ES1295325U - Equipo de captura de particulas biologicas en el aire - Google Patents
Equipo de captura de particulas biologicas en el aire Download PDFInfo
- Publication number
- ES1295325U ES1295325U ES202231217U ES202231217U ES1295325U ES 1295325 U ES1295325 U ES 1295325U ES 202231217 U ES202231217 U ES 202231217U ES 202231217 U ES202231217 U ES 202231217U ES 1295325 U ES1295325 U ES 1295325U
- Authority
- ES
- Spain
- Prior art keywords
- filter
- air
- que
- vacuum pump
- aire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims description 37
- 230000027455 binding Effects 0.000 title abstract 2
- 238000009739 binding Methods 0.000 title abstract 2
- 238000013519 translation Methods 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims description 29
- 238000001914 filtration Methods 0.000 claims description 20
- 239000002121 nanofiber Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachlorophenol Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 abstract 1
- 241000700605 Viruses Species 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 241001678559 COVID-19 virus Species 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 230000003253 viricidal effect Effects 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 241000700627 Monkeypox virus Species 0.000 description 4
- 238000011529 RT qPCR Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 230000004544 DNA amplification Effects 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- -1 Polytetrafluoroethylene Polymers 0.000 description 3
- 239000013566 allergen Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 208000025721 COVID-19 Diseases 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 241000902900 cellular organisms Species 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229940099259 vaseline Drugs 0.000 description 2
- 241000203069 Archaea Species 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 101150081000 N2 gene Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 244000000022 airborne pathogen Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000010460 detection of virus Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000011304 droplet digital PCR Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000005871 monkeypox Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/01—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
- B01D29/05—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/11—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
- B01D29/13—Supported filter elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/26—Filters with built-in pumps filters provided with a pump mounted in or on the casing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/02—Loose filtering material, e.g. loose fibres
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B7/00—Respiratory apparatus
- A62B7/10—Respiratory apparatus with filter elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Equipo de captura de partículas biológicas en el aire que comprende: - un dispositivo filtrante (1) móvil por acción de un usuario que está destinado a captar las partículas biológicas suspendidas en el aire, y - una bomba de vacío (2) vinculada al dispositivo filtrante (1) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1); caracterizado dicho dispositivo filtrante (1) por que comprende: - un portafiltros (3) que permite la exposición de todo el filtro al ambiente y conectable a la bomba de vacío (2) y a través del cual circula la corriente de aire aspirada por dicha bomba de vacío (2) y - un sustrato filtrante (4) integrado en el interior del portafiltros (3) y que está formado por al menos una capa de nanofibras que está destinado a permitir el paso de la corriente de aire por acción de aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.
Description
DESCRIPCIÓN
EQUIPO DE CAPTURA DE PARTÍCULAS BIOLÓGICAS EN EL AIRE
OBJETO DE LA INVENCIÓN
El objeto de la presente invención es de especial aplicación en el campo tecnológico de captura de partículas biológicas, concretamente en el sector de captación de partículas biológicas presentes en el aire.
La presente invención se trata de un equipo de captura de partículas biológicas que se encuentran en suspensión en el aire mediante el empleo de un dispositivo filtrante conectado a una bomba de vacío, que permite realizar posteriormente secuenciación genómica completa de los organismos biológicos captados, amplificar genomas mediante métodos de amplificación de genes o secuenciar genomas ADN y ARN presentes en partículas virales, purificadas previamente a través de dicho dispositivo filtrante.
ANTECEDENTES DE LA INVENCIÓN
Se sabe que la contaminación del aire es un riesgo ambiental importante para la salud pública ya que transporta partículas biológicas que contienen arqueas, bacterias, virus, hongos y granos de polen, provenientes de otros entornos (suelo, agua o microambientes de plantas/animales).
El estudio de la biota aérea es relevante por su potencial papel en la diseminación de enfermedades vegetales, animales y humanas, con importantes implicaciones en la salud pública, y un gran impacto económico en la productividad agrícola y ganadera.
El conocimiento actual sobre la comunidad microbiana del aire se restringe principalmente al polen y las esporas de hongos, estudiados mediante métodos tradicionales como microscopía óptica o PCR cuantitativa, que por su importancia como alérgenos son medidos diariamente e incluidos entre los indicadores de calidad del aire.
También se utilizan técnicas dependientes del cultivo para el estudio de microorganismos del aire (hongos, bacterias y virus), a pesar de la pequeña fracción de organismos que se pueden cultivar. Entre estos trabajos, cabe destacar que los estudios
sobre virus son casi inexistentes. Por lo tanto, una visión global de la comunidad biológica aérea es crucial para comprender la dinámica del ecosistema del aire, identificar organismos marcadores y establecer nuevos indicadores de la calidad del aire.
Para estudiar la comunidad aérea se han utilizado una serie de dispositivos con mecanismos de captura muy diferentes (Núñez A., et al., 2016, Int Microbiol, 19:69-80). Se ha demostrado previamente que los muestreadores tipo Hirst son una buena opción para monitorear la comunidad biológica en el aire, al comparar enfoques clásicos como la microscopía óptica de polen y esporas de hongos con metagenómica dirigida, lo que resulta en una buena correlación entre ambas técnicas (Núñez A, et al., 2017, Appl Environ Microbiol, 83).
Aunque los muestreadores de Hirst pueden dar una buena descripción de la comunidad biológica aerotransportada, está lejos de ser completa.
Los muestreadores de Hirst se basan en la captura inercial de ABP en una tira cubierta de vaselina que se puede utilizar para la extracción de ADN. Una secuenciación rápida de este ADN podría brindar una visión más completa de la comunidad en el aire, incluidos los virus de ADN.
Sin embargo, los genomas virales están representados en una proporción muy baja de lecturas de secuenciación en un enfoque de escopeta debido a que sus genomas son pequeños en comparación con los genomas celulares. Las partículas virales deben purificarse para obtener un análisis completo de la comunidad viral (tanto virus de ADN como de ARN), y esto no se puede hacer a partir de la tira de vaselina sin introducir algunos sesgos importantes (Prussin AJ., et al., 2014, FEMS Microbiol Lett , 357:1-9; Thurber RV., et al., 2009, Nat Protoc 4:470-483). Además, los muestreadores tipo Hirst son dispositivos costosos y generalmente no portátiles, por lo que su uso está limitado a un número restringido de sitios de muestreo simultáneamente.
Los filtros de politetrafluoroetileno (PTFE) también se han probado para recolectar bacterias, virus y otras partículas en el aire en el rango de tamaño de 10-900 nm (Nancy C. B., et al., 2007, Ann. Occup. Hyg., 51: 2, 143-151), sin embargo, no se ha propuesto ningún método de análisis eficiente para identificar todas las partículas biológicas capturadas.
Por lo tanto, existe la necesidad de desarrollar métodos mejorados de captura y análisis que utilicen dispositivos y metodologías que permitan recolectar y estudiar toda la comunidad biológica en el aire, incluidos virus y otros patógenos y alérgenos importantes, de manera eficiente.
DESCRIPCIÓN DE LA INVENCIÓN
El estudio de la comunidad biológica aérea, compuesta por partículas biológicas muy diferentes entre sí, tales como bacterias, hongos, polen y virus, requiere el uso de un método de muestreo eficiente que capture una buena representación de toda la comunidad.
La invención también proporciona un método adecuado para la captura, detección e identificación de partículas biológicas enteras en el aire, incluidos virus y otros patógenos y alérgenos presentes en el aire.
Este método permite realizar metagenómica (secuenciación genómica completa) de microorganismos capturados en los filtros, amplificar genomas específicos mediante métodos de amplificación de genes, o secuenciar genomas ADN y ARN presentes en partículas virales que se han purificado previamente. Esta metodología puede aplicarse para detectar, por ejemplo, partículas de SARS-CoV-2 en muestras de aire o partículas MPXV (virus monkeypox o viruela del mono).
La presente invención se refiere a un equipo de captura de partículas biológicas en el aire que está dotado de un dispositivo filtrante, que capta las partículas biológicas suspendidas en el aire y, al menos, una bomba de vacío, que aspira una corriente de aire haciéndola pasar por el dispositivo filtrante al que se encuentra conectada, con el fin de obtener una población de partículas biológicas susceptibles de procesamiento.
La bomba de vacío o bomba de aire es operable de tal forma que permite aumentar o disminuir el flujo de aspiración que pasa a través del dispositivo filtrante, con una potencia variable del rango de 5 litros/minuto a 30 litros/ minutos.
Asimismo, el dispositivo filtrante incorpora un portafiltros normalmente circular u de otra forma, con un diámetro de, por ejemplo 25 mmm o 47 mmm u otra medida. El portafiltros expone toda la superficie del filtro al ambiente para aspirar aire en toda su superficie. El portafiltros es de material que permite su descontaminación con productos químicos
(etanol, hipoclorito diluido, peróxido de hidrógeno ...) o mediante autoclave (presión y temperatura).
El portafiltros es conectable a la bomba de vacío o bien mediante un adaptador o mediante medios de conexión hidráulica, como, por ejemplo, mangueras; y un sustrato filtrante integrado en el interior del portafiltros y que está formado por al menos una capa de nanofibras, concretamente, un filtro multicapa simétrico de nanofibras en donde la capa de nanofibras, bien continua o discontinua, está protegida entre dos capas de un tejido no tejido (TNT) o de un tejido hecho de cualquier polímero natural o sintético o combinación de polímeros, que permite el paso de la corriente de aire aspirada por acción de la bomba de vacío al mismo tiempo que captura las partículas biológicas suspendidas en dicha corriente de aire.
Por otro lado, el dispositivo filtrante puede incorporar una rejilla soporte que acopla internamente con el portafiltros y que sujeta al sustrato filtrante por su parte inferior, permitiendo una fijación vertical de éste al mismo tiempo que circula el aire hacia la bomba de vacío.
Para evitar el desacople superior de dicho sustrato filtrante, el dispositivo filtrante incorpora, preferentemente, una carcasa superior que permite el paso del aire, formada por dos o más extensiones transversales que evitan cualquier desprendimiento del sustrato filtrante respecto del portafiltros por la parte superior de éste.
También, el equipo para capturar partículas biológicas presentes en el aire comprende además medios centrífugos configurados para eliminar organismos celulares del sustrato y medios tamponadores configurados para albergar el sustrato.
El equipo, para detectar e identificar organismos presentes en el aire, comprende además medios de filtración configurados para filtrar los sobrenadantes que contienen las partículas virales, en donde los medios centrífugos también están configurados para concentrar los sobrenadantes, medios de tratamiento con nucleasas configurados para eliminar todo el ADN o ARN no encapsidado y los medios de amplificación y secuenciación de genes para la amplificación de genomas virales colectivos o específicos capturados en los filtros, seguido de secuenciación.
Los filtros multicapa simétricos compuestos de nanofibras, a parte de la detección y captación de partículas de SARS-CoV-2, han permitido captar virus de la viruela de simio en aire.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Muestra una vista en perspectiva del equipo de captura de partículas biológicas en el aire.
Figura 2.- Muestra una vista explosionada del equipo de captura de partículas biológicas en el aire.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Con ayuda de las figuras 1 y 2 se muestra un ejemplo de realización del equipo de captura de partículas biológicas en el aire.
Concretamente, la figura 1 muestra una vista en perspectiva del equipo de captura de partículas biológicas en el aire, donde se observa que dicho equipo comprende un dispositivo filtrante (1) destinado a captar las partículas biológicas suspendidas en el aire, y una bomba de vacío (2) vinculada al dispositivo filtrante (1) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1).
El dispositivo filtrante (1), además, comprende adicionalmente un portafiltros (3) que está conectado a la bomba de vacío (2) y a través del cual circula la corriente de aire aspirada por dicha bomba de vacío (2) y un sustrato filtrante (4) integrado en el interior del portafiltros (3) y que está formado por un filtro que contiene al menos un capa de nanofibras en donde las nanofibras están protegidas entre dos capas de un tejido no tejido (TNT) o de un tejido hecho de cualquier polímero natural o sintético o combinación de polímeros, que está destinado a permitir el paso de la corriente de aire por acción
de aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.
La figura 2 muestra, por otra parte, como el dispositivo filtrante (1) puede incorporar preferentemente una rejilla soporte (5) que acopla internamente con el portafiltros (3) y que sujeta inferiormente al sustrato filtrante (4), al mismo tiempo que permite la circulación de la corriente de aire hacia la bomba de vacío (2).
Asimismo, dicho dispositivo filtrante (1) puede estar dotado adicionalmente de una boca de conexión (6) que parte externamente del portafiltros (3) y que comunica con el interior de dicho portafiltros (3) y con la bomba de vacío (2) mediante acople de una conducción hidráulica, siendo dicha conducción una manguera o un tubo de conducción, por donde circula la corriente de aire que traspasa el sustrato filtrante (4) hasta la bomba de vacío (2).
Finalmente, para evitar que el sustrato filtrante (4) se desacople del portafiltros (3), el dispositivo filtrante (1) comprende adicionalmente al menos una carcasa (7) acoplada al portafiltros (3) por su parte superior, abierta y que evita el desacople del sustrato filtrante (4) respecto del portafiltros (3).
A continuación, se expone una serie de resultados derivados de experimentos con este tipo de dispositivo filtrante (1). Se han realizado mediante la captura de muestras de aire en las áreas de pacientes con COVID-19, acoplando portafiltros (3) de 47 mm (Pall) a bombas de vacío (2) (KNF, 30 l/min) y utilizando nanofibras de PVDF como elemento filtrante (4).
Los sustratos filtrantes (4) en 2 ml de solución inactivante PROMEGA y se almacenan a -20°C hasta su procesamiento.
Los tubos con sustrato filtrante (4) en solución inactivante se procesaron en el Centro de Biología Molecular Severo Ochoa (CBMSO), donde se realizó el aislamiento de ARN viral a partir de 0,6 ml. Se añadió ARN de ratón (400-500 ng) a cada muestra como vehículo antes de la extracción, para evaluar la eficiencia de la extracción de ARN.
La presencia de virus se analizó mediante PCR digital de gotas (droplet digital PCR, ddPCR) o RT-qPCR utilizando sondas y cebadores específicos (CDC "Center for
disease control and prevention” - centro de prevención y control de enfermedades) para la región del gen N del SARS-CoV-2.
Para la fabricación de los sustratos filtrantes (4), la capa de nanofibras se fabricó en fluoruro de polivinilideno (PVDF) por la técnica del electroestirado a partir de disoluciones de PVDF en DMF/Acetona (50:50 wt.). En el diseño de un filtro para esta aplicación, las nanofibras de PVDF deben tener con un gramaje inferior a 2 g/m2 y estar protegidas entre capas de TNT o tejido de polímeros o mezcla de polímeros, ej. polipropileno, de al menos 10 g/m2.
El sustrato filtrante (4) probado estaba formado por un sandwich simétrico con dos capas de TNT de polipropileno de 18 g/m2 conteniendo al menos una capa de nanofibras de PVDF, con una capacidad de filtración frente a aerosoles superior a un 97% y de 47 mm de diámetro, sin ningún tratamiento viricida.
Paralelamente, una mejor homogeneidad del material en sustrato filtrante (4) similar, es obtenida. Como sustrato filtrante (4) de menor densidad, se produjo un sandwich simétrico con un gramaje menor y con capacidad de filtración superior a un 95%. Este último sustrato filtrante (4) también se produjo con un componente viricida, óxido de Zn, denominado como ”Filtro Viricida”.
Estos sustratos filtrantes (4) han sido comparados con filtros de PTFE en urgencias de hospital. Esta comparación se realizó por duplicado, utilizando dos bombas de vacío (2) de alto caudal (30 L/min) en paralelo, con un caudal aproximado por filtro de 15 L/min.
La bomba de vacío (2) estuvo funcionando 12 h/día, 3 o 4 días seguidos. En este caso, el análisis de presencia y cuantificación absoluta de SARS-CoV-2 en los filtros se realizó mediante ddPCR, detectando el gen N2 parcial combinado con un fluoróforo FAM.
Se realiza un segundo ensayo comparativo, entre PTFE y sustratos filtrantes (4) compuestos de nanofibras, en una sala exclusiva COVID-19. Sólo se seleccionó el sustrato filtrante (4) de menor densidad, de sandwich simétrico con un gramaje menor de 1,5 g/m2 para este experimento, ya que mantiene una alta capacidad de filtración y menor perdida de carga.
Las muestras se recogieron para tiempos de entrada de aire más cortos, durante unas 3-4 horas al día, a 15 L/min. Cada bomba de vacío (2) recolectó aire en dos filtros
simultáneamente, uno de PTFE y uno de nanofibras. Los datos obtenidos muestran que los sustratos filtrantes (4) permiten la recuperación y detección del SARS-COV-2 en aire por PCR, de una manera más eficiente, a menor coste y con una menor perdida de carga que los filtros de PTFE conocidos del estado de la técnica. Los filtros de PTFE generan una perdida de carga en 4,9 cm2 de área y medida a 160 l/min, de 1993 Pa, mientras que el filtro de nanofibras da en las mismas condiciones 966 Pa.
Los sustratos filtrantes (4) con nanofibras internas que contenían un tratamiento viricida también se analizaron con SARS-CoV-2, para asegurar que la detección del ARN del virus no se viera afectada por el tratamiento viricida por RT-qPCR. Se depositaron cantidades decrecientes de SARS-CoV-2 directamente sobre las nanofibras (10 ^l), se secaron al aire y se incluyeron en 1,8 ml de tampón de lisis para la extracción inmediata de ARN, a partir de 0,6 ml. La detección del gen N parcial es realizada mediante retrotranscri ptasa-qPCR.
Por otra parte, además de la detección del virus de SARS-CoV2, los sustratos filtrantes (4) permiten capturar virus de viruela de simio en aire y detectarlo por qPCR.
Para ello, la bomba de vacío (2) puede funcionar con un caudal fijo de aire de 30L/min y, colocando el dispositivo filtrante (1) al que se encuentra vinculada dicha bomba de vacío (2), cerca de un paciente, desde 1,5 a 2 metros y a 1,5 metros de altura, manteniendo la bomba de vacío (2) durante 30 minutos aproximadamente.
Recogiendo un total de 43 muestras de partículas biológicas depositadas en el sustrato filtrante (4), éstos son introducidos en tubos con 2 ml de tampón de inactivación y se mantienen a 4°C hasta su procesamiento.
Los datos obtenidos utilizando los sustratos filtrantes (4) con nanofibras internas muestran una recuperación del material genético de virus con tiempos de muestreo cortos, de 30 minutos, consiguiendo un Ct obtenido mínimo de 28,58, correspondiente a más de 9000 copias del genoma del virus de la viruela de simio por metro cúbico de aire aspirado por la bomba de vacío (2) a través del sustrato filtrante (4) del dispositivo filtrante (1).
Claims (4)
1. - Equipo de captura de partículas biológicas en el aire que comprende:
- un dispositivo filtrante (1) móvil por acción de un usuario que está destinado a captar las partículas biológicas suspendidas en el aire, y
- una bomba de vacío (2) vinculada al dispositivo filtrante (1) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1);
caracterizado dicho dispositivo filtrante (1) por que comprende:
- un portafiltros (3) que permite la exposición de todo el filtro al ambiente y conectable a la bomba de vacío (2) y a través del cual circula la corriente de aire aspirada por dicha bomba de vacío (2) y
- un sustrato filtrante (4) integrado en el interior del portafiltros (3) y que está formado por al menos una capa de nanofibras que está destinado a permitir el paso de la corriente de aire por acción de aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.
2. - Equipo de captura de partículas biológicas según la reivindicación 1 en donde el dispositivo filtrante (1) comprende adicionalmente una rejilla soporte (5) que acopla internamente con el portafiltros (3) y que sujeta inferiormente al sustrato filtrante (4), al mismo tiempo que permite la circulación de la corriente de aire hacia la bomba de vacío (2).
3. - Equipo de captura de partículas biológicas según la reivindicación 1 o 2 en donde el dispositivo filtrante (1) está dotado adicionalmente de una boca de conexión (6) que parte externamente del portafiltros (3) y que comunica con el interior de dicho portafiltros (3) y con la bomba de vacío (2) mediante acople de una conducción hidráulica.
4. - Equipo de captura de partículas biológicas según la reivindicación 1 en donde el dispositivo filtrante (1) comprende adicionalmente al menos una carcasa (7) acoplada al portafiltros (3) por su parte superior, abierta y que evita el desacople del sustrato filtrante (4) respecto del portafiltros (3).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202231217U ES1295325Y (es) | 2022-07-21 | 2022-07-21 | Equipo de captura de particulas biologicas en el aire |
PCT/ES2023/070466 WO2024018107A1 (es) | 2022-07-21 | 2023-07-19 | Equipo de captura de partículas biológicas en el aire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202231217U ES1295325Y (es) | 2022-07-21 | 2022-07-21 | Equipo de captura de particulas biologicas en el aire |
Publications (2)
Publication Number | Publication Date |
---|---|
ES1295325U true ES1295325U (es) | 2022-10-31 |
ES1295325Y ES1295325Y (es) | 2023-01-20 |
Family
ID=83804227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES202231217U Active ES1295325Y (es) | 2022-07-21 | 2022-07-21 | Equipo de captura de particulas biologicas en el aire |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES1295325Y (es) |
WO (1) | WO2024018107A1 (es) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4241233C2 (de) * | 1992-12-08 | 1995-01-05 | Gerhard Straubinger | Transportables Luftreinigungsgerät für Kinderwageninnenräume |
EP2200729B1 (en) * | 2007-10-04 | 2012-06-20 | EMD Millipore Corporation | Filtration device |
CN204337539U (zh) * | 2014-12-11 | 2015-05-20 | 陈嘉怡 | 便携式空气过滤装置 |
US20210346827A1 (en) * | 2020-03-02 | 2021-11-11 | LIGC Application Ltd | Active air filter for treatment of bacteria and viruses |
-
2022
- 2022-07-21 ES ES202231217U patent/ES1295325Y/es active Active
-
2023
- 2023-07-19 WO PCT/ES2023/070466 patent/WO2024018107A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
ES1295325Y (es) | 2023-01-20 |
WO2024018107A1 (es) | 2024-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Goyal et al. | Detection of viruses in used ventilation filters from two large public buildings | |
ES2528180T3 (es) | Método y conjunto de sondas para detectar el cáncer de vejiga | |
Myatt et al. | Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay | |
ES2959592T3 (es) | Detección de agentes infecciosos a partir de polvo de aire ambiental | |
US20130130270A1 (en) | Filtration methods and devices | |
Magnet et al. | Vectorial role of Acanthamoeba in Legionella propagation in water for human use | |
Chabchoub et al. | Genetic identification of intestinal microsporidia species in immunocompromised patients in Tunisia. | |
ES1295325U (es) | Equipo de captura de particulas biologicas en el aire | |
EP4165217A1 (en) | Device and method for capturing and analysing airborne organisms | |
KR20110097199A (ko) | 바이러스에 대한 필터의 효력평가장치 및 효력평가방법 | |
Dendana et al. | Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia | |
Fonseca et al. | Identification of T3 and T4 genotypes of Acanthamoeba sp. in dust samples isolated from air conditioning equipment of public hospital of Ituiutaba-MG | |
ES2727592T3 (es) | Método para la detección de cepas de Legionella spp. en muestras ambientales basadas en la amplificación isotérmica mediada por bucle (lamp), reactivo de detección y conjunto de cebadores | |
CN104498608A (zh) | 利用snp标记鉴别蜂群抗白垩病性状的方法 | |
Derda et al. | Comparative analyses of different genetic markers for the detection of Acanthamoeba spp. isolates | |
CN101974633A (zh) | 一种定量检测微囊藻的方法及其专用标准品 | |
KR101758609B1 (ko) | 일본뇌염바이러스 검출 및 유전자형 판별용 조성물 | |
Yun et al. | Quantitative and qualitative estimation of bacteria contaminating human hairs | |
RU2542968C2 (ru) | Набор олигодезоксирибонуклеотидных праймеров и флуоресцентно-меченых днк-зондов для идентификации рнк энтеровирусов, риновирусов, вирусов гепатита а и е из водной среды методом мультиплексной пцр | |
Garbal et al. | Occurence of Bordetella bronchiseptica in domestic cats with upper respiratory tract infections | |
RU2610434C1 (ru) | Набор олигодезоксирибонуклеотидных праймеров и флуоресцентно-меченых ДНК-зондов для идентификации РНК энтеровирусов, ротовирусов, вирусов гепатита А и Е, аденовирусов, норовирусов и астровирусов из водной среды методом мультиплексной ПЦР | |
Gabr et al. | Isolation and identification of pathogenic Acanthamoeba species from air conditioning systems, Egypt | |
Rubbo et al. | Filtration efficiency of surgical masks: a new method of evaluation | |
Yamamoto | Fundamentals of Bioaerosols Science: From Physical to Biological Dimensions of Airborne Biological Particles | |
RU2702707C2 (ru) | Штамм бактериофага Bacillus anthracis Ф112PRE, используемый для специфической индикации возбудителя сибирской язвы |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CA1K | Utility model application published |
Ref document number: 1295325 Country of ref document: ES Kind code of ref document: U Effective date: 20221031 |
|
FG1K | Utility model granted |
Ref document number: 1295325 Country of ref document: ES Kind code of ref document: Y Effective date: 20230116 |