EP4367079A1 - Cementitious composition comprising biochar carbonate - Google Patents

Cementitious composition comprising biochar carbonate

Info

Publication number
EP4367079A1
EP4367079A1 EP22751134.2A EP22751134A EP4367079A1 EP 4367079 A1 EP4367079 A1 EP 4367079A1 EP 22751134 A EP22751134 A EP 22751134A EP 4367079 A1 EP4367079 A1 EP 4367079A1
Authority
EP
European Patent Office
Prior art keywords
biochar
carbonated
cement
cementitious composition
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22751134.2A
Other languages
German (de)
French (fr)
Inventor
Laury Barnes-Davin
François HUE
Virginie NOWALSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vicat SA
Original Assignee
Vicat SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vicat SA filed Critical Vicat SA
Publication of EP4367079A1 publication Critical patent/EP4367079A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/101Burned rice husks or other burned vegetable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/12Hydraulic lime
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the subject of the present invention is novel cementitious compositions with a low carbon balance containing carbonated biochar, as well as the use of carbonated biochar as the main constituent of a cementitious composition.
  • the manufacture of hydraulic binders, and in particular that of cements essentially consists of calcining a mixture of judiciously chosen and dosed raw materials, also referred to by the term “raw”. Firing this cru gives an intermediate product, clinker, which, ground with any mineral additions, will give cement.
  • the type of cement manufactured depends on the nature and proportions of the raw materials as well as the firing process. There are several types of cements: Portland cements (which represent the vast majority of cements produced in the world), aluminous cements (or calcium aluminate), natural quick cements, sulphoaluminous cements, sulpho- Belitic and other intermediate varieties.
  • Portland type cements are obtained from Portland clinker, obtained after clinkering at a temperature of around 1450°C of a raw material rich in calcium carbonate in a kiln.
  • the production of one tonne of Portland clinker is accompanied by the emission of around 0.8 to 0.9 tonnes of C0 2 .
  • decarbonation is a chemical reaction that takes place when limestone, the main raw material for the manufacture of Portland cement, is heated at high temperature. The limestone is then transformed into quicklime and CO2 according to the following chemical reaction:
  • the disclosed process involves using recycled concrete fines comprising supplying recycled concrete fines with dgo lb 1000 pm to stockpiles or a silo as a feedstock, rinsing the feedstock to provide a carbonaceous material, removal of the carbonaceous material and cleaned exhaust gas, and deagglomeration of the carbonaceous material to form the additional cementitious material, as well as the use of stockpiles or a silo containing a feedstock of recycled concrete fines with dgo £1000 pm for the cleaning of CO2-containing exhaust gases and the simultaneous manufacture of additional cementitious material.
  • this method is complex to implement and requires the carbonated product to be dried before it can be used.
  • biochar is the abbreviation of “bio-charcoal” in which the prefix “bio” designates the biological origin and “charcoal” corresponds to the English term for charcoal.
  • biochar designates a charcoal of plant origin obtained by the pyrolysis of organic matter of various origins such as plants, in particular wood, straw and agricultural or green space residues, or organic compounds such as wastewater treatment plant sludge known as “STEP sludge”.
  • Biochar differs from charcoal in its use as a fertilizer rather than as fuel and in its environmental impact, since it acts as a carbon sink (or CO2 sink) rather than releasing CO2 into the atmosphere during combustion.
  • Biochar is therefore interesting for two reasons: it concentrates a large quantity of biogenic carbon (between 40 and more than 80%); and its structure develops a large specific surface capable of adsorbing CO2 in large quantities.
  • Biochar is thus traditionally used in agriculture to increase the quality of soils, and therefore their productivity.
  • carbon sequestration in the soil by burying biochar has been practiced for many years to combat its acidification and increase its fertility, carbon losses and emissions in the form of CO2 have been identified when the chemical balances of the soil (pH, leaching, depth of burial etc%) vary.
  • International patent application WO-A-2018/203829 describes the use of biochar as a substitute sand for the preparation of construction materials of the concrete or mortar type.
  • this patent application does not describe the use of biochar as a cementitious additive.
  • carbonated biochar could be used as the main constituent of a cementitious composition, which makes it possible to significantly increase the rate of substitution of cement compared to what was recommended until now, and therefore to significantly lower the carbon footprint of the building material finally prepared while maintaining mechanical properties, and in particular medium and long-term compressive strengths compatible with the intended uses.
  • the present invention relates to a cementitious composition
  • a cementitious composition comprising at least 5% of carbonated biochar.
  • compositions of the invention makes it possible to significantly increase the rate of substitution of cement in comparison with biochar, and therefore to significantly lower the carbon footprint of the construction material finally prepared from said composition. , while maintaining mechanical properties, and in particular medium and long-term compressive strengths compatible with the intended uses.
  • adjuvant for concrete, mortar or grout within the meaning of standard NF EN 934-2, i.e. any product incorporated at the time of mixing the concrete of the mortar or grout at a dose less than or equal to 5% by weight of the cement content of the concrete in order to modify the properties of the mixture in the fresh and/or hardened state;
  • biomass means any material obtained by pyrolysis of biomass of organic materials of various origins such as plants, in particular wood, straw and agricultural or green space residues, or organic compounds such as sludge sewage treatment plant known as “STEP sludge”;
  • carbonated biochar means any biochar which, after having been brought into contact with a gas stream enriched in CO2, retains part of it in its porous structure, and therefore contains adsorbed CO2;
  • aluminous cement means any cement, amorphous or not, obtained by firing a mixture of limestone and bauxite and containing at least 5% CA monocalcium aluminate;
  • prompt natural cement means any hydraulic binder with rapid setting and hardening in accordance with standard NF P 15-314: 1993 in force on the date of this document. invention.
  • "prompt natural cement” designates a cement prepared from a clinker comprising:
  • Portland cement means any Portland clinker-based cement classified as CEM (I, II, III, IV or V) according to standard NF EN 197-1;
  • sulfoaluminous cement means any cement prepared from a sulfoaluminous clinker containing from 5% to 90% of 'yeelimite' phase 0 4 ⁇ $, from a source of sulphate, and, optionally, from an addition limestone;
  • cementitious composition means any composition based on cement or an alkali-activated binder that can be used for the preparation of a construction material
  • main constituent of a cementitious composition means any main constituent within the meaning of standard NF EN 197-1, i.e. any mineral material present in the cementitious composition in a proportion greater than 5% by weight of the cementitious composition;
  • construction material means cement, concrete, mortar.
  • the “rate of adsorbed CO2” corresponds to the quantity (% w/w) of adsorbed CO2 contained in the carbonated biochar relative to the total weight of the carbonated biochar.
  • Using a BET analyzer can also help determine the amount of CO2 adsorbed in the porosity of the biochar.
  • Raman and infrared spectroscopy are complementary techniques to the previous ones for detecting adsorbed CO2.
  • the following procedure can in particular be implemented: place an alumina crucible on a balance and carry out the tare; fill the crucible with the powder (biochar or cementitious material) to be analyzed by spreading it out and weigh the test sample; introducing the filled crucible into the CHS elemental analyzer; enter the value of the sample mass; note the total carbon content (TC) measured by the device; then, to determine the inorganic carbon (TIC), start by calcining the powder (biochar or cementitious material) at 500°C, then repeat the previous steps.
  • TC total carbon content
  • the "total organic carbon” or “TOC” corresponds to the quantity (% w/w) of carbon which is not in inorganic form contained in an entity relative to the total weight of carbon contained in that entity.
  • TOC includes in particular the carbon which is contained in organic compounds and the adsorbed C02.
  • the TOC value of an entity is determined according to the following formula:
  • CT means the amount (% w/w) of total carbon of the entity obtained through elemental analysis with a carbon/sulfur (CS) analyzer on a raw sample;
  • TIC designates the quantity (% w/w) of total inorganic carbon of the entity obtained by calcining the sample to be analyzed at 500°C before carrying out a new determination of elemental carbon by a CS analyzer.
  • the median diameter or dso corresponds to the diameter below which there is 50% of the total mass of the particles of the sample considered. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
  • the proportions expressed in % correspond to mass percentages relative to the total weight of the entity (e.g. clinker or cement) considered.
  • the present invention therefore relates to a cementitious composition comprising at least 5% carbonated biochar.
  • the subject of the present invention is a cementitious composition as defined previously having the following characteristics, chosen alone or in combination: the composition comprises more than 5% of carbonated biochar; preferably the composition comprises at least 6% carbonated biochar; more preferably the composition comprises at least 8% of carbonated biochar; most preferably, the composition comprises at least 10% of carbonated biochar; the composition includes up to 30% carbonated biochar; preferably the composition comprises up to 25% carbonated biochar; most preferably, the composition comprises up to 20% of carbonated biochar; the carbonated biochar contains at least 1% adsorbed carbon; preferably the carbonated biochar contains at least 3% adsorbed carbon; more preferably the carbonated biochar contains at least 5% adsorbed carbon; most preferably, the carbonated biochar contains at least 7% adsorbed carbon; the composition contains from 70% to 99% cement or alkali-activated binder; preferably the composition contains from 75% to 98% cement or
  • the cementitious composition according to the present invention can be prepared according to any method known to those skilled in the art.
  • the composition according to the present invention can in particular be prepared by simple mixing in a grinder or a mixer of a cement or an alkali-activated binder with the carbonated biochar or else by mixing in a grinder or a mixer of a clinker, gypsum (and optionally limestone filler or any known additive) and carbonated biochar.
  • the cementitious composition according to the present invention is therefore obtained from a clinker, an alkali-activated binder or a cement and a carbonated biochar.
  • the carbonated biochar can be obtained according to any method known to those skilled in the art.
  • a process for the preparation of carbonated biochar comprising the following steps: introduction of the biochar into a reactor of the rotating drum, mixer, container or fluidized bed type; bringing the biochar into contact with a source of CO2 such as exhaust gases from a cement factory or a thermal power station; and stopping the gas injection and recovering the carbonated biochar obtained.
  • the cementitious composition according to the present invention can be used to prepare a building material.
  • the carbonated biochar described above can therefore be used as the main constituent of a cementitious composition.
  • the present invention also relates to the use of a carbonated biochar as the main constituent of a cementitious composition.
  • a carbonated biochar is obtained by placing approximately 500g of biochar obtained by pyrolysis of wood in a tank which is itself placed in a hermetically sealed glass reactor.
  • the reactor is equipped with a cup containing water to regulate the relative humidity in the reactor.
  • This cup is placed at the bottom of the reactor under the tank containing the biochar.
  • the lid of the reactor is equipped with a glass stopper pierced with 2 holes which allow the injection of a gas and its evacuation.
  • the gas injected for 65 hours consists of 100% CO2.
  • the thus carbonated biochar has the following characteristics (Table 1).
  • Example 2 Cementitious Compositions According to the Invention
  • a reference Portland cement of class CEM I 52.5 R is mixed with different quantities of powder of the carbonated biochar obtained in Example 1 or with the powder of the non-carbonated biochar used in the example 1.
  • Biochar powder is obtained by grinding a biochar whose all particles are less than 2mm and the dso is 43pm. When ground in a ring mill, the biochar has a dso of 11 ⁇ m.
  • compositions according to the invention compositions according to the invention
  • 3 and 5 cementitious compositions prepared from a non-carbonated biochar
  • the compressive strength of the cementitious compositions 1, 2, 4 and 5 obtained in Example 2 were measured on prismatic specimens of standardized mortar (4x4x16cm 3 ), at different times (1, 2, 7 and 28 days) according to standard EN 196-1.
  • compositions according to the invention exhibit acceptable performances with regard to those observed for the reference CEM I at all deadlines.
  • a reduction in the mechanical performance of composition 5 containing 10% of non-carbonated biochar is noted, whereas for composition 4 containing carbonated biochar in the same proportions, there is a maintenance of mechanical performance in the short, medium and long term. at an acceptable level.
  • the addition of 10% of carbonated biochar therefore makes it possible to maintain a level of resistance higher than that observed for the composition containing the same quantity of non-carbonated biochar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention relates to a cementitious composition comprising at least 5% biochar carbonate, and to the use of a biochar carbonate as the main component of a cementitious composition.

Description

COMPOSITION CIMENTAIRE COMPRENANT DU BIOCHAR CARBONATÉ CEMENTITIOUS COMPOSITION COMPRISING CARBONATED BIOCHAR
La présente invention a pour objet de nouvelles compositions cimentaires à faible bilan carbone contenant du biochar carbonaté, ainsi que l’utilisation de biochar carbonaté comme constituant principal d’une composition cimentaire. The subject of the present invention is novel cementitious compositions with a low carbon balance containing carbonated biochar, as well as the use of carbonated biochar as the main constituent of a cementitious composition.
La fabrication des liants hydrauliques, et notamment celle des ciments, consiste essentiellement en une calcination d’un mélange de matières premières judicieusement choisies et dosées, aussi désigné par le terme de « cru ». La cuisson de ce cru donne un produit intermédiaire, le clinker, qui, broyé avec d’éventuels ajouts minéraux, donnera du ciment. Le type de ciment fabriqué dépend de la nature et des proportions des matières premières ainsi que du procédé de cuisson. On distingue plusieurs types de ciments : les ciments Portland (qui représentent la très grande majorité des ciments produits dans le monde), les ciments alumineux (ou d’aluminate de calcium), les ciments prompts naturels, les ciments sulfoalumineux, les ciments sulfo-bélitiques et d’autres variétés intermédiaires. The manufacture of hydraulic binders, and in particular that of cements, essentially consists of calcining a mixture of judiciously chosen and dosed raw materials, also referred to by the term “raw”. Firing this cru gives an intermediate product, clinker, which, ground with any mineral additions, will give cement. The type of cement manufactured depends on the nature and proportions of the raw materials as well as the firing process. There are several types of cements: Portland cements (which represent the vast majority of cements produced in the world), aluminous cements (or calcium aluminate), natural quick cements, sulphoaluminous cements, sulpho- Belitic and other intermediate varieties.
Les ciments les plus répandus sont les ciments de type Portland. Les ciments Portland sont obtenus à partir de clinker Portland, obtenus après clinkérisation à une température de l’ordre de 1450°C d’un cru riche en carbonate de calcium dans un four. La production d’une tonne de clinker Portland s’accompagne de l’émission d’environ 0,8 à 0,9 tonnes de C02. The most common cements are Portland type cements. Portland cements are obtained from Portland clinker, obtained after clinkering at a temperature of around 1450°C of a raw material rich in calcium carbonate in a kiln. The production of one tonne of Portland clinker is accompanied by the emission of around 0.8 to 0.9 tonnes of C0 2 .
Or, en 2014, la quantité de ciment vendu dans le monde avoisinait les 4.2 milliards de tonnes (source : Syndicat Français de l’Industrie Cimentière - SFIC). Ce chiffre, en constante augmentation, a plus que doublé en 15 ans. L’industrie du ciment est donc aujourd’hui à la recherche d’une alternative valable au ciment Portland, c’est-à-dire de ciments présentant au moins les mêmes caractéristiques de résistance et de qualité que les ciments Portland, mais qui, lors de leur production, dégagent moins de CO2. However, in 2014, the quantity of cement sold in the world was around 4.2 billion tonnes (source: Syndicat Français de l’Industrie Cimentière - SFIC). This figure, constantly increasing, has more than doubled in 15 years. The cement industry is therefore today looking for a valid alternative to Portland cement, that is to say cements with at least the same resistance and quality characteristics as Portland cements, but which, during their production, emit less CO2.
Lors de la production du clinker, principal constituant du ciment Portland, le dégagement de CO2 est lié : During the production of clinker, the main constituent of Portland cement, the release of CO2 is linked to:
- à hauteur de 40% au chauffage du four de cimenterie, au broyage et au transport ;- up to 40% for heating the cement kiln, for grinding and transport;
- à hauteur de 60% au CO2 dit chimique, ou de décarbonatation. La décarbonatation est une réaction chimique qui a lieu lorsque l’on chauffe du calcaire, principale matière première pour la fabrication du ciment Portland, à haute température. Le calcaire se transforme alors en chaux vive et en CO2 selon la réaction chimique suivante : - up to 60% to so-called chemical CO2, or decarbonation. Decarbonation is a chemical reaction that takes place when limestone, the main raw material for the manufacture of Portland cement, is heated at high temperature. The limestone is then transformed into quicklime and CO2 according to the following chemical reaction:
La carbonatation naturelle des matériaux à base de ciment, en particulier les bétons, est un moyen potentiel de réduire l'empreinte carbone liée au processus de fabrication et à l'utilisation du ciment. Cependant, bien que les bétons préparés à partir de ces ciments se recarbonatent naturellement pendant la durée de vie des ouvrages à hauteur de 15% à 20% du CO2 émis pendant la fabrication, le bilan carbone associé à la production de ciment Portland demeure positif. Il demeure donc nécessaire de réduire les émissions de CO2 lors de la production du ciment Portland et/ou d’améliorer les procédés de revalorisation de bétons en fin de vie. The natural carbonation of cementitious materials, especially concretes, is a potential way to reduce the carbon footprint related to the manufacturing process and the use of cement. However, although the concretes prepared from these cements recarbonate naturally during the lifetime of the structures up to 15% to 20% of the CO2 emitted during manufacture, the carbon balance associated with the production of Portland cement remains positive. It therefore remains necessary to reduce CO2 emissions during the production of Portland cement and/or to improve the processes for recycling concrete at the end of its life.
Pour réduire les émissions de CO2 liées à la production du ciment Portland, plusieurs approches ont été envisagées jusqu’à présent : To reduce CO2 emissions related to the production of Portland cement, several approaches have been considered so far:
- l’adaptation ou la modernisation des procédés cimentiers afin de maximiser le rendement des échanges thermiques ; - the adaptation or modernization of cement processes in order to maximize the efficiency of heat exchange;
- le développement de nouveaux liants « bas carbone » tels que les ciments sulfoalumineux préparés à partir de matières premières moins riches en calcaire et à une température de cuisson moins élevée, ce qui permet une diminution des émissions CO2 de 35% environ ; - the development of new "low carbon" binders such as sulfoaluminous cements prepared from raw materials less rich in limestone and at a lower firing temperature, which reduces CO2 emissions by around 35%;
- ou encore la substitution (partielle) du clinker dans les ciments par des matériaux permettant de limiter les émissions de CO2. - or the (partial) substitution of clinker in cements with materials that limit CO2 emissions.
Des technologies de captage et de stockage du carbone ont par ailleurs été développées pour limiter les émissions de CO2 des cimenteries ou des centrales électriques au charbon. La demande de brevet internationale WO-A-2019/115722 décrit un procédé permettant à la fois le nettoyage de gaz d'échappement contenant du CO2 et la fabrication d'un matériau cimentaire supplémentaire. Le procédé décrit consiste à utiliser des fines de béton recyclées comprenant la fourniture de fines de béton recyclées avec dgo £ 1000 pm dans des stocks ou un silo en tant que produit de départ, le rinçage du produit de départ pour fournir un matériau carboné, le retrait du matériau carboné et du gaz d'échappement nettoyé, et la désagglomération du matériau carboné pour former le matériau cimentaire supplémentaire, ainsi que l'utilisation de stocks ou d'un silo contenant un produit de départ de fines de béton recyclées avec dgo £ 1000 pm pour le nettoyage de gaz d'échappement contenant du CO2 et la fabrication simultanée d'un matériau cimentaire supplémentaire. Cependant ce procédé est complexe à mettre en oeuvre et nécessite de sécher le produit carbonaté avant que celui-ci ne soit utilisable. Carbon capture and storage technologies have also been developed to limit CO2 emissions from cement plants or coal-fired power plants. International patent application WO-A-2019/115722 describes a process allowing both the cleaning of exhaust gases containing CO2 and the manufacture of an additional cementitious material. The disclosed process involves using recycled concrete fines comprising supplying recycled concrete fines with dgo lb 1000 pm to stockpiles or a silo as a feedstock, rinsing the feedstock to provide a carbonaceous material, removal of the carbonaceous material and cleaned exhaust gas, and deagglomeration of the carbonaceous material to form the additional cementitious material, as well as the use of stockpiles or a silo containing a feedstock of recycled concrete fines with dgo £1000 pm for the cleaning of CO2-containing exhaust gases and the simultaneous manufacture of additional cementitious material. However, this method is complex to implement and requires the carbonated product to be dried before it can be used.
A la date de la présente invention, il demeure nécessaire d’identifier de nouveaux matériaux de substitution permettant d’abaisser significativement les émissions de CO2 lors de la production de ciment tout en maintenant les propriétés mécaniques des matériaux de construction préparés à partir de ces ciments, notamment les résistances à la compression à moyen et long terme, à des niveaux permettant leur utilisation. At the date of the present invention, it remains necessary to identify new substitute materials making it possible to significantly reduce CO2 emissions during the production of cement while maintaining the mechanical properties of building materials prepared from these cements. , in particular the medium and long-term compressive strengths, at levels allowing their use.
Le terme « biochar » est l'abréviation de « bio-charcoal » dans lequel le préfixe « bio » désignant l’origine biologique et « charcoal » correspond au terme anglais pour charbon de bois. Ainsi, « biochar » désigne un charbon d'origine végétale obtenu par la pyrolyse de matières organiques d'origines diverses telles que des plantes, notamment le bois, la paille et les résidus agricoles ou d’espaces verts, ou des composés organiques tels que les boues de station d’épuration dites « boues de STEP ». The term “biochar” is the abbreviation of “bio-charcoal” in which the prefix “bio” designates the biological origin and “charcoal” corresponds to the English term for charcoal. Thus, "biochar" designates a charcoal of plant origin obtained by the pyrolysis of organic matter of various origins such as plants, in particular wood, straw and agricultural or green space residues, or organic compounds such as wastewater treatment plant sludge known as “STEP sludge”.
Le biochar se différencie du charbon de bois par son utilisation comme fertilisant plutôt que comme combustible et par son impact environnemental, puisqu’il agit comme un puits de carbone (ou puits CO2) plutôt que de libérer du CO2 dans l'atmosphère lors de la combustion. Biochar differs from charcoal in its use as a fertilizer rather than as fuel and in its environmental impact, since it acts as a carbon sink (or CO2 sink) rather than releasing CO2 into the atmosphere during combustion.
Le biochar est donc intéressant à double titre : il concentre une grande quantité de carbone biogénique (entre 40 et plus de 80%) ; et sa structure développe une grande surface spécifique capable d’adsorber du CO2 en grande quantité. Biochar is therefore interesting for two reasons: it concentrates a large quantity of biogenic carbon (between 40 and more than 80%); and its structure develops a large specific surface capable of adsorbing CO2 in large quantities.
Le biochar est ainsi classiquement utilisé en agriculture pour augmenter la qualité des sols, et donc leur productivité. Cependant, bien que la séquestration de carbone dans le sol par enfouissement de biochar soit pratiquée depuis de nombreuses années pour lutter contre leur acidification et augmenter leur fertilité, des pertes et émissions de carbone sous forme de CO2 ont été identifiés lorsque les équilibres chimiques du sol (pH, lixiviation, profondeur d’enfouissement etc...) varient. La demande de brevet internationale WO-A-2018/203829 décrit l’utilisation de biochar comme sable de substitution pour la préparation de matériaux de construction de type béton ou mortier. Cependant, cette demande de brevet ne décrit pas l’utilisation de biochar comme additif cimentaire Biochar is thus traditionally used in agriculture to increase the quality of soils, and therefore their productivity. However, although carbon sequestration in the soil by burying biochar has been practiced for many years to combat its acidification and increase its fertility, carbon losses and emissions in the form of CO2 have been identified when the chemical balances of the soil (pH, leaching, depth of burial etc...) vary. International patent application WO-A-2018/203829 describes the use of biochar as a substitute sand for the preparation of construction materials of the concrete or mortar type. However, this patent application does not describe the use of biochar as a cementitious additive.
Dans la publication « The use of Biochar to reduce the carbon footprint of cement-based materials », Procedia Structural Integrity, 26 (2020), 199-210, les auteurs Suarez-Riera et al. décrivent l’utilisation de biochar comme additif cimentaire (ou filler) en vue de réduire l’empreinte carbone à la fois de la production de ciment et du matériau de construction préparé à partir de celui-ci. Selon les auteurs, le taux de substitution de ciment par le biochar optimum est de 2%, ce qui demeure relativement faible. In the publication “The use of Biochar to reduce the carbon footprint of cement-based materials”, Procedia Structural Integrity, 26 (2020), 199-210, the authors Suarez-Riera et al. describe the use of biochar as a cement additive (or filler) to reduce the carbon footprint of both cement production and the building material prepared from it. According to the authors, the rate of substitution of cement by the optimum biochar is 2%, which remains relatively low.
Dans la publication « Use of biochar as carbon sequestering additive in cernent mortar », Cernent and Concrète Composition, 87 (2018), 110-129, les auteurs Gupta et al. décrivent l’utilisation de biochar ou de biochar carbonaté comme adjuvant (i.e. « admixture ») pour mortier. Le biochar, carbonaté ou non, est ajouté aux compositions de mortier en plus des autres ingrédients, y compris le ciment, mais ne se substitue pas au ciment utilisé pour préparer le mortier. Par ailleurs, le biochar, carbonaté ou non, n’est ajouté qu’à hauteur de 2% en poids de la teneur en ciment. Enfin, les auteurs concluent que l’ajout de biochar non carbonaté devrait être préféré à l’ajout de biochar carbonaté, les matériaux de construction en résultant présentant des résistances mécaniques et une perméabilité nettement améliorés en comparaison de matériau de construction obtenu suite à l’ajout d’un biochar préalablement carbonaté. In the publication “Use of biochar as carbon sequestering additive in cement mortar”, Cernent and Concrète Composition, 87 (2018), 110-129, the authors Gupta et al. describe the use of biochar or carbonated biochar as an admixture (i.e. “admixture”) for mortar. Biochar, carbonated or not, is added to mortar compositions in addition to other ingredients, including cement, but does not replace the cement used to prepare the mortar. In addition, biochar, carbonated or not, is only added up to 2% by weight of the cement content. Finally, the authors conclude that the addition of non-carbonated biochar should be preferred to the addition of carbonated biochar, the resulting construction materials having significantly improved mechanical strength and permeability compared to construction material obtained following the addition of a previously carbonated biochar.
Dans une autre publication intitulée « Carbon séquestration in cementitious matrix containing pyrogenic carbon from waste biomass: A comparison of external and internai carbonation approach », Journal of Building Engineering, 43 (2021 ), 1-20, l’auteur Gupta étudie l’utilisation de biochar, carbonaté ou non, comme additif dans les compositions cimentaires. Dans cette publication, l’auteur compare les propriétés mécaniques de compositions cimentaires contenant 2,5% en poids de biochar, carbonaté ou non, avec les propriétés mécaniques d’une composition constituée à 100% de ciment et d’une composition contenant 8% de fumée de silice. L’auteur conclut que le biochar carbonaté pourrait être utilisé comme adjuvant (« admixture »), ce qui suppose l’utilisation de faibles quantités de biochar carbonaté dans la composition cimentaire. Or, il a maintenant été trouvé de façon tout à fait surprenante que le biochar carbonaté pouvait être utilisé comme constituant principal d’une composition cimentaire, ce qui permet d’augmenter significativement le taux de substitution du ciment en comparaison de ce qui était préconisé jusqu’à présent, et donc d’abaisser significativement l’empreinte carbone du matériau de construction finalement préparé tout en maintenant des propriétés mécaniques, et notamment des résistances à la compression à moyen et long terme compatibles avec les utilisations envisagées. In another publication entitled "Carbon sequestration in cementitious matrix containing pyrogenic carbon from waste biomass: A comparison of external and internal carbonation approach", Journal of Building Engineering, 43 (2021 ), 1-20, the author Gupta studies the use of biochar, carbonated or not, as an additive in cementitious compositions. In this publication, the author compares the mechanical properties of cementitious compositions containing 2.5% by weight of biochar, carbonated or not, with the mechanical properties of a composition consisting of 100% cement and a composition containing 8% silica fume. The author concludes that carbonated biochar could be used as an admixture, which implies the use of small amounts of carbonated biochar in the cementitious composition. However, it has now been found quite surprisingly that carbonated biochar could be used as the main constituent of a cementitious composition, which makes it possible to significantly increase the rate of substitution of cement compared to what was recommended until now, and therefore to significantly lower the carbon footprint of the building material finally prepared while maintaining mechanical properties, and in particular medium and long-term compressive strengths compatible with the intended uses.
Ainsi, la présente invention a pour objet une composition cimentaire comprenant au moins 5% de biochar carbonaté. Thus, the present invention relates to a cementitious composition comprising at least 5% of carbonated biochar.
L’ajout de biochar carbonaté dans les compositions de l’invention permet d’augmenter significativement le taux de substitution de ciment en comparaison du biochar, et donc d’abaisser significativement l’empreinte carbone du matériau de construction finalement préparé à partir de ladite composition, tout en maintenant des propriétés mécaniques, et notamment des résistances à la compression à moyen et long terme compatibles avec les utilisations envisagées. The addition of carbonated biochar in the compositions of the invention makes it possible to significantly increase the rate of substitution of cement in comparison with biochar, and therefore to significantly lower the carbon footprint of the construction material finally prepared from said composition. , while maintaining mechanical properties, and in particular medium and long-term compressive strengths compatible with the intended uses.
Dans le cadre de la présente invention : In the context of the present invention:
- on entend par « adjuvant » (ou « admixture ») tout adjuvant pour béton, mortier ou coulis au sens de la norme NF EN 934-2, c’est-à-dire tout produit incorporé au moment du malaxage du béton du mortier ou du coulis à une dose inférieure ou égale à 5% en poids de la teneur en ciment du béton en vue d’en modifier les propriétés du mélange à l’état frais et/ou durci ; - the term "adjuvant" (or "admixture") is understood to mean any adjuvant for concrete, mortar or grout within the meaning of standard NF EN 934-2, i.e. any product incorporated at the time of mixing the concrete of the mortar or grout at a dose less than or equal to 5% by weight of the cement content of the concrete in order to modify the properties of the mixture in the fresh and/or hardened state;
- on entend par « biochar » tout matériau obtenu par pyrolyse de biomasse des matières organiques d'origines diverses telles que des plantes, notamment le bois, la paille et les résidus agricoles ou d’espaces verts, ou des composés organiques tels que les boues de station d’épuration dites « boues de STEP » ; - "biochar" means any material obtained by pyrolysis of biomass of organic materials of various origins such as plants, in particular wood, straw and agricultural or green space residues, or organic compounds such as sludge sewage treatment plant known as “STEP sludge”;
- on entend par « biochar carbonaté » tout biochar qui, après avoir été mis en contact avec un flux gazeux enrichi en CO2, en retient une partie dans sa structure poreuse, et contient donc du CO2 adsorbé ; - the term "carbonated biochar" means any biochar which, after having been brought into contact with a gas stream enriched in CO2, retains part of it in its porous structure, and therefore contains adsorbed CO2;
- on entend par « ciment alumineux » tout ciment, amorphe ou non, obtenu par cuisson d’un mélange de calcaire et de bauxite et contenant au moins 5% d’aluminate monocalcique CA ; - “aluminous cement” means any cement, amorphous or not, obtained by firing a mixture of limestone and bauxite and containing at least 5% CA monocalcium aluminate;
- on entend par « ciment naturel prompt » tout liant hydraulique à prise et durcissement rapide conforme à la norme NF P 15-314 : 1993 en vigueur à la date de la présente invention. Préférentiellement, « ciment naturel prompt » désigne un ciment préparé à partir d’un clinker comprenant : - "prompt natural cement" means any hydraulic binder with rapid setting and hardening in accordance with standard NF P 15-314: 1993 in force on the date of this document. invention. Preferably, "prompt natural cement" designates a cement prepared from a clinker comprising:
> de 0% à 20% de C3S ; > from 0% to 20% of C 3 S;
> de 40% à 60% de C2S ; > from 40% to 60% of C 2 S;
> de 7% à 12% de C4AF ; > from 7% to 12% of C 4 AF;
> de 2% à 10% de C3A ; > from 2% to 10% of C 3 A;
> de 10% à 15% de CaC03 (calcite) ; > from 10% to 15% of CaC0 3 (calcite);
> de 10% à 15% de Cas(Si04)2C03 (spurrite) ; > from 10% to 15% of Cas(Si04)2C0 3 (spurrite);
> de 3% à 10% de phases sulfates : yeelimite C4A3$, langbeinite (K2Mg2(SC>4)3, anhydrite (CaSCU); et > from 3% to 10% sulfate phases: yeelimite C4A $ 3 , langbeinite (K2Mg2(SC>4) 3 , anhydrite (CaSCU); and
> de 10% à 20% de chaux, périclase, quartz et/ou d’une ou plusieurs phases amorphes ; > 10% to 20% lime, periclase, quartz and/or one or more amorphous phases;
- on entend par « ciment Portland » tout ciment à base de clinker Portland classifié comme CEM (I, II, III, IV ou V) selon la norme NF EN 197-1 ; - “Portland cement” means any Portland clinker-based cement classified as CEM (I, II, III, IV or V) according to standard NF EN 197-1;
- on entend par « ciment sulfoalumineux » tout ciment préparé à partir d’un clinker sulfoalumineux contenant de 5% à 90% de phase ‘yeelimite’ 04^$, d’une source de sulfate, et, optionnellement, d’un ajout calcaire ; - "sulfoaluminous cement" means any cement prepared from a sulfoaluminous clinker containing from 5% to 90% of 'yeelimite' phase 0 4 ^$, from a source of sulphate, and, optionally, from an addition limestone;
- on entend par « composition cimentaire » toute composition à base de ciment ou de liant alcali-activé susceptible d’être utilisée pour la préparation d’un matériau de construction ;- “cementitious composition” means any composition based on cement or an alkali-activated binder that can be used for the preparation of a construction material;
- on entend par « constituant principal d’une composition cimentaire » tout constituant principal au sens de la norme NF EN 197-1 , c’est-à-dire tout matériau minéral présent dans la composition cimentaire dans une proportion supérieure à 5% en poids de la composition cimentaire ; et - "main constituent of a cementitious composition" means any main constituent within the meaning of standard NF EN 197-1, i.e. any mineral material present in the cementitious composition in a proportion greater than 5% by weight of the cementitious composition; and
- on entend par « matériau de construction » un ciment, un béton, un mortier. - “construction material” means cement, concrete, mortar.
Dans le cadre de la présente invention, le « taux de CO2 adsorbé » correspond à la quantité (% p/p) de CO2 adsorbé contenu dans le biochar carbonaté par rapport au poids total du biochar carbonaté. In the context of the present invention, the “rate of adsorbed CO2” corresponds to the quantity (% w/w) of adsorbed CO2 contained in the carbonated biochar relative to the total weight of the carbonated biochar.
Pour déterminer le taux de CO2 adsorbé, différentes méthodes peuvent être utilisées telles que par exemple une combinaison de calcination à différentes températures et une analyse de carbone élémentaire permettant de distinguer le carbone organique, le carbone inorganique et avec certains appareils de déterminer le carbone sous d’autres formes. To determine the rate of adsorbed CO2, different methods can be used such as for example a combination of calcination at different temperatures and an analysis of elemental carbon making it possible to distinguish organic carbon, inorganic carbon and with certain devices to determine carbon under d other forms.
L’utilisation d’un analyseur BET peut également permettre de déterminer la quantité de CO2 adsorbé dans la porosité du biochar. Enfin les spectroscopies Raman et infrarouge sont des techniques complémentaires aux précédentes pour détecter le CO2 adsorbé. Ainsi, pour déterminer le taux de CO2 adsorbé, le mode opératoire suivant peut notamment être mis en oeuvre : placer un creuset en alumine sur une balance et faire la tare ; remplir le creuset de la poudre (biochar ou matériau cimentaire) à analyser en l’étalant et peser la prise d’essai ; introduire le creuset rempli dans l’analyseur élémentaire CHS ; renseigner la valeur de la masse d’échantillon ; noter la teneur en carbone total (CT) mesuré par l’appareil ; puis, pour déterminer le carbone inorganique (CIT), commencer par calciner à 500°C la poudre (biochar ou matériau cimentaire) puis répéter les étapes précédentes. Using a BET analyzer can also help determine the amount of CO2 adsorbed in the porosity of the biochar. Finally, Raman and infrared spectroscopy are complementary techniques to the previous ones for detecting adsorbed CO2. Thus, to determine the rate of CO2 adsorbed, the following procedure can in particular be implemented: place an alumina crucible on a balance and carry out the tare; fill the crucible with the powder (biochar or cementitious material) to be analyzed by spreading it out and weigh the test sample; introducing the filled crucible into the CHS elemental analyzer; enter the value of the sample mass; note the total carbon content (TC) measured by the device; then, to determine the inorganic carbon (TIC), start by calcining the powder (biochar or cementitious material) at 500°C, then repeat the previous steps.
Dans le cadre de la présente invention, le « carbone organique total » ou « COT » correspond à la quantité (% p/p) de carbone qui n’est pas sous forme inorganique contenu dans une entité par rapport au poids total de carbone contenu dans ladite entité. Le COT inclut notamment le carbone qui est contenu dans des composés organiques et le C02 adsorbé. In the context of the present invention, the "total organic carbon" or "TOC" corresponds to the quantity (% w/w) of carbon which is not in inorganic form contained in an entity relative to the total weight of carbon contained in that entity. TOC includes in particular the carbon which is contained in organic compounds and the adsorbed C02.
La valeur COT d’une entité est déterminée selon la formule suivante : The TOC value of an entity is determined according to the following formula:
COT=CT-CIT dans laquelle TOC=CT-TIC in which
« CT » désigne la quantité (% p/p) de carbone totale de l’entité obtenue grâce à une analyse élémentaire avec un analyseur carbone/soufre (CS) sur un échantillon brut ; et "CT" means the amount (% w/w) of total carbon of the entity obtained through elemental analysis with a carbon/sulfur (CS) analyzer on a raw sample; and
« CIT » désigne la quantité (% p/p) de carbone inorganique totale de l’entité obtenue en calcinant l’échantillon à analyser à 500°C avant de procéder à un nouveau dosage du carbone élémentaire par un analyseur CS. “TIC” designates the quantity (% w/w) of total inorganic carbon of the entity obtained by calcining the sample to be analyzed at 500°C before carrying out a new determination of elemental carbon by a CS analyzer.
Dans le cadre de la présente invention, le diamètre médian ou dso correspond au diamètre en-dessous duquel se trouve 50% de la masse totale des particules de l’échantillon considéré. Celui-ci peut être déterminé par toute méthode connue de l’homme du métier, notamment par granulométrie laser en voie sèche ou humide. In the context of the present invention, the median diameter or dso corresponds to the diameter below which there is 50% of the total mass of the particles of the sample considered. This can be determined by any method known to those skilled in the art, in particular by dry or wet laser granulometry.
Enfin, dans le cadre de la présente invention, les proportions exprimées en % correspondent à des pourcentages massiques par rapport au poids total de l’entité (e.g. clinker ou ciment) considérée. Finally, in the context of the present invention, the proportions expressed in % correspond to mass percentages relative to the total weight of the entity (e.g. clinker or cement) considered.
La présente invention a donc pour objet une composition cimentaire comprenant au moins 5% de biochar carbonaté. De préférence, la présente invention a pour objet une composition cimentaire telle que définie précédemment présentant les caractéristiques suivantes, choisies seules ou en combinaison : la composition comprend plus de 5% de biochar carbonaté ; de préférence la composition comprend au moins 6% de biochar carbonaté ; de préférence encore la composition comprend au moins 8% de biochar carbonaté ; de façon tout à fait préférée la composition comprend au moins 10% de biochar carbonaté ; la composition comprend jusqu’à 30% de biochar carbonaté ; de préférence la composition comprend jusqu’à 25% de biochar carbonaté ; de façon tout à fait préférée la composition comprend jusqu’à 20% de biochar carbonaté ; le biochar carbonaté contient au moins 1% de carbone adsorbé ; de préférence le biochar carbonaté contient au moins 3% de carbone adsorbé ; de préférence encore le biochar carbonaté contient au moins 5% de carbone adsorbé ; de façon tout à fait préférée le biochar carbonaté contient au moins 7% de carbone adsorbé ; la composition contient de 70% à 99% de ciment ou de liant alcali-activé ; de préférence la composition contient de 75% à 98% de ciment ou de liant alcali-activé ; de préférence encore la composition contient encore de 80% à 97% de ciment ou de liant alcali-activé ; de façon tout à fait préférée la composition contient de 80% à 95% de ciment ou de liant alcali-activé ; la composition contient un ciment alumineux, un ciment naturel prompt, un ciment Portland ou un ciment sulfoalumineux ; et/ou la composition contient en outre un filler ou un ajout cimentaire selon la norme EN 197-1. The present invention therefore relates to a cementitious composition comprising at least 5% carbonated biochar. Preferably, the subject of the present invention is a cementitious composition as defined previously having the following characteristics, chosen alone or in combination: the composition comprises more than 5% of carbonated biochar; preferably the composition comprises at least 6% carbonated biochar; more preferably the composition comprises at least 8% of carbonated biochar; most preferably, the composition comprises at least 10% of carbonated biochar; the composition includes up to 30% carbonated biochar; preferably the composition comprises up to 25% carbonated biochar; most preferably, the composition comprises up to 20% of carbonated biochar; the carbonated biochar contains at least 1% adsorbed carbon; preferably the carbonated biochar contains at least 3% adsorbed carbon; more preferably the carbonated biochar contains at least 5% adsorbed carbon; most preferably, the carbonated biochar contains at least 7% adsorbed carbon; the composition contains from 70% to 99% cement or alkali-activated binder; preferably the composition contains from 75% to 98% cement or alkali-activated binder; more preferably the composition still contains from 80% to 97% of cement or alkali-activated binder; most preferably, the composition contains from 80% to 95% cement or alkali-activated binder; the composition contains an aluminous cement, a prompt natural cement, a Portland cement or a sulfoaluminous cement; and/or the composition additionally contains a filler or a cement additive according to standard EN 197-1.
La composition cimentaire selon la présente invention peut être préparée selon tout procédé connu de l’homme du métier. A titre d’exemple, la composition selon la présente invention peut notamment être préparée par simple mélange dans un broyeur ou un mélangeur d’un ciment ou d’un liant alcali-activé avec le biochar carbonaté ou encore par mélange dans un broyeur ou un mélangeur d’un clinker, de gypse (et optionnellement de filler calcaire ou de tout additif connu) et de biochar carbonaté. The cementitious composition according to the present invention can be prepared according to any method known to those skilled in the art. By way of example, the composition according to the present invention can in particular be prepared by simple mixing in a grinder or a mixer of a cement or an alkali-activated binder with the carbonated biochar or else by mixing in a grinder or a mixer of a clinker, gypsum (and optionally limestone filler or any known additive) and carbonated biochar.
La composition cimentaire selon la présente invention est donc obtenue à partir d’un clinker, d’un liant alcali-activé ou d’un ciment et d’un biochar carbonaté. Le biochar carbonaté peut être obtenu selon tout procédé connu de l’homme du métier. A titre d’exemple, on peut notamment citer un procédé de préparation de biochar carbonaté comprenant les étapes suivantes : introduction du biochar dans un réacteur de type tambour rotatif, malaxeur, container ou lit fluidisé ; mise en contact du biochar avec une source de CO2 telle que des gaz d’exhaure d’une cimenterie ou d’une centrale thermique ; et arrêt de l’injection du gaz et récupération du biochar carbonaté obtenu. The cementitious composition according to the present invention is therefore obtained from a clinker, an alkali-activated binder or a cement and a carbonated biochar. The carbonated biochar can be obtained according to any method known to those skilled in the art. By way of example, mention may in particular be made of a process for the preparation of carbonated biochar comprising the following steps: introduction of the biochar into a reactor of the rotating drum, mixer, container or fluidized bed type; bringing the biochar into contact with a source of CO2 such as exhaust gases from a cement factory or a thermal power station; and stopping the gas injection and recovering the carbonated biochar obtained.
La composition cimentaire selon la présente invention peut être utilisée pour préparer un matériau de construction. The cementitious composition according to the present invention can be used to prepare a building material.
Enfin, le biochar carbonaté décrit précédemment peut donc être utilisé comme constituant principal d’une composition cimentaire. Ainsi, la présente invention a également pour objet l’utilisation d’un biochar carbonaté comme constituant principal d’une composition cimentaire. Finally, the carbonated biochar described above can therefore be used as the main constituent of a cementitious composition. Thus, the present invention also relates to the use of a carbonated biochar as the main constituent of a cementitious composition.
La présente invention peut être illustrée de façon non limitative par les exemples suivants. The present invention can be illustrated without limitation by the following examples.
Exemple 1 - Biochar carbonaté Example 1 - Carbonated Biochar
Un biochar carbonaté est obtenu en plaçant environ 500g de biochar obtenu par pyrolyse du bois dans un bac qui est lui-même placé dans réacteur en verre fermé hermétiquement. A carbonated biochar is obtained by placing approximately 500g of biochar obtained by pyrolysis of wood in a tank which is itself placed in a hermetically sealed glass reactor.
Le réacteur est équipé d’une coupelle contenant de l’eau pour réguler l’humidité relative dans le réacteur. The reactor is equipped with a cup containing water to regulate the relative humidity in the reactor.
Cette coupelle est placée au fond du réacteur sous le bac contenant le biochar. This cup is placed at the bottom of the reactor under the tank containing the biochar.
Le couvercle du réacteur est équipé d’un bouchon en verre percé de 2 orifices qui permettent l’injection d’un gaz et son évacuation. The lid of the reactor is equipped with a glass stopper pierced with 2 holes which allow the injection of a gas and its evacuation.
Le gaz injecté pendant 65 heures est constitué à 100% de CO2. The gas injected for 65 hours consists of 100% CO2.
Le biochar ainsi carbonaté présente les caractéristiques suivantes (Tableau 1). The thus carbonated biochar has the following characteristics (Table 1).
Tableau 1 - Biochar/biochar carbonaté Table 1 - Biochar/carbonated biochar
Exemple 2 - Compositions cimentaires selon l’invention Un ciment Portland de référence de la classe CEM I 52,5 R est mélangé avec différentes quantités de poudre du biochar carbonaté obtenu à l’exemple 1 ou avec la poudre du biochar non carbonaté utilisé dans l’exemple 1. Example 2 - Cementitious Compositions According to the Invention A reference Portland cement of class CEM I 52.5 R is mixed with different quantities of powder of the carbonated biochar obtained in Example 1 or with the powder of the non-carbonated biochar used in the example 1.
La poudre de biochar est obtenue par broyage d’un biochar dont toutes les particules sont inférieures à 2 mm et le dso est de 43pm. Une fois broyé dans un broyeur à anneau, le biochar possède un dso de 11 pm. Biochar powder is obtained by grinding a biochar whose all particles are less than 2mm and the dso is 43pm. When ground in a ring mill, the biochar has a dso of 11 µm.
La composition des compositions cimentaires 2 et 4 (compositions selon l’invention) et 3 et 5 (compositions cimentaires préparées à partir d’un biochar non carbonaté) ainsi obtenus est rapportée dans le Tableau 2 suivant. The composition of cementitious compositions 2 and 4 (compositions according to the invention) and 3 and 5 (cementitious compositions prepared from a non-carbonated biochar) thus obtained is reported in Table 2 below.
Tableau 2 - Compositions cimentaires 1 à 5 Le gain en émission de CO2 pour les compositions cimentaires 2 à 5 par rapport à la composition cimentaire 1 de référence est rapporté dans le Tableau 3 suivant. Table 2 - Cementitious compositions 1 to 5 The gain in CO2 emissions for cementitious compositions 2 to 5 compared to the reference cementitious composition 1 is reported in Table 3 below.
Tableau 3 - Gain CO2 pour les compositions cimentaires 2 à 5 Table 3 - CO2 gain for cement compositions 2 to 5
Exemple 3 - Performances mécaniques Example 3 - Mechanical performance
La résistance à la compression des compositions cimentaires 1 , 2, 4 et 5 obtenues dans l’exemple 2 a été mesurées sur des éprouvettes prismatiques de mortier normalisé (4x4x16cm3), à différentes échéances (1, 2, 7 et 28 jours) selon la norme EN 196-1. The compressive strength of the cementitious compositions 1, 2, 4 and 5 obtained in Example 2 were measured on prismatic specimens of standardized mortar (4x4x16cm 3 ), at different times (1, 2, 7 and 28 days) according to standard EN 196-1.
Les résultats obtenus sont rapportés dans le Tableau 4 suivant. The results obtained are reported in Table 4 below.
Tableau 4 - Résistances à la compression des compositions cimentaires 1, 2, 4 et 5 Table 4 - Compressive strengths of cementitious compositions 1, 2, 4 and 5
Les compositions cimentaires selon l’invention (i.e. 2 et 4) présentent des performances acceptables au regard de celles observées pour le CEM I de référence à toutes les échéances. En revanche, on note une diminution des performances mécaniques de la composition 5 contenant 10% de biochar non carbonaté alors que pour la composition 4 contenant du biochar carbonaté dans les mêmes proportions, on note un maintien des performances mécaniques à court, moyen et long terme à un niveau acceptable. L’ajout de 10% de biochar carbonaté permet donc de maintenir un niveau de résistance supérieur à celui observé pour la composition contenant la même quantité de biochar non carbonaté The cementitious compositions according to the invention (ie 2 and 4) exhibit acceptable performances with regard to those observed for the reference CEM I at all deadlines. On the other hand, a reduction in the mechanical performance of composition 5 containing 10% of non-carbonated biochar is noted, whereas for composition 4 containing carbonated biochar in the same proportions, there is a maintenance of mechanical performance in the short, medium and long term. at an acceptable level. The addition of 10% of carbonated biochar therefore makes it possible to maintain a level of resistance higher than that observed for the composition containing the same quantity of non-carbonated biochar.

Claims

REVENDICATIONS
1. Composition cimentaire comprenant au moins 5% de biochar carbonaté. 1. Cementitious composition comprising at least 5% carbonated biochar.
2. Composition cimentaire selon la revendication 1, caractérisée en ce qu’elle comprend plus de 5% de biochar carbonaté. 2. Cementitious composition according to claim 1, characterized in that it comprises more than 5% carbonated biochar.
3. Composition cimentaire selon la revendication 2, caractérisée en ce qu’elle comprend au moins 8% de biochar carbonaté. 3. Cementitious composition according to claim 2, characterized in that it comprises at least 8% carbonated biochar.
4. Composition cimentaire selon la revendication 3, caractérisée en ce qu’elle comprend au moins 10% de biochar carbonaté. 4. Cementitious composition according to claim 3, characterized in that it comprises at least 10% carbonated biochar.
5. Composition cimentaire selon l’une quelconque des revendications 1 à 4, caractérisée en ce qu’elle comprend jusqu’à 30% de biochar carbonaté. 5. Cementitious composition according to any one of claims 1 to 4, characterized in that it comprises up to 30% carbonated biochar.
6. Composition cimentaire selon la revendication 5, caractérisée en ce qu’elle comprend jusqu’à 25% de biochar carbonaté. 6. Cementitious composition according to claim 5, characterized in that it comprises up to 25% of carbonated biochar.
7. Composition cimentaire selon l’une quelconque des revendications 1 à 6, caractérisée en ce que le biochar carbonaté contient au moins 1% de carbone adsorbé 7. Cementitious composition according to any one of claims 1 to 6, characterized in that the carbonated biochar contains at least 1% adsorbed carbon
8. Composition cimentaire selon l’une quelconque des revendications 1 et 5 à 7, caractérisée en ce qu’elle contient de 70% à 99% de ciment ou de liant alcali-activé. 8. Cementitious composition according to any one of claims 1 and 5 to 7, characterized in that it contains from 70% to 99% cement or alkali-activated binder.
9. Composition cimentaire selon l’une quelconque des revendications 1 à 8, caractérisée en ce qu’elle contient un ciment alumineux, un ciment naturel prompt, un ciment Portland ou un ciment sulfoalumineux. 9. Cementitious composition according to any one of claims 1 to 8, characterized in that it contains an aluminous cement, a prompt natural cement, a Portland cement or a sulfoaluminous cement.
10. Utilisation d’un biochar carbonaté comme constituant principal d’une composition cimentaire. 10. Use of a carbonated biochar as the main constituent of a cementitious composition.
EP22751134.2A 2021-07-08 2022-07-07 Cementitious composition comprising biochar carbonate Pending EP4367079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107418A FR3125034A1 (en) 2021-07-08 2021-07-08 Cementitious composition comprising carbonated biochar
PCT/FR2022/051361 WO2023281220A1 (en) 2021-07-08 2022-07-07 Cementitious composition comprising biochar carbonate

Publications (1)

Publication Number Publication Date
EP4367079A1 true EP4367079A1 (en) 2024-05-15

Family

ID=77180264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22751134.2A Pending EP4367079A1 (en) 2021-07-08 2022-07-07 Cementitious composition comprising biochar carbonate

Country Status (3)

Country Link
EP (1) EP4367079A1 (en)
FR (1) FR3125034A1 (en)
WO (1) WO2023281220A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200062646A1 (en) 2017-05-02 2020-02-27 National University Of Singapore Sustainable construction material and method of preparation and use thereof
PL3724147T3 (en) 2017-12-13 2022-07-04 Heidelbergcement Ag Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitious material
EP3498681A1 (en) * 2017-12-13 2019-06-19 HeidelbergCement AG Use of carbonated recycled concrete fines as supplementary cementitious material

Also Published As

Publication number Publication date
FR3125034A1 (en) 2023-01-13
WO2023281220A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
CA2802405C (en) Iron-doped sulfo-belite clinker
Payá et al. Bagasse ash
JPH10507992A (en) Method for preparing pazolanic material from paper residue and method for producing cement from pazolanic material
BR0315436B1 (en) fly ash treatment method and method for producing a concrete mixture.
FI95793C (en) A method of making a hard granular material from fluidized bed ash
Thiedeitz et al. Rice husk ash as an additive in mortar–Contribution to microstructural, strength and durability performance
CA2911855C (en) Geosynthesis binder including an alkaline-calcium activator and a silico-aluminous compound
CN112919874A (en) Cement-based filling material containing various solid wastes and preparation method and application thereof
Belletti et al. Experimental research on mechanical properties of biochar-added cementitious mortars
Razeghi et al. Investigating accelerated carbonation for alkali activated slag stabilized sandy soil
EP4367079A1 (en) Cementitious composition comprising biochar carbonate
EP2970010A1 (en) Novel sulfo-aluminous clinker with a low belite content
WO2023012424A1 (en) Accelerated carbonation process and implementation thereof in a process for upcycling concrete waste and industrial waste gases
EP1541533A1 (en) Process for drying and agglomerating biomass having a low dry matter content
Kim et al. Effect of ash particle sizes on the compressive strength and thermal conductivity of geopolymer synthesized with alkali activated low-calcium ground coal bottom ash
FR3132710A1 (en) Cementitious composition comprising carbonated biomass ash
EP3830053A1 (en) Use of a clay for producing a pozzolanic material
FR3132711A1 (en) USE OF CARBONATED BIOMASS ASH AS SUBSTITUTE CEMENTITIOUS MATERIAL
EP1367032A1 (en) Hydraulic binder resulting from a mixture of a sulfate binder and a pozzolanic binder
WO2023012423A1 (en) Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar
EP4380905A1 (en) Use of a fraction obtained from used concrete as sand for the preparation of concrete or mortar
EP4380906A1 (en) Accelerated carbonation process and implementation thereof in a process for upcycling concrete waste and industrial waste gases
Putranto Utilization of Coal Combustion Waste (Fly Ash) For Geopolymer Concrete as Green Concrete
CA3002262A1 (en) Hydraulic composition having improved carbonation resistance
WO2016113513A1 (en) Novel hydraulic binder and hydraulic composition comprising same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR