extraction 5 Agar extraction of the present invention is carried out using an alkaline aqueous solution that is 10 to 300 times, more desirably 20 to 200 times, relative to the unprocessed agar algae of item 1 above. . When the amount of alkaline aqueous solution with respect to unprocessed agar seaweed is too small, the amount of agar left in a residue of the unprocessed agar seaweed may be large in a single extraction and, on the other hand, when the amount of alkaline aqueous solution with respect to the unprocessed agar seaweed is too large, extra energy may be necessary in subsequent drying or the like. Examples of the alkaline agent used in the present invention include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium bicarbonate and ammonia and, among them, sodium hydroxide, potassium hydroxide and calcium hydroxide are preferred. In particular, sodium hydroxide is more preferable. By using said "preferred alkaline agent", an objective pH can be easily achieved. The pH during extraction is in a range of 10 to 13.5, more desirably a pH of 10.5 to 12.5, and even more desirably a pH of 11 to 12.5. When the pH during extraction is too low, it is not possible to obtain agar that has a sufficiently high resistance to breakage and viscoelasticity. When the pH 20 is too high, the yield may be reduced. Desirably, the concentration of alkaline agent to be used is 5 to 300 mM, more desirably 10 to 250 mM. When the alkaline concentration is too high, the pH of the product may be high and, in the case of neutralization, the concentration of a salt of the product may be high. When the concentration of alkali is too low, the pH may move away from the target range during extraction. The temperature during extraction is from 70 to 135 ° C, more desirably from 100 to 135 ° C, and more desirable min from 105 to 130 ° C. When the temperature is too low, the extraction efficiency may be reduced. When the temperature is too high, the effect of improving the extraction efficiency is often limited. Desirably, the extraction time is from 1 to 50 hours, more desirably from 1 to 20 hours, in a more desirable min from 5 to 20 hours. When the extraction time is too short, it may happen that the active components are not sufficiently removed. When the extraction time is too long, there may be influence on the production efficiency. 3. Treatment after extraction After extraction, it is desirable to isolate the agar components by means of diatomaceous earth, a curtain filter, a filter press or centrifuge under conditions of high temperature in which no gel is formed. In this case, by adding a filter aid, such as cellulose powder, before or after extraction as necessary, the separation capacity can be improved. The transparent agar liquid obtained in the present case can be dried and sprayed by different procedures. Specific examples of the procedures include natural lyophilization and freeze-thaw dehydration by mechanical freezing. Alternatively, after compression dehydration with a filter press after gelation or insolubilization with a hydrophilic organic solvent (such as ethanol, preferably), the agar liquid can be dried, or the gel can be lyophilized directly or It can be dried in a drum and then spray. In order to improve the color tone of the resulting agar, bleaching can also be carried out by using different bleaching agents that are generally used on unprocessed algae, filtered extraction and agar fractions, preferably hypodorite. of sodium, hydrogen peroxide or bleaching powder. 55 The agar generated by this procedure has a physical property that exhibits a new texture in which the relationship between the breaking strength and the breaking distance is markedly different from that corresponding to a region exhibited by the previous natural agar and the industrial agar As a desirable physical property, in a 1.5% weight gel with a cylinder shape (20 ° C) with a diameter of 22 mm and a height of 18 mm, a breaking strength of 1000 g / cm2 can be mentioned or greater and a breaking distance of 3.3 mm or greater. More physically, the physical property is a breaking strength of 1100 g / cm2 or greater and a breaking distance of 3.5 mm or greater, and more desirably a breaking strength of 1200 g / cm2 or greater. and a breaking distance of 4 mm or greater. Breaking strength and breaking distance shown in this document should be measured by the methods described in the Examples. In order for another agar to obtain the same breaking strength as that of the product of the present invention, it is necessary to prepare a gel at a very high concentration. However, even if the resistance can be increased in this way, a breaking distance cannot be obtained simultaneously as in the present invention. That is, the product of the present invention acquires an elasticity that does not have the normal agar 5 even with the same value of resistance to breakage. Thus, the product of the present invention can be used in the form of a coconut beverage dispersion stabilizer for which carrageenan and cellulose have been previously used. In addition, the product of the present invention can be used for a gelatin drink or a liquid food as a substitute for polysaccharide thickeners. In addition, the product of the present invention can be widely used in products that require elasticity such as gelatin, desserts that have a preferred soft texture inherent in agar, and livestock and fishery products such as sausages and Viennese sausages. In addition, the use in the form of konjac or noodles, which was difficult in the previous agar, is also possible. In these uses as a dispersion stabilizer and as a gelling agent, it is not only possible to use agar of the invention alone, but it is also possible to use in a mixed system of combination of one type or two or more types of polysaccharides. such as starch, dextrin, cellulose, carrageenan, furcelarano, guar gum, locust bean gum, tamarind seed polysaccharides, tara gum, arabic gum, tragacanth gum, karaya gum, pectin, xanthan gum, pululane and gellan gum or proteins such as! eche proteins and soy proteins and their fractions, that is, used in the form of preparations. 20 25 Next, the present invention is specifically explained by means of the examples and comparative examples. Examples Study 1. Extraction temperature study Examples 1 to 8 30 An aqueous solution of 31.6 mM sodium hydroxide was poured into 7.0 g of unprocessed dried algae from Gelidium collected on the coast of Kyushu district, until obtaining a total amount of 700 g. At that time the pH was 12.3. Subsequently, the extraction under pressure in the autoclave (HICLAVE HV-50, HIRAYAMA) was carried out at each of the temperatures shown in Table 1 for 4 hours, respectively (when the extraction was carried out at 100 ° C or less, it was not pressurized.) After the extraction treatment, the extract was filtered with a filter paper keeping the temperature at 60 ° C or more, to remove the insoluble material and thus obtain a transparent agar liquid. Once the present agar liquid had been frozen and melted, the precipitate obtained was recovered by centrifugation and treated) by dehydration. Subsequently, after air drying, the precipitate was milled to obtain agar. The resulting agar was evaluated according to the following "breakage strength measurement and gel breakage distance". 40 Ia 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Extraction temperature (° C) 90 100 105 110 115 120 125 130 Breaking strength 1295.2 1414.4 1418.9 1484.4 1504.3 1581.6 1654.6 1449.8 Breaking distance 3.4 3.9 4.5 4.5 4.4 4.3 4.4 4.5 Acceptance / Rejection Accepted- Accepted- Accepted- gift Accept Accept Accept Accept Accept Acceptance "Measurement of breakage strength and breakage distance of gel" 45 Each agar was suspended as a powder in distilled water to a concentration of 1.5 % by weight, and dissolved with an autoclave (120 ° C, 10 min.). After dissolution, allowed to stand to solidify at 20 ° C for 15 hours, examine) a test piece by means of an Instron with a cylinder-shaped probe (0 10 mm) (test piece, cylinder-shaped with a 50 diameter of 22 mm and a height of 18 mm) at a penetration rate of 30 mm / min. The tension needed for breakage was defined as breaking strength (gf). The length of the distortion generated before the break was defined as the breaking distance (mm). An average of three points was adopted as the measured value. Table 1 also shows the measurement results of the breaking strength and breakage distance of the gel. As shown in Table 1, an agar could be obtained that exhibits a sufficient breaking strength and a sufficient breaking distance, within the range of an extraction temperature of 70 to 135 ° C. Study 2. Study of the pH during extraction Examples 9 to 11, Comparative Examples 1 to 3 10 After adding 700 ml of distilled water to 7.0 g of unprocessed Gelidium algae the same as in Study 1, the pH was adjusted to each pH value shown in Table 2 with 0.3 N hydrochloric acid or 0.25 N sodium hydroxide and the pressurized extraction was carried out with an autoclave (HICLAVE HV-50 HIRAYAMA) at 120 ° C for 4 hours . After the extraction treatment, the extract was filtered with a filter paper maintaining the temperature at 15 60 ° C or more, to remove the insoluble materials in order to obtain a transparent agar liquid. Once the present agar liquid had been frozen and melted, the precipitate obtained was recovered by centrifugation, and treated by dehydration. Subsequently, after air drying, the precipitate was milled to obtain agar. 20 The resulting agar was evaluated according to "the measurement of tear strength and gel breakage distance" shown in Study 1. Table 2 shows the results of the evaluation. 25 Table 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Example 9 Example 10 Example 11 Extraction pH 5 7 9 11 12 13 Breaking strength 755.9 807.9 854.6 1272.5 1219.0 1097.2 Distance Breaking 2.9 3.3 3.4 4.8 5.0 4.0 Acceptance / rejection Rejection Rejection Rejection Acceptance Acceptance Acceptance As seen in Table 2, an agar could be obtained that exhibits sufficient tear strength and a sufficient breaking distance within the pH range during extraction from 10 to 13.5. 30 Study 3. Comparison with existing products A "Yamato" product that is commercially available from Ina Food Industry Co., Ltd. was measured as a super-high viscoelasticity agar, a "agar" reagent manufactured by Wako Pure Chemical Industries Ltd. and the sample of Example 8 of the present invention in accordance with the "measurement of tear strength and breakage distance of the gel" described in Study 1, and the compression offset for each compression load was plotted . The results are shown in Figure 1. In each graph, the rupture had a place at one point of the spike, and the compression load at this point was called resistance to breakage and the compression displacement at this point was called the breaking distance. . As can be seen in Figure 1, the agar of the present invention exhibits a breaking strength greater than that of conventional products, while exhibiting a large compression offset comparable to that of the commercially supplied agar as a "viscoelasticity agar. super-high. " Discussion 45 In normal agar, tear strength can be increased by increasing the concentration in a gel in some cases, but viscoelasticity (breaking distance) is reduced due to this. That is, when the concentration is increased, the agar becomes hard but becomes brittle due to this. In general, this is recognized as a peculiar physical property of an agar gel. In such circumstances, there is a product that motivates the resistance to breakage to be low but the viscoelasticity (compression displacement) is high ("Yamato" from Ina Food Industry Co., Ltd.). However, the product of the present invention exhibits viscoelasticity (compression displacement) in an amount equivalent to that of the conventional "super-high viscoelasticity agar", while having a breaking strength that is 2 times or more the corresponding to the previous commercially available product. fifty Thus, the product is agar that exhibits a high resistance to breakage and high viscoelasticity and that has special physical properties, which has not been previously known. Study 4. Fundamental analysis of agar value of the present invention 5 In order to obtain fundamental data of the agar of the present invention, first, the weight average molecular weight (Pm) was measured. In addition, as a thermodynamic physical property value, the melting point of the agar gel was measured by differential scanning calorimeter (measurement of DSC). Next, a specific method is shown. By way of comparison, the measured values of "Agar" manufactured by 10 Wako Pure Chemical Industries, Ltd. and Comparative Example 2 are also shown. 15 Weight average molecular weight (Pm): measured according to a GPC grandson by average HPLC Each sample (0.3 g) was dissolved in 200 ml of ultrapure water (110 ° C, 5 min.) And the weight average molecular weight was measured using a column (HPLC TOSOHTSK-GEL, TSK-GEL GMPVVXL). Table 3 shows the measurement results of the weight average molecular weight (Pm). Table 3 Weight average molecular weight (Pm) Agar of the present invention (Example 1) 389000 Comparative Example 2 143000 "Agar" manufactured by Wako Pure Chemical Industries, Ltd. 154000 20 Medici & DSC: each sample was dissolved (3.0 g ) in 100 ml of ultrapure water (120 ° C, 10 min.) and sealed in a sealed sample container made of silver for gel formation. Once the temperature was maintained at 10 ° C, the melting point was measured by increasing the temperature to 140 ° C. As the pattern shows, distilled water was used. 25 Figure 2 shows the results of the DSC measurement. According to the results of the Pm measurement, the Pm of the product of the present invention was approximately 390000 as shown in Table 3. The Pm of Comparative Example 2 of the same raw material and commercially available agar was approximately 150,000, and it was shown that agar 30 of the present invention is agar having a large molecular weight. As shown in Figure 2, the agar of the present invention is largely different from other agar samples also in terms of the results of the DSC measurement. The melting point of the product of the present invention is higher than the melting point of the other agar samples at 10 ° C or more, and it was suggested that the product of the present invention was largely different in terms of thermal resistance point of an agar gel. Brief description of the drawings 40 Fig. 1 is a graph comparing the compression load and compression displacement between the agar of the present invention and the conventional agar. Figure 2 is a graph comparing the melting point between the agar of the present invention and the agar being compared.

ES201290084A 2010-06-07 2011-05-30 Highly viscoelastic and highly resistant agar, and method for its production Expired - Fee Related ES2422531B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010129896 2010-06-07
JP2010-129896 2010-06-07
PCT/JP2011/062319 WO2011155352A1 (en) 2010-06-07 2011-05-30 Highly viscoelastic and highly strong agar, and method for producing same

Publications (3)

Publication Number Publication Date
ES2422531A2 ES2422531A2 (en) 2013-09-11
ES2422531R1 ES2422531R1 (en) 2013-10-22
ES2422531B1 true ES2422531B1 (en) 2014-10-06

Family

ID=45097960

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201290084A Expired - Fee Related ES2422531B1 (en) 2010-06-07 2011-05-30 Highly viscoelastic and highly resistant agar, and method for its production

Country Status (5)

Country Link
JP (1) JP5196075B2 (en)
KR (1) KR20130086529A (en)
CN (1) CN102917607B (en)
ES (1) ES2422531B1 (en)
WO (1) WO2011155352A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145858B2 (en) * 2012-11-02 2017-06-14 伊那食品工業株式会社 Method for producing plant growth promoter and method for promoting plant growth
KR101759282B1 (en) 2015-09-30 2017-07-18 조선대학교산학협력단 manufacturing method of agar extracted sea string
JP6133384B2 (en) * 2015-11-12 2017-05-24 日本ハイドロパウテック株式会社 Dried agar and method for producing the same
CN105660826A (en) * 2016-01-15 2016-06-15 范新民 Method for drying fresh red algae
JP6998648B2 (en) 2016-03-25 2022-01-18 株式会社エクセディ Lock-up device for spring assembly and torque converter with it
WO2019217489A1 (en) * 2018-05-08 2019-11-14 Nutriomix, Inc. Seaweed meal and method of making the same
CN108970243A (en) * 2018-08-03 2018-12-11 田长澄 A kind of agar filter aid and the agar production technology using the filter aid
WO2020050248A1 (en) 2018-09-06 2020-03-12 日本発條株式会社 Forming method and forming device for arc spring

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214768A (en) * 1985-07-09 1987-01-23 Chuo Giken Kogyo Kk Extraction of coagulable mucilaginous material from ahnfeltia plicate e. fries
JPS6214769A (en) * 1985-07-09 1987-01-23 Chuo Giken Kogyo Kk Extraction of coagulable mucilaginous material from ahnfeltia plicata e. fries
JPS63196249A (en) * 1987-02-06 1988-08-15 Yoichi Hirata Production of agar by raw tropic alga
JP2560027B2 (en) * 1987-04-24 1996-12-04 伊那食品工業 株式会社 Agar production method and agar
JPH062763B2 (en) * 1987-09-01 1994-01-12 株式会社紀文 Method for producing substance having gelling ability
JPH0471470A (en) * 1990-07-09 1992-03-06 Ina Shokuhin Kogyo Kk Production of agar
JP3023244B2 (en) * 1992-05-15 2000-03-21 伊那食品工業株式会社 Low strength agar and method for producing the same
EP0570252A3 (en) * 1992-05-15 1994-02-23 Ina Food Ind Co Ltd Low gel strength agar-agar
JPH07184608A (en) * 1993-12-27 1995-07-25 Taito Kk Low strength highly viscoelastic agar and its production
JP3758834B2 (en) * 1997-03-11 2006-03-22 伊那食品工業株式会社 Agar and method for producing the same
JP2000157225A (en) * 1998-11-27 2000-06-13 Ina Food Ind Co Ltd Agar-agar
ZA200603618B (en) * 2003-11-13 2007-09-26 You Hack-Churl Pulp and paper made from rhodophyta and manufacturing method thereof

Also Published As

Publication number Publication date
ES2422531R1 (en) 2013-10-22
CN102917607A (en) 2013-02-06
KR20130086529A (en) 2013-08-02
JPWO2011155352A1 (en) 2013-08-01
WO2011155352A1 (en) 2011-12-15
JP5196075B2 (en) 2013-05-15
CN102917607B (en) 2014-09-03
ES2422531A2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
ES2422531B1 (en) Highly viscoelastic and highly resistant agar, and method for its production
ES2232017T3 (en) CARRAGENAN COMPOSITIONS AND ITS PRODUCTION PROCEDURES.
CN104069536B (en) A kind of preparation method preparing sodium alginate-chitosan nanoscale medical dressing
ES2791281T3 (en) Method to produce collagen in high concentration for use as a medical material
ES2617198T3 (en) Procedure for stabilizing aqueous dispersions of water-insoluble bioactive compounds
Yu et al. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers
ES2621452T3 (en) Method to remove impurities from biopolymeric material
CN103613652A (en) Method for purifying silk fibroin
JP2002521054A5 (en)
BR112019020420A2 (en) purification of phycobiliproteins
Chen et al. Fabrication of porous starch microspheres by electrostatic spray and supercritical CO2 and its hemostatic performance
CN111518291A (en) Preparation method of chitosan microsphere material
FitzPatrick et al. Canola protein aerogels via salt-induced gelation and supercritical carbon dioxide drying
KR101795535B1 (en) Composition for hydrogel mask pack
Gilmore A new pterosaurian reptile from the marine Cretaceous of Oregon
Mustapa et al. Alginate aerogels dried by supercritical CO2 as herbal delivery carrier
CN104042589A (en) Capsule without animal proteins and preparation method thereof
CN107811027A (en) A kind of compound antifreeze of Quick-freezing meat balls containing ice structural protein
CN109721740A (en) A method of continuously preparing the chitin/chitosan solution of different deacetylations
WO2020234501A1 (en) Process for the aqueous extraction of biosurfactants from corn steep liquor
CN104338117A (en) Preparation method of bivalirudin for injection
CN102731796B (en) Preparation method of protein-based surfactant fibroin acid calcium
ES2931088B2 (en) Obtaining a biosurfactant extract from corn washing liquors through physical separation processes
Rodríguez The plurinational state, interculturality and indigenous autonomy: A reflection on cases of Bolivia and Ecuador.
CN109810206A (en) A kind of method of gel ablution purifying pectin

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2422531

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20141006

FD2A Announcement of lapse in spain

Effective date: 20230926