WO2018202769A1 - Dispositif de mesure du courant de fuite reprogrammable - Google Patents

Dispositif de mesure du courant de fuite reprogrammable Download PDF

Info

Publication number
WO2018202769A1
WO2018202769A1 PCT/EP2018/061333 EP2018061333W WO2018202769A1 WO 2018202769 A1 WO2018202769 A1 WO 2018202769A1 EP 2018061333 W EP2018061333 W EP 2018061333W WO 2018202769 A1 WO2018202769 A1 WO 2018202769A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
sspc
controller
power supply
current
Prior art date
Application number
PCT/EP2018/061333
Other languages
English (en)
Inventor
Loic Aoustin
Original Assignee
Zodiac Aero Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zodiac Aero Electric filed Critical Zodiac Aero Electric
Publication of WO2018202769A1 publication Critical patent/WO2018202769A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a reprogrammable leakage current measuring device and more particularly relates to a ground fault current detection device: GFI (Ground Fault Interrupter, in English) for performing a differential current measurement. reprogrammable.
  • GFI Ground Fault Interrupter
  • the leakage current is generated by a component short-circuited, a bad connection of any element or during the degradation of a component.
  • the leakage current degrades the elements it passes through and presents a danger for people.
  • a cutoff member Upon detection of a leakage current, a cutoff member is controlled. It cuts the circuit in order to isolate the faulty equipment. The actuation of the cut - off device preserves the elements of the circuit and protects the persons.
  • the detection of a leakage current is generally carried out by means of a transformer, several windings of which couple the different phases supplying the electric power distribution circuit and a measurement winding makes it possible to measure the differential current.
  • Differential transformers are used to detect a leakage current in an electrical circuit of an aircraft. They are implanted in the electric cores on the current distribution bars of the primary power supply networks or on the electronic boards of the secondary networks.
  • the secondary network's electronic cards are usually power controllers Solid State Power Controller (SSPC) Solid State Power Controller. Each channel of the SSPC board controls the power supply of an electric charge of the aircraft.
  • SSPC Solid State Power Controller
  • FIG. 1 illustrates a GFI electrical circuit comprising a multi-channel SSPC electronic card protected by a device for detecting leakage current in an aircraft according to the state of the art.
  • the circuit comprises a three-phase generator G driven by a turbine of the aircraft supplying an SSPC power controller via current distribution bars.
  • the SSPC controller comprises n channels SSPC1, SSPC2, ... SSPCn, a processor CPU and a measuring transformer T.
  • Each phase of the current distribution bars comprises a winding of the transformer T connected between the generator and the channels SSPC1, SSPC2, ..., SSPCn of the SSPC controller, and the measuring winding of the transformer T is connected to the processor CPU.
  • the SSPC controller supplies n electric charges of the aircraft.
  • the n channels of the SSPC controller are each connected to an avionic load CH1, CH2 ..., CHn.
  • the SSPC1, ..., SSPCn channels are controlled by the CPU processor.
  • the magnetic field generated in the transformer T is proportional to the sum of the currents passing through it.
  • the circuit is powered by a balanced three-phase system. Therefore, when the circuit is not faulty, the resulting magnetic field in the transformer T is zero.
  • the current I induced at the measuring winding of the transformer T is zero.
  • the circuit fails, for example if contact is established between a phase connecting the load CHn and the circuit ground via a metal structure, a leakage current appears between the phase and the ground.
  • the resulting magnetic field in the transformer T is non-zero. Consequently, under the effect of the variation of the magnetic field, the current I is not zero.
  • the processor CPU detects the variation of the current and indicates the malfunction with the central management system of the aircraft and / or orders the opening of the SPC 1, S SPC2, ..., S SPCn of the S SPC controller to isolate the faulty circuit and protect the rest of the power supply circuit as well as people.
  • the measuring transformer T is large, and operates at low frequency (360-800Hz). It must also allow currents of 5 to 25 amps. Therefore, a single measurement transformer T is used for multiple controller channels to reduce the size of the device.
  • the use of a single transformer has the disadvantage of not allowing the identification of the faulty channel.
  • the CPU processor may either transmit the information regarding the presence of a fault or disconnect the set of power distribution bars. Therefore, no more avionics load connected to the S SPC controller is powered.
  • GFI Ground Fault Interrupter
  • the object of the invention is therefore to overcome the drawbacks associated with the method for detecting the leakage currents of an electrical circuit of an aircraft.
  • the invention proposes an aircraft reprogrammable leakage current measuring device, comprising at least one semiconductor power supply controller for controlling the supply of an avionic load and comprising several outputs. , the device comprising means for measuring the current of the outputs of the power supply controller.
  • each output of said at least one semiconductor power supply controller is connected to a measuring means.
  • the measuring means comprise high frequency current measurement transformers.
  • the device further comprises means for controlling the at least one semiconductor power supply controller, first connection means connecting the measurement means to the control means and second connection means connecting the control means to the at least one a power controller.
  • the first connection means comprise one or more multiplexers.
  • the invention also relates to a method for measuring the leakage current for implementing an aircraft programmable leakage current measuring device comprising at least one semiconductor power supply controller for the power supply. of at least one avionic load and comprising several outputs, means for measuring the output current of the semiconductor power supply controller, control means of the semiconductor power supply controller.
  • the control means cut off the power supply of the outputs from said at least one power controller.
  • the measuring means are high-frequency transformers for measuring the current operating at zero magnetic flux.
  • the at least one avionic load is connected between phases or between phase and mass.
  • the configuration of the measuring means is configurable.
  • FIG. 1 is a schematic view of a device for detecting and measuring the leakage current in an electrical circuit of an aircraft according to the state of the art;
  • FIG. 2 is a schematic view of a first embodiment of a device for detecting and measuring the leakage current in an electrical circuit of an aircraft, in accordance with the invention.
  • FIG. 3 is a schematic view of a second embodiment of a device for detecting and measuring the leakage current in an electrical circuit of an aircraft, according to the invention.
  • FIG. 2 illustrates a first embodiment of a leakage current measuring device according to the invention.
  • This device detects and measures the leakage current during a failure, and identifies the power line of the faulty electrical load.
  • the current measuring device comprises a multi-channel SSPC power controller.
  • the SSPC power controller comprises two channels.
  • the electrical circuit comprises a generator G 'driven by a turbine of the aircraft.
  • the outputs of the generator are connected to the two-way SSPC power supply controller.
  • the outputs of the SSPC controller feed the loads CH'i, CH ' 2 of the aircraft.
  • the SSPC controller comprises two power supply lines ALIMi and ALIM 2 supplying the associated loads CH'i and CH ' 2 and a processor CPU' as control means.
  • control means may also be a logic gate system using an operational amplifier associated with a comparator.
  • the channels ALIMi and ALIM 2 are of identical constitution. Subsequently, the architecture of the ALIM 2 feed path is detailed.
  • the inputs of the feed channel ALIM 2 are connected to the generator G 'and to the ground of the aircraft GND'.
  • the outputs of the channel ALIM 2 are connected to the load CH ' 2 .
  • the 2 channel has a semiconductor power controller SSPC 2, a multiplexer MUX 2 and three high frequency measurement transformers of identical constitution stream T '21, T' 22, T '2 3 each comprising a primary circuit comprising a primary winding and a secondary circuit comprising a secondary winding.
  • the inputs of the semiconductor power controller SSPC 2 are connected to the generator G 'and the ground GND' of the generator G '.
  • the outputs of the semiconductor power controller SSPC 2 are connected to the load CH ' 2 .
  • Each first connection of the primary winding of a high frequency measuring current transformer T '21, T' 22, T '2 3 is connected to a different output of the SSPC semiconductor power controller' 2 and second connection of the primary winding of each transformer is connected to the phase of the charge CH ' 2 corresponding to the output of the semiconductor power supply controller SSPC' 2 .
  • the connections of the secondary winding of the transformer T '21, T' 22, T '2 3 are connected to the inputs of a multiplexer MUX 2.
  • the output of the multiplexer MUX 2 is connected to a processing unit CPU '.
  • the processing unit is made from a processor, but it can be any device capable of controlling an SSPC controller. It can especially be a micro controller.
  • the SSPC controller comprises a multiplexer MUX replacing the multiplexers MUX 1 and MUX 2 .
  • the connections of the secondary winding of all high frequency measurement Current transformers T'n, T '12, T' 13, T '21, T' 22 and T 23 of the SSPC controller are connected to the inputs of the multiplexer MUX.
  • the output of the multiplexer MUX is connected to a processing unit CPU '.
  • the use of a transformer per phase and one or more multiplexers makes it possible to reprogram the measurement of the differential current according to the phases to be measured.
  • the CPU selects and inhibits the measurement of the channels connected to the Ground Fault Interrupter (GFI) by the multiplexer MUX or the multiplexers MUXi and MUX 2 .
  • GFI Ground Fault Interrupter
  • Channel selection can be done through any other known selection system.
  • the CPU ' is connected to the S SPC' i and S SPC 2 semiconductor power controllers.
  • the processor CPU In operation, the processor CPU 'selects the channels to be monitored via the multiplexer MUX or multiplexers MUXi and MUX 2 .
  • the processor CPU can at any time modify the configuration of the multiplexers to select other channels to monitor, in particular according to the connected loads or alternately swept the channels ALIMi and ALIM 2 to detect a fault on one of the channels.
  • High frequency current measurement transformers operate at zero magnetic fields. A current is injected into the secondary circuit of the transformers to regulate a zero output voltage and maintain an induction close to 0 tesla. From the value of the currents injected in the secondary circuits of the transformers, the value of the currents flowing in the phases of the selected channel is deduced.
  • the architecture described allows the reconfiguration of the GFI ground fault detection device on all the channels.
  • the processor CPU When a fault is detected on a phase, for example on the ALIM 2 channel, the processor CPU 'controls the opening of the channel ALIM 2 by driving the semiconductor power supply controller S SPC 2 .
  • the presented architecture keeps the GFI ground fault detection function on the other channels.
  • the device for measuring the leakage current measures the leakage current with sufficient accuracy to ensure the protection of people and equipment.

Abstract

Ce dispositif de mesure du courant du fuite reprogrammable pour aéronef comprenant au moins un contrôleur d'alimentation à semi-conducteurs (SSPC'1, SSPC'2) destiné à commander l'alimentation d'une charge avionique (CH'1, CH'2) et comprenant plusieurs sorties, le dispositif comprenant des moyens de mesure (T'11, T'12, T'13, T'21, T'22, T'23) du courant des sorties du contrôleur d'alimentation à semi-conducteurs. Chaque sortie dudit au moins un contrôleur d'alimentation à semi-conducteur est reliée à un moyen de mesure.

Description

Dispositif de mesure du courant de fuite reprogrammable
La présente invention se rapporte à un dispositif de mesure de courant de fuite reprogrammable et concerne plus particulièrement un dispositif de détection de courant de défaut à la masse : GFI (« Ground Fault Interrupter », en anglais) permettant de réaliser une mesure de courant différentiel reprogrammable.
Lors d'un défaut électrique dans un circuit électrique, la mesure d'un courant de fuite entre deux ou plusieurs composants du circuit permet de détecter l ' existence d 'un défaut.
Le courant de fuite est généré par un composant branché en court-circuit, un mauvais branchement d'un élément quelconque ou lors de la dégradation d'un composant.
Le courant de fuite dégrade les éléments qu' il traverse et présente un danger pour les personnes.
Lors de la détection d'un courant de fuite, un organe de coupure est commandé. Il coupe le circuit afin d' isoler l ' équipement défaillant. L ' actionnement de l ' organe de coupure préserve les éléments du circuit et protège les personnes .
La détection d'un courant de fuite est généralement réalisée à l ' aide d'un transformateur dont plusieurs enroulements couplent les différentes phases alimentant le circuit électrique de distribution de puissance et un enroulement de mesure permet de mesurer le courant différentiel.
Des transformateurs différentiels sont utilisés pour détecter un courant de fuite dans un circuit électrique d'un aéronef. Ils sont implantés dans les cœurs électriques sur les barres de distribution de courant des réseaux primaires d' alimentation électrique ou sur les cartes électroniques des réseaux secondaires. Les cartes électroniques du réseau secondaire sont généralement des contrôleurs d' alimentation à semi-conducteurs à plusieurs voies SSPC (« Solid State Power Controller », en anglais). Chaque voie de la carte SSPC contrôle l'alimentation électrique d'une charge électrique de l'aéronef.
La figure 1 illustre un circuit électrique GFI comprenant une carte électronique SSPC multivoies protégée par un dispositif de détection de courant de fuite dans un aéronef selon l'état de la technique.
Le circuit comporte une génératrice triphasée G entraînée par une turbine de l'aéronef alimentant un contrôleur d'alimentation SSPC par l'intermédiaire de barres de distribution de courant. Le contrôleur SSPC comporte n voies SSPC1, SSPC2,... SSPCn, un processeur CPU et un transformateur de mesure T. Chaque phase des barres de distribution de courant comporte un enroulement du transformateur T relié entre la génératrice et les voies SSPC1, SSPC2,..., SSPCn du contrôleur SSPC, et l'enroulement de mesure du transformateur T est relié au processeur CPU. Le contrôleur SSPC alimente n charges électriques de l'aéronef.
Les n voies du contrôleur SSPC sont reliées chacune à une charge avionique CH1, CH2..., CHn. Les voies SSPC1,..., SSPCn sont pilotés par le processeur CPU.
Le champ magnétique généré dans le transformateur T est proportionnel à la somme des courants le traversant. Le circuit est alimenté par un système triphasé équilibré. Par conséquent, lorsque le circuit n'est pas défaillant, le champ magnétique résultant dans le transformateur T est nul. Le courant I induit à l'enroulement de mesure du transformateur T est nul.
Si le circuit est défaillant, par exemple si un contact est établi entre une phase raccordant la charge CHn et la masse du circuit par l'intermédiaire d'une structure métallique, un courant de fuite apparaît entre la phase et la masse. Le champ magnétique résultant dans le transformateur T est non nul. Par conséquent, sous l'effet de la variation du champ magnétique, le courant I est non nul. Le processeur CPU détecte la variation du courant et indique le disfonctionnement au système de gestion central de l'aéronef et/ou ordonne l'ouverture des différentes voies S SPC 1 , S SPC2, ... , S SPCn du contrôleur S SPC pour iso ler le circuit défaillant et protéger le reste du circuit d ' alimentation électrique ainsi que les personnes .
Cependant, le transformateur de mesure T est de grande taille, et fonctionne à basse fréquence (360-800Hz) . Il doit en outre laisser passer des courants de 5 à 25 ampères. Par conséquent, un seul transformateur de mesure T est utilisé pour plusieurs voies du contrôleur pour réduire l ' encombrement du dispositif.
L 'utilisation d'un seul transformateur a pour inconvénient de ne pas permettre l' identification de la voie en défaut. Le processeur CPU peut soit transmettre l 'information concernant la présence d 'un défaut ou déconnecter l ' ensemble des barres de distribution de courant. Par conséquent, plus aucune charge avionique raccordée au contrôleur S SPC n' est alimentée.
De plus, certaines charges avioniques sont connectées directement entre une phase et la masse mécanique, le neutre de la génératrice étant relié à la masse mécanique. En cas de défaillance d'une une telle configuration, le courant de fuite est égal au courant fonctionnel et rend impossible l 'utilisation du dispositif de détection de défaut de masse GFI (« Ground Fault Interrupter », en anglais) sur toutes les voies du contrôleur S SPC .
Le but de l' invention est donc de pallier les inconvénients liés à la méthode de détection des courants de fuite d'un circuit électrique d'un aéronef.
Au vu de ce qui précède, l' invention propose un dispositif de mesure de courant de fuite reprogrammable pour aéronef, comprenant au moins un contrôleur d' alimentation à semi-conducteurs destiné à commander l ' alimentation d'une charge avionique et comprenant plusieurs sorties, le dispositif comprenant des moyens de mesure du courant des sorties du contrôleur d' alimentation.
Selon une caractéristique du dispositif selon l 'invention, chaque sortie dudit au moins un contrôleur d' alimentation à semi conducteur est reliée à un moyen de mesure. Selon une autre caractéristique, les moyens de mesure comprennent des transformateurs haute fréquence de mesure du courant.
Avantageusement, le dispositif comprend en outre des moyens de contrôle du au moins un contrôleur d' alimentation à semiconducteurs, des premiers moyens de raccordement reliant les moyens de mesure aux moyens de contrôle et des seconds moyens de raccordement reliant les moyens de contrôle audit au moins un contrôleur d ' alimentation.
De préférence, les premiers moyens de raccordement comprennent un ou plusieurs multip lexeurs.
L 'invention a également pour objet un procédé de mesure du courant de fuite pour la mise en œuvre d'un dispositif de mesure du courant de fuite reprogrammable pour aéronef comprenant au moins un contrôleur d' alimentation à semi-conducteurs pour l ' alimentation électrique d' au moins une charge avionique et comprenant plusieurs sorties, des moyens de mesure du courant des sorties du contrôleur d' alimentation à semi-conducteurs, des moyens de contrôle du contrôleur d ' alimentation à semi-conducteurs.
Selon une caractéristique du procédé selon l' invention, dès qu'un courant de fuite est détecté par les moyens de contrôle sur une sortie du au moins un contrôleur d' alimentation à semi-conducteurs, les moyens de contrôle coupent l ' alimentation électrique des sorties dudit au moins un contrôleur d' alimentation.
Avantageusement, les moyens de mesure sont des transformateurs haute fréquence de mesure du courant fonctionnant à flux magnétique nul.
Selon une autre caractéristique du procédé, la au moins une charge avionique est connectée entre phases ou entre phase et masse.
Avantageusement, la configuration des moyens de mesure est configurable.
D ' autres buts, caractéristiques et avantages de l 'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessous annexés sur lesquels :
- La figure 1, dont il a déjà été fait mention, est une vue schématique d'un dispositif de détection et de mesure du courant de fuite dans un circuit électrique d'un aéronef selon l'état de la technique ;
- La figure 2 est une vue schématique d'un premier mode de réalisation d'un dispositif de détection et de mesure du courant de fuite dans un circuit électrique d'un aéronef, conforme à l'invention ; et
- La figure 3 est une vue schématique d'un second mode de réalisation d'un dispositif de détection et de mesure du courant de fuite dans un circuit électrique d'un aéronef, conforme à l'invention.
On se réfère à la figure 2 qui illustre un premier mode de réalisation d'un dispositif de mesure du courant de fuite conforme à l'invention. Ce dispositif détecte et mesure le courant de fuite lors d'une défaillance, et identifie la ligne d'alimentation de la charge électrique défaillante.
Le dispositif de mesure du courant comporte un contrôleur d'alimentation SSPC multivoies.
Dans ce qui suit, à titre d'exemple non limitatif et par souci de clarté, le contrôleur d'alimentation SSPC comporte deux voies.
Le circuit électrique comporte une génératrice G' entraînée par une turbine de l'aéronef. Les sorties de la génératrice sont raccordées au contrôleur d'alimentation électrique SSPC à deux voies. Les sorties du contrôleur SSPC alimentent les charges CH'i, CH'2 de l'aéronef.
Le contrôleur SSPC comporte deux lignes d'alimentation électrique ALIMi et ALIM2 alimentant les charges CH'i et CH'2 associées et un processeur CPU' comme moyens de contrôle.
On peut également citer comme autre exemple de moyens de contrôle un système de portes logiques utilisant un amplificateur opérationnel associé à un comparateur. Les voies ALIMi et ALIM2 sont de constitution identique. Par la suite, l'architecture de la voie d'alimentation ALIM2 est détaillée.
Les entrées de la voie d'alimentation ALIM2 sont reliées à la génératrice G' et à la masse de l'aéronef GND'. Les sorties de la voie ALIM2 sont reliées à la charge CH'2.
La voie ALIM2 comporte un contrôleur d'alimentation à semiconducteurs SSPC2, un multiplexeur MUX2 et trois transformateurs haute fréquence de mesure du courant de constitution identique T'21, T'22, T'23 comprenant chacun un circuit primaire comprenant un enroulement primaire et un circuit secondaire comprenant un enroulement secondaire.
Les entrées du contrôleur d'alimentation à semi-conducteurs SSPC2 sont reliées à la génératrice G' et à la masse GND' de la génératrice G'. Les sorties du contrôleur d'alimentation à semi- conducteurs SSPC2 sont reliées à la charge CH'2. Chaque première connexion de l'enroulement primaire d'un transformateur haute fréquence de mesure du courant T'21, T'22, T'23 est reliée à une sortie différente du contrôleur d'alimentation à semi-conducteurs SSPC'2 et la seconde connexion de l'enroulement primaire de chaque transformateur est reliée à la phase de la charge CH'2 correspondante à la sortie du contrôleur d'alimentation à semi-conducteurs SSPC'2.
Les connexions de l'enroulement secondaire des transformateurs T'21, T'22, T'23 sont reliées aux entrées d'un multiplexeur MUX2. La sortie du multiplexeur MUX2 est reliée à une unité de traitement CPU'. Par exemple, l'unité de traitement est réalisée à partir d'un processeur, mais il peut s'agir de tout dispositif apte à contrôler un contrôleur SSPC. Il peut notamment s'agir d'un micro contrôleur.
Selon un autre mode de réalisation illustré à la figure 3, le contrôleur SSPC comporte un multiplexeur MUX remplaçant les multiplexeurs MUXi et MUX2. Les connexions de l'enroulement secondaire de tous les transformateurs haute fréquence de mesure du courant T'n, T'12, T'13 , T'21, T'22 et T'23 du contrôleur SSPC sont reliées aux entrées du multiplexeur MUX. La sortie du multiplexeur MUX est reliée à une unité de traitement CPU' .
L 'utilisation d'un transformateur par phase et d'un ou de plusieurs multip lexeurs permettent de reprogrammer la mesure du courant différentiel en fonction des phases à mesurer.
Le CPU' sélectionne et inhibe la mesure des voies connectées au dispositif de détection de défaut de masse GFI (« Ground Fault Interrupter », en anglais) par l' intermédiaire du multip lexeur MUX ou des multiplexeurs MUXi et MUX2.
La sélection des voies peut se faire par l ' intermédiaire de tout autre système de sélection connu.
Le processeur CPU' est relié aux contrôleurs d' alimentation à semi-conducteurs S SPC ' i et S SPC2.
En fonctionnement, le processeur CPU' sélectionne les voies à surveiller par l' intermédiaire du multip lexeur MUX ou des multip lexeurs MUXi et MUX2. Le processeur CPU' peut à tout moment modifier la configuration des multiplexeurs pour sélectionner d' autres voies à surveiller, notamment en fonction des charges raccordées ou balayé alternativement les voies ALIMi et ALIM2 pour détecter un défaut sur l 'une des voies.
Les transformateurs haute fréquence de mesure du courant fonctionnent à champs magnétique nul. Un courant est inj ecté dans le circuit secondaire des transformateurs pour réguler une tension de sortie nulle et conserver une induction proche de 0 tesla. De la valeur des courants inj ectés dans les circuits secondaires des transformateurs, on en déduit la valeur des courants circulant dans les phases de la voie sélectionnée.
Avantageusement, l ' architecture décrite permet la reconfiguration du dispositif de détection de défaut de masse GFI sur toutes les voies.
L 'utilisation de transformateurs haute fréquence de mesure du courant fonctionnant en champs magnétique nul réduit le vo lume du circuit magnétique. Par conséquent, l ' encombrement des transformateurs est réduit. L ' espace occupé par le circuit imprimé ou PCB (« printed circuit board » en anglais) supportant le dispositif reste donc limité.
Lorsqu'un défaut est détecté sur une phase, par exemple sur la voie ALIM2, le processeur CPU' commande l ' ouverture de la voie ALIM2 en pilotant le contrôleur d' alimentation à semi-conducteurs S SPC2.
Par conséquent, seule la voie en défaut est ouverte.
Lorsqu'une ou plusieurs voies sont raccordées à des charges connectées entre phases et masse, l' architecture présentée permet de conserver la fonction de détection de défaut de masse GFI sur les autres voies.
Avantageusement, le dispositif de mesure du courant de fuite mesure le courant de fuite avec une précision suffisante pour assurer la protection des personnes et des équipements.

Claims

REVENDICATIONS
1. Dispositif de mesure du courant de fuite reprogrammable pour aéronef comprenant au moins un contrôleur d'alimentation à semi-conducteurs (SSPC'i, SSPC'2) destiné à commander l'alimentation d'une charge avionique (CH'i, CH'2) et comprenant plusieurs sorties, le dispositif comprenant des moyens de mesure (T'n, T'12, 'n, T'2i, T'22, T'23) du courant des sorties du contrôleur d'alimentation, caractérisé en ce que chaque sortie dudit au moins un contrôleur d'alimentation à semi conducteur est reliée à un moyen de mesure.
2. Dispositif de mesure selon la revendication 1, dans lequel les moyens de mesure comprennent des transformateurs haute fréquence de mesure du courant (T'n, T'12, T'13i T'21, T'22, T'23).
3. Dispositif de mesure selon l'une des revendications 1 et 2, comprenant en outre des moyens de contrôle (CPU') du au moins un contrôleur d'alimentation à semi-conducteurs (SSPC'i, SSPC'2), des premiers moyens de raccordement (MUXi, MUX2, MUX) reliant les moyens de mesure aux moyens de contrôle et des seconds moyens de raccordement reliant les moyens de contrôle audit au moins un contrôleur d'alimentation.
4. Dispositif de mesure selon la revendication 3, dans lequel les premiers moyens de raccordement comprennent un ou plusieurs multiplexeurs (MUXi, MUX2, MUX).
5. Procédé de mesure du courant de fuite pour la mise en œuvre d'un dispositif de mesure du courant reprogrammable pour aéronef comprenant au moins un contrôleur d'alimentation à semiconducteurs (SSPC'i, SSPC'2) pour l'alimentation électrique d'au moins une charge avionique (CH'i, CH'2) et comprenant plusieurs sorties, des moyens de mesure (T'n, T'12, T'13i T'21, T'22, T'23) du courant des sorties du contrôleur d'alimentation à semi-conducteurs et des moyens de contrôle (CPU') du contrôleur d'alimentation à semiconducteurs (SSPC'i, SSPC'2), caractérisé en ce que dès qu'un courant de fuite est détecté par les moyens de mesure sur une sortie du au moins un contrôleur d'alimentation, les moyens de contrôle coupent l'alimentation électrique des sorties dudit au moins un contrôleur d'alimentation.
6. Procédé selon la revendication 5, dans lequel les moyens de mesure sont des transformateurs haute fréquence de mesure du courant (T'n, T'i2, 'i3, T'21, T'22, T'23) fonctionnant à flux magnétique nul.
7. Procédé selon l'une des revendications 5 ou 6, dans lequel la au moins une charge avionique (CH'i, CH'2) est connectée entre au moins une phase et une masse.
8. Procédé selon l'une quelconque des revendications 5 à 7, dans lequel la configuration des moyens de mesure est configurable.
PCT/EP2018/061333 2017-05-04 2018-05-03 Dispositif de mesure du courant de fuite reprogrammable WO2018202769A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753932A FR3066024B1 (fr) 2017-05-04 2017-05-04 Dispositif de mesure du courant de fuite reprogrammable
FR1753932 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018202769A1 true WO2018202769A1 (fr) 2018-11-08

Family

ID=59070955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/061333 WO2018202769A1 (fr) 2017-05-04 2018-05-03 Dispositif de mesure du courant de fuite reprogrammable

Country Status (2)

Country Link
FR (1) FR3066024B1 (fr)
WO (1) WO2018202769A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391812A1 (fr) * 1989-04-06 1990-10-10 Merlin Gerin Système de controle d'isolement d'un réseau à courant continu
US20110222200A1 (en) * 2010-03-09 2011-09-15 Honeywell International Inc. High power solid state power controller (sspc) solution for primary power distribution applications
EP2757647A2 (fr) * 2013-01-21 2014-07-23 Hamilton Sundstrand Corporation Architecture de distribution d'énergie à partir d'une matrice reconfigurable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391812A1 (fr) * 1989-04-06 1990-10-10 Merlin Gerin Système de controle d'isolement d'un réseau à courant continu
US20110222200A1 (en) * 2010-03-09 2011-09-15 Honeywell International Inc. High power solid state power controller (sspc) solution for primary power distribution applications
EP2757647A2 (fr) * 2013-01-21 2014-07-23 Hamilton Sundstrand Corporation Architecture de distribution d'énergie à partir d'une matrice reconfigurable

Also Published As

Publication number Publication date
FR3066024B1 (fr) 2019-05-10
FR3066024A1 (fr) 2018-11-09

Similar Documents

Publication Publication Date Title
EP3232526B1 (fr) Dispositif de détection d'un courant de défaut
EP1383218B1 (fr) Dispositif de surveillance de rupture de neutre et de terre, et appareil de coupure électrique comportant un tel dispositif
EP2421110B1 (fr) Detection directionnelle d'un defaut à la terre avec un seul capteur
EP2533060B1 (fr) Détection directionnelle de défaut à la terre résistant et de rupture de conducteur moyenne tension
FR2942352B1 (fr) Identification et protection d'un systeme de courant c.a-c.c aerospatial en presence de contenu de courant c.c en raison des charges defectueuses
FR3009624A1 (fr) Test integre de detecteur d'amorcages d'arcs/phenomenes transitoires
EP2648008A1 (fr) Système de contrôle d'isolement pour réseau électrique sécurisé
WO2015150671A1 (fr) Dispositif de mesure d'au moins une grandeur physique d'une installation electrique
EP3707521B1 (fr) Procede de detection de l'etat d'un appareil de protection electrique dans une installation electrique et dispositif de detection mettant en oeuvre ledit procede
EP0019507A1 (fr) Perfectionnement aux transformateurs capacitifs de tension à sortie électronique
WO2018202769A1 (fr) Dispositif de mesure du courant de fuite reprogrammable
EP3594699B1 (fr) Dispositif de protection différentielle
EP3561523B1 (fr) Appareil électrique comportant des moyens de test d'un transformateur de courant testable
EP3051298A1 (fr) Capteur de courant et réseau électrique comprenant un tel capteur de courant
FR3085153A1 (fr) Procede de protection d'une charge associee a une voie de disjonction d'une carte electronique de disjoncteurs statiques
EP2980941B1 (fr) Dispositif d'adaptation d'un signal d'alimentation électrique, système d'alimentation électrique et procédé d'adaptation d'un signal d'alimentation électrique associés
EP3654045B1 (fr) Procede de detection et de transmission d'information de panne dormante
EP4064495B1 (fr) Compensateur synchrone statique série moyenne tension pour réseau électrique de distribution et procédé de commande
WO2022096836A1 (fr) Dispositifs de surveillance et de protection de circuits de puissance
EP3405796A1 (fr) Dispositif de mesure de courant protege contre les surtensions en cas d'ouverture du circuit
FR2775847A1 (fr) Dispositifs de protection differentielle, appareil electrique et installation electrique comportant un tel dispositif
EP3139485B1 (fr) Systeme de demarrage progressif d'un moteur electrique
WO2023006500A1 (fr) Système électronique spatial
EP4081810A1 (fr) Organe de mesure d'une tension de mode commun dans un reseau electrique et dispositif de detection d'une defaillance mettant en oeuvre un tel organe
FR3105627A1 (fr) compensateur synchrone statique série moyenne tension pour réseau électrique de distribution.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18721793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18721793

Country of ref document: EP

Kind code of ref document: A1