EP4380905A1 - Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar - Google Patents

Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar

Info

Publication number
EP4380905A1
EP4380905A1 EP22758564.3A EP22758564A EP4380905A1 EP 4380905 A1 EP4380905 A1 EP 4380905A1 EP 22758564 A EP22758564 A EP 22758564A EP 4380905 A1 EP4380905 A1 EP 4380905A1
Authority
EP
European Patent Office
Prior art keywords
fraction
concrete
use according
sand
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22758564.3A
Other languages
German (de)
French (fr)
Inventor
Yvan-Pierre Jacob
Julien POILLOT
Hervé Guillemin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vicat SA
Original Assignee
Vicat SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vicat SA filed Critical Vicat SA
Publication of EP4380905A1 publication Critical patent/EP4380905A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment

Definitions

  • the subject of the present invention is the upgrading of concrete at the end of its life, and more particularly the use of a fraction obtained from a carbonated used concrete as a substitute sand for the preparation of concrete or mortar.
  • Building materials are materials used in the construction and public works sectors. They cover a wide range of materials, which mainly includes wood, glass, steel, aluminium, textiles, plastics (particularly insulation) and materials resulting from the transformation of quarry products, which can be more or less elaborate, in particular concrete, mortars and various derivatives of clay such as bricks, tiles, tiling and various sanitary elements.
  • cements essentially consists of calcining a mixture of carefully chosen and dosed raw materials, also referred to by the term “raw”. Firing this cru gives an intermediate product, clinker, which, ground with any mineral additions, will give cement.
  • the type of cement manufactured depends on the nature and proportions of the raw materials as well as the firing process.
  • Portland cements which represent the vast majority of cements produced in the world
  • aluminous cements or calcium aluminate
  • natural quick cements sulpho-aluminous cements
  • cements sulfo-belitic and other intermediate varieties.
  • the most common cements are Portland type cements.
  • Portland cements are obtained from Portland clinker, obtained after clinkering at a temperature of around 1450°C of a raw material rich in calcium carbonate in a kiln.
  • the production of one tonne of Portland cement is accompanied by the emission of very large quantities of CO2 (approximately 0.8 to 0.9 tonnes of CO2 per tonne of cement in the case of a CEM I).
  • Decarbonation is a chemical reaction that takes place when limestone, the main raw material for the manufacture of Portland cement, is heated at high temperature. The limestone is then transformed into quicklime and CO2 according to the following chemical reaction:
  • the described process involves using recycled concrete fines comprising supplying recycled concrete fines with dgo 1000 ⁇ m to stockpiles or a silo as a feedstock, rinsing the feedstock to provide carbonaceous material, removing of the carbonaceous material and the cleaned exhaust, and the deagglomeration of the carbonaceous material to form the additional cementitious material, as well as the use of stockpiles or a silo containing a feedstock of recycled concrete fines with dgo 1000 pm for the cleaning of CO2-containing exhaust gases and the simultaneous production of additional cementitious material.
  • this process requires the carbonated product to be dried before it can be used.
  • the subject of the present invention is the use of a fraction whose particle size d is greater than or equal to 150 ⁇ m, said fraction having a loss on ignition varying from 3% to 30% and comprising:
  • the fractions defined previously, by carbonation of a fraction obtained from a construction material, in particular a concrete, at the end of its life, in which the finest particles have been removed can be used as sands for the preparation of mortars or concretes, which makes it possible to recycle used concrete and to preserve natural resources while maintaining resistance mechanical properties comparable to those of concrete or mortars prepared from conventional sands.
  • the fraction obtained from used construction materials must first be carbonated, this makes it possible to significantly reduce the general carbon footprint associated with the production of new construction materials such as concrete or mortar.
  • sand means any sand that can be used by a person skilled in the art for the preparation of construction material
  • loss on ignition means the cumulative content of bound water, organic matter, CO2 of carbonates (calcareous loads and carbonated part of the material) and any oxidizable elements.
  • the loss on ignition is determined by calcination in air at a temperature of (950 +/- 25°C) according to the method described in standard NF EN 196-2 (classification index P 15-472) - Methods of cement testing - Part 2: Chemical analysis of cements; And
  • construction material means concrete or mortar.
  • dw corresponds to the diameter below which there is 10% of the total mass of the particles of the sample considered. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
  • “dgo” corresponds to the diameter below which 90% of the total mass of the particles of the sample considered is found. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
  • the diameter of the particles can be determined by any method known to those skilled in the art, in particular by scanning electron microscopy, morphogranulometry or by laser granulometry.
  • the proportions expressed in % correspond to mass percentages relative to the total weight of the entity (eg clinker or cement) considered.
  • a subject of the present invention is therefore the use of a fraction having the characteristics, in particular grain size and mineralogical characteristics, described previously as sand for the production of concrete or mortar.
  • the subject of the present invention is the use of a fraction as defined above as sand for the production of concrete or mortar, said fraction having the following characteristics, chosen alone or in combination: the particle size dw of the fraction is greater than or equal to 180 pm. More preferably, the particle size dw of the fraction is greater than or equal to 200 ⁇ m.
  • the particle size dw of the fraction is greater than or equal to 250 ⁇ m; the dgo particle size of the fraction is less than or equal to 4000 pm. More preferably, the dgo particle size of the fraction is less than or equal to 3000 ⁇ m. Quite preferably, the dgo particle size of the fraction is less than 2000 ⁇ m; the fraction has a loss on ignition varying from 4% to 25%, more preferably from 6% to 20%; the fraction contains 30% to 70% SiC>2. More preferably, the fraction contains from 40% to 60% SiO 2 ; the fraction contains 10% to 30% CaO. More preferably, the fraction contains from 10% to 20% CaO; the fraction contains 2% to 10% Al 2 O 3 .
  • the fraction contains from 4% to 8% of Al 2 O 3 ; the fraction contains 1% to 3% Fe 2 O 3 . More preferably, the fraction contains from 1% to 2.5% of Fe 2 O 3 ; the fraction additionally contains from 0.1% to 3%, preferably from 0.5% to 2% of MgO; the fraction also contains from 0.05% to 2%, preferably from 0.1% to 1% of TiO 2 ; the fraction also contains from 0.1% to 3%, preferably from 0.5% to 2.5% of K 2 O; the fraction also contains from 0.05% to 2%, preferably from 0.1% to 1%, of Na 2 O; the fraction also contains from 0.01% to 1%, preferably from 0.05% to 0.5% of P 2 Os; the fraction also contains from 0.005% to 0.2%, preferably from 0.01% to 0.1% of Mn 2 O 3 ; and/or the fraction additionally contains from 0.05% to 3%, preferably from 0.1% to 1.5%, of SO 3 .
  • the fraction described above is therefore obtained by carbonation of a fraction obtained from a construction material, in particular a concrete, at the end of its life.
  • the present The subject of the invention is also a method for preparing a fraction as described previously, said method comprising the following steps: iron removal and crushing of the construction material; screening of the crushed product in order to obtain a fraction with the desired dgo; drying of the fraction thus obtained; separation using a dynamic separator to obtain the fraction with the desired d; and carbonating the fraction obtained by with a gas containing CO2, such as a cement gas.
  • the removal of iron and the crushing of the construction material can be carried out according to any method known to those skilled in the art, in particular by shearing the scrap metal from the concrete then by magnetic removal by "omeric” and finally crushing of the construction material by a crusher with percussion, for example, which favors the reduction of the size of the aggregates.
  • Sifting is a mechanical operation carried out using devices commonly called sieves which makes it possible to select the grains.
  • the sieve only lets through its mesh elements smaller than a certain size. They are equipped with perforated grids with openings of a size determined according to the size of the grains sought. There are inclined vibrating screens and horizontal vibrating screens.
  • the screening can be carried out according to any method known to those skilled in the art.
  • the fraction obtained after screening is a 0/4 mm fraction, preferably 0/2 mm.
  • the fines fractions are obtained by using a dynamic separator which separates the particles it receives according to their size, shape and density.
  • the product feeding the separator falls on the rotating distribution hub.
  • the centrifugal force throws the particles: the coarser ones are thrown towards the periphery, their speed decreases and, under the action of gravity, fall into the refusal cone from where they are evacuated to then be carbonated.
  • the finer particles are drawn by the rising air towards the separation zone where variable pitch selection vanes impart an additional centrifugal force to them which removes the remaining coarse particles.
  • the speed of rotation, the ventilation and the angle of the blades of the turbine makes it possible to adjust the desired particle size. If the ventilation of the separator is provided by hot air, it also has the ability to dry the materials.
  • the fraction described above can therefore be used as sand for preparing a concrete or a mortar without this affecting the properties, in particular mechanical properties, of said concrete or mortar.
  • the rate of substitution of the natural sand used to prepare the concrete or the mortar by the fraction described above can be up to 70%, more preferably up to 50%, very preferably up to 30% .
  • a sieve with a square mesh of variable size was used to proceed with the elimination of the finest particles except for the F-0 fraction which corresponds to raw "concrete sand", i.e. without removal of finest particles.
  • fractions retained by the sieve i.e. refusal
  • a bottled gas mixture containing 25% CO2 for 6 hours with stirring in a heated mixer (temperature set at 55°C).
  • Table 1 Mineralogical composition and particle size of fractions F-0 to F-3.
  • Example 2 Concretes/mortars
  • concrete 3 is prepared with the same elements as concrete 1 but substituting
  • the compressive strength of concretes 1 to 3 was measured according to standard NF EN 12390-3 on test specimens measuring 11x22cm after 7 and 28 days of wet curing (20°C).
  • concretes 3 and 4 have a carbon balance reduced by 8.5% and 10.8% respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention relates to the use of a fraction having a particle size d10 greater than or equal to 150 µm, said fraction having a loss on ignition ranging from 3% to 30% and comprising: - from 20% to 80% of SiO2 ; - from 5% to 40% of CaO; - from 1% to 15% of Al2O3; and - from 0.5% to 4% of Fe2O3; as sand for the preparation of concrete or mortar.

Description

UTILISATION D’UNE FRACTION OBTENUE À PARTIR D’UN BÉTON USAGÉ COMME SABLE POUR LA PRÉPARATION DE BÉTON OU MORTIER USE OF A FRACTION OBTAINED FROM USED CONCRETE AS SAND FOR THE PREPARATION OF CONCRETE OR MORTAR
La présente invention a pour objet la revalorisation de béton en fin de vie, et plus particulièrement l’utilisation d’une fraction obtenue à partir d’un béton usagé carbonatée comme sable de substitution pour la préparation de béton ou de mortier. The subject of the present invention is the upgrading of concrete at the end of its life, and more particularly the use of a fraction obtained from a carbonated used concrete as a substitute sand for the preparation of concrete or mortar.
Les matériaux de construction sont des matériaux utilisés dans les secteurs du bâtiment et des travaux publics. Ils couvrent une vaste gamme de matériaux qui inclut principalement le bois, le verre, l'acier, l'aluminium, les textiles, les matières plastiques (isolants notamment) et les matériaux issus de la transformation de produits de carrières, qui peuvent être plus ou moins élaborés, notamment le béton, les mortiers et divers dérivés de l'argile tels que briques, tuiles, carrelages et divers éléments sanitaires. Building materials are materials used in the construction and public works sectors. They cover a wide range of materials, which mainly includes wood, glass, steel, aluminium, textiles, plastics (particularly insulation) and materials resulting from the transformation of quarry products, which can be more or less elaborate, in particular concrete, mortars and various derivatives of clay such as bricks, tiles, tiling and various sanitary elements.
Pour des raisons économiques, écologiques et climatiques, il existe depuis plusieurs années un besoin d'économiser les ressources naturelles et énergétiques, et de limiter les émissions de gaz à effet de serre. For economic, ecological and climatic reasons, there has been a need for several years to save natural and energy resources, and to limit greenhouse gas emissions.
Cela est particulièrement vrai pour les matériaux de construction préparés à partir de liants hydrauliques tels que les bétons et mortiers dont les procédés de préparation nécessitent un important apport en énergie et en matières premières naturelles, et émettent de fortes quantités de CO2. This is particularly true for construction materials prepared from hydraulic binders such as concretes and mortars whose preparation processes require a significant input of energy and natural raw materials, and emit large quantities of CO2.
En effet, la fabrication des liants hydrauliques, et notamment celle des ciments, consiste essentiellement en une calcination d’un mélange de matières premières judicieusement choisies et dosées, aussi désigné par le terme de « cru ». La cuisson de ce cru donne un produit intermédiaire, le clinker, qui, broyé avec d’éventuels ajouts minéraux, donnera du ciment. Le type de ciment fabriqué dépend de la nature et des proportions des matières premières ainsi que du procédé de cuisson. On distingue plusieurs types de ciments : les ciments Portland (qui représentent la très grande majorité des ciments produits dans le monde), les ciments alumineux (ou d’aluminate de calcium), les ciments prompts naturels, les ciments sulfo-alumineux, les ciments sulfo-bélitiques et d’autres variétés intermédiaires. Les ciments les plus répandus sont les ciments de type Portland. Les ciments Portland sont obtenus à partir de clinker Portland, obtenus après clinkérisation à une température de l’ordre de 1450°C d’un cru riche en carbonate de calcium dans un four. La production d’une tonne de ciment Portland s’accompagne de l’émission de très importantes quantités de CO2 (environ 0,8 à 0,9 tonne de CO2 par tonne de ciment dans le cas d’un CEM I). Indeed, the manufacture of hydraulic binders, and in particular that of cements, essentially consists of calcining a mixture of carefully chosen and dosed raw materials, also referred to by the term “raw”. Firing this cru gives an intermediate product, clinker, which, ground with any mineral additions, will give cement. The type of cement manufactured depends on the nature and proportions of the raw materials as well as the firing process. There are several types of cement: Portland cements (which represent the vast majority of cements produced in the world), aluminous cements (or calcium aluminate), natural quick cements, sulpho-aluminous cements, cements sulfo-belitic and other intermediate varieties. The most common cements are Portland type cements. Portland cements are obtained from Portland clinker, obtained after clinkering at a temperature of around 1450°C of a raw material rich in calcium carbonate in a kiln. The production of one tonne of Portland cement is accompanied by the emission of very large quantities of CO2 (approximately 0.8 to 0.9 tonnes of CO2 per tonne of cement in the case of a CEM I).
Or, en 2014, la quantité de ciment vendu dans le monde avoisinait les 4.2 milliards de tonnes (source : Syndicat Français de l’industrie Cimentière - SFIC). Ce chiffre, en constante augmentation, a plus que doublé en 15 ans. L’industrie du ciment est donc aujourd’hui à la recherche d’une alternative valable au ciment Portland, c’est-à-dire de ciments présentant au moins les mêmes caractéristiques de résistance et de qualité que les ciments Portland, mais qui, lors de leur production, dégagent moins de CO2. However, in 2014, the quantity of cement sold in the world was around 4.2 billion tonnes (source: Syndicat Français de l’industrie Cimentière - SFIC). This figure, constantly increasing, has more than doubled in 15 years. The cement industry is therefore today looking for a valid alternative to Portland cement, that is to say cements with at least the same resistance and quality characteristics as Portland cements, but which, during their production, emit less CO2.
Lors de la production du clinker, principal constituant du ciment Portland, le dégagement de CO2 est lié : During the production of clinker, the main constituent of Portland cement, the release of CO2 is linked to:
- à hauteur de 40% au chauffage du four de cimenterie, au broyage et au transport ;- up to 40% for heating the cement kiln, for grinding and transport;
- à hauteur de 60% au CO2 dit chimique, ou de décarbonatation. - up to 60% to so-called chemical CO2, or decarbonation.
La décarbonatation est une réaction chimique qui a lieu lorsque l’on chauffe du calcaire, principale matière première pour la fabrication du ciment Portland, à haute température. Le calcaire se transforme alors en chaux vive et en CO2 selon la réaction chimique suivante : Decarbonation is a chemical reaction that takes place when limestone, the main raw material for the manufacture of Portland cement, is heated at high temperature. The limestone is then transformed into quicklime and CO2 according to the following chemical reaction:
La carbonatation naturelle des matériaux à base de ciment, en particulier les bétons, est un moyen potentiel de réduire l'empreinte carbone liée au processus de fabrication et à l'utilisation du ciment. Cependant, bien que les bétons préparés à partir de ces ciments se recarbonatent naturellement pendant la durée de vie des ouvrages à hauteur de 15% à 20% du CO2 émis pendant la fabrication, le bilan carbone associé à la production de ciment Portland demeure positif. Il demeure donc nécessaire de réduire les émissions de CO2 lors de la production du ciment Portland et/ou d’améliorer les procédés de revalorisation de bétons en fin de vie. Pour réduire les émissions de CO2 liées à la production de matériaux de constructions préparés à partir de ciments Portland, plusieurs approches ont été envisagées jusqu’à présent : The natural carbonation of cementitious materials, especially concretes, is a potential way to reduce the carbon footprint related to the manufacturing process and the use of cement. However, although the concretes prepared from these cements recarbonate naturally during the lifetime of the structures up to 15% to 20% of the CO2 emitted during manufacture, the carbon balance associated with the production of Portland cement remains positive. It therefore remains necessary to reduce CO2 emissions during the production of Portland cement and/or to improve the processes for recycling concrete at the end of its life. To reduce CO2 emissions related to the production of construction materials prepared from Portland cements, several approaches have been considered so far:
- l’adaptation ou la modernisation des procédés cimentiers afin de maximiser le rendement des échanges thermiques ; - the adaptation or modernization of cement processes in order to maximize the efficiency of heat exchange;
- le développement de nouveaux liants « bas carbone » tels que les ciments sulfo- alumineux préparés à partir de matières premières moins riches en calcaire et à une température de cuisson moins élevée, ce qui permet une diminution des émissions CO2 de 35% environ ; - the development of new “low carbon” binders such as sulpho-aluminous cements prepared from raw materials less rich in limestone and at a lower firing temperature, which reduces CO2 emissions by around 35%;
- ou encore la substitution (partielle) du clinker dans les ciments par des matériaux permettant de limiter les émissions de CO2. - or the (partial) substitution of clinker in cements with materials that limit CO2 emissions.
Des technologies de captage et de stockage du carbone ont par ailleurs été développées pour limiter les émissions de CO2 des cimenteries ou des centrales électriques au charbon. La demande de brevet internationale WO-A-2019/115722 décrit un procédé permettant à la fois le nettoyage de gaz d'échappement contenant du CO2 et la fabrication d'un matériau cimentaire supplémentaire. Le procédé décrit consiste à utiliser des fines de béton recyclées comprenant la fourniture de fines de béton recyclées avec dgo 1000 pm dans des stocks ou un silo en tant que produit de départ, le rinçage du produit de départ pour fournir un matériau carboné, le retrait du matériau carboné et du gaz d'échappement nettoyé, et la désagglomération du matériau carboné pour former le matériau cimentaire supplémentaire, ainsi que l'utilisation de stocks ou d'un silo contenant un produit de départ de fines de béton recyclées avec dgo 1000 pm pour le nettoyage de gaz d'échappement contenant du CO2 et la fabrication simultanée d'un matériau cimentaire supplémentaire. Cependant, ce procédé nécessite de sécher le produit carbonaté avant que celui-ci ne soit utilisable. Carbon capture and storage technologies have also been developed to limit CO2 emissions from cement plants or coal-fired power plants. International patent application WO-A-2019/115722 describes a process allowing both the cleaning of exhaust gases containing CO2 and the manufacture of an additional cementitious material. The described process involves using recycled concrete fines comprising supplying recycled concrete fines with dgo 1000 µm to stockpiles or a silo as a feedstock, rinsing the feedstock to provide carbonaceous material, removing of the carbonaceous material and the cleaned exhaust, and the deagglomeration of the carbonaceous material to form the additional cementitious material, as well as the use of stockpiles or a silo containing a feedstock of recycled concrete fines with dgo 1000 pm for the cleaning of CO2-containing exhaust gases and the simultaneous production of additional cementitious material. However, this process requires the carbonated product to be dried before it can be used.
A la date de la présente invention, il demeure nécessaire d’identifier de nouvelles voies permettant d’abaisser significativement les émissions de CO2 lors de la production de matériaux de constructions, mais également d’améliorer les processus de recyclage de bétons usagés, lesquels peuvent avoir un impact important sur le bilan carbone associé à la production de matériaux de construction. At the date of the present invention, it remains necessary to identify new ways to significantly reduce CO2 emissions during the production of construction materials, but also to improve the processes of recycling used concrete, which can have a significant impact on the carbon footprint associated with the production of building materials.
Dans « Feasability and performance analysis of carbonated recycled aggregate concrete », International Journal of Sustainable Engineering, 2021 , Vol.14, No.4, 761-775, les auteurs Singh et al. étudient l’amélioration de la qualité des granulats grossiers de béton recyclés (type graviers) par carbonatation rapide. Trois combinaisons de mélange nommées NAC (utilisant des agrégats grossiers 100 % naturels), RAC (utilisant des agrégats grossiers recyclés à 100 %) et CRAC (utilisant des agrégats grossiers recyclés carbonatés à 100 %) sont étudiées. Les auteurs concluent que l’utilisation de granulats de béton recyclé carbonatés permet d’améliorer les propriétés non destructives, mécaniques et de durabilité du RAC. Les études menées par les auteurs concernent cependant uniquement les granulats grossiers et portent sur l’intégralité de la fraction obtenue après tamisage du béton recyclé. La valorisation des fractions sableuses n’est pas évoquée. In “Feasability and performance analysis of carbonated recycled aggregate concrete”, International Journal of Sustainable Engineering, 2021 , Vol.14, No.4, 761-775, the authors Singh et al. study the improvement of the quality of coarse recycled concrete aggregates (gravel type) by rapid carbonation. Three mixture combinations named NAC (using 100% natural coarse aggregates), RAC (using 100% recycled coarse aggregates) and CRAC (using 100% carbonated recycled coarse aggregates) are studied. The authors conclude that the use of carbonated recycled concrete aggregates improves the non-destructive, mechanical and durability properties of RAC. The studies carried out by the authors, however, relate only to coarse aggregates and relate to the entire fraction obtained after screening the recycled concrete. The recovery of the sandy fractions is not mentioned.
Or, il a maintenant été trouvé de façon tout à fait surprenante que certaines fractions issues du recyclage de bétons usagés pouvaient être utilisées comme sable pour la préparation de bétons ou mortiers ce qui permet de recycler les bétons usagés et préserver les ressources naturelles, pour peu que les particules les plus fines de ladite fraction soient retirées et que la fraction ainsi obtenue soit préalablement carbonatée. L’utilisation de telles fractions permet d’abaisser sensiblement le bilan carbone général associé à la production du ciment, du béton ou du mortier du fait de la captation du CO2 émis par la cimenterie par le béton usagé tout en maintenant des propriétés mécaniques à court, moyen et long terme du béton ou mortier finalement préparé conformes aux attentes. However, it has now been found quite surprisingly that certain fractions from the recycling of used concrete could be used as sand for the preparation of concrete or mortar, which makes it possible to recycle used concrete and preserve natural resources, for little that the finest particles of said fraction are removed and that the fraction thus obtained is previously carbonated. The use of such fractions makes it possible to significantly reduce the general carbon balance associated with the production of cement, concrete or mortar due to the capture of the CO2 emitted by the cement plant by the used concrete while maintaining short-term mechanical properties. , medium and long term concrete or mortar finally prepared in accordance with expectations.
Ainsi, la présente invention a pour objet l’utilisation d’une fraction dont la granulométrie d est supérieure ou égale à 150 pm, ladite fraction présentant une perte au feu variant de 3% à 30% et comprenant : Thus, the subject of the present invention is the use of a fraction whose particle size d is greater than or equal to 150 μm, said fraction having a loss on ignition varying from 3% to 30% and comprising:
- de 20% à 80% de SiO2 ; de 5% à 40% de CaO ; de 1 % à 15% d’ALOs ; et de 0,5% à 4% de Fe2O3 ; comme sable pour la préparation de béton ou de mortier. - from 20% to 80% of SiO 2 ; from 5% to 40% CaO; from 1% to 15% ALOs; and from 0.5% to 4% Fe 2 O3; as sand for the preparation of concrete or mortar.
Contre toute attente, les fractions définies précédemment, par carbonatation d’une fraction obtenue à partir d’un matériau de construction, notamment un béton, en fin de vie, dans laquelle les particules les plus fines ont été retirées peuvent être utilisées comme sables pour la préparation de mortiers ou de bétons, ce qui permet de recycler les bétons usagés et de préserver les ressources naturelles tout en maintenant les résistances mécaniques comparables à celles de bétons ou de mortiers préparés à partir de sables classiques. Par ailleurs, dans la mesure où, pour être utilisée comme sable, la fraction obtenue à partir des matériaux de construction usagés doit préalablement être carbonatée, cela permet d’abaisser sensiblement le bilan carbone général associé à la production de nouveaux matériaux de constructions tels que du béton ou du mortier. Against all expectation, the fractions defined previously, by carbonation of a fraction obtained from a construction material, in particular a concrete, at the end of its life, in which the finest particles have been removed, can be used as sands for the preparation of mortars or concretes, which makes it possible to recycle used concrete and to preserve natural resources while maintaining resistance mechanical properties comparable to those of concrete or mortars prepared from conventional sands. Moreover, insofar as, in order to be used as sand, the fraction obtained from used construction materials must first be carbonated, this makes it possible to significantly reduce the general carbon footprint associated with the production of new construction materials such as concrete or mortar.
Dans le cadre de la présente invention : In the context of the present invention:
- on entend par « sable » tout sable susceptible d’être utilisé par l’homme du métier pour la préparation de matériau de construction ; - "sand" means any sand that can be used by a person skilled in the art for the preparation of construction material;
- on entend par « perte au feu » la teneur cumulée en eau liée, en matières organiques, en CO2 des carbonates (charges calcaires et partie carbonatée du matériau) et en éventuels éléments oxydables. La perte au feu est déterminée par calcination à l’air à une température de (950 +/- 25°C) selon la méthode décrite dans la norme NF EN 196-2 (indice de classement P 15-472) - Méthodes d’essais des ciments - Partie 2 : Analyse chimique des ciments ; et - “loss on ignition” means the cumulative content of bound water, organic matter, CO2 of carbonates (calcareous loads and carbonated part of the material) and any oxidizable elements. The loss on ignition is determined by calcination in air at a temperature of (950 +/- 25°C) according to the method described in standard NF EN 196-2 (classification index P 15-472) - Methods of cement testing - Part 2: Chemical analysis of cements; And
- on entend par « matériau de construction » un béton ou un mortier. - “construction material” means concrete or mortar.
Dans le cadre de la présente invention, « dw» correspond au diamètre en-dessous duquel se trouve 10% de la masse totale des particules de l’échantillon considéré. Celui-ci peut être déterminé par toute méthode connue de l’homme du métier, notamment par granulométrie laser en voie sèche ou humide. In the context of the present invention, “dw” corresponds to the diameter below which there is 10% of the total mass of the particles of the sample considered. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
Dans le cadre de la présente invention, « dgo » correspond au diamètre en-dessous duquel se trouve 90% de la masse totale des particules de l’échantillon considéré. Celui-ci peut être déterminé par toute méthode connue de l’homme du métier, notamment par granulométrie laser en voie sèche ou humide. In the context of the present invention, “dgo” corresponds to the diameter below which 90% of the total mass of the particles of the sample considered is found. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
Dans le cadre de la présente invention, le diamètre des particules peut être déterminé par toute méthode connue de l’homme du métier, notamment par microscopie électronique à balayage, morphogranulométrie ou par granulométrie laser. In the context of the present invention, the diameter of the particles can be determined by any method known to those skilled in the art, in particular by scanning electron microscopy, morphogranulometry or by laser granulometry.
Enfin, dans le cadre de la présente invention, les proportions exprimées en % correspondent à des pourcentages massiques par rapport au poids total de l’entité (e.g. clinker ou ciment) considérée. La présente invention a donc pour objet l’utilisation d’une fraction possédant les caractéristiques, notamment granulométriques et minéralogiques, décrites précédemment comme sable pour la production de béton ou de mortier. De préférence, la présente invention a pour objet l’utilisation d’une fraction telle que définie précédemment comme sable pour la production de béton ou de mortier, ladite fraction possédant les caractéristiques suivantes, choisies seules ou en combinaison : la granulométrie dw de la fraction est supérieure ou égale à 180 pm. De préférence encore, la granulométrie dw de la fraction est supérieure ou égale à 200 pm. De façon tout à fait préférée, la granulométrie dw de la fraction est supérieure ou égale à 250 pm ; la granulométrie dgo de la fraction est inférieure ou égale à 4000 pm. De préférence encore, la granulométrie dgo de la fraction est inférieure ou égale à 3000 pm. De façon tout à fait préférée, la granulométrie dgo de la fraction est inférieure à 2000 pm ; la fraction présente une perte au feu variant de 4% à 25%, de préférence encore de 6% à 20% ; la fraction contient de 30% à 70% de SiC>2. De préférence encore, la fraction contient de 40% à 60% de SiO2 ; la fraction contient de 10% à 30% de CaO. De préférence encore, la fraction contient de 10% à 20% de CaO ; la fraction contient de 2% à 10% d’AI2O3. De préférence encore, la fraction contient de 4% à 8% d’AI2O3 ; la fraction contient de 1% à 3% de Fe2O3. De préférence encore, la fraction contient de 1 % à 2,5% de Fe2O3 ; la fraction contient en outre de 0,1% à 3%, de préférence de 0,5% à 2% de MgO ; la fraction contient en outre de 0,05% à 2%, de préférence de 0,1 % à 1% de TiO2 ; la fraction contient en outre de 0,1% à 3%, de préférence de 0,5% à 2,5% de K2O ; la fraction contient en outre de 0,05% à 2%, de préférence de 0,1% à 1% de Na2O ; la fraction contient en outre de 0,01% à 1%, de préférence de 0,05% à 0,5% de P2Os ; la fraction contient en outre de 0,005% à 0,2%, de préférence de 0,01 % à 0,1% de Mn2O3 ; et/ou la fraction contient en outre de 0,05% à 3%, de préférence de 0,1 % à 1 ,5% de SO3. Finally, in the context of the present invention, the proportions expressed in % correspond to mass percentages relative to the total weight of the entity (eg clinker or cement) considered. A subject of the present invention is therefore the use of a fraction having the characteristics, in particular grain size and mineralogical characteristics, described previously as sand for the production of concrete or mortar. Preferably, the subject of the present invention is the use of a fraction as defined above as sand for the production of concrete or mortar, said fraction having the following characteristics, chosen alone or in combination: the particle size dw of the fraction is greater than or equal to 180 pm. More preferably, the particle size dw of the fraction is greater than or equal to 200 μm. Quite preferably, the particle size dw of the fraction is greater than or equal to 250 μm; the dgo particle size of the fraction is less than or equal to 4000 pm. More preferably, the dgo particle size of the fraction is less than or equal to 3000 μm. Quite preferably, the dgo particle size of the fraction is less than 2000 μm; the fraction has a loss on ignition varying from 4% to 25%, more preferably from 6% to 20%; the fraction contains 30% to 70% SiC>2. More preferably, the fraction contains from 40% to 60% SiO 2 ; the fraction contains 10% to 30% CaO. More preferably, the fraction contains from 10% to 20% CaO; the fraction contains 2% to 10% Al 2 O 3 . More preferably, the fraction contains from 4% to 8% of Al 2 O 3 ; the fraction contains 1% to 3% Fe 2 O 3 . More preferably, the fraction contains from 1% to 2.5% of Fe 2 O 3 ; the fraction additionally contains from 0.1% to 3%, preferably from 0.5% to 2% of MgO; the fraction also contains from 0.05% to 2%, preferably from 0.1% to 1% of TiO 2 ; the fraction also contains from 0.1% to 3%, preferably from 0.5% to 2.5% of K 2 O; the fraction also contains from 0.05% to 2%, preferably from 0.1% to 1%, of Na 2 O; the fraction also contains from 0.01% to 1%, preferably from 0.05% to 0.5% of P 2 Os; the fraction also contains from 0.005% to 0.2%, preferably from 0.01% to 0.1% of Mn 2 O 3 ; and/or the fraction additionally contains from 0.05% to 3%, preferably from 0.1% to 1.5%, of SO 3 .
La fraction décrite ci-avant est donc obtenue par carbonatation d’une fraction obtenue à partir d’un matériau de construction, notamment un béton, en fin de vie. Ainsi, la présente invention a également pour objet un procédé de préparation d’une fraction telle que décrite précédemment, ledit procédé comprenant les étapes suivantes : déferraillage et concassage du matériau de construction ; criblage du produit concassé en vue d’obtenir une fraction au dgo souhaité ; séchage de la fraction ainsi obtenue ; séparation grâce à un séparateur dynamique pour obtenir la fraction au d souhaité ; et carbonatation de la fraction obtenue par avec un gaz contenant du CO2, tel qu’un gaz de cimenterie. The fraction described above is therefore obtained by carbonation of a fraction obtained from a construction material, in particular a concrete, at the end of its life. Thus, the present The subject of the invention is also a method for preparing a fraction as described previously, said method comprising the following steps: iron removal and crushing of the construction material; screening of the crushed product in order to obtain a fraction with the desired dgo; drying of the fraction thus obtained; separation using a dynamic separator to obtain the fraction with the desired d; and carbonating the fraction obtained by with a gas containing CO2, such as a cement gas.
Le déferraillage et le concassage du matériau de construction peuvent être conduits selon tout procédé connu de l’homme du métier, notamment par un cisaillage des ferrailles du béton puis par un déferraillage magnétique par « overband » et enfin concassage du matériau de construction par un concasseur à percussion, par exemple, qui favorise la diminution de la taille des granulats. The removal of iron and the crushing of the construction material can be carried out according to any method known to those skilled in the art, in particular by shearing the scrap metal from the concrete then by magnetic removal by "overband" and finally crushing of the construction material by a crusher with percussion, for example, which favors the reduction of the size of the aggregates.
Le criblage est une opération mécanique réalisée à partir d’appareils communément appelés cribles qui permet de sélectionner les grains. Le crible ne laisse passer dans ses mailles que des éléments inférieurs à une certaine taille. Ils sont équipés de grilles perforées avec des ouvertures de taille déterminée en fonction de la dimension des grains recherchée. Il existe des cribles vibrants inclinés et des cribles vibrants horizontaux. Le criblage peut être effectué selon toute méthode connue de l’homme du métier. De préférence, la fraction obtenue après le criblage est une fraction 0/4 mm, de préférence 0/2 mm. Sifting is a mechanical operation carried out using devices commonly called sieves which makes it possible to select the grains. The sieve only lets through its mesh elements smaller than a certain size. They are equipped with perforated grids with openings of a size determined according to the size of the grains sought. There are inclined vibrating screens and horizontal vibrating screens. The screening can be carried out according to any method known to those skilled in the art. Preferably, the fraction obtained after screening is a 0/4 mm fraction, preferably 0/2 mm.
Les fractions de fines sont obtenues par utilisation d’un séparateur dynamique qui permet la séparation des particules qu'il reçoit selon leur taille, forme et densité. Le produit alimentant le séparateur tombe sur le moyeu de distribution mis en rotation. La force centrifuge projette les particules : les plus grossières sont projetées vers la périphérie, leur vitesse diminue et, sous l'action de la gravité, tombent dans le cône de refus d'où elles sont évacuées pour ensuite être carbonatées. Les particules plus fines sont entraînées par l'air ascendant vers la zone de séparation où des pales de sélection à inclinaison variable leur impriment une force centrifuge supplémentaire qui élimine les particules grossières restantes. La vitesse de rotation, la ventilation et l’angle des pales de la turbine permet d’ajuster la granulométrie souhaitée. Si la ventilation du séparateur est assurée par de l’air chaud, il a également la capacité de sécher les matériaux. La fraction décrite ci-avant peut donc être utilisée comme sable pour préparer un béton ou un mortier sans que cela n’affecte les propriétés, notamment mécaniques, dudit béton ou mortier. Le taux de substitution du sable naturel utilisé pour préparer le béton ou le mortier par la fraction décrite précédemment peut s’élever jusqu’à 70%, de préférence encore jusqu’à 50%, de façon tout à fait préférée jusqu’à 30%. The fines fractions are obtained by using a dynamic separator which separates the particles it receives according to their size, shape and density. The product feeding the separator falls on the rotating distribution hub. The centrifugal force throws the particles: the coarser ones are thrown towards the periphery, their speed decreases and, under the action of gravity, fall into the refusal cone from where they are evacuated to then be carbonated. The finer particles are drawn by the rising air towards the separation zone where variable pitch selection vanes impart an additional centrifugal force to them which removes the remaining coarse particles. The speed of rotation, the ventilation and the angle of the blades of the turbine makes it possible to adjust the desired particle size. If the ventilation of the separator is provided by hot air, it also has the ability to dry the materials. The fraction described above can therefore be used as sand for preparing a concrete or a mortar without this affecting the properties, in particular mechanical properties, of said concrete or mortar. The rate of substitution of the natural sand used to prepare the concrete or the mortar by the fraction described above can be up to 70%, more preferably up to 50%, very preferably up to 30% .
La présente invention peut être illustrée de façon non limitative par les exemples suivants. The present invention can be illustrated without limitation by the following examples.
Exemple 1 - Fractions utilisées selon l’invention Example 1 - Fractions used according to the invention
Les différentes fractions ont été obtenues au laboratoire après tamisage à l’Alpine de différents « sables de béton » de granulométrie 0/2 mm selon la norme NF EN 933-10. The different fractions were obtained in the laboratory after sieving with the Alpine of different “concrete sands” with a grain size of 0/2 mm according to standard NF EN 933-10.
Un tamis avec une maille carrée de taille variable a été utilisé pour procéder à l’élimination des particules les plus fines sauf pour la fraction F-0 qui correspond au « sable de béton » brut, c’est-à-dire sans retrait des particules les plus fines. A sieve with a square mesh of variable size was used to proceed with the elimination of the finest particles except for the F-0 fraction which corresponds to raw "concrete sand", i.e. without removal of finest particles.
Les fractions retenues par le tamis (i.e. refus) sont ensuite soumises à carbonatation par un mélange de gaz en bouteille contenant 25% de CO2 durant 6 heures sous agitation dans un malaxeur chauffant (température fixée à 55°C). The fractions retained by the sieve (i.e. refusal) are then subjected to carbonation by a bottled gas mixture containing 25% CO2 for 6 hours with stirring in a heated mixer (temperature set at 55°C).
Les compositions minéralogiques et la granulométrie de différentes fractions ainsi obtenues sont rapportées dans le Tableau 1 suivant. The mineralogical compositions and the particle size of the various fractions thus obtained are reported in the following Table 1.
Tableau 1 - Composition minéralogique et granulométrie des fractions F-0 à F-3. Exemple 2 - Bétons/mortiers Table 1 - Mineralogical composition and particle size of fractions F-0 to F-3. Example 2 - Concretes/mortars
Quatre bétons de type C25 XF1 ont été préparés selon un procédé classique : le béton 1 de référence est préparé avec un ajout de sables et de granulats naturels courants ; le béton 2 est préparé avec les mêmes éléments que le béton 1 mais en substituantFour concretes of the C25 XF1 type were prepared according to a conventional process: the reference concrete 1 is prepared with the addition of sands and standard natural aggregates; concrete 2 is prepared with the same elements as concrete 1 but substituting
30% du sable utilisé par la fraction F-0 ; le béton 3 est préparé avec les mêmes éléments que le béton 1 mais en substituant30% of the sand used by the F-0 fraction; concrete 3 is prepared with the same elements as concrete 1 but substituting
30% du sable utilisé par la fraction F-1 ; et le béton 4 est préparé avec les mêmes éléments que le béton 1 mais en substituant30% of the sand used by the F-1 fraction; and concrete 4 is prepared with the same elements as concrete 1 but substituting
30% du sable utilisé par la fraction F-3. Exemple 3 - Performances mécaniques 30% of the sand used by the F-3 fraction. Example 3 - Mechanical performance
La résistance en compression des bétons 1 à 3 a été mesurée selon la norme NF EN 12390-3 sur des éprouvettes de dimension 11x22cm après 7 et 28 jours de cure humide (20°C). The compressive strength of concretes 1 to 3 was measured according to standard NF EN 12390-3 on test specimens measuring 11x22cm after 7 and 28 days of wet curing (20°C).
Les résultats obtenus sont présentés dans le Tableau 2 suivant The results obtained are presented in Table 2 below
Tableau 2 - Résistances mécaniques des bétons 1 à 4 Table 2 - Mechanical resistance of concretes 1 to 4
Les résistances mécaniques mesurées sont équivalentes entre le béton de référence sans sable recyclé (béton 1 ) et les bétons préparés avec les fractions F-1 et F-2 (bétons 3 et 4). En revanche, pour le béton préparé à partir de la fraction F-0 (béton 2), les résistances mécaniques mesurées sont nettement inférieures à ce qui peut être attendu. The measured mechanical strengths are equivalent between the reference concrete without recycled sand (concrete 1) and the concretes prepared with fractions F-1 and F-2 (concretes 3 and 4). On the other hand, for the concrete prepared from the F-0 fraction (concrete 2), the mechanical resistances measured are clearly lower than what can be expected.
En outre, en comparaison du béton 1 , les bétons 3 et 4 présentent un bilan carbone diminué respectivement de 8,5% et 10,8%. Furthermore, in comparison with concrete 1, concretes 3 and 4 have a carbon balance reduced by 8.5% and 10.8% respectively.
Ces résultats démontrent que le retrait des particules les plus fines des fractions de béton recyclées permet, après carbonatation de la fraction obtenue, l’utilisation de ces fractions comme granulat pour la préparation de bétons présentant un niveau de performance acceptable tout en diminuant sensiblement leur bilan carbone. These results demonstrate that the removal of the finest particles from the recycled concrete fractions allows, after carbonation of the fraction obtained, the use of these fractions as aggregate for the preparation of concretes with an acceptable level of performance while significantly reducing their balance. carbon.

Claims

REVENDICATIONS
1. Utilisation d’une fraction dont la granulométrie d est supérieure ou égale à 150 pm, ladite fraction présentant une perte au feu variant de 3% à 30% et comprenant : comme sable pour la préparation de béton ou de mortier. 1. Use of a fraction whose particle size d is greater than or equal to 150 μm, said fraction having a loss on ignition varying from 3% to 30% and comprising: as sand for the preparation of concrete or mortar.
2. Utilisation selon la revendication 1, caractérisée en ce que la granulométrie diode la fraction est supérieure ou égale à 180 pm. 2. Use according to claim 1, characterized in that the diode particle size fraction is greater than or equal to 180 μm.
3. Utilisation selon la revendication 2, caractérisée en ce que la granulométrie dwde la fraction est supérieure ou égale à 200 pm 3. Use according to claim 2, characterized in that the particle size dw of the fraction is greater than or equal to 200 μm
4. Utilisation selon l’une quelconque des revendications 1 à 3, caractérisée en ce que la granulométrie dgo de la fraction est inférieure ou égale à 4000 pm. 4. Use according to any one of claims 1 to 3, characterized in that the dgo particle size of the fraction is less than or equal to 4000 pm.
5. Utilisation selon la revendication 4, caractérisée en ce que la granulométrie dgo de la fraction est inférieure ou égale à 3000 pm 5. Use according to claim 4, characterized in that the dgo particle size of the fraction is less than or equal to 3000 μm
6. Utilisation selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la fraction présente une perte au feu variant de 4% à 25%. 6. Use according to any one of claims 1 to 5, characterized in that the fraction has a loss on ignition varying from 4% to 25%.
7. Utilisation selon l’une quelconque des revendications 1 à 6, caractérisée en ce que la fraction contient de 30% à 70% de SiO2. 7. Use according to any one of claims 1 to 6, characterized in that the fraction contains from 30% to 70% SiO 2 .
8. Utilisation selon l’une quelconque des revendications 1 à 7, caractérisée en ce que la fraction contient de 10% à 30% de CaO. 8. Use according to any one of claims 1 to 7, characterized in that the fraction contains 10% to 30% CaO.
9. Utilisation selon l’une quelconque des revendications 1 à 8, caractérisée en ce que la fraction contient de 2% à 10% d’AI2Os. 9. Use according to any one of claims 1 to 8, characterized in that the fraction contains from 2% to 10% of Al 2 Os.
10. Utilisation selon l’une quelconque des revendications 1 à 9, caractérisée en ce que la fraction contient de 1% à 3% de Fe2Os. 10. Use according to any one of claims 1 to 9, characterized in that the fraction contains 1% to 3% Fe2Os.
11. Utilisation selon l’une quelconque des revendications 1 à 10, caractérisée en ce que la fraction contient de 0,1 % à 3% de MgO. 11. Use according to any one of claims 1 to 10, characterized in that the fraction contains from 0.1% to 3% MgO.
12. Utilisation selon l’une quelconque des revendications 1 à 11 , caractérisée en ce que la fraction contient de 0,05% à 2% de TiC>2. 12. Use according to any one of claims 1 to 11, characterized in that the fraction contains from 0.05% to 2% of TiC>2.
13. Utilisation selon l’une quelconque des revendications 1 à 12, caractérisée en ce que la fraction contient de 0,1 % à 3% de K2O. 13. Use according to any one of claims 1 to 12, characterized in that the fraction contains from 0.1% to 3% K2O.
14. Utilisation selon l’une quelconque des revendications 1 à 13, caractérisée en ce que la fraction contient de 0,05% à 2% de Na2Û. 14. Use according to any one of claims 1 to 13, characterized in that the fraction contains from 0.05% to 2% Na2O.
15. Utilisation selon l’une quelconque des revendications 1 à 14, caractérisée en ce que la fraction contient de 0,01% à 1 % de P2O5. 15. Use according to any one of claims 1 to 14, characterized in that the fraction contains from 0.01% to 1% of P2O5.
16. Utilisation selon l’une quelconque des revendications 1 à 15, caractérisée en ce que la fraction contient de 0,005% à 0,2% de Mn2C>3. 16. Use according to any one of claims 1 to 15, characterized in that the fraction contains from 0.005% to 0.2% of Mn 2 C>3.
17. Utilisation selon l’une quelconque des revendications 1 à 16, caractérisée en ce que la fraction contient de 0,05% à 3% de SO3. 17. Use according to any one of claims 1 to 16, characterized in that the fraction contains from 0.05% to 3% SO3.
EP22758564.3A 2021-08-02 2022-08-01 Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar Pending EP4380905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108400A FR3125814A1 (en) 2021-08-02 2021-08-02 Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar
PCT/FR2022/051533 WO2023012423A1 (en) 2021-08-02 2022-08-01 Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar

Publications (1)

Publication Number Publication Date
EP4380905A1 true EP4380905A1 (en) 2024-06-12

Family

ID=78536323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22758564.3A Pending EP4380905A1 (en) 2021-08-02 2022-08-01 Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar

Country Status (3)

Country Link
EP (1) EP4380905A1 (en)
FR (1) FR3125814A1 (en)
WO (1) WO2023012423A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2915414T3 (en) 2017-12-13 2022-06-22 Heidelbergcement Ag Simultaneous exhaust gas purification method and manufacture of supplementary cementitious material

Also Published As

Publication number Publication date
WO2023012423A1 (en) 2023-02-09
FR3125814A1 (en) 2023-02-03

Similar Documents

Publication Publication Date Title
FR2943662A1 (en) CONCRETE WITH LOW CLINKER CONTENT
WO2023012424A1 (en) Accelerated carbonation process and implementation thereof in a process for upcycling concrete waste and industrial waste gases
CN104108892B (en) A kind of method of producing light partition board with industrial slags and construction refuse regenerated utilization
FR3068906A1 (en) PROCESS FOR OBTAINING COMPACT MATERIAL AND COMPACT MATERIAL OBTAINED THEREBY
EP4380905A1 (en) Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar
EP4143145A1 (en) Hydraulic road binder comprising biomass fly ash, pavement course material, and soils treated with said binder
FR3125816A1 (en) Use of a fraction obtained from used concrete as a raw material for the preparation of a clinker
EP0590210B1 (en) High performance mortar or concrete
FR3125034A1 (en) Cementitious composition comprising carbonated biochar
WO2023242165A1 (en) Method for recycling concrete construction and/or demolition waste
EP3704072A1 (en) Binder based on alumina-rich slag
WO2023105071A1 (en) Method for producing a mortar
WO2020053513A1 (en) Method for processing recycled aggregates, and use of the aggregates thus processed
FR3132710A1 (en) Cementitious composition comprising carbonated biomass ash
FR3102985A1 (en) FORMULATION FOR CONCRETE, PROCESS FOR PREPARING THE CONCRETE, OBTAINED CONCRETE AND APPARATUS FOR THE PREPARATION OF THIS CONCRETE
CA3150805C (en) Method of separating different constituents of a concrete for deconstruction
NL2030294B1 (en) Method for recovering building materials from concrete rubble.
FR3132711A1 (en) USE OF CARBONATED BIOMASS ASH AS SUBSTITUTE CEMENTITIOUS MATERIAL
WO2024209166A1 (en) Use of a marl for preparing a pozzolanic material
FR3125524A1 (en) Clay-based composition for building material
EP3704075B1 (en) Mortar composition based on slag activated by a by-product
Chia et al. Durian pectin and rice husk ash (RHA) as partial replacement of cement in concrete
Mildner et al. VALORIZATION OF WASTE ALKALIS AS REPLACEMENT OF COMMERCIAL ALKALINE ACTIVATOR SOLUTION
FR3144130A1 (en) Process for manufacturing an organic or organic/mineral based aggregate, organic or organic/mineral based aggregate and applications of these aggregates
JPH08175856A (en) Method for treating concrete waste material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR