JP2000157225A - Agar-agar - Google Patents

Agar-agar

Info

Publication number
JP2000157225A
JP2000157225A JP10353838A JP35383898A JP2000157225A JP 2000157225 A JP2000157225 A JP 2000157225A JP 10353838 A JP10353838 A JP 10353838A JP 35383898 A JP35383898 A JP 35383898A JP 2000157225 A JP2000157225 A JP 2000157225A
Authority
JP
Japan
Prior art keywords
agar
stress
alkali treatment
deformation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10353838A
Other languages
Japanese (ja)
Inventor
Akira Matsuda
朗 松田
Jun Takei
純 武居
Yuji Uzuhashi
祐二 埋橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Food Industry Co Ltd
Original Assignee
INA Food Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Food Industry Co Ltd filed Critical INA Food Industry Co Ltd
Priority to JP10353838A priority Critical patent/JP2000157225A/en
Publication of JP2000157225A publication Critical patent/JP2000157225A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an agar-agar realizing a low jelly strength without cleaving molecules and having both an excellent viscosity and an excellent water-holding capacity. SOLUTION: This agar-agar has a stress of >=20,000 Pa at a share rate of 0.005 (1/s) and at a deformation of 20% in rheology characteristics in the compression mode of the agar-agar gel, and further has a stress relaxation time of >=8 sec until an inner stress becomes a half of an initial stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ゼリー強度が低
く且つ保水力と粘性に優れた寒天に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to agar having low jelly strength and excellent water retention and viscosity.

【0002】[0002]

【従来の技術】寒天は、オゴノリ,天草,オバクサ等の
紅藻類の海藻から熱水により抽出され、濾過,ゲル化,
脱水及び乾燥工程を経て乾物化される。寒天の主成分
は、アガロースとアガロペクチンであり、これらのうち
ゲル化力(ゲル形成能及びゼリー強度を含む概念)の主
役をなすのはアガロースである。即ち、アガロースとア
ガロペクチンの比率がゲル化力を決定する一つの要因で
ある。従って大きなゲル化力を得たい場合には、アガロ
ペクチンを除去すればよいことが、従来より知られてい
る。通常、ゲル化力の大きい寒天を作るには、熱水によ
る抽出工程に先だって、原料海藻をアルカリ処理するこ
とが行われる。このアルカリ処理により、図1に示すよ
うに脱エステル化が起こり、硫酸基が外れて、3.6−
アンヒドロ−L−ガラクトースが形成される。この結果
アガロース成分の比率が高くなり、これがゲル化力を高
めることになる。
2. Description of the Related Art Agar is extracted from seaweeds of red algae, such as Ogonori, Amakusa and Oberusa, by hot water, filtered, gelled, and so on.
It is dried through a dehydration and drying process. The main components of agar are agarose and agaropectin, of which agarose plays a major role in gelling power (concept including gel-forming ability and jelly strength). That is, the ratio of agarose to agaropectin is one factor that determines the gelling power. Therefore, it has been known that agaropectin should be removed when a large gelling power is desired. Usually, in order to produce agar having a large gelling power, the raw material seaweed is subjected to alkali treatment prior to the extraction step with hot water. By this alkali treatment, deesterification occurs as shown in FIG.
Anhydro-L-galactose is formed. As a result, the ratio of the agarose component increases, and this increases the gelling power.

【0003】寒天のゲル化力を決定するもう一つの要因
は、分子量である。寒天の製造にあっては、所望とする
ゲル化力の寒天を得るために抽出し易くする目的を含め
て、一般に酸添加により分子を切断して製造している。
更に食品その他の用途において、よりゼリー強度の低い
寒天(以下、低強度寒天という)を得たい場合には、熱
水抽出時或いはその後適当な段階においてかなりの酸処
理を行って寒天分子を切断することが有効であること
は、既に本出願人が提案している(特願平4−1488
55号)。また、酸処理を行わず、分子切断せずに抽出
すると、高強度で高融点になることが知られている(特
許第2560027号)。
[0003] Another factor that determines the gelling power of agar is the molecular weight. In the production of agar, molecules are generally cut by the addition of an acid to obtain agar having a desired gelling power, including the purpose of facilitating extraction.
Furthermore, when it is desired to obtain agar with lower jelly strength (hereinafter referred to as low-strength agar) in foods and other uses, a considerable amount of acid treatment is performed during hot water extraction or thereafter at an appropriate stage to cut agar molecules. Has already been proposed by the present applicant (Japanese Patent Application No. 4-1488).
No. 55). In addition, it is known that, if an acid treatment is not performed and extraction is performed without cutting molecules, a high strength and a high melting point are obtained (Japanese Patent No. 2560027).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、原料海
藻の段階でアルカリ処理を行い、酸添加により熱水抽出
される一般的な寒天、更に熱水抽出時或いはその後に酸
処理を行って分子を切断して得られる低強度寒天は、分
子量が小さいために、用途によっては粘性が不十分であ
り、脆く、また保水力も大きくない。そこでこの発明
は、分子を切断することなく低ゼリー強度を実現し、優
れた粘性と保水力を併せもつ寒天を提供することを目的
とする。
However, alkali treatment is carried out at the stage of raw seaweed, and agar is generally used for hot water extraction by adding an acid. The low-strength agar obtained by this method has a low molecular weight, and therefore has insufficient viscosity for some applications, is brittle, and does not have a large water retention capacity. Therefore, an object of the present invention is to provide an agar that achieves low jelly strength without breaking molecules and has both excellent viscosity and water retention ability.

【0005】[0005]

【課題を解決するための手段】この発明に係る寒天は、
寒天ゲルの圧縮モードにおけるレオロジー特性におい
て、シェアレート(Share rate)0.005(1/s)で20%変形
時の応力が20,000Pa以上であり、かつ応力が初期応力
の半分になるまでの応力緩和時間が8秒以上であること
を特徴とする。
The agar according to the present invention comprises:
In the rheological properties of the agar gel in the compression mode, the stress relaxation time until the stress at a shear rate of 0.005 (1 / s) at 20% deformation is 20,000 Pa or more and the stress becomes half of the initial stress Is 8 seconds or more.

【0006】この発明に係る寒天はまた、寒天ゲルの圧
縮モードにおけるレオロジー特性において、20%変形応
力を加えた時の応力緩和測定で20秒後の応力が初期応力
の1/3以上であることを特徴とする。
The agar according to the present invention is also characterized in that, in the rheological characteristics of the agar gel in the compression mode, the stress after 20 seconds is at least 1/3 of the initial stress in the stress relaxation measurement when a 20% deformation stress is applied. It is characterized by.

【0007】このような寒天は、例えば硫酸根含量が1
〜10%の原料海藻を中性の熱水で処理して寒天成分を
抽出濾過し、酸処理を行うことなく、ゲル化した後脱水
及び乾燥することにより作られて、1.5%寒天濃度の
ゲルにおけるゼリー強度が600g/cm2以下(より
好ましくは、400g/cm2以下)であり、かつ、
(a)1.5%寒天濃度のゾルにおける粘度が85℃に
おいて15cp以上であること、あるいは(b)平均分
子量が40万〜200万の範囲にあること、の少なくと
も一方を満たすものである。但し実用上、1.5%寒天
濃度のゲルにおいてゼリー強度は10g/cm2以上、
また1.5%寒天濃度のゾルにおける85℃での粘度は
200cp以下であることが好ましい。
[0007] Such agar has, for example, a sulfate content of 1%.
The agar component is extracted and filtered by treating 10% of the raw seaweed with neutral hot water to extract and filter the agar component. The gel has a jelly strength of 600 g / cm 2 or less (more preferably, 400 g / cm 2 or less), and
It satisfies at least one of (a) a sol having a 1.5% agar concentration having a viscosity of 15 cp or more at 85 ° C., and (b) an average molecular weight in a range of 400,000 to 2,000,000. However, in practice, the gel with a 1.5% agar concentration has a jelly strength of 10 g / cm 2 or more,
The viscosity at 85 ° C. of the 1.5% agar sol is preferably 200 cp or less.

【0008】この発明に係る寒天は、例えば原料海藻を
その硫酸根含量に応じて度合いが調整されたアルカリ処
理を行った後、水洗により十分にアルカリを除去し、よ
り中性付近の熱水で寒天成分を抽出濾過し、ゲル化した
後脱水及び乾燥することにより製造することができる。
更に、前記アルカリ処理は、苛性ソーダ,苛性カリ,消
石灰,生石灰及び水酸化アンモニウムから選ばれた処理
液により、処理液濃度0.1〜10.0%,処理温度0
〜100℃及び処理時間1〜180分の範囲で処理度合
いを調整するようにしてもよい。
The agar according to the present invention is obtained, for example, by subjecting a raw seaweed to an alkali treatment whose degree is adjusted in accordance with the sulfate content thereof, and then sufficiently removing the alkali by washing with water, and then using hot water near neutrality. The agar component can be produced by extraction filtration, gelation, dehydration and drying.
Further, the alkali treatment is performed using a treatment solution selected from caustic soda, caustic potash, slaked lime, quick lime, and ammonium hydroxide at a treatment solution concentration of 0.1 to 10.0% and a treatment temperature of 0%.
The processing degree may be adjusted within a range of from 100 ° C. to a processing time of from 1 to 180 minutes.

【0009】この発明は、原料海藻に含まれる硫酸根の
含量及び原料海藻のアルカリ処理の度合いと、ゲル化力
の間に一定の相関関係があるという、本発明者等の知見
に基づいている。図2は、その相関関係を概念的に示し
ている。即ち、原料海藻は種類により硫酸根の含量が異
なるが、その含量が少なくなれば(即ち、アガロース含
量が高まれば)、ゲル化力は増し、また分子量が大きく
なればゲル化力は増す。更にこの二つの因子が合わさる
と、図2に示すようにより大きなゲル化力が得られる。
一方、硫酸根はアルカリ処理により、図1に示すように
脱硫酸されるため、硫酸根含量は、図3に示すように、
アルカリ処理の度合いと反比例することになる。従って
アルカリ処理の度合いが強い場合には、ゲル化力が増す
ことになる。
The present invention is based on the findings of the present inventors that there is a certain correlation between the content of sulfate groups contained in the raw seaweed and the degree of alkali treatment of the raw seaweed, and the gelling power. . FIG. 2 conceptually shows the correlation. That is, although the raw material seaweed has a different sulfate content depending on the type, the gelling power increases as the content decreases (that is, as the agarose content increases), and the gelling power increases as the molecular weight increases. Further, when these two factors are combined, a larger gelling force is obtained as shown in FIG.
On the other hand, since the sulfate is desulfated by the alkali treatment as shown in FIG. 1, the sulfate content is, as shown in FIG.
It will be inversely proportional to the degree of alkali treatment. Therefore, when the degree of alkali treatment is high, the gelling power is increased.

【0010】以上の知見に基づき、更に実験を行った結
果、硫酸根含量が1〜10%の原料海藻の場合、原料海
藻のアルカリ処理を行うことなく、また抽出後の酸処理
を行うことなく、中性の熱水による抽出により、寒天ゲ
ルの圧縮モードにおけるレオロジー特性において、シェ
アレート(Share rate)0.005(1/s)で20%変形時の応力
が20,000Pa以上であり、かつ応力緩和時間が初期応力
の半分になるまでの時間が8秒以上である寒天、及び寒
天ゲルの圧縮モードにおけるレオロジー特性において、
20%変形応力を加えた時の応力緩和測定で20秒後の応力
が初期応力の1/3以上である寒天を得ることができるこ
とが明らかになった。アルカリ処理や酸処理を行うと、
アルカリ処理による脱硫酸、酸処理による分子切断の結
果、寒天ゲルは白濁して透明度が低くなるが、アルカリ
処理も酸処理も行わないと、透明なゲルが得られる。
As a result of further experiments based on the above findings, it was found that, in the case of a raw seaweed having a sulfate content of 1 to 10%, the raw seaweed was not subjected to alkali treatment and was not subjected to acid treatment after extraction. Extraction with neutral hot water, the rheological properties of the agar gel in the compression mode, the stress at 20% deformation at a shear rate of 0.005 (1 / s) is 20,000 Pa or more, and the stress relaxation time In the agar in which the time until becomes half of the initial stress is 8 seconds or more, and the rheological properties in the compression mode of the agar gel,
The stress relaxation measurement when 20% deformation stress was applied revealed that agar with a stress after 20 seconds that was 1/3 or more of the initial stress could be obtained. When alkali treatment or acid treatment is performed,
As a result of desulfurization by alkali treatment and molecular cleavage by acid treatment, the agar gel becomes cloudy and has low transparency, but if neither alkali treatment nor acid treatment is performed, a transparent gel is obtained.

【0011】更に、図2及び図3から理解されるよう
に、原料海藻をその硫酸根含量に応じて度合いが調整さ
れたアルカリ処理を行った後、より中性付近の熱水で寒
天成分を抽出して濾過すれば、原料海藻の種類に依らず
一定のゲル化力の寒天を得ることができる。
Further, as can be understood from FIGS. 2 and 3, after the raw seaweed is subjected to an alkali treatment whose degree is adjusted in accordance with its sulfate content, the agar component is further neutralized with hot water. By extracting and filtering, agar having a constant gelling power can be obtained regardless of the type of raw material seaweed.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、この発明
の実施例を説明する。図4は、この発明の一実施例によ
る寒天製造工程である。図示のように原料海藻を、先ず
必要に応じてアルカリ処理する。アルカリ処理の度合い
は、原料海藻の硫酸根含量により決定するが、その詳細
は後述する。その後、中性の熱水による抽出を行い、以
下通常の工程に従って、濾過,ゲル化,冷凍脱水及び乾
燥工程を経て、寒天乾物を作る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows an agar production process according to an embodiment of the present invention. As shown in the figure, the raw seaweed is first treated with an alkali, if necessary. The degree of the alkali treatment is determined by the sulfate content of the raw seaweed, the details of which will be described later. After that, extraction with neutral hot water is performed, followed by filtration, gelation, freeze-drying, and drying steps according to the usual steps to produce dry agar.

【0013】アルカリ処理の度合いは、用いるアルカリ
水溶液の種類と濃度、処理温度及び処理時間により調整
される。具体的に、図5は、処理温度を50℃一定と
し、処理時間をファクターとして、アルカリ処理の度合
いを変えたときの海藻(オゴノリCと天草C)の硫酸根
含量の変化を示したものである。図6は、処理時間を6
0分一定とし、処理温度をファクターとしてアルカリ処
理の度合いを変えたときの同様のデータである。原料の
硫酸根含量が4以下の場合には、海藻のアルカリ処理を
しないでも、ゼリー強度が200g/cm2以上で、か
つゾル粘度が15cp以上のものを得ることができる。
The degree of the alkali treatment is adjusted by the type and concentration of the alkaline aqueous solution used, the treatment temperature and the treatment time. Specifically, FIG. 5 shows changes in the sulfate content of seaweeds (Ogonori C and Amakusa C) when the treatment temperature was fixed at 50 ° C. and the treatment time was a factor, and the degree of alkali treatment was changed. is there. FIG. 6 shows that the processing time is 6
It is the same data when the degree of alkali treatment is changed with the treatment temperature as a factor, which is fixed at 0 minutes. When the sulfate content of the raw material is 4 or less, a product having a jelly strength of 200 g / cm 2 or more and a sol viscosity of 15 cp or more can be obtained without alkali treatment of seaweed.

【0014】実際に原料海藻として、天草A(南アフリ
カ産)、天草B(チリ産)、オゴノリA(アルゼンチン
産)、オゴノリB(チリ産)について、図4のフローに
従い、アルカリ処理を行わない場合、及びアルカリ処理
(40℃,1時間及び80℃,1時間)を行った場合に
得られた寒天の物性を下記表1に示す。
Actually, Amakusa A (from South Africa), Amakusa B (from Chile), Ogonori A (from Argentina), and Ogonori B (from Chile) as raw seaweed are not subjected to alkali treatment according to the flow of FIG. Table 1 shows the physical properties of the agar obtained when the agar was subjected to the alkali treatment (40 ° C., 1 hour and 80 ° C., 1 hour).

【0015】[0015]

【表1】 [Table 1]

【0016】表1から、天草Aは無処理で、天草Bは無
処理及び40℃処理で、オゴノリAは無処理及び40℃
処理で、オゴノリBは40℃処理でそれぞれ目標とする
物性が得られる。実施例の場合、それぞれの条件で物性
が変化し、目標とする物性を得るには海藻の硫酸根の含
量によりアルカリ処理の度合いを変えること、更に中性
付近で抽出することにより分子を切断することなく分子
量を大きくする事により可能となる。結果として、1.
5%寒天濃度でゼリー強度600g/cm2以下であ
り、かつゾルにおける粘度が85℃で15cp以上であ
る物性が得られる。
From Table 1, Amakusa A is untreated, Amakusa B is untreated and treated at 40 ° C., and Ogonori A is untreated and treated at 40 ° C.
In the treatment, the target properties of each of Ogonori B are obtained at 40 ° C. In the case of the examples, the physical properties change under each condition, and in order to obtain the target physical properties, the degree of alkali treatment is changed depending on the content of the sulfate group of the seaweed, and the molecule is further cut by extracting near neutrality. This can be achieved by increasing the molecular weight without any increase. As a result, 1.
The jelly strength is 600 g / cm 2 or less at 5% agar concentration, and the physical properties of the sol having a viscosity of 15 cp or more at 85 ° C. are obtained.

【0017】表2には、表1と同様に、天草C(地中海
産)とオゴノリC(ブラジル産)について、無処理と、
40℃,1時間のアルカリ処理を行った後、中性の熱水
で抽出した実施例のものと、従来よりある市販の寒天の
条件でアルカリ処理し抽出したもの、及び同程度のゼリ
ー強度になるように抽出pHを下げた寒天について、分
子量とゾル粘度を比較したものである。
Table 2 shows that Amakusa C (Mediterranean) and Ogonori C (Brazil) were untreated, as in Table 1.
After the alkali treatment at 40 ° C. for 1 hour, the extract was extracted with neutral hot water, the extract was extracted with alkali treatment under the condition of a conventional commercially available agar, and the same jelly strength was obtained. This is a comparison of the molecular weight and the sol viscosity of agar with a reduced extraction pH.

【0018】[0018]

【表2】 [Table 2]

【0019】表2から明らかなように、この発明による
寒天は、従来のものと同程度のゼリー強度にも拘わら
ず、分子量が大きくゾル粘度が高いことが分かる。また
表1に示すように、この発明による寒天は、離水量の点
でも、600g/cm2以上のゼリー強度のものに比べ
て低く、保水力が優れていることが確認された。さらに
表2の条件の内、天草Cを40℃1時間処理し中性で抽
出して得た寒天(a)と、80℃で1時間処理しpH6
で抽出して得た寒天(b)について、1.5%寒天濃度
で1mm厚のゲルを調整し、レオメトリクス社製RSA
2を使い、直径4.75mmφのパラレルプレートを用い
て、圧縮モードで、(1)シェアレート(Share r
ate) 0.005(1/s)で応力−歪み測定を行
ったときの20%変形時の応力と、(2)20%変形状態
から応力緩和を行って、初期応力が半減するまでの時間
とを測定した。その結果を表3に示す。
As is apparent from Table 2, the agar according to the present invention has a large molecular weight and a high sol viscosity, despite the same jelly strength as the conventional agar. Further, as shown in Table 1, it was confirmed that the agar according to the present invention was lower in the amount of syneresis as compared with those having a jelly strength of 600 g / cm 2 or more, and was excellent in water retention. Further, agar (a) obtained by treating Amakusa C at 40 ° C. for 1 hour and neutral extraction, and treating at 80 ° C. for 1 hour, pH 6
The agar (b) obtained by the extraction described above was adjusted to a gel having a thickness of 1 mm at a concentration of 1.5% agar and RSA manufactured by Rheometrics Co., Ltd.
2 and a parallel plate having a diameter of 4.75 mmφ, in the compression mode, (1) share rate (Sharer).
ate) Stress at 20% deformation when stress-strain measurement is performed at 0.005 (1 / s), and (2) Time until stress is reduced from 20% deformation state and initial stress is reduced to half. And were measured. Table 3 shows the results.

【0020】[0020]

【表3】 応力が半減するまでの時間 20%変形時の応力 (a) 10.3sec 24,600Pa (b) 5.25sec 16,500Pa[Table 3] Time until the stress is reduced by half Stress at the time of 20% deformation (a) 10.3 sec 24,600 Pa (b) 5.25 sec 16,500 Pa

【0021】同様に従来よりある市販の寒天(伊那食品
工業株式会社製:商品名(伊那寒天))について同様の
試験を行った結果を表4に示す。
Similarly, Table 4 shows the results of a similar test conducted on a conventional commercially available agar (trade name (Ina agar) manufactured by Ina Food Industry Co., Ltd.).

【0022】[0022]

【表4】 応力が半減するまでの時間 20%変形時の応力 伊那寒天M−7 4.25sec 17,800Pa 伊那寒天S−9 5.25sec 18,700Pa 伊那寒天UM−11 1.25sec 9,880Pa 伊那寒天UP−37 5.25sec 17,700Pa 伊那寒天KT 6.75sec 19,400PaTable 4 Time until the stress is reduced by half Stress at the time of 20% deformation Ina agar M-7 4.25 sec 17,800 Pa Ina agar S-9 5.25 sec 18,700 Pa Ina agar UM-11 1.25 sec 9,880 Pa Ina agar UP-37 5.25 sec 17,700 Pa Ina agar KT 6.75 sec 19,400 Pa

【0023】また、20%変形応力を加えたときの応力
緩和測定における応力緩和時間(平位はsec)に対す
る応力(単位はgmf)の変化を下記表5に示す。
Table 5 below shows changes in stress (unit: gmf) with respect to the stress relaxation time (horizontal is sec) in the stress relaxation measurement when a 20% deformation stress is applied.

【0024】[0024]

【表5】 [Table 5]

【0025】表3と表4から明らかなように、この発明
による寒天[表3(a)]は、20%変形時の応力が、2
0,000Pa以上であり、従来の寒天[表3(b)、表
4]はいずれも20,000Pa未満であるというよう
に、両者はレオロジー特性が大きく異なることがわか
る。また表5から明らかなように、この発明による寒天
は20%変形応力を加えたときの応力緩和測定で20秒
後の応力が初期応力の1/3以上であるが、従来の寒天は
全て1/3未満であった。したがってこの寒天には、ゲル
に粘りがあり従来の寒天のもろさに対してゴムのような
性質を付与した新規の特性を有し、伸展性やハンドリン
グ性がよくなり多くの応用の可能性を有している。
As is clear from Tables 3 and 4, the agar according to the present invention [Table 3 (a)] has a stress at 20% deformation of 2%.
It can be seen that the rheological properties of the two agars are significantly different from those of the conventional agar [Table 3 (b), Table 4], which is less than 20,000 Pa. As is clear from Table 5, in the agar according to the present invention, the stress after 20 seconds was 1/3 or more of the initial stress in the stress relaxation measurement when a 20% deformation stress was applied. Was less than / 3. Therefore, this agar has a new property in which the gel is sticky and imparts a rubber-like property to the fragility of the conventional agar, and its extensibility and handleability are improved, and it has many potential applications. are doing.

【0026】図7は、更に多くの海藻より抽出された種
々の寒天について得られたゼリー強度と分子量の関係を
まとめたものである。図7から、低ゼリー強度でしか
も、優れた粘性と保水性を示すこの発明に係る寒天の特
異性が理解できる。
FIG. 7 summarizes the relationship between the jelly strength and the molecular weight obtained for various agars extracted from more seaweeds. From FIG. 7, the specificity of the agar according to the present invention, which has low jelly strength and excellent viscosity and water retention, can be understood.

【0027】[0027]

【発明の効果】以上述べたようにこの発明によれば、従
来の寒天とレオロジー特性が大きく異なり、ゼリー強度
が低くしかも、粘性と保水力に優れた寒天を得ることが
できる。
As described above, according to the present invention, it is possible to obtain an agar having a large difference in rheological characteristics from the conventional agar, a low jelly strength, and an excellent viscosity and water retention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 寒天のアルカリ処理による脱エステル化を示
す図である。
FIG. 1 is a diagram showing deesterification of agar by alkali treatment.

【図2】 原料海藻の硫酸根含量とゲル化力の関係を示
す図である。
FIG. 2 is a graph showing the relationship between the sulfate content of raw seaweed and the gelling power.

【図3】 アルカリ処理の度合いと硫酸根含量の関係を
示す図である。
FIG. 3 is a graph showing the relationship between the degree of alkali treatment and the content of sulfate groups.

【図4】 実施例の処理工程を示す図である。FIG. 4 is a diagram showing processing steps of an example.

【図5】 アルカリ処理時間と硫酸根含量の関係を示す
データである。
FIG. 5 is data showing the relationship between alkali treatment time and sulfate content.

【図6】 アルカリ処理温度と硫酸根含量の関係を示す
データである。
FIG. 6 is data showing the relationship between alkali treatment temperature and sulfate content.

【図7】 種々の寒天のゼリー強度と分子量の関係を示
す。
FIG. 7 shows the relationship between jelly strength and molecular weight of various agars.

フロントページの続き (72)発明者 埋橋 祐二 長野県伊那市西春近5074番地 伊那食品工 業株式会社内 Fターム(参考) 4B019 LK05 LP02 LP05 LP08 LP09 LP13 Continued on the front page (72) Inventor Yuji Utsuhashi 5074 Nishiharuka, Ina-shi, Nagano F-term (reference) in Ina Food Industry Co., Ltd. 4B019 LK05 LP02 LP05 LP08 LP09 LP13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 寒天ゲルの圧縮モードにおけるレオロジ
ー特性において、シェアレート(Share rate)0.005(1/
s)で20%変形時の応力が20,000Pa以上であり、かつ応
力が初期応力の半分になるまでの応力緩和時間が8秒以
上であることを特徴とする寒天。
The rheological characteristics of the agar gel in the compression mode are as follows.
agar, wherein the stress at 20% deformation in s) is 20,000 Pa or more, and the stress relaxation time until the stress becomes half of the initial stress is 8 seconds or more.
【請求項2】 寒天ゲルの圧縮モードにおけるレオロジ
ー特性において、20%変形応力を加えた時の応力緩和測
定で20秒後の応力が初期応力の1/3以上であることを特
徴とする寒天。
2. The agar characterized in that in the compression mode of the agar gel, the stress after 20 seconds is at least 1/3 of the initial stress in a stress relaxation measurement when a 20% deformation stress is applied.
JP10353838A 1998-11-27 1998-11-27 Agar-agar Pending JP2000157225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10353838A JP2000157225A (en) 1998-11-27 1998-11-27 Agar-agar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10353838A JP2000157225A (en) 1998-11-27 1998-11-27 Agar-agar

Publications (1)

Publication Number Publication Date
JP2000157225A true JP2000157225A (en) 2000-06-13

Family

ID=18433566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10353838A Pending JP2000157225A (en) 1998-11-27 1998-11-27 Agar-agar

Country Status (1)

Country Link
JP (1) JP2000157225A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059885A1 (en) 2006-11-15 2008-05-22 Maruishi Pharmaceutical Co., Ltd. Gel-like sterilizing/disinfecting composition
WO2009022383A1 (en) * 2007-08-10 2009-02-19 Ina Food Industry Co., Ltd. Method for removing briosose, tengusa, agar and method for producing agar
JP4494517B1 (en) * 2009-11-18 2010-06-30 伊那食品工業株式会社 Agar and food containing it
JP2011024490A (en) * 2009-07-27 2011-02-10 En Otsuka Pharmaceutical Co Ltd Softening method, and softened vegetable food product
WO2011155352A1 (en) * 2010-06-07 2011-12-15 不二製油株式会社 Highly viscoelastic and highly strong agar, and method for producing same
JP7129114B1 (en) 2021-03-31 2022-09-01 伊那食品工業株式会社 High sugar content agar gel food
JP7364279B1 (en) 2022-08-09 2023-10-18 伊那食品工業株式会社 water-based cosmetics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059885A1 (en) 2006-11-15 2008-05-22 Maruishi Pharmaceutical Co., Ltd. Gel-like sterilizing/disinfecting composition
WO2009022383A1 (en) * 2007-08-10 2009-02-19 Ina Food Industry Co., Ltd. Method for removing briosose, tengusa, agar and method for producing agar
JP2011024490A (en) * 2009-07-27 2011-02-10 En Otsuka Pharmaceutical Co Ltd Softening method, and softened vegetable food product
JP4494517B1 (en) * 2009-11-18 2010-06-30 伊那食品工業株式会社 Agar and food containing it
JP2011105868A (en) * 2009-11-18 2011-06-02 Ina Food Industry Co Ltd Agar and food containing the same
WO2011155352A1 (en) * 2010-06-07 2011-12-15 不二製油株式会社 Highly viscoelastic and highly strong agar, and method for producing same
CN102917607A (en) * 2010-06-07 2013-02-06 不二制油株式会社 Highly viscoelastic and highly strong agar, and method for producing same
JP5196075B2 (en) * 2010-06-07 2013-05-15 不二製油株式会社 High viscoelastic and high strength agar and method for producing the same
JP7129114B1 (en) 2021-03-31 2022-09-01 伊那食品工業株式会社 High sugar content agar gel food
JP2022155840A (en) * 2021-03-31 2022-10-14 伊那食品工業株式会社 High-sugar content agar gel-like food
JP7364279B1 (en) 2022-08-09 2023-10-18 伊那食品工業株式会社 water-based cosmetics

Similar Documents

Publication Publication Date Title
JP5642152B2 (en) Method for preparing agarose polymer from seaweed extract
Meena et al. Development of a stable hydrogel network based on agar–kappa-carrageenan blend cross-linked with genipin
Xiao et al. Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods
JP2615398B2 (en) Method for producing starch granules with modified properties
US20050020828A1 (en) Heterogeneous carrageenan manufacturing process from mono component seaweed with reduced use of level of koh
El-Nawawi et al. Production of a low ester pectin by de-esterification of high ester citrus pectin
JP2000157225A (en) Agar-agar
JP3758834B2 (en) Agar and method for producing the same
KR20180085677A (en) Gelatin purification
Shao et al. Study on the influencing factors of natural pectin's flocculation: Their sources, modification, and optimization
EP1458764B1 (en) A method for manufacturing and fractionating gelling and non-gelling carrageenans from bi-component seaweed
RU2079507C1 (en) Purified glucomannan and method of its preparing
de Souza et al. Evaluation of different methods to prepare superabsorbent hydrogels based on deacetylated gellan
Wongpanit et al. Miscibility and biodegradability of silk fibroin/carboxymethyl chitin blend films
US3878195A (en) Method for the manufacture of mustard mucilage
Kim et al. Demethylation of pectin using acid and ammonia
JPS6176503A (en) Purification of pectin
JP3023244B2 (en) Low strength agar and method for producing the same
JP2687046B2 (en) Transparent and low temperature melting konjac glucomannan
JP2990248B2 (en) Method for producing amorphous water-soluble partially deacetylated chitin
JP3414954B2 (en) Low strength agar and method for producing the same
JP6749031B1 (en) Self-gelling konjac flour production method, self-gelling konjac flour and konjac gelation product
CN107641159B (en) Production process of low-viscosity whitening carrageenan
JP4872041B2 (en) Gel-like food composition and method for producing gel-like food using the same
JP2003082003A (en) Method for purifying water-soluble seed polysaccharides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619