EP4377996A1 - Système électronique spatial - Google Patents

Système électronique spatial

Info

Publication number
EP4377996A1
EP4377996A1 EP22754354.3A EP22754354A EP4377996A1 EP 4377996 A1 EP4377996 A1 EP 4377996A1 EP 22754354 A EP22754354 A EP 22754354A EP 4377996 A1 EP4377996 A1 EP 4377996A1
Authority
EP
European Patent Office
Prior art keywords
electronic circuit
space
sensitive
electronic
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22754354.3A
Other languages
German (de)
English (en)
Inventor
Vincent BUGAUT
Tony CHAPELET
Quang duc DAM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
Airbus Defence and Space SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space SAS filed Critical Airbus Defence and Space SAS
Publication of EP4377996A1 publication Critical patent/EP4377996A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/005Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to ionising radiation; Nuclear-radiation circumvention circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to a space electronic system configured to resist space radiation. More particularly, the invention relates to a space electronic system capable of detecting a singular event on an electronic circuit caused by space radiation and of reacting thereto accordingly.
  • SEE Single Event effects
  • the singular latching event called according to the Anglo-Saxon acronym SEL (Single Event Latch Up), which give rise to ground-supply short circuits and can therefore lead to the destruction of the integrated circuit by overcurrent, inducing a thermal effect or even an electromigration
  • the singular event of destruction commonly called according to the Anglo-Saxon acronym SEB (Single Event Burnout)
  • SEB Single Event Burnout
  • SEGR Single Event Gate Rupture
  • This single-particle disturbance event is a change of state caused by a single ionizing particle striking a sensitive node in a microelectronic device, such as in a microprocessor, semiconductor memory, or power transistors.
  • the state change is the result of free charge created by ionization in or near a significant node of a logic element.
  • the error in the output data caused by this impact is called a single particle disturbance.
  • the singular effects result in a risk of damage or even destruction of electronic components embedded in such systems, reducing the life of the systems.
  • the probability of this risk is linked on the one hand to the intrinsic sensitivity of the component to protons and heavy ions, and on the other hand to the use made of the component, in particular the supply voltage, the temperature, and in a non-generic way the duration of use and the location in orbit during use, the use being defined here as the period during which the component is electrically powered.
  • a known solution consists in exposing an electronic component potentially sensitive to space radiation to a proton source and a heavy ion source in order to be able to confirm or invalidate the sensitivity of the electronic component, and therefore of the electronic components from the same manufacturing batch; characterizing this sensitivity, if applicable, and establishing, if applicable, a partial short-term reliability index of the efficiency of the companion circuit by checking the absence of failures that may be caused by singular events in the functionalities of the component. Exposure to the aforementioned heavy ion source capable of triggering a singular event in an exhaustive manner requires the opening of the casing of the electronic component under test, or the thinning of the electronic chip on flip-chip type components.
  • the solutions put in place do not make it possible to be able to avoid in a deterministic way the effects of singular events even if a specific device is integrated into it during its design.
  • the solutions put in place also do not make it possible to guarantee in an efficient industrial manner, that is to say according to time, cost and risk constraints, the lifetime of the sensitive electronic component provided with a companion circuit and embedded in a space system.
  • the reasons for this problem are due in particular to the opening and the thinning of the component, reducing the ability of the component to dissipate the heat produced during its nominal operation and preventing its use in a representative manner.
  • the present invention aims to remedy these drawbacks with a totally innovative approach.
  • the present invention relates to a space electronic system comprising: an electronic circuit sensitive to space radiation comprising at least one signal input port and/or at least one signal output port; a signal processing unit; an electronic space radiation detection unit electrically connected to the signal processing unit; at least one protective switch electrically connected between the electrical ground of the spatial electronic system and at least one of the signal input or output ports of the sensitive electronic circuit, and controlled by the signal processing unit; the signal processing unit being configured to switch the at least one protective switch to electrical ground upon detection of an amplitude of a signal representative of the quantity of spatial radiation greater than a predefined radiation threshold, the at least one protection switch comprising a Darlington circuit of 2 bipolar transistors, configured to be switched from an off electrical state to an on electrical state in a time of less than one hundred microseconds, preferably less than ten microseconds.
  • the Darlington assembly is interesting for low consumption components.
  • the electronic circuit sensitive to space radiation can comprise at least one signal output port, in which at least one of the protection switches is electrically connected to the signal output port.
  • This device is advantageous for circuits comprising an output port such as power components, in particular regulation and stabilization devices, or clocks.
  • the electronic circuit sensitive to space radiation can comprise at least one signal input port and at least one signal output port, the system comprising: a first protection switch electrically connected between the electrical ground of the space electronic system and signal input port; a second protection switch electrically connected between the electric ground of the space electronic system and the signal output port.
  • the electronic system can comprise at least one stop switch arranged electrically in parallel with the at least one protection switch, the signal processing unit being configured to switch the stop switch to electrical ground when a decommissioning of the sensitive electronic circuit.
  • the at least one stop switch may include a bipolar transistor configured to be switched from an off electrical state to an on electrical state in a time greater than one hundred microseconds, preferably greater than one millisecond.
  • the electronic space radiation detection unit may comprise an electronic device for monitoring the electrical current of the signal input port.
  • the electronic space radiation detection unit may comprise an electronic device for monitoring the electrical voltage of the signal output port.
  • the at least one signal input port can be an electrical supply rail of the sensitive electronic circuit.
  • the present invention relates to a method for protecting the sensitive electronic circuit of the space electronic system described above, the protection method comprising the steps of: detecting an amplitude of the signal representative of the quantity of radiation spatial radiation greater than a predefined radiation threshold; and switching to the electrical ground of at least one protective switch.
  • the space electronic system can include at least two protection switches so that the step of switching the protection method can include switching to the electrical ground of each of the at least two protection switches simultaneously.
  • the protection method can comprise a step of cutting off the electrical power supplies of the sensitive electronic circuit, preferably this cutting step preceding the step of switching to the electrical ground of at least one protection switch.
  • the present invention relates to a test method guaranteeing a predefined lifetime of the space electronic system described above, the test method comprising the steps on the ground of: sending penetrating heavy ions or radiation penetrant capable of creating latch-up on the sensitive electronic circuit; functional tests of the space electronic system following the step of sending penetrating heavy ions or penetrating radiation, for a predetermined duration and under thermal stress representative of accelerated aging equivalent to the predefined lifetime of the space electronic system on board a satellite in orbit earthly.
  • the test method can further comprise the steps on the ground of: acquisition of the number of switching from the off state to the on state of at least one protection switch during the sending step; comparison of the number of switchings acquired with a predefined number of switchings to the electrical ground representative of an estimated number of switchings to the electrical ground that can be triggered during the predefined lifetime of the electronic system in its spatial environment; if the acquired switching number is less than the predefined number of switchings, repeated switching and complementary to the switchings of the at least one protection switch during the penetrating heavy ion or penetrating radiation sending step, up to a predefined number of switchings to electrical ground representative of an estimated number of switchings to electrical ground that can be triggered during the predefined lifetime of the electronic system in its spatial environment.
  • This test method is preferably done on a component that has neither been stripped of its protective casing nor thinned in the case of a flip chip type component. In other words, the test is done in the hardware configuration planned to be embarked on a satellite.
  • the test method can also comprise a step of determining the state of the structures of the sensitive electronic circuit by imaging the sensitive electronic circuit following the step of sending pulses of penetrating heavy ions or radiation. penetrating.
  • FIG.1 is a schematic representation of a space electronic system according to a first embodiment.
  • FIG.2 is a detailed schematic representation of an analog portion of the space electronic system according to a first embodiment.
  • FIG.3 is a detailed schematic representation of an analog portion of the space electronic system according to a second embodiment.
  • FIG.4 is a schematic representation of switching timing diagrams of the switches of the space electronic system of Figure 1.
  • FIG.5 is a schematic representation of a space electronic system according to a second embodiment.
  • FIG.6 is a representation of a flowchart of a method of protecting a space electronic circuit sensitive to space radiation.
  • FIG.7 is a representation of a flowchart of a method guaranteeing the robustness to space radiation of the electronic protection system according to the invention.
  • a first embodiment of a space electronic system 10 comprising a sensitive electronic circuit 12, configured to be on board a satellite is represented.
  • the sensitive electronic circuit 12 is, by design, intrinsically sensitive to the bombardment of energetic particles present in space. More particularly, the sensitive electronic circuit 12 is configured to be operational in a radiative environment characterized by the presence of protons and heavy ions which can generate singular events leading to the damage or the destruction of the sensitive electronic circuit 12. More particularly, the damage to the sensitive electronic circuit 12 can cause a loss of reliability of the electronic system no longer making it possible to guarantee a lifetime of the electronic system 10 in accordance with expectations, that is to say for example and in a non-limiting manner, a duration ten-year life of the electronic system 10 embedded in a satellite moving in Earth orbit.
  • the sensitive electronic circuit 12 includes at least one signal input port 300 such as, for example, a power supply input, electrically connected to the power supply rail 30, configured to distribute a power supply to various electronic blocks of the sensitive electronic circuit 12.
  • the sensitive electronic circuit 12 can comprise a plurality of signal input ports. More particularly, the sensitive electronic circuit 12 can comprise N power supply rails 30, which can be of different levels of direct voltage or direct electric current, each power supply rail 30 distributing an electrical power supply to a particular electronic block of the sensitive electronic circuit 12.
  • a first power supply rail 30 can distribute an electrical power supply to a digital calculation block of the sensitive electronic circuit 12
  • a second power supply rail can distribute an electrical power supply to a memory block of the sensitive electronic circuit 12
  • a third power supply rail being able to distribute an electrical power supply to an analog block of the sensitive electronic circuit 12.
  • the sensitive electronic circuit 12 can be a microcontroller, a circuit of the logic network type programmable, or even an integrated circuit specific to an application called c commonly ASIC.
  • the space electronic system 10 comprises a main power supply input PS configured to supply an electric power supply 11 to a regulation and stabilization device 14 of electric power supply.
  • the electric power supply regulation and stabilization device 14 comprises a regulated power supply output 32 configured to supply an electric power supply signal 29 preferably to at least one power supply rail 30 of the sensitive electronic circuit 12.
  • the power supply regulation and stabilization device 14 can comprise either a low voltage drop regulator, commonly called an LDO regulator, making it possible to regulate the output voltage of the regulator even when the supply voltage of the regulator is very low. close to the output voltage, i.e. a DC/DC type converter.
  • the space electronic system 10 includes an electronic space radiation detection unit.
  • the electronic space radiation detection unit can be, for example, a radiation sensor directly detecting the quantity of space radiation at the level of the space electronic system 10 or even more particularly, an electronic device for monitoring the electric power supply signal 29, the electric power supply signal that can be altered by a singular event on the sensitive electronic circuit 12 following the exposure of the space electronic system 10 in a space environment strongly radiative.
  • the alteration of the electric power supply signal allows indirect detection of the quantity of space radiation at the level of the space electronic system 10.
  • the electronic device for monitoring the electric power supply signal 29 is an electronic device for monitoring the instantaneous electrical current 16 delivered by the electrical power supply regulation and stabilization device 14 and consumed on the at least one power supply rail 30 of the sensitive electronic circuit 12 electrically connected to the regulated power supply output 32.
  • the electronic device for monitoring of the electric current 16 may comprise various means of current sensors such as, for example, Hall effect current sensors or sensors for differential measurements of the current consumed by the at least one power supply rail 30.
  • the space electronic system 10 comprises a signal processing unit 34 comprising means for analyzing electrical signals from various sensors of the space electronic system 10, and means for controlling protection functions 20 of the electronic circuit sensitive electronic circuit 12 electrically connected to the means for analyzing electrical signals from various sensors of the electronic system 10. of the FPGA type or any other digital electronic circuit of the logic type making it possible to process information and deliver control signals.
  • the electrical signal analysis means of the signal processing unit 34 are configured to compare an amplitude of a signal representative of the quantity of space radiation detected directly or indirectly by the electronic space radiation detection unit with a first predefined radiation threshold. More particularly, the electrical signal analysis means of the signal processing unit 34 comprise at least one current comparison device 18 electrically connected to the electronic device for monitoring the instantaneous electrical current 16 and configured to compare the amplitude of the current measured by the electronic device for monitoring the instantaneous electric current 16 with a predefined current threshold. The predefined current threshold can be adjusted by the protection function control means 20 of the sensitive electronic circuit 12.
  • the current comparison device 18 comprises an analog comparator whose time processing time is of the order of a few microseconds or even a microsecond which may include a low-pass filter at the input of the RC filter type with a time constant of the order of a tenth of a microsecond, or even a microsecond and a low-pass filter at the output of the RC filter type with a time constant of the order of a hundredth of a microsecond, or even a hundredth of a microsecond.
  • the protection function control means 20 of the sensitive electronic circuit 12 are configured to control electronic protection devices of the sensitive electronic circuit 12 according in particular to the result of the comparison of the amplitude of the signal representative of a quantity of radiation detected by the electronic space radiation detection unit with the first predefined radiation threshold. More particularly, according to FIG. 1, the protection function control means 20 of the sensitive electronic circuit 12 are configured to control electronic protection devices of the sensitive electronic circuit 12 according in particular to the result of the comparison of the amplitude of the measured current by the electronic device for monitoring the instantaneous electric current 16 with the predefined current threshold.
  • the spatial electronic system 10 comprises a first protection switch 24 of the sensitive electronic circuit 12 controlled by the protection function control means 20.
  • the first protection switch 24 is arranged between the rail of power supply 30 of the sensitive electronic protection circuit 12 and the electrical ground of the spatial electronic system 10.
  • the first protection switch 24 is configured to be switched from an open state, also called a blocked state, not allowing an electric current to flow between its terminals, in a closed state, also called a passing state allowing an electric current to flow between its terminals.
  • This switching and the electric discharge of the signal input port 300 of the sensitive electronic circuit 12 consequent to this switching are carried out in a time of less than one hundred microseconds, preferably in a time of less than ten or twenty microseconds.
  • the first protection switch 24 is called the first raw protection switch, with reference to the electrical brutality of the cut-off of said switch.
  • the first protection switch 24 can be a transistor called a field-effect power transistor configured to be able to be switched by the protection function control means 20 of the sensitive electronic circuit 12 according to a switching time between an off state and an on state of less than one hundred microseconds, preferably less than ten or twenty microseconds.
  • the first protection switch 24 can be implemented in the form of two bipolar transistors configured according to a Darlington assembly.
  • N-type field effect transistors can be controlled easily because they require a positive gate voltage in order to turn on.
  • N-type field effect transistors do not withstand high cumulative doses of radiation, or TID (for "Total lonizing Dose" in the Anglo-Saxon literature) and are thus easily destroyed in view of the application currently targeted.
  • TID cumulative doses of radiation
  • P-type field-effect transistors are more resistant to high TIDs.
  • the control of P-type field effect transistors is more complicated because it requires generating negative gate voltages in order to turn on.
  • the use of bipolar transistors mounted in Darlington makes it possible to obtain a protection switch which, on the one hand, holds over time despite high TIDs and, on the other hand, does not present any increased complexity as regards of control.
  • the closing of the first protection switch 24 makes it possible to discharge in less than one hundred microseconds, preferably less than ten or twenty microseconds, the electric current supplying the sensitive electronic circuit 12 so as to cut off the power supply to a particular electronic block of the circuit.
  • sensitive electronics 12 connected to the power supply rail 30.
  • the first protection switch 24 must preferably be arranged as close as possible to the pin of input of the power supply rail 30 of the sensitive electronic circuit 12.
  • the first protection switch 24 is configured to be switched into an on state upon detection of an amplitude of the level of the signal representative of the quantity of spatial radiation greater than the predefined radiation threshold, during an overconsumption of current on a power supply rail 30 by the device if electronics for monitoring the instantaneous electric current 16 associated with the current comparison device 18, said overconsumption of current possibly being the consequence of a singular event caused by space radiation.
  • the spatial electronic system 10 comprises a stop switch 22 of the sensitive electronic circuit 12 controlled by the protection function control means 20.
  • the stop switch 22 is arranged parallel to the first switch of protection 24.
  • the stop switch 22 is configured to be switched from an open state, to a closed state, in a time greater than one hundred microseconds, preferably greater than one millisecond or of the order of a millisecond. To this end, the stop switch 22 is called soft stop switch as opposed to the raw protection switch.
  • the stop switch 22 can be a usual switching transistor of the bipolar transistor type configured to be able to be switched by the protection function control means 20 of the sensitive electronic circuit 12 according to a switching time between a blocked state and an on state greater than one hundred microseconds, preferably greater than one millisecond or of the order of one millisecond.
  • the closure of the stop switch 22 makes it possible to discharge in approximately one millisecond the electric current supplying the sensitive electronic circuit 12 so as to cut off the power supply to a particular electronic block of the sensitive electronic circuit 12 connected to the power supply rail.
  • the shutdown switch 22 is configured to be switched to an on state when there is a request to shutdown the sensitive electronic circuit 12 by the signal processing unit 34 as needed.
  • stop switch 22 may not be necessary if the signal input port 300 protected by the first protection switch 24 of the sensitive electronic circuit 12 does not present any contraindications to rough switching, c that is to say, switching to electrical ground performed in a time of less than one hundred microseconds, preferably less than ten or twenty microseconds.
  • the stop switch 22 can also be switched to an on state upon detection of lesser spatial radiation that can cause a singular event of the micro-locking type, commonly called micro latch-up according to the Anglo-Saxon term. . More particularly, the stop switch 22 can also be switched to an on state upon detection of an overconsumption of current on a supply rail 30 by the electronic device for monitoring the instantaneous electric current 16 associated with the current comparison 18 which may be the consequence of a singular event when this overconsumption is between a first predefined current threshold representative, for example, of a singular event of the micro-locking type, and a second predefined current threshold, representative, for example, of a singular event of the locking type, on the other hand if the overconsumption of current is greater than the second predefined current threshold, the first protection switch 24 switches to the on state.
  • a first predefined current threshold representative for example, of a singular event of the micro-locking type
  • a second predefined current threshold representative, for example, of a singular event of the locking type
  • the spatial electronic system 10 also comprises a means 28 for cutting off the electric power supply delivered to the supply rail 30 of the sensitive electronic circuit 12.
  • a first solution of a means 28 for cutting off the electrical power supply delivered to the power supply rail 30 of the sensitive electronic circuit 12 consists in using a regulation and stabilization device 14 comprising an on/off type input 36 configured to be controlled by the protection function control means 20. More particularly, according to the first solution, the protection function control means 20 are configured on the one hand to activate the regulation and stabilization device 14 by controlling the type input on/off 36 in the on position so as to allow the delivery of a stabilized and regulated power supply to the power supply rail 30, and on the other hand to deactivate the regulation and stabilization device 14 by controlling the on-type input /stop 36 in the stop position so as to cut off the stabilized power supply delivered to the power supply rail 30.
  • This solution may be satisfactory provided that the reaction time of the cut in the supply of the supply rail 30 linked to the deactivation of the regulation and stabilization device 14 is compatible with the desired effect, in particular of protection of the sensitive electronic circuit 12.
  • a second solution of a means 28 for cutting off the electrical power supply delivered to the power supply rail 30 of the sensitive electronic circuit 12 consists arranging a cut-off switch 38 controlled by the protection function control means 20 and allowing the cut-off of the electrical power supply delivered to the power supply rail 30.
  • Said cut-off switch 38 is arranged in series on the electrical supply delivered to the supply rail 30 of the sensitive electronic circuit 12.
  • the spatial electronic system 10 can preferably comprise, for the supply of each of the N supply rails 30 of the sensitive electronic circuit 12, a first protection switch 24 and a stop switch 22, as well as a power supply regulation and stabilization device 14 associated or not, depending on the chosen solution, with a third switch called cut-off switch 38, as described according to FIG. 1.
  • the spatial electronic system 10 can also preferably comprise for the supplying each of the N supply rails of the sensitive electronic circuit 12 or, in common to several supply rails 30, an electronic device for monitoring the instantaneous electric current 16 and a current comparison device 18 as described in FIG. 1.
  • the electrical power supply regulation and stabilization device 14 comprises a step-down type DC/DC converter usual synchronous voltage therefore comprising a series switch with the main power supply input PS and a chopping switch SW1 comprising a diode D1 in parallel and controlled by a chopping control signal Cddc/dc from the signal processing unit 34, the hash control signal Cddc/dc being inverted to drive the serial switch of the main power input PS.
  • the series switch of the main power supply input PS is a cut-off means 28 of the electric power supply delivered to the power supply rail 30 of the sensitive electronic circuit 12 which can therefore be controlled from the signal processing unit 34.
  • the voltage step-down further comprises an inductive element L1 making it possible to form an 'LC' type filter with the load.
  • the electronic device for monitoring the electric current 16 comprises a current sensor comprising a resistor R1 in series between the output of the electric power supply regulation and stabilization device 14 and the at least one power supply rail 30 of the sensitive electronic circuit 12, and an analog differential amplifier A1, connected to the terminals of the series resistor R1, the processing time of which is of the order of a few microseconds, or even a microsecond.
  • the series resistance R1 is of the order of a few tens of milliohms, or even ten milliohms
  • the differential amplifier A1 being an amplifier designed based on bipolar transistors, and provided with a low-pass RC type filter at the output time constant of the order of a tenth of a microsecond.
  • a low-pass filter F1 is arranged in series with the supply of the supply rail 30 of the sensitive electronic circuit 12.
  • the first protection switch 24 is arranged between the supply rail 30 of the sensitive electronic circuit 12 and the electrical ground of the spatial electronic system 10.
  • the first protection switch 24 is controlled by the signal processing unit 34 according to a control signal Cdst in opening or closing according to the detection or not of an instantaneous electric current greater than the predefined current threshold; this overconsumption may be the consequence of a singular event.
  • the raw protection switch may comprise a power field effect transistor of the type P-channel with low conduction impedance and high transconductance.
  • the first protection switch 24 is by default configured in blocked mode, that is to say open, so as not to electrically ground the supply rail 30 of the circuit of the sensitive electronic circuit 12 .
  • the first protection switch 24 can be switched to on mode, that is to say closed, when a singular event, for example of the locking or SEL type, causes an overconsumption of electric current detected on the rail power supply 30.
  • the signal processing unit 34 first of all controls the cut-off of the electrical power supplied to the power supply rail 30 by the opening in just a few microseconds of the cut-off means 28 or DC/DC converter cut-off switch then almost simultaneously with the cut-off of the power supply to the rail 30, the closing of the first protection switch 24 in a time of the order of ten microseconds so as to discharge in an ultra-fast manner the power supply to the electronic blocks of the sensitive electronic circuit 12 powered by the rail 30 of the power supply.
  • This ultra-fast electrical grounding of the power supply rail makes it possible to protect the sensitive electronic circuit 12 from destruction which may, for example and in a non-limiting manner, be caused by a thermal effect (or electromigration) resulting from an event singular causing excessive overconsumption of the electric current detected by the electronic electric current monitoring device 16.
  • This ultra-rapid grounding can generate electric stress on the sensitive electronic circuit 12, so that a limited number of switching mass of the first protection switch 24 is to be provided in this case of stress in order to be able to guarantee a lifetime of the sensitive electronic circuit with regard to spatial requirements.
  • the stop switch 22 called soft stop switch, is arranged electrically in parallel with the first protection switch 24.
  • the stop switch 22 is controlled by the signal processing unit 34 according to a command signal Cdsm in opening or closing according to the need or not to cut the sensitive electronic circuit 12.
  • the cut of the sensitive electronic circuit 12 can be controlled by the signal processing unit 34 when it does not need to be operational.
  • a switching of the order of a millisecond after the power supply delivered to the power supply rail 30 is cut off by the opening of the cut-off means 28 of the DC/DC converter does not generate any electrical stress on the sensitive electronic circuit 12 and can therefore be repeated many times.
  • stop switch 22 may comprise an NPN-type bipolar transistor, controllable in a conventional manner and allowing low current conduction in comparison with the power MOS transistor.
  • the electrical grounding of the supply rail 30 by the stop switch 22 can be controlled by the means protection function control 20 in order to protect the sensitive electronic circuit 12 from degradation following a singular event generating a lesser overconsumption of electric current measured by the electronic electric current monitoring device 16.
  • step-down DC/DC converter of FIG. 2 can also be a step-up type DC/DC converter, this choice depending on the voltage to be supplied to the supply rail 30 of the sensitive electronic circuit 12.
  • FIG. 3 a non-limiting example of a second embodiment of the analog electronics of the spatial electronic system 10 of FIG. 1 is shown.
  • the second embodiment of Figure 3 differs only from the first embodiment shown in Figure 2 in that the power supply regulation and stabilization device 14 is produced by a low voltage drop regulator or LDO.
  • the regulation and stabilization device 14 of this second embodiment comprises an analog structure with multiple bipolar transistors and also an on/off type input 36 driven by an on/off control signal Cdido coming from the protection function control means 20 of the sensitive electronic circuit 12 of the signal processing unit 34.
  • FIG. 4 two groups G1, G2 of two timing diagrams relating to the electrical grounding of two signal input ports of the sensitive electronic circuit are shown. More particularly, a sequence for electrical grounding of a first Rail_A power supply rail of the sensitive electronic circuit 12, and a command for electrical grounding of a second Rail_B power supply rail of the sensitive electronic circuit 12, are represented. According to FIG. 4,
  • the first group G1 represents the sequencing of the electrical grounding of the first Rail_A supply rail and of the second Rail_B supply rail during the closing command of a first stop switch 22 arranged between the first supply Rail_A 30 of the sensitive electronic circuit 12 and the electrical ground of the spatial electronic system 10, and during the command to close a second stop switch, distinct from the first stop switch 22 arranged between the second supply Rail_B 30 of the sensitive electronic circuit 12 and the electrical ground of the spatial electronic system 10.
  • the closing of the first stop switch 22 relating to the first Supply Rail_A 30 is carried out sequentially after the second stop switch 22 relative to the second supply Rail_B 30 is closed.
  • the switching time from the open state to the closed of each of the two stop switches 22 is of the order of a millisecond.
  • This sequencing allows two supply rails Rail_A, Rail_B to be cut without causing electrical stress to the sensitive electronic circuit 12.
  • a soft electrical grounding that is to say a switching from the state open until the closed state of the stop switches 22 of the order of a millisecond for each of the supply rails of the sensitive electronic circuit 12, associated if necessary with sequencing of the electrical grounding of the rails of power supply according to their initial voltage level, makes it possible to cut off all the power supplies of a sensitive electronic circuit without causing electrical stresses that can damage the internal structures of the sensitive electronic circuit 12.
  • a soft electrical grounding makes it possible to cut off all the power supplies of a sensitive electronic circuit 12 so as to avoid degradation relative to a singular event producing low overconsumption current of the sensitive electronic circuit 12.
  • the second group G2 represents a closing sequence of a first protection switch 24 arranged electrically in parallel with the first stop switch 22, and of closing a second protection switch, distinct from the first switch protection 24 arranged electrically in parallel with the second stop switch.
  • the closing of the first protection switch 24 relating to the first supply Rail_A 30 is carried out simultaneously with the closing of the second protection switch relating to the second supply Rail_B 30.
  • the switching time from the open state to the closed state of each of the two protection switches 24 is of the order of ten microseconds.
  • This simultaneous closing of the two protection switches 24 according to a switching time from the open state at the end of the discharge of the order of ten microseconds allows immediate protection of the sensitive electronic circuit 12 so as to avoid degradation of the electronic circuit sensitive 12 following a singular event causing a strong overconsumption of the electric current of the sensitive electronic circuit 12.
  • a raw cut that is to say a cut of the order of ten microseconds of each of the supply rails 30 of the sensitive electronic circuit 12, associated with a grounding quasi simultaneous supply rails, allows to cut all the power supplies of a sensitive electronic circuit 12 so as to avoid destruction relative to a single event.
  • the number of switchings of the protective switches 24 to the electrical ground of the space electronic system 10 must be limited so that the accumulation of electrical stress induced on the sensitive electronic circuit at each switching cannot cause a reduction in the life of the sensitive electronic circuit 12 with regard to spatial requirements. It should be noted that an almost simultaneous grounding, i.e. sequentially, can be envisaged, if the grounding of all the signal input ports, in this case, the All of the supply rails are switched in a cumulative time of the order of ten microseconds.
  • FIG. 4 a third timing diagram group G3 representative of the restoration of the power supply to the first power supply rail Rail_A and to the second power supply rail Rail_B of the sensitive electronic circuit 12 is shown.
  • the opening of the protection switches 24 by the signal processing unit 34 is followed by a sequential closing of the cut-off means 28, 38 of the power supply, that is to say by the switches of break 38 of each of the supply rails Rail_A, Rail_B.
  • This functionality allows automatic rearming of the space electronic system 10 after switching to closure of the protection switches 24 of the sensitive electronic circuit 10, again allowing optimal operation of the space electronic system 10.
  • the opening and closing of the stop switches 22 can be made in a manner similar to that described for protection switches 24.
  • a second embodiment of the spatial electronic system 10 is shown.
  • This second embodiment makes it possible to protect another sensitive electronic circuit of the space electronic system against space radiation that can generate singular events on this other sensitive electronic circuit. More precisely, this second embodiment makes it possible to protect the other sensitive electronic circuit of the spatial electronic system comprising at at least one signal input port 300 and/or one signal output port, the other sensitive electronic circuit being able to be damaged by a singular event.
  • the electric power supply regulation and stabilization device 14 of FIG. cause the degradation or destruction of the regulating and stabilizing device 14 of the electric power supply by thermal effect.
  • a power supply regulation and stabilization device 14 comprising in particular a digital part for configuring the voltage or the current delivered by the signal output port, a singular disturbance event called SEU (Single event upset) can cause the alteration of an output signal configuration register which can cause damage to the component electrically powered by the regulation and stabilization 14, in this case, according to figure 5, said sensitive electronic circuit 2 of figure 1.
  • SEU Single event upset
  • the sensitive electronic circuit 2 and its stop switch 22, as well as the electronic device for monitoring the instantaneous electric current 16 and the current comparison device 18 making it possible to supervise the electric current consumed by the sensitive electronic circuit 2 are not part of the electronic elements allowing the protection of the regulation and stabilization device 14 of the electric power supply against singular events.
  • the space electronic system 10 comprises the signal processing unit 34 comprising means for analyzing electrical signals coming from various sensors of the space electronic system 10, and means protection function control 20 electrically connected to the means for analyzing electrical signals from different sensors of the space electronic system 10.
  • the electronic space radiation detection unit comprises another electric current monitoring device 42 arranged to allow monitoring of the current consumed by the input port 300' of signal, ie the power supply input, of the power supply regulation and stabilization device 14 .
  • the protection function control means 20 of the unit of signal processing 34 are configured to switch from an open state to a conducting state a second protection switch 40 of the same type as the first protection switch 24, the second protection switch 40 being arranged between the input port 300' of signal from the electrical power supply regulation and stabilization device 14 and the electrical ground of the space electronic system 10.
  • the electronic space radiation detection unit comprises another electronic device for monitoring the electrical power supply signal 29 According to FIG.
  • the other electronic device for monitoring the electric power supply signal 29 is an electronic voltage monitoring device 50 configured to detect both overvoltages and undervoltages on the regulated power supply output 32 of the regulating and stabilizing device 14 of electrical power supply.
  • the latter may comprise, for example and in a non-limiting manner, an analog voltage operational amplifier whose processing time is of the order of one microsecond allowing the capture and measurement of the regulated output supply voltage 32, ie as present on the signal output port 301, of the regulation and stabilization device 14 of the electrical supply.
  • the analog voltage amplifier is configured to deliver an image signal of the regulated output supply voltage 32 to a first analog comparator 46 whose processing time is of the order of one microsecond and configured to compare the measured voltage at a first minimum voltage threshold below which the signal processing unit 34 considers that it is an undervoltage which may be the consequence of a singular event, in particular of the disturbance event or SEU type.
  • the analog voltage amplifier is configured to deliver the image signal of the regulated output supply voltage 32 to a second analog comparator 48 whose processing time is of the order of one microsecond and configured to comparing the measured voltage to a second maximum voltage threshold above which the signal processing unit 34 considers that it is an overvoltage which may be the consequence of a singular event, in particular of the disturbance event type or SEU.
  • the spatial electronic system 10 comprises a third protection switch 52, of a type similar to the first protection switch 24, controlled by the protection function control means 20 of the signal processing unit 34.
  • the third protection switch 52 is arranged between the signal output port 301 of the regulation and stabilization device 14 of the electrical power supply and the electrical ground of the system, i.e. - say between the regulated output power supply voltage 32 of the power supply regulation and stabilization device 14 and the electrical ground of the space electronic system 10.
  • the third protection switch 52 is configured to be switched simultaneously with the second protection switch protection 40 by the protection function control means 20 in an on-state, that is to say in a closed state, upon detection of an overvoltage, and also upon detection of an undervoltage by the voltage monitoring device 50.
  • an electrical power supply regulation and stabilization device 14 commonly comprises different stages which may find themselves electrically isolated from each other when the device in question is no longer powered. This is for example the case for a DC/DC type converter which operates by transferring electrical charges between the input stage and the output stage at the rate of the chopping frequency.
  • a grounding only of the output port makes it possible to flow the charges accumulated in the output stage of the device considered, but not the charges accumulated in its input stage.
  • the grounding of the signal input port makes it possible to flow such charges accumulated in the input stage.
  • the grounding of both the signal input port and the signal output port allows better protection of the regulation and stabilization device 14.
  • the spatial electronic system 10 comprises the third protection switch 52 arranged closest to the regulated output 32 of the regulation and stabilization device 14 of electrical power supply and the first protection switch 24 arranged at the most near the supply rail 30 of the sensitive electronic circuit 12.
  • the space electronic system 10 can comprise a single protection switch instead of the first protection switch 24 and the third protection switch 52.
  • Said a single protection switch can preferably be arranged as close as possible to the supply rail 30 of the sensitive electronic circuit 12.
  • the second embodiment of the spatial electronic system 10 comprises a cut-off switch 38 arranged upstream of the regulation and stabilization device 14, that is to say in series between the main power supply input PS and the regulation and stabilization device 14 of the electric power supply.
  • the cut-off switch 38 is controlled to open in a few microseconds prior to the closing of the protection switch or switches, the said protection switches being switched to the state closed in a time of the order of ten microseconds.
  • the space electronic system 10 can therefore comprise at least one first protection switch 24, 40 configured for electrical grounding of the signal input port of a circuit electronics sensitive to space radiation, said first protection switch 24, 40 being controlled to close upon detection of an amplitude of the signal representative of the quantity of space radiation greater than a predefined radiation threshold.
  • the space electronic system 10 may also include at least one shutdown switch 22 arranged electrically in parallel with the at least one protection switch 24, 40, the at least one shutdown switch 22 being configured to put out of operation the sensitive electronic circuit in a so-called soft manner, that is to say according to a switching in the closed state that does not generate electrical stress to the sensitive electronic circuit.
  • FIG. 1 and FIG. 5 the space electronic system 10 can therefore comprise at least one first protection switch 24, 40 configured for electrical grounding of the signal input port of a circuit electronics sensitive to space radiation, said first protection switch 24, 40 being controlled to close upon detection of an amplitude of the signal representative of the quantity of space radiation greater than a predefined radiation threshold.
  • the space electronic system 10 may also include at least one shutdown switch 22
  • the space electronic system 10 can also comprise at least one second protection switch 52 configured for electrical grounding of the signal output port of an electronic circuit sensitive to space radiation, said second protection switch 52 being controlled closed upon detection of an amplitude of the signal representative of the quantity of spatial radiation greater than the predefined radiation threshold.
  • the protection method 100 firstly comprises a step 110 of detecting an amplitude of the signal representative of the quantity of spatial radiation greater than a predefined radiation threshold, such as for example the detection of an amplitude of the electric power supply signal 29 of at least one electric power supply 11 of a plurality of electric power supplies of the sensitive electronic circuit outside at least one range of predefined amplitude values.
  • a predefined radiation threshold such as for example the detection of an amplitude of the electric power supply signal 29 of at least one electric power supply 11 of a plurality of electric power supplies of the sensitive electronic circuit outside at least one range of predefined amplitude values.
  • the step 110 of detecting an amplitude of the electric power supply signal 29 can be a step of detecting an overconsumption of electric current from the electric power supply input of at least one regulation device and stabilization 14 of electrical power supply of a plurality of regulating devices and stabilization 14 of electrical power supply.
  • the method includes a step 130 of switching to electrical ground one or more protective switches 24 of the space electronic system.
  • each of the space electronics protection switches 24 is switched to electrical ground. When several protective switches 24 are switched to ground, the switching can take place simultaneously or almost simultaneously.
  • one or more stop switches 22 of the space electronic system are also switched to electrical ground during step 130.
  • each of the stop switches 22 of the electronic system spatial is switched to electrical ground during step 130.
  • the switching can be done simultaneously or almost simultaneously.
  • the protection method 100 can comprise a step 120 of cutting off the electrical power supplies 11 of the sensitive electronic circuit.
  • a test method 200 guaranteeing a predefined lifetime of the space electronic system 10 is represented.
  • One of the main advantages of the method of the invention is to be able to test on the ground the robustness of the electronic system 10 to space radiation in its hardware configuration intended to be embarked on board a satellite. More particularly, the test is all the more representative of the conditions of an operational mode of the space electronic system 10 on board a satellite in Earth orbit, that the test is carried out according to a method for which the sensitive component 12 is neither devoid of its protective casing, nor thinned in the case of a flip chip type component commonly referred to as the Anglo-Saxon term 'flip chip'.
  • a first step consists of sending penetrating heavy ions or penetrating radiation 210 onto the sensitive electronic circuit 12.
  • the silicon layers of an electronic chip to a depth of a few hundred miti, typically 500 miti.
  • An example of an installation making it possible to generate these heavy ions is the GANIL which allows a penetration of approximately QOOmiti in Si at 60 MeV.cm2/mg in Xe ion.
  • the sending of certain radiation can trigger singular events resulting in the degradation or even the destruction of a sensitive electronic circuit 12 by causing singular events therein. These include X-ray radiation.
  • a step of the test method 200 may consist in carrying out the acquisition 220 of the number of switchings to the electrical ground of the protection switches 24 during the sequence of sending penetrating heavy ions or penetrating radiation. More particularly, this step 210 consists in targeting different geographic zones of the sensitive electronic circuit so as to constrain different electronic blocks of the sensitive electronic circuit 12.
  • each sending of the step of sending ions heavy penetrants or penetrating radiation 210 induces a switching of one or more protection switches 24, each of the switches being able to be automatically switched back to an open state between each sending of the sequence 210.
  • the test method 200 can include, if necessary, a step following the step of sending or bombardment, of switching 230 repeated and complementary to the switching of the protection switches during the step of sending or bombardment, up to a predefined number of switchings to the electrical ground representative of an estimated number of switchings to the electrical ground of the protection switches 24 that can be triggered during the predefined lifetime of the space electronic system 10 in its space environment if the number acquired in the step of acquisition 220 is insufficient.
  • the predefined number of switchings is generally derived from statistics estimated by modeling and feedback from satellites moving at different altitudes in Earth orbit, the level of space radiation possibly depending on the altitude in orbit of the satellite carrying a space electronic system 10. For example, and in a non-limiting manner, the number of switching operations can be of the order of a few hundred over a period of fifteen years.
  • steps 220 and 230 are optional. Indeed, depending on the nature of the penetrating heavy ions or the penetrating radiation implemented during step 210, the targeting of geographical areas of the sensitive electronic circuit 12 is more or less precise. For example, in the case of a test with X-rays, the penetrating radiation is less localized than with heavy ions. Thus, due to this diffuse nature, the penetrating radiation can affect different parts of the sensitive electronic circuit 12 or of the rest of the system 10 leading to having only one trigger for several singular events. Thus, with radiation representative of the space environment during the estimated lifetime of the sensitive electronic circuit 12, the number of switchings from the off state to the on state of a given protection switch 24 may be less than this which is expected in flight during the estimated life of the circuit in question.
  • steps 220 and 230 are of interest. Conversely, with radiation that can be focused precisely on a given geographical zone of the sensitive electronic circuit 12, such as for example with heavy ions, it is hoped that the number of switchings from the off state to the on state of a protection switch 24 given is representative of what is expected in flight during the estimated lifetime of the component. In such cases, the implementation of steps 220 and 230 is not useful.
  • the last step of the test method 200 comprises a step of functional testing 250 of the space electronic system 10 for a predetermined duration and under thermal stress representative of accelerated aging equivalent to the predefined lifetime of the space electronic system 10 on board of a satellite in Earth orbit.
  • functional tests repeated for twelve months under thermal stress of ninety-five degrees at the level of the silicon can be representative of the operation of the space electronic system 10 for eight years with a junction temperature of the sensitive electronic circuit 12 of approximately sixty degrees Celsius with a margin of about ten percent.
  • the test method 200 may comprise, following step 230, a step 240 of determining the state of the structures of the sensitive electronic circuit 12 by imaging the sensitive electronic circuit 12 following the step of sending or bombardment 210.
  • This step makes it possible to verify the effectiveness of the protection switches 24 so that if a structural defect of an electronic block of the sensitive electronic circuit 12 were identified by imaging, then the space electronic system 10 could not be embarked in a satellite.
  • the observation by imagery can consist of an observation of the visible optical type in order to seek to identify/locate significant degradations due to singular events which would be directly visible on the external surface of the sensitive electronic circuit 12.
  • Observation by imagery can also consist of an infrared optical type observation in order to seek to identify/locate absent hot spots on a witness component and through this the zones concerned by a singular event and also to seek to identify/locate degradations on higher and lower level metallizations by taking advantage of the fact that silicon is transparent to infrared.
  • Observation by imagery can also consist of photonic-type observation in order to seek to identify/locate, after masking making it possible to limit the search zone in addition to or replacing infrared imagery, the zones concerned by a singular event during that it is activated, without the problem of infrared penetration limited to non-transparent elements, namely metallizations, and without the problem of the resolution limit due to the wavelength of optical methods.
  • imaging observation can also consist of scanning electronic type observation in order to perform layer-by-layer imaging of the chip with progressive deconstruction by plasma polishing and seek to control the absence of defects in the areas previously identified during the previous steps.
  • the test method 200 may include, following step 230 or 240, a step 250 of functional tests.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Electronic Switches (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

L'invention concerne un système électronique spatial (10) comportant: un circuit électronique sensible (12, 14) aux radiations spatiales comprenant au moins un port d'entrée de signal et/ou au moins un port de sortie de signal; une unité de traitement de signal (34); une unité électronique de détection de radiations spatiales électriquement connecté à l'unité de traitement de signal (34); au moins un interrupteur de protection (24) connecté électriquement entre la masse électrique du système électronique spatial (10) et au moins un des ports d'entrée ou de sortie de signal du circuit électronique sensible (12, 14), et commandé par l'unité de traitement de signal (34); l'unité de traitement de signal (34) étant configurée pour commuter l'au moins un interrupteur de protection (24) à la masse électrique lors de la détection d'une amplitude d'un signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiation prédéfini.

Description

Description
Titre de l'invention : Système électronique spatial Domaine technique de l’invention
La présente invention concerne un système électronique spatial configuré pour résister aux radiations spatiales. Plus particulièrement, l’invention se rapporte à un système électronique spatial capable de détecter un évènement singulier sur un circuit électronique causé par des radiations spatiales et d’y réagir en conséquence.
Technique antérieure
Les systèmes spatiaux, définis selon la ligne de Karman comme des systèmes fonctionnant à plus de cent kilomètres d’altitude, évoluent en environnement radiatif. Cet environnement radiatif est en particulier caractérisé par la présence de deux types de particules : des protons et des ions lourds. Ces particules chargées provoquent des effets dénommés effets singuliers sur les composants électroniques embarqués au sein de tels systèmes.
La réduction des dimensions et paramètres électriques des transistors des composants électroniques embarqués au sein des systèmes spatiaux, rend ces composants de plus en plus sensibles aux perturbations de type radiations spatiales entraînant des évènements singuliers couramment dénommés selon l’acronyme anglo-saxon SEE (Single Event Effects). Ces évènements sont la conséquence d’une impulsion de courant résultant de l’impact dans des zones sensibles du circuit intégré, de particules énergétiques présentes dans l’environnement dans lequel ils fonctionnent. Parmi les différents types d’évènements singuliers, peuvent être mentionnés notamment, l’évènement singulier de verrouillage, dénommés selon l’acronyme anglo-saxon SEL (Single Event Latch Up), qui donnent lieu à des courts- circuits masse-alimentation et peuvent donc conduire à la destruction du circuit intégré par sur-courant, induisant un effet thermique ou encore une électromigration ; l’évènement singulier de destruction, couramment dénommé selon l’acronyme anglo-saxon SEB (Single Event Burnout), qui peut conduire à la destruction d’un composant électronique de puissance suite à l’emballement thermique résultant de la combinaison du déclenchement d’un transistor bipolaire parasite d’un composant électronique de puissance et du déclenchement du mécanisme d’avalanche entraînant un effet multiplicateur du courant électrique à l'intérieur de matériaux initialement isolant du composant électronique de puissance; l’évènement singulier de rupture de grille, couramment dénommé selon l’acronyme anglo-saxon SEGR (Single Event Gâte Rupture), qui peut conduire à la destruction d’un composant à effet de champs à grille isolée due au claquage de l’oxyde de grille induit par le passage d’une unique particule tel un ion lourd, un proton ou un neutron, ou encore un évènement de perturbation par une particule isolée couramment dénommé selon l’acronyme anglo-saxon SEU (Single event upset). Cet évènement de perturbation par une particule isolée est un changement d'état provoqué par une seule particule ionisante frappant un nœud sensible dans un dispositif microélectronique, comme dans un microprocesseur, une mémoire à semi-conducteur, ou des transistors de puissance. Le changement d'état est le résultat de la charge libre créée par ionisation dans ou à proximité d'un nœud important d'un élément logique. L'erreur de la donnée de sortie causée par cet impact est appelée perturbation par une particule isolée.
Les effets singuliers ont pour conséquence un risque d’endommagement voir de destruction de composants électroniques embarqués au sein de tels systèmes réduisant la durée de vie des systèmes. La probabilité de ce risque est liée d’une part à la sensibilité intrinsèque du composant aux protons et aux ions lourds, et d’autre part à l’usage qui est fait du composant, en particulier la tension d’alimentation, la température, et de manière non-générique la durée d’utilisation et la localisation en orbite pendant l’utilisation, l’utilisation étant définie ici comme la période durant laquelle le composant est alimenté électriquement.
A cet effet, il est connu de concevoir des systèmes électroniques pour les systèmes spatiaux comportant au moins un circuit intégré sensible, le circuit intégré sensible comportant une sensibilité aux radiations spatiales provoquant des évènements singuliers, par exemple un circuit intégré de type microcontrôleur ou de type « réseaux logiques programmables » dénommé communément selon l’acronyme anglo saxon FPGA (Field Programmable Gâte Arrays) comprenant un circuit électronique additionnel de surveillance du circuit intégré sensible, ou encore appelé circuit compagnon du circuit intégré sensible. Le circuit compagnon est capable de couper l’alimentation du circuit intégré sensible en cas de détection d’un SEE.
Il est connu également de pouvoir tester les solutions existantes. Une solution connue consiste à exposer un composant électronique potentiellement sensible aux radiations spatiales à une source de proton et une source d’ions lourds afin de pouvoir confirmer ou infirmer la sensibilité du composant électronique, et donc des composants électroniques issus du même lot de fabrication; caractériser le cas échéant cette sensibilité et établir le cas échéant un indice partiel de fiabilité court- terme de l’efficacité du circuit compagnon par la vérification d’absence de défaillances pouvant être causées par des évènements singuliers dans les fonctionnalités du composant. L’exposition à la source d’ions lourds précitée capable de déclencher un évènement singulier de manière exhaustive, nécessite l’ouverture du boîtier du composant électronique sous test, ou l’amincissement de la puce électronique sur les composants de type flip-chip. Plus particulièrement de manière industrielle, on parlera d’exposition à une source d’ions lourds à pénétration limitée, c’est à dire pénétrant de quelques dizaines de micromètres dans les couches de silicium des puces électroniques. Un exemple d’installation permettant de générer ces ions lourds à pénétration limitée est la ligne d’ions lourds de l’université catholique de Louvain (UCL) qui ne pénètrent dans le silicium que de 50 pm à 60 MeV.cm2/mg en ion Xe.
Cependant les solutions mises en place ne permettent pas de pouvoir éviter de manière déterministe les effets des évènements singuliers même si on y intègre un dispositif spécifique lors de sa conception. Les solutions mises en place ne permettent également pas de garantir de manière industrielle efficace, c’est-à-dire selon des contraintes de temps, de coût et de risque, la durée de vie du composant électronique sensible muni d’un circuit compagnon et embarqué au sein d’un système spatial. Les raisons de cette problématique sont du fait notamment de l’ouverture et l’amincissement du composant réduisant la capacité du composant à dissiper la chaleur produite lors de son fonctionnement nominal et empêchent son utilisation de manière représentative. De plus, en cas de conclusion négative du test de durée de vie, on ne se sait pas distinguer la part de l’échec due à l’ouverture du boîtier du composant électronique sous test, ou l’amincissement de la puce électronique sur les composants de type flip-chip, et la part d’échec due à un évènement singulier provoqué par l’exposition aux radiations de protons et d’ions lourds.
Présentation de l'invention
La présente invention vise à remédier à ces inconvénients avec une approche totalement novatrice. A cet effet, selon un premier aspect, la présente invention se rapporte à un système électronique spatial comportant : un circuit électronique sensible aux radiations spatiales comprenant au moins un port d’entrée de signal et/ou au moins un port de sortie de signal ; une unité de traitement de signal ; une unité électronique de détection de radiations spatiales électriquement connectée à l’unité de traitement de signal ; au moins un interrupteur de protection connecté électriquement entre la masse électrique du système électronique spatial et au moins un des ports d’entrée ou de sortie de signal du circuit électronique sensible, et commandé par l’unité de traitement de signal ; l’unité de traitement de signal étant configurée pour commuter l’au moins un interrupteur de protection à la masse électrique lors de la détection d’une amplitude d’un signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiation prédéfini, l’au moins un interrupteur de protection comportant un montage en Darlington de 2 transistors bipolaires, configuré pour être commuté d’un état électrique bloqué à un état électrique passant en un temps de moins de cent microsecondes, de préférence moins de dix microsecondes.
Le montage en Darlington est intéressant pour les composants à faible consommation.
L’invention est mise en oeuvre selon les modes de réalisation et les variantes exposées ci-après, lesquelles sont à considérer individuellement ou selon toute combinaison techniquement opérante.
Avantageusement, le circuit électronique sensible aux radiations spatiales peut comprendre au moins un port de sortie de signal, dans lequel l’un au moins des interrupteurs de protection est connecté électriquement au port de sortie de signal. Ce dispositif est avantageux pour les circuits comportant un port de sortie tels les composants de puissance, en particulier les dispositifs régulation et de stabilisation, ou les horloges.
Avantageusement, le circuit électronique sensible aux radiations spatiales peut comprendre au moins un port d’entrée de signal et au moins un port de sortie de signal, le système comportant : un premier interrupteur de protection connecté électriquement entre la masse électrique du système électronique spatial et le port d’entrée de signal ; un second interrupteur de protection connecté électriquement entre la masse électrique du système électronique spatial et le port de sortie de signal. Avantageusement, le système électronique peut comprendre au moins un interrupteur d’arrêt agencé électriquement en parallèle avec l’au moins un interrupteur de protection, l’unité de traitement de signal étant configurée pour commuter l’interrupteur d’arrêt à la masse électrique lors d’une mise hors service du circuit électronique sensible. L’au moins un interrupteur d’arrêt peut comporter un transistor bipolaire configuré pour être commuté d’un état électrique bloqué à un état électrique passant en un temps supérieur à cent microsecondes, préférentiellement supérieur à une milliseconde.
Avantageusement, l’unité électronique de détection de radiations spatiales peut comprendre un dispositif électronique de surveillance du courant électrique du port d’entrée de signal. Avantageusement, l’unité électronique de détection de radiations spatiales peut comprendre un dispositif électronique de surveillance de tension électrique du port de sortie de signal.
Avantageusement, l’au moins un port d’entrée de signal peut être un rail d’alimentation électrique du circuit électronique sensible.
Selon un second aspect, la présente invention se rapporte à une méthode de protection du circuit électronique sensible du système électronique spatial décrit ci- dessus, la méthode de protection comprenant les étapes de : détection d’une amplitude du signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiation prédéfini ; et de commutation à la masse électrique d’au moins un interrupteur de protection.
Avantageusement, le système électronique spatial peut comporter au moins deux interrupteurs de protection de sorte que l’étape de commutation de la méthode de protection peut comprendre la commutation à la masse électrique de chacun des au moins deux interrupteurs de protection de manière simultanée. Avantageusement, la méthode de protection peut comprendre une étape de coupure des alimentations électriques du circuit électronique sensible, de préférence cette étape de coupure précédant l’étape de commutation à la masse électrique du au moins un interrupteur de protection.
Selon un troisième aspect, la présente invention se rapporte à une méthode de test garantissant une durée de vie prédéfinie du système électronique spatial décrit ci- dessus, la méthode de test comportant les étapes au sol de : envoi d’ions lourds pénétrants ou de rayonnement pénétrant apte à créer du latch-up sur le circuit électronique sensible ; tests fonctionnels du système électronique spatial suite à l’étape d’envoi d’ions lourds pénétrants ou de rayonnement pénétrant, pendant une durée prédéterminée et sous contrainte thermique représentatives d’un vieillissement accéléré équivalent à la durée de vie prédéfinie du système électronique spatial embarqué à bord d’un satellite en orbite terrestre. Avantageusement, la méthode de test peut comprendre de plus les étapes au sol de : acquisition du nombre de commutation de l’état bloqué à l’état passant d’au moins un interrupteur de protection durant l’étape d’envoi ; comparaison du nombre de commutation acquis avec un nombre prédéfini de commutations à la masse électrique représentatif d’un nombre estimatif de commutations à la masse électrique pouvant se déclencher durant la durée de vie prédéfinie du système électronique dans son environnement spatial ; si le nombre de commutation acquis est inférieur au nombre prédéfini de commutations, commutation répétée et complémentaire aux commutations de l’au moins un interrupteur de protection durant l’étape d’envoi d’ion lourds pénétrants ou de rayonnement pénétrant, jusqu’à un nombre prédéfini de commutations à la masse électrique représentatif d’un nombre estimatif de commutations à la masse électrique pouvant se déclencher durant la durée de vie prédéfinie du système électronique dans son environnement spatial.
Cette méthode de test se fait préférentiellement sur un composant qui n’a été ni dépourvu de son boîtier de protection ni aminci dans le cas d’un composant de type puce retournée (flip chip). Autrement dit le test se fait dans la configuration hardware prévue pour être embarquée sur satellite.
L’invention est mise en oeuvre selon les modes de réalisation et les variantes exposées ci-après, lesquelles sont à considérer individuellement ou selon toute combinaison techniquement opérante.
Avantageusement, la méthode de test peut comprendre de plus une étape de déter mination de l’état des structures du circuit électronique sensible par imagerie du circuit électronique sensible suite à l’étape d’envoi d’impulsions d’ions lourds pénétrants ou de rayonnement pénétrant.
Brève description des figures
D’autres avantages, buts et caractéristiques de la présente invention ressortent de la description qui suit faite, dans un but explicatif et nullement limitatif, en regard des dessins annexés, dans lesquels : [Fig.1 ] est une représentation schématique d’un système électronique spatial selon un premier mode de réalisation.
[Fig.2] est une représentation schématique détaillée d’une portion analogique du système électronique spatial selon un premier mode de réalisation.
[Fig.3] est une représentation schématique détaillée d’une portion analogique du système électronique spatial selon un second mode de réalisation.
[Fig.4] 4 est une représentation schématique de chronogrammes de commutations des interrupteurs du système électronique spatial de la figure 1.
[Fig.5] est une représentation schématique d’un système électronique spatial selon un second mode de réalisation.
[Fig.6] est une représentation d’un organigramme d’une méthode de protection d’un circuit électronique spatial sensible aux radiations spatiales.
[Fig.7] est une représentation d’un organigramme d’une méthode garantissant la robustesse aux radiations spatiales du système électronique de protection selon l’invention.
Description des modes de réalisation
Selon la figure 1 , un premier mode de réalisation d’un système électronique 10 spatial comportant un circuit électronique sensible 12, configuré pour être embarqué à bord d’un satellite est représenté. Le circuit électronique sensible 12, est, de par sa conception, intrinsèquement sensible aux bombardements de particules énergétiques présentes dans l’espace. Plus particulièrement, le circuit électronique sensible 12 est configuré pour être opérationnel dans un environnement radiatif caractérisé par la présence de protons et d’ions lourds pouvant générer des évènements singuliers entraînant l’endommagement ou la destruction du circuit électronique sensible 12. Plus particulièrement, l’endommagement du circuit électronique sensible 12 peut causer une perte de fiabilité du système électronique ne permettant plus de garantir une durée de vie du système électronique 10 conforme aux attentes, c’est-à-dire par exemple et de manière non limitative, une durée de vie de dix ans du système électronique 10 embarqué dans un satellite évoluant en orbite terrestre.
Le circuit électronique sensible 12 comporte au moins un port d’entrée 300 de signal tel que par exemple une entrée d’alimentation électrique, connectée électriquement au rail d’alimentation 30, configurée pour distribuer une alimentation électrique à divers blocs électroniques du circuit électronique sensible 12. De manière générale, le circuit électronique sensible 12 peut comporter une pluralité de ports d’entrée de signal. Plus particulièrement, le circuit électronique sensible 12 peut comporter N rails d’alimentation 30, pouvant être de différents niveaux de tension continue ou de courant électrique continu, chaque rail d’alimentation 30 distribuant une alimentation électrique à un bloc électronique particulier du circuit électronique sensible 12. A titre d’exemple et de manière non limitative, un premier rail d’alimentation 30 peut distribuer une alimentation électrique à un bloc numérique de calcul du circuit électronique sensible 12, un second rail d’alimentation peut distribuer une alimentation électrique à un bloc mémoire du circuit électronique sensible 12, un troisième rail d’alimentation pouvant distribuer une alimentation électrique à un bloc analogique du circuit électronique sensible 12. De manière non limitative, le circuit électronique sensible 12 peut être un microcontrôleur, un circuit de type réseaux logiques programmables, ou encore un circuit intégré propre à une application dénommée communément ASIC.
Selon la figure 1 , le système électronique 10 spatial comporte une entrée principale d’alimentation PS configurée pour fournir une alimentation électrique 11 à un dispositif de régulation et stabilisation 14 d’alimentation électrique. Le dispositif de régulation et stabilisation 14 d’alimentation électrique comprend une sortie régulée d’alimentation 32 configurée pour fournir un signal électrique d’alimentation 29 de préférence à au moins un rail d’alimentation 30 du circuit électronique sensible 12. De manière particulière et non limitative, le dispositif de régulation et stabilisation 14 d’alimentation électrique peut comprendre soit un régulateur à faible chute de tension, dénommée couramment régulateur LDO, permettant de réguler la tension de sortie du régulateur même lorsque la tension d'alimentation du régulateur est très proche de la tension de sortie, soit un convertisseur de type continu/continu. Selon la figure 1 , le système électronique spatial 10 comporte une unité électronique de détection de radiations spatiales. L’unité électronique de détection de radiations spatiales peut être par exemple un capteur de radiation détectant directement la quantité de radiations spatiales au niveau du système électronique spatial 10 ou encore plus particulièrement, un dispositif électronique de surveillance du signal électrique d’alimentation 29, le signal électrique d’alimentation pouvant être altéré par un évènement singulier sur le circuit électronique sensible 12 faisant suite à l’exposition du système électronique spatial 10 dans un environnement spatial fortement radiatif. L’altération du signal électrique d’alimentation permet une détection indirecte de la quantité de radiations spatiales au niveau du système électronique spatial 10. A cet effet, le dispositif électronique de surveillance du signal électrique d’alimentation 29 est un dispositif électronique de surveillance du courant électrique 16 instantané délivré par le dispositif de régulation et stabilisation 14 d’alimentation électrique et consommé sur l’au moins un rail d’alimentation 30 du circuit électronique sensible 12 connecté électriquement à la sortie régulée d’alimentation 32. Le dispositif électronique de surveillance du courant électrique 16 peut comprendre différents moyens de capteurs de courant tel que par exemple des capteurs de courant à effet Hall ou des capteurs de mesures différentielles du courant consommé par l’au moins un rail d’alimentation 30.
Selon la figure 1 , le système électronique spatial 10 comporte une unité de traitement de signal 34 comprenant des moyens d’analyse de signaux électriques issus de différents capteurs du système électronique spatial 10, et des moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 reliés électriquement aux moyens d’analyse de signaux électriques issus de différents capteurs du système électronique 10. Les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 peuvent comprendre par exemple et de manière non limitative, une unité numérique de traitement de type FPGA ou tout autre circuit électronique numérique de type logique permettant de de traiter des informations et de délivrer des signaux de commandes.
Les moyens d’analyse de signaux électriques de l’unité de traitement de signal 34 sont configurés pour comparer une amplitude d’un signal représentative de la quantité de radiations spatiales détectée directement ou indirectement par l’unité électronique de détection de radiations spatiales avec un premier seuil de radiation prédéfini. Plus particulièrement, les moyens d’analyse de signaux électriques de l’unité de traitement de signal 34 comprennent au moins un dispositif de comparaison de courant 18 relié électriquement au dispositif électronique de surveillance du courant électrique 16 instantané et configuré pour comparer l’amplitude du courant mesuré par le dispositif électronique de surveillance du courant électrique 16 instantané avec un seuil de courant prédéfini. Le seuil de courant prédéfini peut être ajusté par les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12. De manière particulière le dispositif de comparaison de courant 18 comprend un comparateur analogique dont le temps de traitement est de l’ordre de quelques microsecondes voire une microseconde pouvant comporter un filtre passe-bas en entrée de type filtre RC de constante de temps de l’ordre du dixième de microseconde, voire une microseconde et un filtre passe-bas en sortie de type filtre RC de constante de temps de l’ordre du centième de microseconde, voire un centième de microseconde.
Les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 sont configurés pour commander des dispositifs électroniques de protection du circuit électronique sensible 12 selon notamment le résultat de la comparaison de l’amplitude du signal représentative d’une quantité de radiation détecté par l’unité électronique de détection de radiations spatiales avec le premier seuil de radiation prédéfini. Plus particulièrement, selon la figure 1 , les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 sont configurés pour commander des dispositifs électroniques de protection du circuit électronique sensible 12 selon notamment le résultat de la comparaison de l’amplitude du courant mesuré par le dispositif électronique de surveillance du courant électrique 16 instantané avec le seuil de courant prédéfini.
A cet effet, selon la figure 1 , le système électronique spatial 10 comporte un premier interrupteur de protection 24 du circuit électronique sensible 12 commandé par les moyens de contrôle de fonctions de protection 20. Le premier interrupteur de protection 24 est agencé entre le rail d’alimentation 30 du circuit électronique sensible 12 de protection et la masse électrique du système électronique spatial 10. Le premier interrupteur de protection 24 est configuré pour être commuté d’un état ouvert, dit encore état bloqué ne laissant pas circuler un courant électrique entre ses bornes, à un état fermé, dit encore état passant laissant circuler un courant électrique entre ses bornes. Cette commutation et la décharge électrique du port d’entrée 300 de signal du circuit électronique sensible 12 conséquente à cette commutation sont réalisées en un temps inférieur à cent microsecondes, de préférence en un temps inférieur à dix ou vingt microsecondes.
Une telle rapidité de commutation est par exemple intéressante pour la réalisation de tests au sol à base de rayons X, comme décrit ci-dessous en relation avec la figure 7, qui peuvent engendrer un stress thermique important du composant testé avec risque de destruction. En vol comme en cas de test au sol à base d’ion lourds, le stress thermique est moins important, mais une commutation rapide est également utile. A cet effet, le premier interrupteur de protection 24 est dénommé premier interrupteur brut de protection, par référence à la brutalité électrique de coupure dudit interrupteur. A cet effet, et de manière non limitative, le premier interrupteur de protection 24 peut être un transistor dit transistor de puissance à effet de champs configuré pour pouvoir être commuté par les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 selon un temps de commutation entre un état bloqué à un état passant de moins de cent microsecondes, de préférence moins de dix ou vingt microsecondes. Alternativement, le premier interrupteur de protection 24 peut être implémenté sous la forme de deux transistors bipolaires configurés selon un montage Darlington. En effet, les transistors à effet de champs de type N peuvent être contrôlés facilement car ils nécessitent une tension de grille positive afin de devenir passant. Cependant, les transistors à effet de champs de type N ne tiennent pas de fortes doses cumulées de radiations, ou TID (pour « Total lonizing Dose » dans la littérature anglo-saxonne) et sont ainsi facilement détruits au vu de l’application présentement visée. A contrario, les transistors à effet de champs de type P sont plus résistants vis-à-vis de fortes TID. Cependant, le contrôle des transistors à effet de champs de type P est plus compliqué car nécessitant de générer des tensions de grille négatives afin de devenir passant. Ainsi, l’utilisation de transistors bipolaires montés en Darlington permet d’obtenir un interrupteur de protection qui, d’une part, tient dans la durée malgré de fortes TID et, d’autre part ne présente pas de complexité accrue pour ce qui est du contrôle.
La fermeture du premier interrupteur de protection 24 permet de décharger en moins de cent microsecondes, de préférence moins de dix ou vingt microsecondes, le courant électrique alimentant le circuit électronique sensible 12 de sorte à couper l’alimentation d’un bloc électronique particulier du circuit électronique sensible 12 connecté au rail d’alimentation 30. Pour des raisons d’efficacité de décharges du rail d’alimentation 30 du circuit électronique sensible 12, le premier interrupteur de protection 24 doit être agencé de préférence au plus près de la broche d’entrée du rail d’alimentation 30 du circuit électronique sensible 12. De manière fonctionnelle, le premier interrupteur de protection 24 est configuré pour être commuté dans un état passant lors d’une détection d’une amplitude du niveau du signal représentative de la quantité de radiations spatiales supérieure au seuil de radiation prédéfini, lors d’une surconsommation de courant sur un rail d’alimentation 30 par le dispositif électronique de surveillance du courant électrique 16 instantané associé au dispositif de comparaison de courant 18, ladite surconsommation de courant pouvant être la conséquence d’un évènement singulier causé par des radiations spatiales.
Selon la figure 1 , le système électronique spatial 10 comporte un interrupteur d’arrêt 22 du circuit électronique sensible 12 commandé par les moyens de contrôle de fonctions de protection 20. L’interrupteur d’arrêt 22 est agencé de manière parallèle au premier interrupteur de protection 24. L’interrupteur d’arrêt 22 est configuré pour être commuté d’un état ouvert, à un état fermé, en un temps supérieur à cent microsecondes, préférentiellement supérieur à une milliseconde ou de l’ordre de la milliseconde. A cet effet, l’interrupteur d’arrêt 22 est dénommé interrupteur doux de mise en arrêt par opposition à l’interrupteur brut de protection. A cet effet, et de manière non limitative, l’interrupteur d’arrêt 22 peut être un transistor usuel de commutation de type transistor bipolaire configuré pour pouvoir être commuté par les moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 selon un temps de commutation entre un état bloqué à un état passant supérieur à cent microsecondes, préférentiellement supérieur à une milliseconde ou de l’ordre d’une milliseconde. La fermeture de l’interrupteur d’arrêt 22 permet de décharger en environ une milliseconde le courant électrique alimentant le circuit électronique sensible 12 de sorte à couper l’alimentation d’un bloc électronique particulier du circuit électronique sensible 12 connecté au rail d’alimentation 30. De manière générale, l’interrupteur d’arrêt 22 est configuré pour être commuté dans un état passant lors d’une demande de mise à l’arrêt du circuit électronique sensible 12 par l’unité de traitement de signal 34 selon le besoin ou non d’activer le circuit électronique sensible 12 au regard du profil de la mission du satellite. Un des avantages de l’agencement de l’interrupteur d’arrêt 22 est de pouvoir rendre hors service le circuit électronique sensible sans engendrer de stress électrique sur le port d’entrée 300 de signal du circuit électronique sensible. A cet effet, l’interrupteur d’arrêt 22 peut ne pas être nécessaire si le port d’entrée 300 de signal protégé par le premier interrupteur de protection 24 du circuit électronique sensible 12 ne présente pas de contre-indications aux commutations brutes, c’est-à-dire aux commutations à la masse électrique effectuées en un temps inférieur à cent microsecondes, de préférence inférieur à dix ou vingt microsecondes. De manière particulière, l’interrupteur 22 d’arrêt peut être également commuté dans un état passant lors de la détection de radiation spatial moindre pouvant causer un événement singulier de type micro-verrouillage, dénommé couramment selon le terme anglo-saxon micro latch-up. Plus particulièrement, l’interrupteur 22 d’arrêt peut être également commuté dans un état passant lors de la détection d’une surconsommation de courant sur un rail d’alimentation 30 par le dispositif électronique de surveillance du courant électrique 16 instantané associé au dispositif de comparaison de courant 18 pouvant être la conséquence d’un évènement singulier lorsque cette surconsommation est comprise entre un premier seuil de courant prédéfini représentatif par exemple à un évènement singulier de type micro-verrouillage, et un second seuil de courant prédéfini représentatif par exemple à un évènement singulier de type verrouillage, par contre si la surconsommation de courant est supérieure au second seuil de courant prédéfini, le premier interrupteur de protection 24 commute en état passant.
Selon la figure 1 , le système électronique spatial 10 comporte également un moyen de coupure 28 de l’alimentation électrique délivrée au rail d’alimentation 30 du circuit électronique sensible 12. A cet effet, selon la figure 1 , deux options relatives à la coupure de l’alimentation électrique délivrée au rail d’alimentation 30 sont re présentées.
Une première solution d’un moyen de coupure 28 de l’alimentation électrique délivrée au rail d’alimentation 30 du circuit électronique sensible 12 consiste à utiliser un dispositif de régulation et stabilisation 14 comportant une entrée de type marche/ arrêt 36 configurée pour être pilotée par les moyens de contrôle de fonctions de protection 20. Plus particulièrement, selon la première solution, les moyens de contrôle de fonctions de protection 20 sont configurés d’une part pour activer le dispositif de régulation et stabilisation 14 en commandant l’entrée de type marche/arrêt 36 en position de marche de sorte à permettre la délivrance d’une alimentation stabilisée et régulée au rail d’alimentation 30, et d’autre part pour désactiver le dispositif de régulation et stabilisation 14 en commandant l’entrée de type marche/arrêt 36 en position d’arrêt de sorte à couper l’alimentation stabilisée délivrée au rail d’alimentation 30. Cette solution peut être satisfaisante sous condition que le temps de réaction de la coupure de l’alimentation du rail d’alimentation 30 liée à la désactivation du dispositif de régulation et stabilisation 14 soit compatible avec l’effet recherché, notamment de protection du circuit électronique sensible 12.
A cet effet, afin de s’affranchir de toute contraintes de conception du dispositif de régulation et stabilisation 14, une seconde solution d’un moyen de coupure 28 de l’alimentation électrique délivrée au rail d’alimentation 30 du circuit électronique sensible 12 consiste à agencer un interrupteur de coupure 38 commandé par les moyens de contrôle de fonctions de protection 20 et permettant la coupure de l’alimentation électrique délivrée au rail d’alimentation 30. Ledit interrupteur de coupure 38 est agencé en série sur l’alimentation électrique délivrée au rail d’alimentation 30 du circuit électronique sensible 12.
Selon l’invention, le système électronique spatial 10 peut de préférence comprendre pour l’alimentation de chacun des N rails d’alimentations 30 du circuit électronique sensible 12, un premier interrupteur de protection 24 et un interrupteur d’arrêt 22, ainsi qu’un dispositif de régulation et stabilisation 14 d’alimentation électrique associé ou non, selon la solution choisie, à un troisième interrupteur dit interrupteur de coupure 38, tel que décrit selon la figure 1. Le système électronique spatial 10 peut également de préférence comprendre pour l’alimentation de chacun des N rails d’alimentations du circuit électronique sensible 12 ou de manière commune à plusieurs rails d’alimentations 30 un dispositif électronique de surveillance du courant électrique 16 instantané et un dispositif de comparaison de courant 18 tels que décrits à la figure 1.
Selon la figure 2, un exemple non limitatif d’un premier mode de réalisation de l’électronique analogique du système électronique spatial 10 de la figure 1 est re présenté. A cet effet, l’unité de traitement de signal 34 n’est pas représentée sur la figure 2. A titre d’exemple non limitatif, le dispositif de régulation et stabilisation 14 d’alimentation électrique comprend un convertisseur continu/continu de type abaisseur de tension synchrone usuel comportant donc un interrupteur série avec l’entrée principale d’alimentation PS et un interrupteur de hachage SW1 comportant une diode D1 en parallèle et commandé par un signal de commande de hachage Cddc/dc depuis l’unité de traitement de signal 34, le signal de commande de hachage Cddc/dc étant inversé pour piloter l’interrupteur série de l’entrée principale d’alimentation PS. Il est à noter que l’interrupteur série de l’entrée principale d’alimentation PS est un moyen de coupure 28 de l’alimentation électrique délivrée au rail d’alimentation 30 du circuit électronique sensible 12 pouvant donc être commandé depuis l’unité de traitement de signal 34. L’abaisseur de tension comprend de plus un élément inductif L1 permettant de former un filtre de type ‘LC’ avec la charge.
Selon la figure 2, le dispositif électronique de surveillance du courant électrique 16 comprend un capteur de courant comportant une résistance R1 en série entre la sortie du dispositif de régulation et stabilisation 14 d’alimentation électrique et l’au moins un rail d’alimentation 30 du circuit électronique sensible 12, et un amplificateur différentiel A1 analogique, connecté aux bornes de la résistance R1 série, dont le temps de traitement est de l’ordre de quelques microsecondes, voir une microseconde. De préférence la résistance R1 série est de l’ordre de quelques dizaines de milliohms, voire dix milliohms, l’amplificateur différentiel A1 étant un amplificateur conçu à base de transistors bipolaires, et muni d’un filtre de type RC passe-bas en sortie de constante de temps de l’ordre du dixième de microseconde. Afin de limiter les ondulations dues au hachage de l’abaisseur de tension, un filtre F1 passe bas est agencé en série avec l’alimentation du rail d’alimentation 30 du circuit électronique sensible 12.
Selon la figure 2 et conformément à la figure 1 , le premier interrupteur de protection 24, dénommé premier interrupteur brut de protection, est agencé entre le rail d’alimentation 30 du circuit électronique sensible 12 et la masse électrique du système électronique spatial 10. Le premier interrupteur de protection 24 est commandé par l’unité de traitement de signal 34 selon un signal de commande Cdst en ouverture ou en fermeture selon la détection ou non d’un courant électrique instantané supérieur au seuil de courant prédéfini ; cette surconsommation pouvant être la conséquence d’un évènement singulier. Par exemple et de manière non limitative, afin de supporter la contrainte d’une commutation dans un état fermé dans un temps de l’ordre de dix microsecondes, l’interrupteur brut de protection peut comprendre un transistor à effet de champs de puissance de type canal-P comportant une faible impédance de conduction et une grande transconductance. De manière fonctionnelle, le premier interrupteur de protection 24 est par défaut configuré en mode bloqué, c’est-à-dire ouvert, de sorte à ne pas mettre à la masse électrique le rail d’alimentation 30 du circuit du circuit électronique sensible 12.
Le premier interrupteur de protection 24 peut être commuté en mode passant, c’est- à-dire fermé, lorsqu’un évènement singulier, par exemple de type verrouillage ou SEL, provoque une surconsommation de courant électrique détectée sur le rail d’alimentation 30. A cet effet, l’unité de traitement de signal 34 commande tout d’abord la coupure de l’alimentation électrique délivrée au rail d’alimentation 30 par l’ouverture en à peine quelques microsecondes du moyen de coupure 28 ou in terrupteur de coupure du convertisseur continu/continu puis de manière quasi si multanée avec la coupure de l’alimentation du rail 30, la fermeture du premier in terrupteur de protection 24 en un temps de l’ordre de dix microsecondes de sorte à décharger de manière ultra rapide l’énergie d’alimentation des blocs électroniques du circuit électronique sensible 12 alimentés par le rail 30 d’alimentation. Cette mise à la masse électrique ultra rapide du rail d’alimentation permet de protéger le circuit électronique sensible 12 d’une destruction pouvant, par exemple et de manière non limitative, être causée par un effet thermique (ou une électromigration) conséquent à un évènement singulier provoquant une surconsommation excessive du courant électrique détecté par le dispositif électronique de surveillance du courant électrique 16. Cette mise à la masse ultra rapide peut engendrer un stress électrique sur le circuit électronique sensible 12, de sorte qu’un nombre limité de commutation à la masse du premier interrupteur de protection 24 est à prévoir dans ce cas de stress afin de pouvoir garantir une durée de vie du circuit électronique sensible au regard des exigences spatiales.
A cet effet et selon la figure 2, l’interrupteur d’arrêt 22, dénommé interrupteur doux de mise en arrêt, est agencé électriquement en parallèle avec le premier interrupteur de protection 24. L’interrupteur d’arrêt 22 est commandé par l’unité de traitement de signal 34 selon un signal de commande Cdsm en ouverture ou en fermeture selon le besoin ou non de couper le circuit électronique sensible 12. Par exemple et de manière non limitative, la coupure du circuit électronique sensible 12 peut être commandée par l’unité de traitement de signal 34 lorsque celui-ci n’a pas besoin d’être opérationnel. Une commutation de l’ordre de la milliseconde après la coupure de l’alimentation électrique délivrée au rail d’alimentation 30 par l’ouverture du moyen de coupure 28 du convertisseur continu/continu ne génère aucun stress électrique sur le circuit électronique sensible 12 et peut donc être répétée de nombreuses fois. A titre d’exemple non limitatif, l’interrupteur d’arrêt 22 peut comprendre un transistor bipolaire de type NPN, pilotable de manière classique et permettant la conduction de courant faible en comparaison avec le transistor MOS de puissance. De façon particulière, la mise à la masse électrique du rail d’alimentation 30 par l’interrupteur d’arrêt 22 peut être commandée par les moyens de contrôle de fonctions de protection 20 afin de protéger le circuit électronique sensible 12 d’une dégradation consécutive à un évènement singulier engendrant une surconsommation de courant électrique moindre mesurée par le dispositif électronique de surveillance du courant électrique 16.
De manière générale, il est à noter que le convertisseur continu/continu abaisseur de tension de la figure 2 peut également être un convertisseur continu/continu de type élévateur de tension, ce choix dépendant de la tension devant être délivré au rail d’alimentation 30 du circuit électronique sensible 12.
Selon la figure 3, un exemple non limitatif d’un second mode de réalisation de l’électronique analogique du système électronique spatial 10 de la figure 1 est re présenté. Le second mode de réalisation de la figure 3 diffère uniquement du premier mode de réalisation représenté à la figure 2 en ce que le dispositif de régulation et stabilisation 14 d’alimentation électrique est réalisé par un régulateur à faible chute de tension ou LDO. Le dispositif de régulation et stabilisation 14 de ce second mode de réalisation comprend une structure analogique à multiple transistors bipolaires et également une entrée de type marche/arrêt 36 pilotée par un signal de commande marche/arrêt Cdido provenant des moyens de contrôle de fonctions de protection 20 du circuit électronique sensible 12 de l’unité de traitement de signal 34.
Selon la figure 4, deux groupes G1 , G2 de deux chronogrammes relatifs aux mises à la masse électrique de deux ports d’entrée de signal du circuit électronique sensible sont représentés. Plus particulièrement, une séquence de mise à la masse électrique d’un premier rail d’alimentation Rail_A du circuit électronique sensible 12, et une commande de mise à la masse électrique d’un second rail d’alimentation Rail_B du circuit électronique sensible 12, sont représentés. Selon la figure 4, le premier groupe G1 représente le séquencement de la mise à la masse électrique du premier rail d’alimentation Rail_A et du second rail d’alimentation Rail_B lors de la commande en fermeture d’un premier interrupteur d’arrêt 22 agencé entre le premier Rail_A d’alimentation 30 du circuit électronique sensible 12 et la masse électrique du système électronique spatial 10, et lors de la commande de fermeture d’un second interrupteur d’arrêt, distinct du premier interrupteur d’arrêt 22 agencé entre le second Rail_B d’alimentation 30 du circuit électronique sensible 12 et la masse électrique du système électronique spatial 10. Selon le premier groupe G1 de chronogrammes, la fermeture du premier interrupteur d’arrêt 22 relatif au premier Rail_A d’alimentation 30 est effectué de manière séquentielle après la fermeture du second interrupteur d’arrêt 22 relatif au second Rail_B d’alimentation 30. Selon le premier groupe G1 de chronogrammes, le temps de commutation de l’état ouvert à l’état fermé de chacun des deux interrupteurs d’arrêt 22 est de l’ordre d’une milliseconde. Ce séquencement permet une coupure de deux rails Rail_A, Rail_B d’alimentation sans provoquer de stress électrique au circuit électronique sensible 12. De manière générale, une mise à la masse électrique douce, c’est-à-dire une commutation depuis l’état ouvert jusqu’à l’état fermé des interrupteurs d’arrêt 22 de l’ordre de la milliseconde pour chacun des rails d’alimentation du circuit électronique sensible 12, associée si nécessaire à un séquencement de mise à la masse électrique des rails d’alimentation selon leur niveau initial de tension, permet de couper l’ensemble des alimentations d’un circuit électronique sensible sans provoquer des stress électriques pouvant endommager les structures internes du circuit électronique sensible 12. Selon l’invention, une mise à la masse électrique douce, permet de couper l’ensemble des alimentations d’un circuit électronique sensible 12 de manière à éviter la dégradation relativement à un évènement singulier produisant une faible surconsommation de courant du circuit électronique sensible 12.
Selon la figure 4, le second groupe G2 représente une séquence de fermeture d’un premier interrupteur de protection 24 agencé électriquement en parallèle avec le premier interrupteur d’arrêt 22, et de fermeture d’un second interrupteur de protection, distinct du premier interrupteur de protection 24 agencé électriquement en parallèle avec le second interrupteur d’arrêt. Selon le second groupe G2 de chronogrammes, la fermeture du premier interrupteur de protection 24 relatif au premier Rail_A d’alimentation 30 est effectuée de manière simultanée avec la fermeture du second interrupteur de protection relatif au second Rail_B d’alimentation 30. Selon le second groupe G2 de chronogrammes, le temps de commutation de l’état ouvert à l’état fermé de chacun des deux interrupteurs de protection 24 est de l’ordre de dix microsecondes. Cette fermeture simultanée des deux interrupteurs de protection 24 selon un temps de commutation de l’état ouvert à la fin de la décharge de l’ordre de dix microsecondes permet une protection immédiate du circuit électronique sensible 12 de sorte à éviter une dégradation du circuit électronique sensible 12 faisant suite à un évènement singulier provoquant une forte surconsommation du courant électrique du circuit électronique sensible 12. De manière générale, une coupure brute, c’est-à-dire une coupure de l’ordre de la dizaine de microsecondes de chacun des rails d’alimentation 30 du circuit électronique sensible 12, associée à une mise à la masse quasi simultanée des rails d’alimentation, permet de couper l’ensemble des alimentations d’un circuit élec tronique sensible 12 de manière à éviter la destruction relativement à un évènement singulier. Selon l’invention, le nombre de commutations des interrupteurs de protection 24 à la masse électrique du système électronique spatial 10 doit être limité afin que l’accumulation de stress électrique induit sur le circuit électronique sensible à chaque commutation ne puisse pas engendrer une réduction de la durée de vie du circuit électronique sensible 12 au regard des exigences spatiales. Il est à noter qu’une mise à la masse quasi simultanée, c’est à dire de manière séquentielle peut être envisagée, si la mise à la masse de l’ensemble des ports d’entrée de signal, en l’espèce, l’ensemble des rails d’alimentations, sont commutés en un temps cumulé de l’ordre de la dizaine de microsecondes.
Selon la figure 4, un troisième groupe G3 de chronogramme représentatif du réta blissement de l’alimentation du premier rail d’alimentation Rail_A et du second rail d’alimentation Rail_B du circuit électronique sensible 12 est représenté. A cet effet, l’ouverture des interrupteurs de protection 24 par l’unité de traitement de signal 34 est suivi par une fermeture séquentielle des moyens de coupure 28, 38 de l’alimentation, c’est-à-dire par les interrupteurs de coupure 38 de chacun des rails d’alimentation Rail_A, Rail_B. Cette fonctionnalité permet un réarmement automatique du système électronique spatial 10 après la commutation en fermeture des interrupteurs de protection 24 du circuit électronique sensible 10, permettant à nouveau le fonctionnement optimal du système électronique spatial 10. De manière équivalente, l’ouverture et la fermeture des interrupteurs d’arrêt 22 peuvent être effectuées de manière similaire à celle décrite pour les interrupteurs de protection 24.
Selon la figure 5, un second mode de réalisation du système électronique spatial 10 est représenté. Ce second mode de réalisation permet de protéger un autre circuit électronique sensible du système électronique spatial contre les radiations spatiales pouvant engendrer des évènements singuliers sur cet autre circuit électronique sensible. Plus précisément, ce second mode de réalisation permet de protéger l’autre circuit électronique sensible du système électronique spatial comportant au moins un port d’entrée 300 de signal et/ou un port de sortie de signal, l’autre circuit électronique sensible pouvant être endommagé par un évènement singulier.
En effet, il n’est pas exclu par exemple que le dispositif de régulation et stabilisation 14 d’alimentation électrique de la figure 5 soit un circuit électronique également sensible aux radiations spatiales provoquant des évènements singuliers, que ce soit du type verrouillage dit SEL pouvant causer la dégradation ou la destruction du dispositif de régulation et stabilisation 14 d’alimentation électrique par effet thermique. Dans l’hypothèse d’un autre composant électronique sensible comportant un port de sortie 301 de signal, comme par exemple selon la figure 5 un dispositif de régulation et stabilisation 14 d’alimentation électrique comportant notamment une partie numérique de configuration de la tension ou du courant délivré par le port de sortie de signal, un évènement singulier de perturbation dit SEU (Single event upset) peut causer l’altération d’un registre de configuration du signal de sortie pouvant provoquer l’endommagement du composant alimenté électriquement par le dispositif de régulation et stabilisation 14, en l’occurrence, selon la figure 5, ledit circuit électronique sensiblel 2 de la figure 1.
Selon la figure 5, bien que représenté, le circuit électronique sensiblel 2 et son in terrupteur d’arrêt 22, ainsi que le dispositif électronique de surveillance du courant électrique 16 instantané et le dispositif de comparaison de courant 18 permettant de superviser le courant électrique consommé par le circuit électronique sensiblel 2 ne font pas partie des éléments électroniques permettant la protection du dispositif de régulation et stabilisation 14 d’alimentation électrique contre les évènements singuliers. Selon la figure 5, et de manière similaire à la figure 1 , le système électronique spatial 10 comporte l’unité de traitement de signal 34 comprenant des moyens d’analyse de signaux électriques issus de différents capteurs du système électronique spatial 10, et des moyens de contrôle de fonctions de protection 20 reliés électriquement aux moyens d’analyse de signaux électriques issus de différents capteurs du système électronique spatial 10.
Selon la figure 5 et de manière similaire à la protection du circuit électronique sensible 12, l’unité électronique de détection de radiations spatiales comporte un autre dispositif de surveillance du courant électrique 42 agencé pour permettre la surveillance du courant consommé par le port d’entrée 300’ de signal, i.e. l’entrée d’alimentation électrique, du dispositif de régulation et stabilisation 14 d’alimentation électrique. Les moyens de contrôle de fonctions de protection 20 de l’unité de traitement de signal 34 sont configurés pour commuter depuis un état ouvert à un état passant un second interrupteur de protection 40 du même type que le premier interrupteur de protection 24, le second interrupteur de protection 40 étant agencé entre le port d’entrée 300’ de signal du dispositif de régulation et stabilisation 14 d’alimentation électrique et la masse électrique du système électronique spatial 10. Selon la figure 5, l’unité électronique de détection de radiations spatiales comporte un autre dispositif électronique de surveillance du signal électrique d’alimentation 29. Selon la figure 5, l’autre dispositif électronique de surveillance du signal électrique d’alimentation 29 est un dispositif électronique de surveillance de tension 50 configuré pour aussi bien détecter les surtensions que les sous-tensions sur la sortie régulée d’alimentation 32 du dispositif de régulation et stabilisation 14 d’alimentation électrique. De manière avantageuse, et afin d’optimiser le temps de réaction du dispositif de surveillance de tension 50, ce dernier peut comporter, par exemple et de manière non limitative, un amplificateur opérationnel analogique de tension dont le temps de traitement est de l’ordre d’une microseconde permettant la capture et la mesure de la tension d’alimentation de sortie régulée 32, i.e. telle que présente sur le port de sortie 301 de signal, du dispositif de régulation et stabilisation 14 d’alimentation électrique. L’amplificateur analogique de tension est configuré pour délivrer un signal image de la tension d’alimentation de sortie régulée 32 à un premier comparateur analogique 46 dont le temps de traitement est de l’ordre d’une microseconde et configuré pour comparer la tension mesurée à un premier seuil minimum de tension en dessous duquel l’unité de traitement de signal 34 estime qu’il s’agit d’une sous-tension pouvant être la conséquence d’un évènement singulier, notamment de type évènement de perturbation ou SEU. De manière comparable, l’amplificateur analogique de tension est configuré pour délivrer le signal image de la tension d’alimentation de sortie régulée 32 à un second comparateur analogique 48 dont le temps de traitement est de l’ordre d’une microseconde et configuré pour comparer la tension mesurée à un second seuil maximum de tension au-dessus duquel l’unité de traitement de signal 34 estime qu’il s’agit d’une surtension pouvant être la conséquence d’un évènement singulier, notamment de type évènement de perturbation ou SEU.
A cet effet, selon la figure 5, le système électronique spatial 10 comporte un troisième interrupteur de protection 52, d’un type similaire au premier interrupteur de protection 24, commandé par les moyens de contrôle de fonctions de protection 20 de l’unité de traitement de signal 34. Le troisième interrupteur de protection 52 est agencé entre le port de sortie 301 de signal du dispositif de régulation et stabilisation 14 d’alimentation électrique et la masse électrique du système, c’est-à- dire entre la tension d’alimentation de sortie régulée 32 du dispositif de régulation et stabilisation 14 d’alimentation électrique et la masse électrique du système électronique spatial 10. Le troisième interrupteur de protection 52 est configuré pour être commuté simultanément avec le second interrupteur de protection 40 par les moyens de contrôle de fonctions de protection 20 dans un étant passant, c’est-à- dire dans un état fermé, lors de la détection d’une surtension, et aussi lors de la détection d’une sous tension par le dispositif de surveillance de tension 50.
En effet, un dispositif de régulation et stabilisation 14 d’alimentation électrique comprend couramment différents étages qui peuvent se retrouver isolés électriquement entre eux lorsque le dispositif en question n’est plus alimenté. C’est par exemple le cas pour un convertisseur de type continu/continu qui fonctionne par transfert de charges électriques entre l’étage d’entrée et l’étage de sortie au rythme de la fréquence de hachage. Suivant de telles architectures électroniques, une mise à la masse uniquement du port de sortie permet d’écouler les charges accumulées dans l’étage de sortie du dispositif considéré, mais pas les charges accumulées dans son étage d’entrée. A contrario, la mise à la masse du port d’entrée de signal permet d’écouler de telles charges accumulées dans l’étage d’entrée. Ainsi, la mise à la masse à la fois du port d’entrée de signal et du port de sortie du signal permet une meilleure protection du dispositif de régulation et stabilisation 14.
Selon le scénario pour lequel le système électronique spatial 10 comprend un dispositif de régulation et stabilisation 14 d’alimentation électrique sensible aux radiations spatiales provoquant des évènements singuliers, et également le circuit électronique sensible 12 alimenté électriquement par le dit dispositif de régulation et stabilisation 14 d’alimentation électrique sensible, de préférence, le système électronique spatial 10 comprend le troisième interrupteur de protection 52 agencé au plus près de la sortie régulée 32 du dispositif de régulation et stabilisation 14 d’alimentation électrique et le premier interrupteur de protection 24 agencé au plus près du rail d’alimentation 30 du circuit électronique sensible 12.
De manière alternative, selon le même scénario, le système électronique spatial 10 peut comprendre un unique interrupteur de protection en lieu et place du premier interrupteur de protection 24 et du troisième interrupteur de protection 52. Le dit unique interrupteur de protection peut être agencé de préférence au plus proche du rail d’alimentation 30 du circuit électronique sensible 12. De manière similaire à la figure 1 , le second mode de réalisation du système électronique spatial 10 comporte un interrupteur de coupure 38 agencé en amont du dispositif de régulation et stabilisation 14, c’est-à-dire en série entre l’entrée principale d’alimentation PS et dispositif de régulation et stabilisation 14 de l’alimentation électrique. De la même manière que pour le mode de réalisation de la figure 1 , l’interrupteur de coupure 38 est commandé en ouverture en quelques microsecondes préalablement à la fermeture du ou des interrupteurs de protection, les dits interrupteurs de protection étant commutés à l’état fermé en un temps de l’ordre de dix microsecondes.
De manière générale et selon la figure 1 et la figure 5, le système électronique spatial 10 peut comprendre donc au moins un premier interrupteur de protection 24, 40 configuré pour une mise à la masse électrique du port d’entrée de signal d’un circuit électronique sensible aux radiations spatiales, ledit premier interrupteur de protection 24, 40 étant commandé en fermeture lors d’une détection d’une amplitude du signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiations prédéfini. Le système électronique spatial 10 peut comprendre également au moins un interrupteur d’arrêt 22 agencé électriquement en parallèle avec l’au moins un interrupteur de protection 24, 40, l’au moins un interrupteur d’arrêt 22 étant configuré pour mettre hors de fonctionnement le circuit électronique sensible d’une manière dite douce, c’est à dire selon une commutation à l’état fermé ne générant pas de stress électrique au circuit électronique sensible. De manière générale et selon la figure 5, le système électronique spatial 10 peut comprendre également au moins un second interrupteur de protection 52 configuré pour une mise à la masse électrique du port de sortie de signal d’un circuit électronique sensible aux radiations spatiales, ledit second interrupteur de protection 52 étant commandé en fermeture lors d’une détection d’une amplitude du signal représentative de la quantité de radiations spatiales supérieure au seuil de radiations prédéfini.
Selon la figure 6, une méthode de protection 100 d’un circuit électronique sensible 12 aux radiations spatiales du système électronique spatial 10 décrit aux figures 1 à 5, est illustré. La méthode de protection 100 comprend tout d’abord une étape de détection 110 d’une amplitude du signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiations prédéfini, telle que par exemple la détection d’une amplitude du signal électrique d’alimentation 29 d’au moins une alimentation électrique 11 d’une pluralité d’alimentations électriques du circuit électronique sensible en dehors d’au moins une plage de valeurs d’amplitudes prédéfinies. Plus particulièrement, l’étape de détection 110 d’une amplitude du signal électrique d’alimentation 29 peut être une étape de détection d’une surconsommation de courant électrique de l’entrée d’alimentation électrique d’au moins un dispositif de régulation et stabilisation 14 d’alimentation électrique d’une pluralité de dispositifs de régulation et stabilisation 14 d’alimentation électrique. Suite à l’étape de détection 110, la méthode comprend une étape de commutation 130 à la masse électrique d’un ou plusieurs interrupteurs de protection 24 du système électronique spatial. Dans certains modes de réalisation, chacun des interrupteurs de protection 24 du système électronique spatial est commuté à la masse électrique. Lorsque plusieurs interrupteurs de protection 24 sont commutés à la masse, la commutation peut se faire de manière simultanée ou quasi simultanée. Par ailleurs, dans certains modes de réalisation un ou plusieurs interrupteurs d’arrêt 22 du système électronique spatial sont également commutés à la masse électrique lors de l’étape 130. Dans certains modes de réalisation, chacun des interrupteurs d’arrêt 22 du système électronique spatial est commuté à la masse électrique lors de l’étape 130. Lorsque plusieurs interrupteurs d’arrêt 22 sont commutés à la masse, la commutation peut se faire de manière simultanée ou quasi simultanée. De manière additionnelle, suite à l’étape de détection 110, la méthode de protection 100 peut comprendre une étape de coupure 120 des alimentations électriques 11 du circuit électronique sensible.
Selon la figure 7, une méthode 200 de test garantissant une durée de vie prédéfinie du système électronique spatial 10 est représentée. Un des avantages principaux de la méthode de l’invention est de pouvoir tester au sol la robustesse du système électronique 10 aux radiations spatiales dans sa configuration hardware prévue pour être embarquée à bord d’un satellite. Plus particulièrement, le test est d’autant plus représentatif des conditions d’un mode opérationnel du système électronique spatial 10 embarqué dans un satellite en orbite terrestre, que le test est effectué selon une méthode pour laquelle le composant sensible 12 n’est ni dépourvu de son boîtier de protection, ni aminci dans le cas d’un composant de type puce retournée communément dénommée selon le terme anglo-saxon ‘flip chip’. Selon l’invention, une première étape consiste en un envoi d’ions lourds pénétrants ou de rayonnement pénétrant 210 sur le circuit électronique sensible 12. On appelle un envoi d’ions lourds pénétrants, un envoi selon lequel les ions lourds s’introduisent dans les couches de silicium d’une puce électronique selon une profondeur de quelques centaines de miti, typiquement 500miti. Un exemple d’installation permettant de générer ces ions lourds est le GANIL qui permet une pénétration d’environ QOOmiti dans le Si à 60 MeV.cm2/mg en ion Xe. De façon comparable à une exposition du circuit électronique sensible 12 aux ions lourds, l’envoi de certains rayonnements peut déclencher des évènements singuliers entraînant la dégradation voire la destruction d’un circuit électronique sensible 12 en y provoquant des évènements singuliers. Il s’agit notamment de rayonnement X. Ce type de rayonnement peut être généré dans un synchrotron, comme par exemple le synchrotron européen ESRF. Le niveau de rayonnement est choisi pour être juste suffisamment puissant pour entraîner des évènements singuliers représentatifs de l’environnement spatial et limiter les effets dus à la surexposition. Une étape de la méthode 200 de test peut consister à procéder à l’acquisition 220 du nombre de commutation à la masse électrique des interrupteurs de protection 24 durant la séquence d’envoi d’ions lourds pénétrants ou de rayonnement pénétrant. Plus particulièrement, cette étape 210 consiste à cibler différentes zones géographiques du circuit électroniques sensibles de sorte à contraindre différents blocs électroniques du circuit électronique sensible 12. A cet effet, selon l’invention, chaque envoi de l’étape d’envoi d’ions lourds pénétrants ou de rayonnement pénétrant 210 induit une commutation d’un ou plusieurs interrupteurs de protection 24, chacun des interrupteurs pouvant être recommutés automatiquement en un état ouvert entre chaque envoi de la séquence 210.
Afin de garantir une durée de vie prédéfinie du système électronique spatial 10 embarqué à bord d’un satellite en orbite terrestre, par exemple et de manière non limitative, pour une durée de vie garantie de quinze ans, il conviendra de déclencher des commutations à la masse électrique des interrupteurs de protection 24 autant de fois que ces commutations pourraient se déclencher dans l’environnement spatial radiatif. A cet effet, la méthode 200 de test peut comprendre si nécessaire, une étape faisant suite à l’étape d’envoi ou de bombardement, de commutation 230 répétée et complémentaire aux commutations des interrupteurs de protection durant l’étape d’envoi ou de bombardement, jusqu’à un nombre prédéfini de commutations à la masse électrique représentatif d’un nombre estimatif de commutations à la masse électrique des interrupteurs de protection 24 pouvant se déclencher durant la durée de vie prédéfinie du système électronique spatial 10 dans son environnement spatial si le nombre acquis à l’étape d’acquisition 220 est insuffisant. Le nombre prédéfini de commutations est généralement issu de statistiques estimées par modélisation et retour d’expérience de satellites évoluant à différentes altitudes en orbite terrestre, le niveau de radiations spatiales pouvant dépendre de l’altitude en orbite du satellite embarquant un système électronique spatial 10. Par exemple et de manière non limitative, le nombre de commutation peut être de l’ordre de quelques centaines sur une durée de quinze ans.
Toutefois, les étapes 220 et 230 sont optionnelles. En effet, suivant la nature des ions lourds pénétrants ou du rayonnement pénétrant mis en oeuvre lors de l’étape 210, le ciblage de zones géographiques du circuit électronique sensible 12 est plus ou moins précis. Par exemple, dans le cas d’un test avec rayons X, le rayonnement pénétrant est moins localisé qu’avec des ions lourds. Ainsi, de part ce caractère diffus, le rayonnement pénétrant peut affecter différentes parties du circuit électronique sensible 12 ou du reste du système 10 conduisant à n’avoir qu’un seul déclenchement pour plusieurs évènements singuliers. Ainsi, avec un rayonnement représentatif de l’environnement spatial durant la durée de vie estimée du circuit électronique sensible 12, le nombre de commutations de l’état bloqué à l’état passant d’un interrupteur de protection 24 donné peut être inférieur à ce qui est attendu en vol durant la durée de vie estimée du circuit en question. Dans ce cas, la mise en oeuvre des étapes 220 et 230 présente un intérêt. A contrario, avec un rayonnement pouvant être focalisé précisément sur une zone géographique donnée du circuit électronique sensible 12, comme par exemple avec des ions lourds, on peut espérer que le nombre de commutations de l’état bloqué à l’état passant d’un interrupteur de protection 24 donné est représentatif de ce qui est attendu en vol durant la durée de vie estimée du composant. Dans de tels cas, la mise en oeuvre des étapes 220 et 230 n’est pas utile.
La dernière étape de la méthode 200 de test comprend une étape de tests 250 fonctionnels du système électronique spatial 10 pendant une durée prédéterminée et sous contrainte thermique représentatives d’un vieillissement accéléré équivalent à la durée de vie prédéfinie du système électronique spatial 10 embarqué à bord d’un satellite en orbite terrestre. A titre d’exemple non limitatif, des tests fonctionnels répétés pendant douze mois sous contrainte thermique de quatre-vingt-quinze degrés au niveau du silicium, peuvent être représentatifs du fonctionnement du système électronique spatial 10 pendant huit ans avec une température de jonction du circuit électronique sensible 12 d’environ soixante degrés Celsius avec une marge d’environ dix pourcents.
En cas de défaillance fonctionnelle du système électronique spatial 10 testé, alors le système électronique spatial 10 ne pourrait être embarqué dans un satellite.
De manière optionnelle, la méthode 200 de test peut comprendre suite à l’étape 230, une étape de détermination 240 de l’état des structures du circuit électronique sensible 12 par imagerie du circuit électronique sensible 12 suite à l’étape d’envoi ou de bombardement 210. Cette étape permet de vérifier l’efficacité des interrupteurs de protection 24 de sorte que si un défaut de structure d’un bloc électronique du circuit électronique sensible 12 était identifié par imagerie, alors le système électronique spatial 10 ne pourrait être embarqué dans un satellite.
De manière non limitative, l’observation par imagerie peut consister en une ob servation de type optique visible afin de chercher à identifier/localiser d’importantes dégradations dues aux évènements singuliers qui seraient directement visibles sur la surface externe du circuit électronique sensible 12. L’observation par imagerie peut également consister en une observation de type optique infrarouge afin de chercher à identifier/localiser des points chauds absents sur un composant témoin et par ce biais les zones concernées par un évènement singulier et également chercher à identifier/ localiser des dégradations sur les métallisations de plus haut et de plus bas niveau en profitant du fait que le silicium est transparent aux infrarouges.
L’observation par imagerie peut également consister en une observation de type photonique afin de chercher à identifier/localiser, après un masquage permettant de limiter la zone de recherche en complément ou remplacement de l’imagerie infrarouge, les zones concernées par un évènement singulier pendant que celui-ci est activé, sans la problématique de pénétration des infrarouges limitée aux éléments non-transparents à savoir les métallisations et sans la problématique de limite de résolution due à la longueur d’onde des méthodes optiques. Également, l’observation par imagerie peut également consister en une observation de type électronique à balayage afin d’effectuer une imagerie couche par couche de la puce avec déconstruction progressive par polissage plasma et chercher à contrôler l’absence de défauts dans les zones préalablement identifiées pendant les étapes précédentes. La méthode 200 de test peut comprendre suite à l’étape 230 ou 240 une étape 250 de tests fonctionnels.

Claims

Revendications
1. Système électronique spatial (10) comportant :
- un circuit électronique sensible (12, 14) aux radiations spatiales comprenant au moins un port d’entrée (300, 300’) de signal et/ou au moins un port de sortie (301) de signal;
- une unité de traitement de signal (34) ;
- une unité électronique de détection de radiations spatiales électriquement connectée à l’unité de traitement de signal (34);
- au moins un interrupteur de protection (24, 40, 52) connecté électriquement entre la masse électrique du système électronique spatial (10) et au moins un des ports d’entrée ou de sortie de signal du circuit électronique sensible (12, 14), et commandé par l’unité de traitement de signal (34); l’unité de traitement de signal (34) étant configurée pour commuter l’au moins un interrupteur de protection (24) à la masse électrique lors de la détection d’une amplitude d’un signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiation prédéfini, l’au moins un interrupteur de protection comportant un montage en Darlington de deux transistors bipolaires, configuré pour être commuté d’un état électrique bloqué à un état électrique passant en un temps de moins de cent microsecondes, de préférence moins de dix microsecondes.
2. Système (10) selon la revendication 1 pour lequel le circuit électronique sensible (14) aux radiations spatiales comprend au moins un port de sortie de signal, dans lequel l’un au moins des interrupteurs de protection (52) est connecté électriquement au port de sortie de signal.
3. Système (10) selon la revendication 2 pour lequel le circuit électronique sensible est un composant électronique de puissance, plus particulièrement un dispositif de régulation et stabilisation (14) d’alimentation électrique.
4. Système (10) selon l’une quelconque des revendications précédentes pour lequel le circuit électronique sensible (14) aux radiations spatiales comprend au moins un port d’entrée de signal et au moins un port de sortie de signal, le système (10) comportant : - un premier interrupteur de protection (40) connecté électriquement entre la masse électrique du système électronique spatial (10) et le port d’entrée de signal,
- un second interrupteur de protection (52) connecté électriquement entre la masse électrique du système électronique spatial (10) et le port de sortie de signal.
5. Système (10) selon l’une quelconque des revendications précédentes comprenant au moins un interrupteur d’arrêt (22) agencé électriquement en parallèle avec l’au moins un interrupteur de protection (24, 52), l’unité de traitement de signal (34) étant configurée pour commuter l’interrupteur d’arrêt (22) à la masse électrique lors d’une mise hors service du circuit électronique sensible (12).
6. Système (10) selon la revendication précédente pour lequel l’au moins un interrupteur d’arrêt (22) comporte un transistor bipolaire configuré pour être commuté d’un état électrique bloqué à un état électrique passant en un temps supérieur à cent microsecondes, préférentiellement supérieur à une milliseconde.
7. Système (10) selon l’une quelconque des revendications précédentes pour lequel l’unité électronique de détection de radiations spatiales comprend un dispositif électronique de surveillance du courant électrique (16) du port d’entrée de signal.
8. Système (10) selon l’une quelconque des revendications précédentes pour lequel l’unité électronique de détection de radiations spatiales comprend un dispositif électronique de surveillance de tension électrique (50) du port de sortie de signal.
9. Système (10) selon l’une quelconque des revendications précédentes pour lequel l’au moins un port d’entrée de signal est un rail d’alimentation électrique (30) du circuit électronique sensible (12, 14).
10. Méthode de protection (100) du circuit électronique sensible (12) du système électronique spatial (10) de l’une quelconque des revendications précédentes, la méthode de protection (100) comprenant les étapes de : - détection (110) d’une amplitude du signal représentative de la quantité de radiations spatiales supérieure à un seuil de radiation prédéfini ;
- commutation (130) à la masse électrique d’au moins un interrupteur de protection (24, 40, 52).
11. Méthode de protection (100) selon la revendication 10, le système électronique spatial (10) comportant au moins deux interrupteurs de protection (52, 40), l’étape de commutation (130) comprenant la commutation (130) à la masse électrique de chacun des au moins deux interrupteurs de protection (52, 40) de manière simultanée.
12. Méthode (200) de test garantissant une durée de vie prédéfinie du système électronique spatial (10) de l’une quelconque des revendications 1 à 9, la méthode (200) de test comportant les étapes au sol de :
- envoi d’ions lourds pénétrants (210) ou de rayonnement pénétrant apte à créer du latch-up sur le circuit électronique sensible (12, 14) ; et
- tests (250) fonctionnels du système électronique spatial (10) suite à l’étape d’envoi (210), pendant une durée prédéterminée et sous contrainte thermique représentatives d’un vieillissement accéléré équivalent à la durée de vie prédéfinie du système électronique spatial (10) embarqué à bord d’un satellite en orbite terrestre.
13. Méthode (200) selon la revendication 13 comprenant de plus les étapes au sol de :
- acquisition (220) du nombre de commutation de l’état bloqué à l’état passant d’au moins un interrupteur de protection (24) durant l’étape d’envoi (210) ;
- comparaison du nombre de commutation acquis avec un nombre prédéfini Np de commutations à la masse électrique représentatif d’un nombre estimatif de commutations à la masse électrique pouvant se déclencher durant la durée de vie prédéfinie du système électronique dans son environnement spatial ;
- si le nombre de commutations acquis est inférieur au nombre prédéfini Np de commutations, commutation (230) répétée et complémentaire aux commutations de l’au moins un interrupteur de protection durant l’étape d’envoi ou de bombardement (210), jusqu’à un nombre prédéfini de commutations à la masse électrique représentatif d’un nombre estimatif de commutations à la masse électrique pouvant se déclencher durant la durée de vie prédéfinie du système électronique dans son environnement spatial.
14. Méthode (200) selon la revendication 12 ou 13 comprenant de plus une étape de :
- détermination (240) de l’état des structures du circuit électronique sensible (12) par imagerie du circuit électronique sensible (12) suite à l’étape d’envoi (210).
EP22754354.3A 2021-07-30 2022-07-19 Système électronique spatial Pending EP4377996A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108362 2021-07-30
PCT/EP2022/070151 WO2023006498A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial

Publications (1)

Publication Number Publication Date
EP4377996A1 true EP4377996A1 (fr) 2024-06-05

Family

ID=78212216

Family Applications (4)

Application Number Title Priority Date Filing Date
EP22754354.3A Pending EP4377996A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial
EP22754357.6A Pending EP4377998A2 (fr) 2021-07-30 2022-07-19 Système électronique spatial
EP22754351.9A Pending EP4377995A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial
EP22754356.8A Pending EP4377997A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP22754357.6A Pending EP4377998A2 (fr) 2021-07-30 2022-07-19 Système électronique spatial
EP22754351.9A Pending EP4377995A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial
EP22754356.8A Pending EP4377997A1 (fr) 2021-07-30 2022-07-19 Système électronique spatial

Country Status (2)

Country Link
EP (4) EP4377996A1 (fr)
WO (4) WO2023006501A2 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687622A (en) * 1985-10-29 1987-08-18 Irt Corporation Nuclear event detector
US7489136B1 (en) * 2005-08-04 2009-02-10 Nu-Trek, Inc. Apparatus and method of detecting radiation
US9960593B2 (en) * 2015-07-31 2018-05-01 Harris Corporation Single event latchup (SEL) current surge mitigation
AR116929A1 (es) * 2019-10-31 2021-06-30 Invap S E Método para actualizar el umbral de referencia de al menos un parámetro operativo, unidad de protección para la mitigación de un evento simple de latchup (sel) en un dispositivo electrónico usando el umbral de referencia y disposición para la mitigación de un evento simple de latchup (sel) en un conjunto

Also Published As

Publication number Publication date
EP4377998A2 (fr) 2024-06-05
WO2023006498A1 (fr) 2023-02-02
WO2023006501A3 (fr) 2023-03-23
WO2023006495A1 (fr) 2023-02-02
WO2023006500A1 (fr) 2023-02-02
EP4377997A1 (fr) 2024-06-05
EP4377995A1 (fr) 2024-06-05
WO2023006501A2 (fr) 2023-02-02

Similar Documents

Publication Publication Date Title
FR2942352B1 (fr) Identification et protection d'un systeme de courant c.a-c.c aerospatial en presence de contenu de courant c.c en raison des charges defectueuses
US11774494B2 (en) Efficient laser-induced single-event latchup and methods of operation
EP2280414A1 (fr) Dispositif électronique de protection contre une inversion de polarité d'une tension d'alimentation continue, et application au domaine de l'automobile
EP4377996A1 (fr) Système électronique spatial
FR3074914A1 (fr) Procede de detection de l'etat d'un appareil de protection electrique dans une installation electrique et dispositif de detection mettant en oeuvre ledit procede
US11294081B2 (en) Methods of recovering radiation detector
FR2930092A1 (fr) Circuit et procede de commande de bougies-crayons pour les proteger contre une erreur de polarite.
EP2864201B1 (fr) Circuit electrique de coupure d'une alimentation electrique a transistors et fusibles a logique redondee
FR2807882A1 (fr) Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif
FR3038131A1 (fr) Dispositif de protection ameliore contre les decharges electrostatiques.
EP2348528A1 (fr) Structure de protection d'un circuit intégré contre des décharges électrostatiques
WO2018219811A1 (fr) Compteur electrique monophase
CA3087843A1 (fr) Dispositif de protection d'un equipement electrique
FR3085153A1 (fr) Procede de protection d'une charge associee a une voie de disjonction d'une carte electronique de disjoncteurs statiques
WO2011151575A1 (fr) Dispositif de détection de particules alpha
WO2018158511A1 (fr) Système de surveillance redondant et dissimilaire de l'état de contacteurs de commande d'une poignée de commande d'un aéronef
WO2018202769A1 (fr) Dispositif de mesure du courant de fuite reprogrammable
WO2024023429A1 (fr) Dispositif de commande, de protection et de surveillance de l'etat de sante d'un transistor de puissance
Lukashin et al. Software and hardware system for charge coupled devices with Interline transfer of charge parameters monitoring during radiation tests
Azizi et al. Proton Radiation Effect on Barrier Infrared Detector Focal Plane Arrays
WO2023214122A1 (fr) Dispositif et procédé de caractérisation de l'effondrement de courant de transistors gan
WO2014063889A1 (fr) Detecteur sil2 polyvalent dote de deux sorties et d'une entree de test
EP3370256A1 (fr) Dispositif compact de protection d'un circuit intégré contre les décharges électrostatiques
EP1147518A1 (fr) Systeme electrique et/ou electronique integre a des moyens d'isolation d'un module fonctionnel, dispositif et procede d'isolation et utilisation correspondants
FR3129488A1 (fr) Détection de l’état ouvert ou fermé d’un disjoncteur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR