EP4377430A1 - Procédé de production d'un conditionneur de tissu - Google Patents
Procédé de production d'un conditionneur de tissuInfo
- Publication number
- EP4377430A1 EP4377430A1 EP22747330.3A EP22747330A EP4377430A1 EP 4377430 A1 EP4377430 A1 EP 4377430A1 EP 22747330 A EP22747330 A EP 22747330A EP 4377430 A1 EP4377430 A1 EP 4377430A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- premix
- water
- rheology modifier
- fabric conditioner
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002979 fabric softener Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000006254 rheological additive Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002304 perfume Substances 0.000 claims abstract description 41
- 239000004744 fabric Substances 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 238000007865 diluting Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 61
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 17
- 239000004615 ingredient Substances 0.000 claims description 15
- 125000002091 cationic group Chemical group 0.000 claims description 12
- 150000004676 glycans Chemical class 0.000 claims description 8
- 229920001282 polysaccharide Polymers 0.000 claims description 8
- 239000005017 polysaccharide Substances 0.000 claims description 8
- 229920000058 polyacrylate Polymers 0.000 claims description 6
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 4
- 229920005646 polycarboxylate Polymers 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- 150000003673 urethanes Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 description 32
- 150000004665 fatty acids Chemical class 0.000 description 15
- 239000002736 nonionic surfactant Substances 0.000 description 13
- 125000003342 alkenyl group Chemical group 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 description 9
- 229910052740 iodine Inorganic materials 0.000 description 9
- 239000011630 iodine Substances 0.000 description 9
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 8
- -1 clays Chemical class 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 125000001453 quaternary ammonium group Chemical group 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 150000005690 diesters Chemical class 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical group OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 229920006317 cationic polymer Polymers 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 150000005691 triesters Chemical class 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- UABIXNSHHIMZEP-UHFFFAOYSA-N 2-[2-[(dimethylamino)methyl]phenyl]sulfanyl-5-methylaniline Chemical compound CN(C)CC1=CC=CC=C1SC1=CC=C(C)C=C1N UABIXNSHHIMZEP-UHFFFAOYSA-N 0.000 description 2
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 239000001904 Arabinogalactan Substances 0.000 description 2
- 229920000189 Arabinogalactan Polymers 0.000 description 2
- 229920002148 Gellan gum Polymers 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 229920006322 acrylamide copolymer Polymers 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 235000019312 arabinogalactan Nutrition 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 229920003118 cationic copolymer Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 150000002190 fatty acyls Chemical group 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 235000010492 gellan gum Nutrition 0.000 description 2
- 239000000216 gellan gum Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 2
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical class C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 2
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- GNRKVLMFBDYHJW-UHFFFAOYSA-N 2-(methylamino)ethanol;methyl hydrogen sulfate Chemical compound C[NH2+]CCO.COS([O-])(=O)=O GNRKVLMFBDYHJW-UHFFFAOYSA-N 0.000 description 1
- BSNJMDOYCPYHST-UHFFFAOYSA-N 2-ethenoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC=C BSNJMDOYCPYHST-UHFFFAOYSA-N 0.000 description 1
- NBTXFNJPFOORGI-UHFFFAOYSA-N 2-ethenoxyethyl prop-2-enoate Chemical compound C=COCCOC(=O)C=C NBTXFNJPFOORGI-UHFFFAOYSA-N 0.000 description 1
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000007167 Hofmann rearrangement reaction Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000003855 acyl compounds Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- WJMQFZCWOFLFCI-UHFFFAOYSA-N cyanomethyl prop-2-enoate Chemical compound C=CC(=O)OCC#N WJMQFZCWOFLFCI-UHFFFAOYSA-N 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- WGESLFUSXZBFQF-UHFFFAOYSA-N n-methyl-n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCN(C)CC=C WGESLFUSXZBFQF-UHFFFAOYSA-N 0.000 description 1
- CHDKQNHKDMEASZ-UHFFFAOYSA-N n-prop-2-enoylprop-2-enamide Chemical compound C=CC(=O)NC(=O)C=C CHDKQNHKDMEASZ-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- UMSVPCYSAUKCAZ-UHFFFAOYSA-N propane;hydrochloride Chemical compound Cl.CCC UMSVPCYSAUKCAZ-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/225—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0094—Process for making liquid detergent compositions, e.g. slurries, pastes or gels
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
- C11D3/0015—Softening compositions liquid
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/30—Amines; Substituted amines ; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3769—(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
- C11D3/3773—(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
Definitions
- the present invention is in the field of manufacture of fabric conditioner compositions.
- Fabric conditioner compositions are traditionally formulated in a single process at a single factory, then packaged and distributed. This generally occurs at a central factory and the packaged product is shipped great distances.
- multiple smaller factories may produce fabric conditioners; however it is burdensome on smaller factories to produces multiple variants (e.g. fabric conditioners having different fragrances and/or different concentrations of active materials). Neither of these solutions are optimal, therefore a new method of production is required.
- the production of a fabric conditioner is a sensitive process, particularly when polymers and microcapsules are involved, which tend to effect viscosity or can make the product separate. There remains a need for improved, more versatile methods of manufacturing fabric conditioners.
- a method for the production of a fabric conditioner comprising the steps of: a. Production of a premix comprising fabric softening active and perfume; b. Optionally storing the premix and/or transporting the premix to a different geographical location; c. Diluting the premix in water; d. Separately dispersing a rheology modifier in water; e. Mixing the diluted premix and the dispersed rheology modifier.
- a premix is produced.
- the premix comprises a fabric softening active and water. More preferably the premix comprises a fabric softening active, perfume ingredients and water.
- the fabric softening active is melted to form a pre-melt then added to any other ingredients.
- the fabric softening active melt is formed at a temperature above 50°C, more preferably above 55°C.
- the melted fabric softening active is then added to a mixture of water.
- the water is preferably at a temperature of about 40°C to about 60°C.
- the other ingredients may be mixed in the water before and/or after the fabric softening active is added.
- any encapsulated perfume or non-ionic surfactant present is dispersed in the water prior to the fabric softening active being added.
- the mixture is then cooled. It may be preferable to add some ingredients after the mixture has started to cool.
- any free perfume present in the composition is added after the composition has cooled to 40°C or bellow.
- the viscosity of the premix is preferably 400 to 800 mPa.s-1, more preferably 500 to 750 mPa.s-1. Viscosity is measured at Thermo Scientific Haake Viscotester 550 model with a MV1 Sensor System for 15 seconds using 106 viscosity range with temperature of 25°C.
- the premix preferably comprises a fabric softening active.
- the premix comprises more than 5 wt. % fabric softening active, more preferably more than 8 wt. % fabric softening active, most preferably more than 10 wt. % fabric softening active by weight of the premix.
- the premix of the present invention comprises less than 60 wt.
- the premix comprises 5 to 60 wt. % fabric softening active, preferably 8 to 40 wt.% fabric softening active and more preferably 10 to 35 wt. % fabric softening active by weight of the premix.
- the fabric softening active may be any material known to soften fabrics. These may be polymeric materials or compounds known to soften materials. Examples of suitable fabric softening actives include: quaternary ammonium compounds, silicone polymers, polysaccharides, clays, amines, fatty esters, dispersible polyolefins, polymer latexes and mixtures thereof.
- the fabric softening actives may preferably be cationic or non-ionic materials.
- the fabric softening actives of the present invention are cationic materials. Suitable cationic fabric softening actives are described herein.
- the preferred softening actives for use in the premix of the invention are quaternary ammonium compounds (QAC).
- the QAC preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from fatty acids.
- fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons.
- Fatty acids may be derived from various sources such as tallow or plant sources.
- the fatty acid chains are derived from plants.
- the fatty acid chains of the QAC comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains.
- the fatty acid chains of the QAC comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
- the preferred quaternary ammonium fabric softening actives for use in compositions of the present invention are ester linked quaternary ammonium compounds or so called "ester quats".
- Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
- TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
- Suitable actives include soft quaternary ammonium actives such as Stepantex VT90, Rewoquat WE18 (ex-Evonik) and Tetranyl L1/90N, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao).
- TEA ester quats actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
- a second group of QACs suitable for use in the invention is represented by formula (II): wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
- Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3- trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1,2-bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3- trimethylammonium propane chloride.
- Such materials are described in US 4, 137,180 (Lever Brothers).
- these materials also comprise an amount of the corresponding mono ester.
- a third group of QACs suitable for use in the invention is represented by formula (III):
- each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above.
- Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
- a particular example of the fourth group of QACs is represented the by the formula:
- a fourth group of QACs suitable for use in the invention are represented by formula (V)
- R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups.
- X- is as defined above.
- the iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
- the iodine value may be chosen as appropriate.
- Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
- a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
- a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester- linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
- the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all the quaternary ammonium materials present.
- the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
- Iodine value refers to, the fatty acid used to produce the QAC, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem. , 34, 1136 (1962) Johnson and Shoolery.
- a further type of softening compound may be a non-ester quaternary ammonium material represented by formula (VI): wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
- formula (VI) wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
- the premix further comprises perfume ingredients.
- the perfume ingredients may be a free oil perfume and/or perfume microcapsules.
- the premix comprises 0.1 to 30 wt.% perfume ingredients, more preferably 0.2 to 20 wt.% perfume ingredients, most preferably 0.5 to 15 wt. % perfume ingredients by weight of the premix.
- perfume ingredients it is meant the combined free perfume and any encapsulated perfume.
- Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
- Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
- perfume compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components.
- An upper limit of 300 perfume ingredients may be applied.
- Free perfume may preferably be present in an amount from 0.01 to 28 wt. %, more preferably 0.1 to 20 wt.%, more preferably from 0.1 to 15 wt.%, even more preferably from 0.1 to 10 wt.%, most preferably from 0.2 to 6 wt. %, based on the total weight of the composition.
- Suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
- Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
- Particularly preferred perfume components are as described for free perfumes.
- Encapsulated perfume may preferably be present in an amount from 0.01 to 25 wt.%, more preferably 0.05 to 20 wt. %, more preferably from 0.05 to 15 wt.%, even more preferably from 0.1 to 10 wt.%, most preferably from 0.1 to 6 wt.%, based on the total weight of the premix.
- the premix preferably comprises non-ionic surfactants. Typically these can be included for the purpose of stabilising the compositions. Suitable nonionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. Any of the alkoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant.
- Suitable surfactants are substantially water soluble surfactants of the general formula (VII): R-Y-(C 2 H40) Z -CH2-CH2-0H (VII) where R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 8 to about 25, preferably 10 to 20, e.g. 14 to 18 carbon atoms.
- Y is typically:
- R has the meaning given above for formula (VII), or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 11.
- the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16.
- GenapolTM C200 (Clariant) based on coco chain and 20 EO groups is an example of a suitable nonionic surfactant.
- a class of preferred non-ionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. These are preferably selected from addition products of (a) an alkoxide selected from ethylene oxide, propylene oxide and mixtures thereof with (b) a fatty material selected from fatty alcohols, fatty acids and fatty amines.
- Y is typically:
- R has the meaning given above for formula (VIII), or can be hydrogen; and Z is at least about 6, preferably at least about 10 or 11.
- LutensolTM AT25 (BASF) based on C16:18 chain and 25 EO groups is an example of a suitable non-ionic surfactant.
- suitable surfactants include Renex 36 (Trideceth-6), ex Croda; Tergitol 15-S3, ex Dow Chemical Co.; Dihydrol LT7, ex Thai Ethoxylate ltd; Cremophor CO40, ex BASF and Neodol 91-8, ex Shell.
- Non-ionic surfactants may preferably be present in an amount from 0.001 to 10 wt.%, more preferably 0.005 to 5 wt. %, more preferably from 0.01 to 3 wt.%, most preferably from 0.05 to 1 wt.%, based on the total weight of the premix.
- the premix may comprise other ingredients of fabric conditioner liquids as will be known to the person skilled in the art.
- co-softeners fatty complexing agents, antifoams, insect repellents, shading or hueing dyes, preservatives (e.g. bactericides), pH buffering agents, perfume carriers, hydrotropes, anti-redeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti oxidants, dyes, colorants, sunscreens, anti-corrosion agents, drape imparting agents, anti static agents, sequestrants and ironing aids.
- the products of the invention may contain pearlisers and/or opacifiers.
- a preferred sequestrant is HEDP, an abbreviation for Etidronic acid or 1-hydroxyethane 1,1-diphosphonic acid.
- the second step optional involves storing the premix and/or transporting the premix to a different geographical location, for example a different factory in a different region, or even a different country.
- Storing the premix allows a concentrated batch to be made and then portions of the batch diluted as and when required. Preferably if the premix is stored, storage is for 24 hours to 60 days.
- Transporting the premix to other locations allows localised dilution of a fabric conditioner and therefore reduces transport costs and carbon emissions.
- Transport may be my any suitable means, for example road, rail, sea or air.
- the premix may be stored before and/or after transportation. c. Diluting the premix in water;
- the third step involves diluting the premixin a quantity of water.
- the premix is diluted by mixing with a quantity of water.
- the quantity of water is 30% to 90% by weight of the final fabric conditioner composition, preferably 40% to 80 % by weight of the final fabric conditioner composition, more preferably 45 % to 75 % by weight of the final fabric conditioner composition.
- the amount of premix diluted in the water is preferably 3 wt.% to 50 wt. %, more preferably 5 to 40 wt.%, most preferably 5 wt.% to 30 wt.% by weight of the final fabric conditioner composition.
- the temperature of the water is preferably 15 to 30°C.
- the premix and water are preferably agitated, for example by mechanical mixing.
- the premix and water are mixed or agitated for at least 1 minute, preferably at least 2 minutes.
- the energy input for agitation is 0.1 to 0.2 W/kg (watts/kilogram), more preferably 0.14 to 0.18 W/kg. d. Separately dispersing a rheology modifier in water;
- the fourth step involves dispersing a rheology modifier in water. This step may occur before, after or concurrently with step c.
- the quantity of water is 5% to 40% by weight of the final fabric conditioner composition, preferably 5% to 35 % by weight of the final fabric conditioner composition, more preferably 10 % to 30 % by weight of the final fabric conditioner composition.
- the temperature of the water is preferably 15 to 30°C.
- the rheology modifier Generally to disperse the rheology modifier, mechanical mixing is required.
- the water and rheology modifier are mixed or agitated for at least 1 minute, preferably 5 minutes.
- the energy input for agitation is 0.22 to 0.32, preferably 0.25 to 0.3 W/kg.
- a rheology modifier is employed.
- Rheology modifiers may be used to "thicken” or “thin” liquid compositions to a desired viscosity.
- the amount of rheology modifier dispersed in the water is preferably 0.01 wt.% to 1 wt. %, more preferably 0.1 to 0.5 wt.%, most preferably 0.18 wt.% to 0.3 wt.% by weight of weight of the final fabric conditioner composition.
- Suitable rheology modifiers are preferably polymeric materials.
- the rheology modifier may be synthetic alternatively the rheology modifier may be wholly or partly derived from natural sources such as cellulosic fibres (for example, m icrof i b ri 11 ated cellulose, which may be derived from a bacterial, fungal, or plant origin, including from wood).
- Naturally derived polymeric rheology modifiers may comprise hydroxyethyl cellulose, hydrophobically modified hydroxyethyl cellulose, carboxymethyl cellulose, polysaccharide derivatives and mixtures thereof.
- Polysaccharide derivatives may comprise pectine, alginate, arabinogalactan (gum Arabic), carrageenan, gellan gum, xanthan gum, guar gum and mixtures thereof.
- Synthetic polymeric rheology modifiers may comprise polycarboxylates, polyacrylates, hydrophobically modified ethoxylated urethanes, hydrophobically modified non-ionic polyols and mixtures thereof.
- Polycarboxylate polymers may comprise a polyacrylate, polymethacrylate or mixtures thereof.
- Polyacrylates may comprise a copolymer of unsaturated mono- or di-carbonic acid and C1-C30 alkyl ester of the (meth)acrylic acid. Such copolymers are available from Noveon Inc. under the tradename Carbopol Aqua 30. Another suitable structurant is sold under the tradename Rheovis CDE, available from BASF.
- the rheology modifier is selected from polyacrylates, polysaccharides, polysaccharide derivatives, or combinations thereof.
- Polysaccharide derivatives typically used as rheology modifiers comprise polymeric gum materials. Such gums include pectin, alginate, arabinogalactan (gum Arabic), carrageenan, gellan gum, xanthan gum and guar gum.
- the rheology modifier may preferably be a cationic polymer.
- Cationic polymer refers to polymers having an overall positive charge.
- Cationic polymers may comprise non-cationic structural units, but the rheology modifier preferably have a net cationic charge.
- Preferred synthetic rheology modifiers comprise may comprise: acrylamide structural units, methacrylate structural units, acrylate structural units, methacrylic acid units and combinations thereof.
- the rheology modifier may preferably be cross-linked.
- the rheology modifier is crosslinked with 50 to 1000 ppm of a difunctional vinyl addition monomer cross-linking agent.
- Particularly preferred crosslinked polymers are cross-linked copolymers of acrylamide and methacrylate cross-linked with a difunctional vinyl addition monomer, such as methylene bisacrylamide.
- Preferred cationic cross-linked polymers are derivable from the polymerization of from 5 to 100 mole percent of cationic vinyl addition monomer, from 0 to 95 mole percent of acrylamide and from 50 to 1000 ppm of a difunctional vinyl addition monomer cross-linking agent.
- Particularly preferred polymers are copolymers of 20% acrylamide and 80% MADAM methyl chloride (MADAM: dimethyl amino ethyl methacrylate) cross-linked with from 450 to 600 ppm of methylene bisacrylamide.
- the rheology modifier may be a cationic acrylamide copolymer which is a cationic copolymer obtained by Hofmann rearrangement in aqueous solution in the presence of an alkali and/or alkaline earth hydroxide and an alkali and/or alkaline earth hypohalide, on a base copolymer comprising:
- At least one comonomer selected from the group consisting of unsaturated cationic ethylenic comonomer, non-ionic comonomer, or combinations thereof, provided that the non-ionic comonomer is not acrylamide, methacrylamide, N,N- dimethylacrylamide, or acrylonitrile.
- the cationic copolymer thus obtained has a desalination coefficient (Cd) of greater than 0.6 (e.g., greater than 0.65 and greater than 0.7).
- Cd is calculated as Real polymeric active matter (% by weight of the copolymer)* Polymer filler density Conductivity of the solution containing 9% of active matter. See also U.S. Pat. No. 8,242,215.
- the unsaturated cationic ethylenic comonomer can be selected from the group consisting of dialkylaminoalkyl(meth)acrylamide monomers, diallylamine monomers, methyldiallylamine monomers, and quaternary ammonium salts or acids thereof, such as dimethyldiallylammonium chloride (DADMAC), acrylamidopropyltrimethyl-ammonium chloride (APTAC), methacrylamidopropyltrimethylammonium chloride (MAPTAC).
- DMDMAC dimethyldiallylammonium chloride
- ATAC acrylamidopropyltrimethyl-ammonium chloride
- MATAC methacrylamidopropyltrimethylammonium chloride
- non-ionic comonomer are N-vinyl acetamide, N-vinyl formamide, N-vinylpyrrolidone, vinyl acetate, and combinations thereof.
- the base copolymer is preferably branched in the presence of a branching agent selected from the group consisting of methylene bisacrylamide, ethylene glycol di-acrylate, polyethylene glycol dimethacrylate, diacrylamide, cyanomethylacrylate, vinyloxyethylacrylate, vinyloxyethylmethacrylate, triallylamine, formaldehyde, glyoxal, and a glycidylether type compound. More examples of the cationic acrylamide copolymers can be found in U.S. Pat. No. 8,242,215.
- Suitable rheology modifiers are commercially available from SNF Floerger under the trade names Flosoft FS 200, Flosoft FS 222, Flosoft FS 555, and Flosoft FS 228 and are commercially available from BASF under the trade names Rheovis CDE and Rheovis FRC. See also WO 2007141310, US 20060252668, and US 20100326614. e. Mixing the diluted premix and the dispersed rheology modifier.
- the last step of the process involves mixing the diluted premix from step (c) and the dispersed rheology modifier from step (d). Once mixed, the final fabric conditioner composition is obtained.
- the mixing may occur by adding the diluted premix to a vessel containing the dispersed rheology modifier, adding the dispersed rheology modifier to a vessel comprising the diluted premix or concurrently adding both compositions to one vessel.
- mechanical mixing or agitation occurs for example stirring, preferably the compositions are mixed or agitated for at least 1 minute, more preferably 2 minutes.
- the energy input for agitation is 0.22 to 0.32, preferably 0.25 to 0.3 W/kg.
- the viscosity of the fabric conditioner is preferably 40 to 100 mPa.s 1 , more preferably 50 to 100 mPa.s 1 . Viscosity is measured at Thermo Scientific Haake Viscotester 550 model with a
- Fabric conditioners were prepared by various methods. Table 1: Premix composition
- Fabric softening active 1 - Dialkyloxyethyl Hydroxyethyl Methyl Ammonium Methyl sulphate
- Non-ionic surfactant 2 - Alcohol ethoxylate having C16: 18 chain and 25 EO groups
- the rheology modifier used in all examples was a cationic acrylamide.
- the premix was prepared by heating water to 50°C, adding the encapsulated perfume, non ionic surfactant and minors with agitation. Separately pre-melting the fabric softening active at a temperature of ⁇ 65°C. Adding the fabric softening active to the water and other ingredients with stirring. The mixture was then cooled and the free perfume added.
- Rheology modifier was added directly to the premix and mixed.
- Example process B Water equating to 80% of the final fabric conditioner composition was then added with siring.
- Rheology modifier was added directly to water equating to 80% of the final fabric conditioner composition.
- the premix and rheology modifier were added simultaneously, directly to water equating to 80% of the final fabric conditioner composition and the mixture stirred.
- the rheology modifier was mixed with room temperature water: 0.24 wt.% by weight of the final fabric conditioner formulation of rheology modifier and 25 wt.% by weight of the final fabric conditioner formulation of water. The mixture was stirred for 12 minutes, until the polymer was dispersed.
- the premix was then mixed with room temperature water: 14 wt.% by weight of the final fabric conditioner formulation of premix and 60 wt.% by weight of the final fabric conditioner formulation of water. The mixture was stirred for 5 minutes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
L'invention concerne un procédé de production d'un conditionneur de tissu, le procédé comprenant les étapes consistant à : a) produire un prémélange comprenant un actif adoucissant pour tissus et un parfum ; b) éventuellement stocker le prémélange et/ou transporter le prémélange vers un emplacement géographique différent ; c) diluer le prémélange dans de l'eau ; d) disperser séparément un modificateur de rhéologie dans l'eau ; et e) mélanger le prémélange dilué et le modificateur de rhéologie dispersé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21187586 | 2021-07-26 | ||
PCT/EP2022/069096 WO2023006384A1 (fr) | 2021-07-26 | 2022-07-08 | Procédé de production d'un conditionneur de tissu |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4377430A1 true EP4377430A1 (fr) | 2024-06-05 |
Family
ID=77050872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22747330.3A Pending EP4377430A1 (fr) | 2021-07-26 | 2022-07-08 | Procédé de production d'un conditionneur de tissu |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4377430A1 (fr) |
CN (1) | CN117716010A (fr) |
WO (1) | WO2023006384A1 (fr) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1567947A (en) | 1976-07-02 | 1980-05-21 | Unilever Ltd | Esters of quaternised amino-alcohols for treating fabrics |
EP0922755A1 (fr) * | 1997-12-10 | 1999-06-16 | The Procter & Gamble Company | Procédé de production d'une composition liquide adoucissante pour textiles |
CN1231566C (zh) * | 2000-10-27 | 2005-12-14 | 宝洁公司 | 由织物调理浓缩物形成织物调理组合物的方法 |
MX2007012949A (es) | 2005-04-18 | 2008-01-11 | Procter & Gamble | Composiciones diluidas para el cuidado de telas, que comprenden espesantes, y composiciones para el cuidado de telas que se utilizan en presencia de remanentes anionicos. |
GB0611486D0 (en) | 2006-06-09 | 2006-07-19 | Unilever Plc | Fabric softener composition |
FR2912749B1 (fr) | 2007-02-19 | 2009-04-24 | Snf Soc Par Actions Simplifiee | Copolymeres cationiques derives d'acrylamide et leur utilisations |
EP2551337A1 (fr) * | 2011-07-27 | 2013-01-30 | The Procter & Gamble Company | Procédé pour la production d'une composition contenant un modificateur de rhéologie |
EP3234086B1 (fr) * | 2014-12-15 | 2018-09-26 | Unilever PLC, a company registered in England and Wales under company no. 41424 | Compositions de conditionnement de tissus liquides versables |
EP3339411B1 (fr) * | 2016-12-22 | 2019-12-11 | The Procter & Gamble Company | Composition d'adoucissant textile à stabilité de viscosité améliorée |
-
2022
- 2022-07-08 CN CN202280052515.9A patent/CN117716010A/zh active Pending
- 2022-07-08 WO PCT/EP2022/069096 patent/WO2023006384A1/fr active Application Filing
- 2022-07-08 EP EP22747330.3A patent/EP4377430A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117716010A (zh) | 2024-03-15 |
WO2023006384A1 (fr) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6797688B2 (en) | Concentrated, preferably biodegradable, quaternary ammonium fabric softener compositions containing cationic polymers and process for preparation | |
EP3894529B1 (fr) | Compositions de conditionnement de tissu | |
EP4157983B1 (fr) | Composition d'adoucissant pour tissus | |
US20230235246A1 (en) | Dilutable fabric conditioner composition | |
JP4049996B2 (ja) | 透明液体布地柔軟化組成物 | |
EP3880779A1 (fr) | Compositions de conditionneur de tissu | |
WO2023006384A1 (fr) | Procédé de production d'un conditionneur de tissu | |
WO2022152548A1 (fr) | Revitalisant pour tissu | |
US20230127811A1 (en) | Dilutable fabric conditioner composition | |
WO2023170120A1 (fr) | Conditionneur de tissu concentré | |
WO2023170124A1 (fr) | Assouplissant concentré pour tissu | |
EP4150038B1 (fr) | Composition de lessive | |
EP4247925B1 (fr) | Conditionneur de tissu | |
CA2399441C (fr) | Preparations de conditionnement de tissus | |
WO2024153564A1 (fr) | Composition de blanchisserie | |
CN118451169A (zh) | 织物调理剂 | |
EP3953443A1 (fr) | Compositions de conditionneur de tissu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |