WO2024018107A1 - Equipo de captura de partículas biológicas en el aire - Google Patents

Equipo de captura de partículas biológicas en el aire Download PDF

Info

Publication number
WO2024018107A1
WO2024018107A1 PCT/ES2023/070466 ES2023070466W WO2024018107A1 WO 2024018107 A1 WO2024018107 A1 WO 2024018107A1 ES 2023070466 W ES2023070466 W ES 2023070466W WO 2024018107 A1 WO2024018107 A1 WO 2024018107A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
vacuum pump
air
biological particles
filtering device
Prior art date
Application number
PCT/ES2023/070466
Other languages
English (en)
French (fr)
Inventor
Antonio Alcamí Pertejo
África SANCHIZ GIRALDO
José María LANGARÓN CABELLO
Cristina PRIETO LÓPEZ
María Pardo-Figuerez
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2024018107A1 publication Critical patent/WO2024018107A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/26Filters with built-in pumps filters provided with a pump mounted in or on the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Definitions

  • the object of the present invention is of special application in the technological field of capturing biological particles, specifically in the sector of capturing biological particles present in the air.
  • the present invention is about a device for capturing biological particles that are suspended in the air by using a filtering device connected to a vacuum pump, which allows complete genomic sequencing of the captured biological organisms to be subsequently carried out, amplifying genomes. through gene amplification methods or sequencing DNA and RNA genomes present in viral particles, previously purified through said filtering device.
  • Hirst's samplers can give a good description of the airborne biological community, it is far from complete.
  • Hirst samplers are based on the inertial capture of ABP on a Vaseline-coated strip that can be used for DNA extraction. Rapid sequencing of this DNA could provide a more complete view of the airborne community, including DNA viruses.
  • viral genomes are represented in a very low proportion of sequencing reads in a shotgun approach because their genomes are small compared to cellular genomes.
  • Viral particles must be purified to obtain a complete analysis of the viral community (both DNA and RNA viruses), and this cannot be done from the Vaseline strip without introducing some important biases (Prussin AJ., et al. , 2014, FEMS Microbiol Lett, 357:1-9; Thurber RV., et al., 2009, Nat Protoc 4:470-483).
  • Hirst-type samplers are expensive and generally non-portable devices, so their use is limited to a restricted number of sampling sites simultaneously.
  • PTFE Polytetrafluoroethylene
  • the invention also provides a method suitable for the capture, detection and identification of whole airborne biological particles, including viruses and other airborne pathogens and allergens.
  • This method allows performing metagenomics (complete genomic sequencing) of microorganisms captured in the filters, amplifying specific genomes using gene amplification methods, or sequencing DNA and RNA genomes present in viral particles that have been previously purified.
  • This methodology can be applied to detect, for example, SARS-CoV-2 particles in air samples or MPXV particles (monkeypox virus).
  • the present invention refers to equipment for capturing biological particles in the air that is equipped with a filtering device, which captures the biological particles suspended in the air and, at least, one vacuum pump, which sucks in a stream of air making it pass through the filtering device to which it is connected, in order to obtain a population of biological particles susceptible to processing.
  • the vacuum pump or air pump is operable in such a way that it allows increasing or decreasing the suction flow that passes through the filter device, with a variable power in the range of 5 liters/minute to 30 liters/minute.
  • the filtering device incorporates a filter holder that is normally circular or otherwise shaped, with a diameter of, for example, 25 mm or 47 mm or another measurement.
  • the filter holder exposes the entire surface of the filter to the environment to draw in air over its entire surface.
  • the filter holder is made of material that allows it to be decontaminated with chemicals (ethanol, diluted hypochlorite, hydrogen peroxide%) or by autoclave (pressure and temperature).
  • the filter holder can be connected to the vacuum pump either by means of an adapter or by means of hydraulic connection means, such as hoses; and a filter substrate integrated inside the filter holder and which is formed by at least one layer of nanofibers, specifically, a symmetrical multilayer nanofiber filter where the layer of nanofibers, either continuous or discontinuous, is protected between two layers of a fabric nonwoven (TNT) or a fabric made of any natural or synthetic polymer or combination of polymers, which allows the passage of the air stream drawn by the action of the vacuum pump while capturing the biological particles suspended in said stream of air.
  • TNT fabric nonwoven
  • the filter device can incorporate a support grid that fits internally with the filter holder and that holds the filter substrate at its bottom, allowing vertical fixation of the latter at the same time that the air circulates towards the vacuum pump.
  • the filter device preferably incorporates an upper casing that allows the passage of air, formed by two or more transverse extensions that prevent any detachment of the filter substrate from the filter holder through the upper part of the latter.
  • the equipment for capturing biological particles present in the air further comprises centrifugal means configured to remove cellular organisms from the substrate and buffer means configured to house the substrate.
  • the equipment, for detecting and identifying organisms present in the air further comprises filtration means configured to filter the supernatants containing the viral particles, where the centrifugal means are also configured to concentrate the supernatants, nuclease treatment means configured to eliminate all non-encapsidated DNA or RNA and gene amplification and sequencing media for amplification of collective or specific viral genomes captured on the filters, followed by sequencing.
  • the symmetrical multilayer filters composed of nanofibers, apart from the detection and capture of SARS-CoV-2 particles, have made it possible to capture monkeypox viruses in the air.
  • Figure 1. Shows a perspective view of the equipment for capturing biological particles in the air.
  • Figure 2. Shows an exploded view of the equipment for capturing biological particles in the air.
  • Figure 1 shows a perspective view of the equipment for capturing biological particles in the air, where it can be seen that said equipment comprises a filtering device (1) intended to capture biological particles suspended in the air, and a vacuum pump. (2) linked to the filtering device (1) that sucks a air stream with suspended biological particles through the filtering device (1) -
  • the filtering device (1) furthermore comprises a filter holder (3) that is connected to the vacuum pump (2) and through which the air stream drawn by said vacuum pump (2) and a filtering substrate (2) circulates. 4) integrated inside the filter holder (3) and which is formed by a filter that contains at least one layer of nanofibers where the nanofibers are protected between two layers of a non-woven fabric (TNT) or a fabric made of any natural or synthetic polymer or combination of polymers, which is intended to allow the passage of the air stream through the suction action of the vacuum pump (2) while capturing the biological particles suspended in said air stream.
  • TNT non-woven fabric
  • Figure 2 shows, on the other hand, how the filter device (1) can preferably incorporate a support grid (5) that fits internally with the filter holder (3) and that internally holds the filter substrate (4), at the same time allowing the circulation of the air stream towards the vacuum pump (2).
  • said filtering device (1) may additionally be provided with a connection mouth (6) that starts externally from the filter holder (3) and that communicates with the interior of said filter holder (3) and with the vacuum pump (2) by means of coupling of a hydraulic line, said line being a hose or a conduction tube, through which the air current circulates that passes through the filter substrate (4) to the vacuum pump (2).
  • the filter device (1) additionally comprises at least one housing (7) coupled to the filter holder (3) by its upper part, open and that prevents detach the filter substrate (4) from the filter holder (3).
  • the tubes with filter substrate (4) in inactivating solution were processed at the Severo Ochoa Molecular Biology Center (CBMSO), where the isolation of viral RNA was carried out from 0.6 ml.
  • Mouse RNA 400-500 ng was added to each sample as a vehicle before extraction, to evaluate the efficiency of RNA extraction.
  • ddPCR droplet digital PCR
  • RT-qPCR RT-qPCR using specific probes and primers (CDC Center for disease control and prevention) for the region of the SARS-CoV-2 N gene.
  • the nanofiber layer was manufactured in polyvinylidene fluoride (PVDF) by the electrostretching technique from PVDF solutions in DMF/Acetone (50:50 wt.).
  • PVDF nanofibers must have a weight of less than 2 g/m2 and be protected between layers of TNT or polymer fabric or polymer blend, e.g. polypropylene, at least 10 g/m2.
  • the filter substrate (4) tested was formed by a symmetrical sandwich with two layers of 18 g/m2 polypropylene TNT containing at least one layer of PVDF nanofibers, with a filtration capacity against aerosols greater than 97% and 47 mm in diameter, without any vincidal treatment.
  • a second comparative test is carried out, between PTFE and filter substrates (4) composed of nanofibers, in an exclusive COVID-19 room. Only the filter substrate (4) with the lowest density, a symmetrical sandwich with a weight of less than 1.5 g/m2, was selected for this experiment, since it maintains a high filtration capacity and lower pressure loss.
  • Samples were collected for shorter air entry times, for about 3-4 hours a day, at 15 L/min.
  • Each vacuum pump (2) collected air into two filters simultaneously, one PTFE and one nanofiber.
  • the data obtained show that the filter substrates (4) allow the recovery and detection of SARS-COV-2 in air by PCR, in a more efficient way, at a lower cost and with a lower pressure loss than the PTFE filters known from the industry. state of the art.
  • the PTFE filters generate a pressure loss in 4.9 cm2 of area and measured at 160 l/min, of 1993 Pa, while the nanofiber filter gives 966 Pa under the same conditions.
  • Filter substrates (4) with internal nanofibers containing a viricidal treatment were also tested with SARS-CoV-2, to ensure that the detection of virus RNA was not affected by the viricidal treatment by RT-qPCR. Decreasing amounts of SARS-CoV-2 were deposited directly on the nanofibers (10 ⁇ l), air dried, and included in 1.8 ml of lysis buffer for immediate RNA extraction, starting from 0.6 ml. Detection of the partial N gene is performed by reverse transcriptase-qPCR.
  • the filter substrates (4) allow monkeypox virus to be captured in the air and detected by qPCR.
  • the vacuum pump (2) can operate with a fixed air flow rate of 30L/min and, by placing the filtering device (1) to which said vacuum pump (2) is linked, near a patient, from 1.5 to 2 meters and 1.5 meters high, maintaining the vacuum pump (2) for approximately 30 minutes. Collecting a total of 43 samples of biological particles deposited on the filter substrate (4), these are placed in tubes with 2 ml of inactivation buffer and kept at 4 ° C until processing. The data obtained using the filter substrates (4) with internal nanofibers show a recovery of the virus genetic material with short sampling times, 30 minutes, achieving a minimum Ct obtained of 28.58, corresponding to more than 9000 copies of the virus genome. monkeypox virus per cubic meter of air drawn by the vacuum pump (2) through the filter substrate (4) of the filter device (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Filtering Materials (AREA)

Abstract

La invención se refiere a un equipo de captura de partículas biológicas en el aire que comprende un dispositivo filtrante (1) y una bomba de vacío (2) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1), donde dicho dispositivo filtrante (1) comprende un portafiltros (3) que permite la exposición de todo el filtro al ambiente, es conectable a la bomba de vacío (2) y por donde circula la corriente de aire aspirada por dicha bomba de vacío (2), y también comprende un sustrato filtrante (4) integrado en el portafiltros (3), formado por al menos una capa de nanofibras y destinado a permitir el paso de la corriente de aire por la aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.

Description

EQUIPO DE CAPTURA DE PARTÍCULAS BIOLÓGICAS EN EL AIRE
Figure imgf000003_0001
OBJETO DE LA INVENCIÓN
El objeto de la presente invención es de especial aplicación en el campo tecnológico de captura de partículas biológicas, concretamente en el sector de captación de partículas biológicas presentes en el aire.
La presente invención se trata de un equipo de captura de partículas biológicas que se encuentran en suspensión en el aire mediante el empleo de un dispositivo filtrante conectado a una bomba de vacío, que permite realizar posteriormente secuenciación genómica completa de los organismos biológicos captados, amplificar genomas mediante métodos de amplificación de genes o secuenciar genomas ADN y ARN presentes en partículas virales, purificadas previamente a través de dicho dispositivo filtrante.
ANTECEDENTES DE LA INVENCIÓN
Se sabe que la contaminación del aire es un riesgo ambiental importante para la salud pública ya que transporta partículas biológicas que contienen arqueas, bacterias, virus, hongos y granos de polen, provenientes de otros entornos (suelo, agua o microambientes de plantas/animales).
El estudio de la biota aérea es relevante por su potencial papel en la diseminación de enfermedades vegetales, animales y humanas, con importantes implicaciones en la salud pública, y un gran impacto económico en la productividad agrícola y ganadera.
El conocimiento actual sobre la comunidad microbiana del aire se restringe principalmente al polen y las esporas de hongos, estudiados mediante métodos tradicionales como microscopía óptica o PCR cuantitativa, que por su importancia como alérgenos son medidos diariamente e incluidos entre los indicadores de calidad del aire. También se utilizan técnicas dependientes del cultivo para el estudio de microorganismos del aire (hongos, bacterias y virus), a pesar de la pequeña fracción de organismos que se pueden cultivar. Entre estos trabajos, cabe destacar que los estudios sobre virus son casi inexistentes. Por lo tanto, una visión global de la comunidad biológica aérea es crucial para comprender la dinámica del ecosistema del aire, identificar organismos marcadores y establecer nuevos indicadores de la calidad del aire.
Para estudiar la comunidad aérea se han utilizado una serie de dispositivos con mecanismos de captura muy diferentes (Núñez A., et al., 2016, Int Microbiol, 19:69-80). Se ha demostrado previamente que los muestreadores tipo Hirst son una buena opción para monitorear la comunidad biológica en el aire, al comparar enfoques clásicos como la microscopía óptica de polen y esporas de hongos con metagenómica dirigida, lo que resulta en una buena correlación entre ambas técnicas (Núñez A, et al., 2017, Appl Environ Microbiol, 83).
Aunque los muestreadores de Hirst pueden dar una buena descripción de la comunidad biológica aerotransportada, está lejos de ser completa.
Los muestreadores de Hirst se basan en la captura inercial de ABP en una tira cubierta de vaselina que se puede utilizar para la extracción de ADN. Una secuenciación rápida de este ADN podría brindar una visión más completa de la comunidad en el aire, incluidos los virus de ADN.
Sin embargo, los genomas virales están representados en una proporción muy baja de lecturas de secuenciación en un enfoque de escopeta debido a que sus genomas son pequeños en comparación con los genomas celulares. Las partículas virales deben purificarse para obtener un análisis completo de la comunidad viral (tanto virus de ADN como de ARN), y esto no se puede hacer a partir de la tira de vaselina sin introducir algunos sesgos importantes (Prussin AJ., et al., 2014, FEMS Microbiol Lett , 357:1 -9; Thurber RV., et al., 2009, Nat Protoc 4:470-483). Además, los muestreadores tipo Hirst son dispositivos costosos y generalmente no portátiles, por lo que su uso está limitado a un número restringido de sitios de muestreo simultáneamente. Los filtros de politetrafluoroetileno (PTFE) también se han probado para recolectar bacterias, virus y otras partículas en el aire en el rango de tamaño de 10-900 nm (Nancy C. B., et al., 2007, Ann. Occup. Hyg., 51 : 2, 143-151 ), sin embargo, no se ha propuesto ningún método de análisis eficiente para identificar todas las partículas biológicas capturadas.
Por lo tanto, existe la necesidad de desarrollar métodos mejorados de captura y análisis que utilicen dispositivos y metodologías que permitan recolectar y estudiar toda la comunidad biológica en el aire, incluidos virus y otros patógenos y alérgenos importantes, de manera eficiente.
DESCRIPCIÓN DE LA INVENCIÓN
El estudio de la comunidad biológica aérea, compuesta por partículas biológicas muy diferentes entre sí, tales como bacterias, hongos, polen y virus, requiere el uso de un método de muestreo eficiente que capture una buena representación de toda la comunidad.
La invención también proporciona un método adecuado para la captura, detección e identificación de partículas biológicas enteras en el aire, incluidos virus y otros patógenos y alérgenos presentes en el aire.
Este método permite realizar metagenómica (secuenciación genómica completa) de microorganismos capturados en los filtros, amplificar genomas específicos mediante métodos de amplificación de genes, o secuenciar genomas ADN y ARN presentes en partículas virales que se han purificado previamente. Esta metodología puede aplicarse para detectar, por ejemplo, partículas de SARS-CoV-2 en muestras de aire o partículas MPXV (virus monkeypox o viruela del mono).
La presente invención se refiere a un equipo de captura de partículas biológicas en el aire que está dotado de un dispositivo filtrante, que capta las partículas biológicas suspendidas en el aire y, al menos, una bomba de vacío, que aspira una corriente de aire haciéndola pasar por el dispositivo filtrante al que se encuentra conectada, con el fin de obtener una población de partículas biológicas susceptibles de procesamiento. La bomba de vacío o bomba de aire es operable de tal forma que permite aumentar o disminuir el flujo de aspiración que pasa a través del dispositivo filtrante, con una potencia variable del rango de 5 litros/minuto a 30 litros/ minutos.
Asimismo, el dispositivo filtrante incorpora un portafiltros normalmente circular u de otra forma, con un diámetro de, por ejemplo 25 mmm o 47 mmm u otra medida. El portafiltros expone toda la superficie del filtro al ambiente para aspirar aire en toda su superficie. El portafiltros es de material que permite su descontaminación con productos químicos (etanol, hipoclorito diluido, peróxido de hidrógeno ...) o mediante autoclave (presión y temperatura).
El portafiltros es conectable a la bomba de vacío o bien mediante un adaptador o mediante medios de conexión hidráulica, como, por ejemplo, mangueras; y un sustrato filtrante integrado en el interior del portafiltros y que está formado por al menos una capa de nanofibras, concretamente, un filtro multicapa simétrico de nanofibras en donde la capa de nanofibras, bien continua o discontinua, está protegida entre dos capas de un tejido no tejido (TNT) o de un tejido hecho de cualquier polímero natural o sintético o combinación de polímeros, que permite el paso de la corriente de aire aspirada por acción de la bomba de vacío al mismo tiempo que captura las partículas biológicas suspendidas en dicha corriente de aire.
Por otro lado, el dispositivo filtrante puede incorporar una rejilla soporte que acopla internamente con el portafiltros y que sujeta al sustrato filtrante por su parte inferior, permitiendo una fijación vertical de éste al mismo tiempo que circula el aire hacia la bomba de vacío.
Para evitar el desacople superior de dicho sustrato filtrante, el dispositivo filtrante incorpora, preferentemente, una carcasa superior que permite el paso del aire, formada por dos o más extensiones transversales que evitan cualquier desprendimiento del sustrato filtrante respecto del portafiltros por la parte superior de éste.
También, el equipo para capturar partículas biológicas presentes en el aire comprende además medios centrífugos configurados para eliminar organismos celulares del sustrato y medios tamponadores configurados para albergar el sustrato. El equipo, para detectar e identificar organismos presentes en el aire, comprende además medios de filtración configurados para filtrar los sobrenadantes que contienen las partículas virales, en donde los medios centrífugos también están configurados para concentrar los sobrenadantes, medios de tratamiento con nucleasas configurados para eliminar todo el ADN o ARN no encapsidado y los medios de amplificación y secuenciación de genes para la amplificación de genomas virales colectivos o específicos capturados en los filtros, seguido de secuenciación.
Los filtros multicapa simétricos compuestos de nanofibras, a parte de la detección y captación de partículas de SARS-CoV-2, han permitido captar virus de la viruela de simio en aire.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 .- Muestra una vista en perspectiva del equipo de captura de partículas biológicas en el aire.
Figura 2.- Muestra una vista explosionada del equipo de captura de partículas biológicas en el aire.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Con ayuda de las figuras 1 y 2 se muestra un ejemplo de realización del equipo de captura de partículas biológicas en el aire.
Concretamente, la figura 1 muestra una vista en perspectiva del equipo de captura de partículas biológicas en el aire, donde se observa que dicho equipo comprende un dispositivo filtrante (1 ) destinado a captar las partículas biológicas suspendidas en el aire, y una bomba de vacío (2) vinculada al dispositivo filtrante (1 ) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1 )-
El dispositivo filtrante (1 ), además, comprende adicionalmente un portafiltros (3) que está conectado a la bomba de vacío (2) y a través del cual circula la corriente de aire aspirada por dicha bomba de vacío (2) y un sustrato filtrante (4) integrado en el interior del portafiltros (3) y que está formado por un filtro que contiene al menos un capa de nanofibras en donde las nanofibras están protegidas entre dos capas de un tejido no tejido (TNT) o de un tejido hecho de cualquier polímero natural o sintético o combinación de polímeros, que está destinado a permitir el paso de la corriente de aire por acción de aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.
La figura 2 muestra, por otra parte, como el dispositivo filtrante (1 ) puede incorporar preferentemente una rejilla soporte (5) que acopla internamente con el portafiltros (3) y que sujeta interiormente al sustrato filtrante (4), al mismo tiempo que permite la circulación de la corriente de aire hacia la bomba de vacío (2).
Asimismo, dicho dispositivo filtrante (1 ) puede estar dotado adicionalmente de una boca de conexión (6) que parte externamente del portafiltros (3) y que comunica con el interior de dicho portafiltros (3) y con la bomba de vacío (2) mediante acople de una conducción hidráulica, siendo dicha conducción una manguera o un tubo de conducción, por donde circula la corriente de aire que traspasa el sustrato filtrante (4) hasta la bomba de vacío (2).
Finalmente, para evitar que el sustrato filtrante (4) se desacople del portafiltros (3), el dispositivo filtrante (1 ) comprende adicionalmente al menos una carcasa (7) acoplada al portafiltros (3) por su parte superior, abierta y que evita el desacople del sustrato filtrante (4) respecto del portafiltros (3).
A continuación, se expone una serie de resultados derivados de experimentos con este tipo de dispositivo filtrante (1 ). Se han realizado mediante la captura de muestras de aire en las áreas de pacientes con COVID-19, acoplando portafiltros (3) de 47 mm (Pall) a bombas de vacío (2) (KNF, 30 l/min) y utilizando nanofibras de PVDF como elemento filtrante (4). Los sustratos filtrantes (4) en 2 mi de solución inactivante PROMEGA y se almacenan a -20eC hasta su procesamiento.
Los tubos con sustrato filtrante (4) en solución inactivante se procesaron en el Centro de Biología Molecular Severo Ochoa (CBMSO), donde se realizó el aislamiento de ARN viral a partir de 0,6 mi. Se añadió ARN de ratón (400-500 ng) a cada muestra como vehículo antes de la extracción, para evaluar la eficiencia de la extracción de ARN.
La presencia de virus se analizó mediante PCR digital de gotas (droplet digital PCR, ddPCR) o RT-qPCR utilizando sondas y cebadores específicos (CDC “Center for disease control and prevention” - centro de prevención y control de enfermedades) para la región del gen N del SARS-CoV-2.
Para la fabricación de los sustratos filtrantes (4), la capa de nanofibras se fabricó en fluoruro de polivinilideno (PVDF) por la técnica del electroestirado a partir de disoluciones de PVDF en DMF/Acetona (50:50 wt.). En el diseño de un filtro para esta aplicación, las nanofibras de PVDF deben tener con un gramaje inferior a 2 g/m2 y estar protegidas entre capas de TNT o tejido de polímeros o mezcla de polímeros, ej. polipropileno, de al menos 10 g/m2.
El sustrato filtrante (4) probado estaba formado por un sandwich simétrico con dos capas de TNT de polipropileno de 18 g/m2 conteniendo al menos una capa de nanofibras de PVDF, con una capacidad de filtración frente a aerosoles superior a un 97% y de 47 mm de diámetro, sin ningún tratamiento viñcida.
Paralelamente, una mejor homogeneidad del material en sustrato filtrante (4) similar, es obtenida. Como sustrato filtrante (4) de menor densidad, se produjo un sandwich simétrico con un gramaje menor y con capacidad de filtración superior a un 95%. Este último sustrato filtrante (4) también se produjo con un componente viñcida, óxido de Zn, denominado como ’’Filtro Viñcida”.
Estos sustratos filtrantes (4) han sido comparados con filtros de PTFE en urgencias de hospital. Esta comparación se realizó por duplicado, utilizando dos bombas de vacío (2) de alto caudal (30 L/min) en paralelo, con un caudal aproximado por filtro de 15 L/min. La bomba de vacío (2) estuvo funcionando 12 h/día, 3 o 4 días seguidos. En este caso, el análisis de presencia y cuantificación absoluta de SARS-CoV-2 en los filtros se realizó mediante ddPCR, detectando el gen N2 parcial combinado con un fluoróforo FAM.
Se realiza un segundo ensayo comparativo, entre PTFE y sustratos filtrantes (4) compuestos de nanofibras, en una sala exclusiva COVID-19. Sólo se seleccionó el sustrato filtrante (4) de menor densidad, de sandwich simétrico con un gramaje menor de 1 ,5 g/m2 para este experimento, ya que mantiene una alta capacidad de filtración y menor perdida de carga.
Las muestras se recogieron para tiempos de entrada de aire más cortos, durante unas 3-4 horas al día, a 15 L/min. Cada bomba de vacío (2) recolectó aire en dos filtros simultáneamente, uno de PTFE y uno de nanofibras. Los datos obtenidos muestran que los sustratos filtrantes (4) permiten la recuperación y detección del SARS-COV-2 en aire por PCR, de una manera más eficiente, a menor coste y con una menor perdida de carga que los filtros de PTFE conocidos del estado de la técnica. Los filtros de PTFE generan una perdida de carga en 4,9 cm2 de área y medida a 160 l/min, de 1993 Pa, mientras que el filtro de nanofibras da en las mismas condiciones 966 Pa.
Los sustratos filtrantes (4) con nanofibras internas que contenían un tratamiento viricida también se analizaron con SARS-CoV-2, para asegurar que la detección del ARN del virus no se viera afectada por el tratamiento viricida por RT-qPCR. Se depositaron cantidades decrecientes de SARS-CoV-2 directamente sobre las nanofibras (10 pl), se secaron al aire y se incluyeron en 1 ,8 ml de tampón de lisis para la extracción inmediata de ARN, a partir de 0,6 mi. La detección del gen N parcial es realizada mediante retrotranscriptasa-qPCR.
Por otra parte, además de la detección del virus de SARS-CoV2, los sustratos filtrantes (4) permiten capturar virus de viruela de simio en aire y detectarlo por qPCR.
Para ello, la bomba de vacío (2) puede funcionar con un caudal fijo de aire de 30L/min y, colocando el dispositivo filtrante (1 ) al que se encuentra vinculada dicha bomba de vacío (2), cerca de un paciente, desde 1 ,5 a 2 metros y a 1 ,5 metros de altura, manteniendo la bomba de vacío (2) durante 30 minutos aproximadamente. Recogiendo un total de 43 muestras de partículas biológicas depositadas en el sustrato filtrante (4), éstos son introducidos en tubos con 2 ml de tampón de inactivación y se mantienen a 4eC hasta su procesamiento. Los datos obtenidos utilizando los sustratos filtrantes (4) con nanofibras internas muestran una recuperación del material genético de virus con tiempos de muestreo cortos, de 30 minutos, consiguiendo un Ct obtenido mínimo de 28,58, correspondiente a más de 9000 copias del genoma del virus de la viruela de simio por metro cúbico de aire aspirado por la bomba de vacío (2) a través del sustrato filtrante (4) del dispositivo filtrante (1 ).

Claims

Figure imgf000012_0001
1 Equipo de captura de partículas biológicas en el aire que comprende:
- un dispositivo filtrante (1 ) móvil por acción de un usuario que está destinado a captar las partículas biológicas suspendidas en el aire, y
- una bomba de vacío (2) vinculada al dispositivo filtrante (1 ) que aspira una corriente de aire con partículas biológicas suspendidas a través del dispositivo filtrante (1 ); caracterizado dicho dispositivo filtrante (1 ) por que comprende:
- un portafiltros (3) que permite la exposición de todo el filtro al ambiente y conectable a la bomba de vacío (2) y a través del cual circula la corriente de aire aspirada por dicha bomba de vacío (2) y
- un sustrato filtrante (4) integrado en el interior del portafiltros (3) y que está formado por al menos una capa de nanofibras que está destinado a permitir el paso de la corriente de aire por acción de aspiración de la bomba de vacío (2) al mismo tiempo que capta las partículas biológicas suspendidas en dicha corriente de aire.
2.- Equipo de captura de partículas biológicas según la reivindicación 1 en donde el dispositivo filtrante (1 ) comprende adicionalmente una rejilla soporte (5) que acopla internamente con el portafiltros (3) y que sujeta interiormente al sustrato filtrante (4), al mismo tiempo que permite la circulación de la corriente de aire hacia la bomba de vacío
(2).
3.- Equipo de captura de partículas biológicas según la reivindicación 1 o 2 en donde el dispositivo filtrante (1 ) está dotado adicionalmente de una boca de conexión (6) que parte externamente del portafiltros (3) y que comunica con el interior de dicho portafiltros
(3) y con la bomba de vacío (2) mediante acople de una conducción hidráulica.
4.- Equipo de captura de partículas biológicas según la reivindicación 1 en donde el dispositivo filtrante (1 ) comprende adicionalmente al menos una carcasa (7) acoplada al portafiltros (3) por su parte superior, abierta y que evita el desacople del sustrato filtrante
(4) respecto del portafiltros (3).
PCT/ES2023/070466 2022-07-21 2023-07-19 Equipo de captura de partículas biológicas en el aire WO2024018107A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU202231217 2022-07-21
ES202231217U ES1295325Y (es) 2022-07-21 2022-07-21 Equipo de captura de particulas biologicas en el aire

Publications (1)

Publication Number Publication Date
WO2024018107A1 true WO2024018107A1 (es) 2024-01-25

Family

ID=83804227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070466 WO2024018107A1 (es) 2022-07-21 2023-07-19 Equipo de captura de partículas biológicas en el aire

Country Status (2)

Country Link
ES (1) ES1295325Y (es)
WO (1) WO2024018107A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241233A1 (de) * 1992-12-08 1994-09-08 Gerhard Straubinger Portables Luftreinigungsgerät für Kinderwagen und Allergiker
WO2009045268A1 (en) * 2007-10-04 2009-04-09 Millipore Corporation Filtration device
CN204337539U (zh) * 2014-12-11 2015-05-20 陈嘉怡 便携式空气过滤装置
US20210346827A1 (en) * 2020-03-02 2021-11-11 LIGC Application Ltd Active air filter for treatment of bacteria and viruses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241233A1 (de) * 1992-12-08 1994-09-08 Gerhard Straubinger Portables Luftreinigungsgerät für Kinderwagen und Allergiker
WO2009045268A1 (en) * 2007-10-04 2009-04-09 Millipore Corporation Filtration device
CN204337539U (zh) * 2014-12-11 2015-05-20 陈嘉怡 便携式空气过滤装置
US20210346827A1 (en) * 2020-03-02 2021-11-11 LIGC Application Ltd Active air filter for treatment of bacteria and viruses

Also Published As

Publication number Publication date
ES1295325U (es) 2022-10-31
ES1295325Y (es) 2023-01-20

Similar Documents

Publication Publication Date Title
Yang et al. Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach
Goyal et al. Detection of viruses in used ventilation filters from two large public buildings
ES2528180T3 (es) Método y conjunto de sondas para detectar el cáncer de vejiga
ES2959592T3 (es) Detección de agentes infecciosos a partir de polvo de aire ambiental
Myatt et al. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay
Muchesa et al. Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems
US20130130270A1 (en) Filtration methods and devices
Magnet et al. Vectorial role of Acanthamoeba in Legionella propagation in water for human use
TW201014618A (en) Bacteria/RNA extraction device
WO2024018107A1 (es) Equipo de captura de partículas biológicas en el aire
Sunbul et al. Rattus norvegicus acting as reservoir of Leptospira interrogans in the Middle Black Sea region of Turkey, as evidenced by PCR and presence of serum antibodies to Leptospira strain
Vantarakis et al. Detection of enteroviruses, adenoviruses and hepatitis A viruses in raw sewage and treated effluents by nested-PCR
KR20110097199A (ko) 바이러스에 대한 필터의 효력평가장치 및 효력평가방법
Dendana et al. Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia
ES2727592T3 (es) Método para la detección de cepas de Legionella spp. en muestras ambientales basadas en la amplificación isotérmica mediada por bucle (lamp), reactivo de detección y conjunto de cebadores
Fonseca et al. Identification of T3 and T4 genotypes of Acanthamoeba sp. in dust samples isolated from air conditioning equipment of public hospital of Ituiutaba-MG
US20230221217A1 (en) Device and method for capturing and analyzing airborne organisms
Huang et al. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters
RU2610434C1 (ru) Набор олигодезоксирибонуклеотидных праймеров и флуоресцентно-меченых ДНК-зондов для идентификации РНК энтеровирусов, ротовирусов, вирусов гепатита А и Е, аденовирусов, норовирусов и астровирусов из водной среды методом мультиплексной ПЦР
Mosayebi et al. A Risk for Nosocomial Infections: Contamination of Hospital Air Cooling Systems by Acantamoeba spp.
Vladimirsky et al. Application of water-soluble nanofilters for collection of airborne Mycobacterium tuberculosis DNA in hospital wards
Gabr et al. Isolation and identification of pathogenic Acanthamoeba species from air conditioning systems, Egypt
Al-Sagur et al. Investigation of Giardia lamblia and other parasites in tap water as a potential source of transmission in some regions of Baghdad
Assoline et al. Isolating intact phytoplasma particles from plants for sequencing applications and for testing host responses to phytoplasmas
CN113186308B (zh) 一种检测布鲁氏菌阿米卡星耐药性rt-pcr试剂盒及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842495

Country of ref document: EP

Kind code of ref document: A1