EP4375404A1 - Verfahren und vorrichtung zum detektieren des vorhandenseins eines faserbandes am eingang einer textilmaschine - Google Patents
Verfahren und vorrichtung zum detektieren des vorhandenseins eines faserbandes am eingang einer textilmaschine Download PDFInfo
- Publication number
- EP4375404A1 EP4375404A1 EP23210047.9A EP23210047A EP4375404A1 EP 4375404 A1 EP4375404 A1 EP 4375404A1 EP 23210047 A EP23210047 A EP 23210047A EP 4375404 A1 EP4375404 A1 EP 4375404A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sliver
- feeding
- speed
- electric drive
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000004753 textile Substances 0.000 title claims abstract description 28
- 238000012545 processing Methods 0.000 title claims abstract description 12
- 238000009987 spinning Methods 0.000 claims abstract description 78
- 230000008859 change Effects 0.000 claims abstract description 59
- 230000033228 biological regulation Effects 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 17
- 230000001052 transient effect Effects 0.000 claims abstract description 11
- 230000000750 progressive effect Effects 0.000 claims abstract 2
- 238000012544 monitoring process Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000010042 air jet spinning Methods 0.000 description 12
- 239000002657 fibrous material Substances 0.000 description 12
- 238000007383 open-end spinning Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000001944 accentuation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007378 ring spinning Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H4/00—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
- D01H4/30—Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls
- D01H4/32—Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls using opening rollers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/14—Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H67/00—Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
- B65H67/06—Supplying cores, receptacles, or packages to, or transporting from, winding or depositing stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H49/00—Unwinding or paying-out filamentary material; Supporting, storing or transporting packages from which filamentary material is to be withdrawn or paid-out
- B65H49/18—Methods or apparatus in which packages rotate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H63/00—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H63/00—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
- B65H63/02—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to a method of detecting the presence of a sliver at the entrance of a workstation of a textile machine for the processing of the sliver, in particular at the entrance of a textile machine for producing yarn from the sliver, during which the monitored sliver is conveyed at an entrance of the workstation of the machine by a sliver feeding device or by a sliver drafting device and the sliver feeding device or the sliver drafting device is driven by at least one individual electric drive connected to a control device equipped with a regulation loop for controlling the drive, wherein at least one quantity corresponding to the current load of said drive is sensed and the sensed quantity is evaluated.
- the invention also relates to a device for detecting the presence of a sliver in a sliver feeding device or in a sliver drafting device at a workstation of a textile machine, in particular a textile spinning machine for producing yarn, wherein the sliver feeding device or the sliver drafting device comprises at least one roller coupled to an individual electric drive which is connected to a control device and to a power source, wherein the roller is arranged to transport the sliver.
- the invention relates to a sliver drafting device or a sliver feeding device of a workstation of a textile machine for processing the sliver, in particular a spinning machine for producing yarn, which comprises at least one roller coupled to an individual electric drive which is provided with connecting means for connection to a power source and to a control device, wherein the roller is arranged to transport the sliver.
- the invention relates to a textile machine for processing a sliver, in particular a spinning machine for producing yarn, comprising at least one sliver feeding device or sliver drafting device which comprises at least one roller coupled to an individual electric drive which is coupled to a power source and to a control device, wherein the roller is arranged to transport the sliver.
- the detection of the presence of a sliver supply is an important function of automated spinning machines which transform the sliver supply into yarn. In the event that the sliver supply is not inserted into a feeding or drafting device, this situation needs to be detected and an automatic service device needs to be prevented from performing spinning-in functions.
- Spinning machines with a traveling automatic service device use a sensor located on each automatic service device to detect the presence of the sliver in the feeding device or the drafting device, wherein the presence of the sliver is checked in the zone immediately upstream of the feeding or drafting device before starting the spinning process.
- EP 3231902 discloses a sensor of the presence of a sliver at each spinning unit, wherein the sensor of the presence of the sliver is located at a distance before the sliver enters the drafting device.
- the specific type of sensor used as a spring presence detector is not addressed in this document, only its separate existence is assumed.
- Another possible use of the information about the absence of the sliver in the feeding or the drafting device is the creation of a request for the exchange of a sliver can/sliver reservoir.
- the request is transmitted to the superior control system of the spinning mill, which ensures the exchange of the empty can for a full one by means of a human operator or an automatic conveying device.
- This problem is addressed, for example, by US4150534 , without dealing with the principle and a specific embodiment of a sensor of the presence of the sliver.
- document JP2009155781 solves this problem for a machine with a drafting device by means of a mechanically hinged sensor equipped with an encoder indicating the angular position of the sensor.
- document CN106895776 solves the problem of detecting the presence of a sliver by means of a hinged arm touching the sliver and a sensor of the tilt angle of this arm.
- Document GB2154619 deals with a specific technical embodiment of a sliver sensor which consists in the fact that a sliver guide is tube-shaped and inside the tube there is a light source and a light sensitive sensing cell. The passing sliver shadows the light source and the signal detected by the light sensor corresponds to this. A similar principle of sliver detection using passing light is used in the solution described in CN201276629 .
- Document CN204185605 solves the detection of the presence of a sliver by means of an air pressure sensor which is arranged in a cavity through which the sliver passes.
- Document GB2163781 deals with the regulation of the speed of a sliver feeding device to a spinning unit, wherein solutions using an inductive sensor, a variable resistance sensor or a piezoelectric pressure sensor as a sensor of instantaneous sliver weight are envisaged.
- document IN202027050132 also published as EP3802926 , describes a method and a device for monitoring the parameters and characteristics of a sliver by measuring the load angle ( ⁇ ) and/or torque of one of the electric drives of the working organs of the spinning unit during the processing of the fibrous material into yarn.
- These are primarily drives of processing means, realizing the actual production of yarn from fibrous material, for example the drives of a combing roller, a spinning rotor, a traversing device, yarn draw-off rollers or the drive of a wound bobbin.
- the above-mentioned document does not deal with the detection of the presence of the sliver before entering the actual technological process of spinning the yarn.
- EP 3 438 334 A1 describes the detection of the consumed length of a sliver from a sliver can at a workstation of an air-jet spinning machine in order to optimize the servicing operations at the workstation depending on the consumption of the sliver.
- the object of the invention is to eliminate or at least reduce the disadvantages of the background art by means of a method and a device enabling detection of the presence of a sliver at the entrance of a spinning unit of a spinning machine before the sliver enters the yarn spinning process.
- the object of the invention is achieved by the method, the device, the feeding or drafting device and the textile machine according to the present invention, the principle of which consists in monitoring and evaluating, prior to the beginning of the spinning-in process, i.e. during the preparation of the end of the sliver, or during the spinning-in process and/or during spinning, a change in the supply current and/or the power input and/or the speed of rotation of the individual drive of at least one electric motor in the area of the sliver input to a spinning unit of a respective workstation is sensed and evaluated, whereby transient phenomena arising in the regulation loop from changes in the mechanical load of the respective electric drive are analysed and a change in the size of the supply current and/or a change in the value of the power input and/or a change in the speed of rotation of this individual electric drive is detected.
- the size of the detected change is evaluated and compared to a set decision level R of the change in the size of the supply current and/or the value of the power input and/or the rotational speed, and according to the result of this comparison, information is generated about the presence or absence of the sliver in the feeding or drafting device.
- a rapid relative change in the current or the power are evaluated if the control system knows the exact moment when the introduction of the sliver should occur.
- Modern air-jet spinning machines are equipped with a multi-stage drafting device, with at least some stages being driven by individual electric drives with electronic control systems, usually equipped with a control regulation loop, the primary objective of which is to maintain the speed of the individual electric drive at a set constant value.
- Rotor spinning machines are also equipped with a feeding device for the input of the sliver into the technological process of yarn spinning, consisting of a feeding roller and an electric drive assigned to it, including an appropriate electronic control system with a regulation loop.
- the regulation loop intervenes to maintain the set speed, wherein a so-called transient phenomenon can be observed, manifested by a short-term change in the speed or a change in the consumed current or power input.
- Another possibility to increase the sensitivity of the detection of the presence of the sliver is to slow down or completely switch off the regulation loop of the individual electric drive which is intended for the sliver presence detection.
- the value of the decision level of the supply current and/or power input and/or the speed of rotation of the respective individual drive of the individual spinning station can be determined centrally in control unit of the machine as an average of the measured values at the individual spinning units of the entire machine during spinning and idling and subsequently set at all control units of the workstations and/or a mere relative increase in the current or the input is evaluated, which is advantageous, especially if a sliver with a higher fineness is processed. This ensures that the decision level is sufficiently reliably determined and is always up-to-date regardless of the type and weight of the sliver and/or yarn supplied.
- Another possibility of implementing the method according to the invention is the analysis of short-term changes in the angular speed of the respective electric drive during changes in load, caused by a change in the presence of the sliver in the feeding or drafting device of the spinning machine.
- Both of the above-mentioned methods i.e., monitoring changes in the current consumption and/or the motor input and analyzing short-term changes in the angular speed can be combined in a suitable way and thereby achieve an even further increase in reliability when detecting the presence of the sliver in the feeding or the drafting device of the spinning unit of the respective workstation.
- control system knows with relatively considerable accuracy at which moment after the start of the feed of the sliver the introduction of the sliver should actually take place, and therefore it is possible to create a certain time window C for monitoring the change in the supply current and/or the power input and/or the speed of rotation of the individual drive, so as to eliminate possible disturbing influences, arising, for example, during the start-up and run-up of the respective electric drive.
- Another possibility of implementing the method according to the invention is the analysis of "permanent" changes in the speed of the respective electric drive during load changes, caused by a change in the presence of the sliver in the feeding or drafting device of the spinning machine with a constant motor input and the speed control regulation loop switched off.
- the solution according to the invention may be implemented, for example, with a BLDC electric motor or a stepper motor.
- the BLDC electric motor is usually controlled by an electronic control system which has the task of maintaining a constant speed even when the load changes. Since the usual regulation loop used for its control always has a certain non-zero time delay, a certain transition phenomenon occurs when the mechanical load changes due to a change in the presence of the sliver, manifested either by a short-term increase in the speed (at the moment of absence of the sliver) or a short-term decrease in the speed (when the presence of the sliver is restored). These changes, together with changes in the supply current or the power input, can be detected by the control system equipped with appropriate software.
- a stepper motor it is possible to detect the mechanical power drawn, depending on the presence of the sliver in the relevant section of the drafting device.
- the invention represents a reliable solution that does not require complicated assembly and primary adjustment, wherein it is feasible at relatively low costs and with the use of material and software components that are often already present on the textile machines and especially on the yarn manufacturing spinning machines.
- Fig. 1 shows a first exemplary embodiment of the invention at a spinning station of an air-jet spinning machine with a sliver drafting device
- Fig. 1a shows a second exemplary embodiment of the invention at the spinning station of the air-jet spinning machine with a drafting device of sliver
- Fig. 2 shows an exemplary embodiment at the spinning station of a rotor spinning machine
- Fig. 3 shows a typical course of the transition event and the response to it according to the present invention at the moment of introducing the sliver into the drafting device
- Fig. 4 shows a typical decrease in the speed S of one of the monitored drives during the implementation of the invention.
- An air-jet spinning machine comprises a plurality of workstations arranged in a row next to one another, usually on either side of the machine.
- Each workstation see Figs. 1 and 1a , comprises a spinning unit 1 which, in the direction of passage of the fibrous material during the production of the yarn 14 , first comprises a drafting device 2 of sliver 18 , which is adapted to refine the sliver 18 from its initial state to a state of fibrous ribbon suitable for subsequent transformation into the yarn 14 to be produced in a twisting device 6 which is arranged in the direction of passage of the fibrous material in the production of the yarn downstream of the drafting device 2 .
- an unillustrated yarn draw-off mechanism is arranged downstream of the twisting device and also an unillustrated winding device of yarn 14 onto an unillustrated bobbin, which is adapted to wind the produced yarn 14 onto the unillustrated bobbin.
- the drafting device 2 of sliver 18 first comprises, in the direction of passage of the fibrous material during the production of the yarn, a pair of feeding rollers 31 , 32 , the so-called Feeding, downstream of which is arranged a drafting system 4 , the so-called Apron, which comprises rollers 40 and 42 wrapped with a drafting apron 11. in the direction of passage of the fibrous material during the production of the yarn downstream of the drafting system 1 is arranged a pair of output rollers 5 , the so-called Delivery, which are adapted to draw off the refined sliver 18 , i.e., to draw off the fibre ribbon, from the drafting system 4 and to feed the refined sliver 18 to the twisting device 6 .
- the twisting device 6 comprises a working body for transforming the refined sliver 18 into yarn 14, e.g., it comprises a spinning nozzle in which the fibres are twisted into the resulting yarn in a known manner by means of an air vortex created by compressed air.
- the pairs of rollers 31 , 32 and 5 of the drafting device 2 are coupled to individual electric drives 30 and 50 .
- the drafting system 4 is coupled to its own drive (not shown).
- the drives 30 , 50 of the pairs of rollers 31 , 32 and 5 of the drafting device 2 are coupled to a control device 11 , which either comprises a monitoring, evaluation and comparison device 10 or is coupled to this device 10 , which is in an unillustrated example configured as external.
- the control device 11 is coupled to an unillustrated superior control system, e.g., the control system of the entire machine.
- At least one of the drives 30 , 50 of the pairs of rollers 31 , 32 and 5 of the drafting device 2 is coupled to at least one sensor 390 and 590 of the speed of rotation of the respective drive 30 , 50 , e.g., to a sensor of the angular speed of the respective drive 30 , 50 .
- each of the drives 30 , 50 of the pairs of rollers 31 , 32 and 5 of the drafting device 2 is coupled to the sensor 390 and 590 of the speed of the respective drive 30 , 50 .
- only the drive 30 of the feeding rollers 31 , 32 of the drafting device 2 is coupled to the sensor 390 of the speed of the drive 30 of the feeding rollers 31 , 32 .
- To at least one of the drives 30 , 50 of the pairs of rollers 31 , 32 and 5 of the drafting device 2 is assigned at least one sensor 391 , 591 of the supply current I and/or the power input P of the respective drive 30, 50.
- each of the drives 30 , 50 of the pairs of rollers 31, 32 and 5 of the drafting device 2 is assigned one sensor 391 , 591 of the supply current I and/or power input P of the respective drive 30 , 50 .
- the sensor 391 of the supply current I and/or power input P of the respective drive 30, 50 is assigned to the drive 30 of the feeding rollers 31, 32 of the drafting device 2.
- the sensors 391 , 591 of the current I and/or the power input P are coupled to the monitoring, evaluation and comparison device 10 and the sensors 390 , 590 of the speed are coupled to the control device 11 or to the monitoring, evaluation and comparison device 10.
- the control device 11 comprises unillustrated means, e.g., software means, for controlling the drives 30 , 50 , and further comprises an unillustrated regulation loop adapted to control the drives 30 , 50 .
- the control device 11 further comprises unillustrated means, e.g., software means, for controlling the regulation loop for controlling the drives 30 , 50 , especially means to slow down the regulation loop or temporarily remove the regulation loop from the process of controlling the drives 30, 50 . Disabling or slowing down the operation of the regulation loop for controlling the drives 30 , 50 is advantageous for accentuating the manifestations of the transition event.
- the control device 11 is further coupled to unillustrated drives of the draw-off mechanism of yarn 14 and the winding device of yarn 14.
- the rotor spinning machine comprises a plurality of workstations arranged in a row next to one another, usually on either side of the machine.
- Each workstation see Fig. 2 , comprises a spinning unit 1 , which in the direction of the passage of the fibrous material during the production of the yarn 14 first comprises a feeding device 3 of sliver 18, which includes a feeding roller 33 and a pressure table 17 assigned to the circumference of the feeding roller 33 , wherein the feeding device 3 is adapted to feed the sliver 18 to an opening device 15 of fibres which is arranged further in the direction of the passage of the fibrous material.
- the opening device 15 of fibres has a driven opening roller 150 , a trash waste channel 151 and a transport channel 19 of opened fibres 180 to the twisting device 6 which is arranged in the direction of the passage of the fibrous material during the production of yarn 14 downstream of the opening device 15 of fibres.
- the opening device 15 of fibres is provided with a spinning rotor 16 which is adapted to transform the opened fibres into yarn 14 .
- an unillustrated yarn drafting device 14 and also an unillustrated yarn winding device 14 onto a bobbin are arranged downstream of the twisting device 6 .
- the yarn winding device 14 is adapted to wind the produced yarn 14 onto an unillustrated bobbin.
- the feeding roller 33 of the feeding device 3 of the sliver 18 is coupled to an individual electric drive 30 , which is coupled to a control device 11 , which either comprises a monitoring, evaluation and comparison device 10 or it is coupled to this device 10 , which is in an unillustrated example configured as external.
- the control device 11 is coupled to an unillustrated control system, e.g., the control system of the entire machine.
- the drive 30 of the feeding roller 33 is coupled to a sensor 390 of the speed of rotation of the drive 30 of the feeding roller 33 , e.g., to a sensor of the angular speed of the drive 30 of the feeding roller 33.
- the drive 30 of the feeding roller 33 is associated with a sensor 391 of the supply current I and/or the power input P of the drive 30 of the feeding roller 33.
- the sensor 391 of the current I and/or the power input P is coupled to the monitoring, evaluation and comparison device 10 and the sensor 390 of the speed is coupled to the control device 11 or to the monitoring, evaluation and comparison device 10.
- the control device 11 comprises unillustrated means, such as software, for controlling the drive 30 of the feeding roller 33 and further comprises an unillustrated regulation loop adapted to control the drive 30 of the feeding roller 33 .
- the control device 11 further comprises unillustrated means, such as software, for controlling the functions of the regulation loop for controlling the drive 30 of the feeding roller 33, in particular means for slowing down the operation of the regulation loop or temporarily removing the control loop from the process of controlling the drive 30 of the feeding roller 33.
- the control device 11 is further coupled to unillustrated drives of the draw-off mechanism of yarn 14 and the winding device of yarn 14.
- the detection of the presence of the sliver 18 in the feeding device 3 or the drafting device 2 of the textile machine for producing yarn 14 according to the present invention is based on the knowledge that the transport of the fibrous material, here the sliver 18 , to the twisting device 6 requires a certain mechanical power, which must overcome the friction between the individual fibres in the sliver 18 and which must be supplied by the respective drive 30 , 50 in the feeding device 3 or in the drafting device 2 at the workstation of the textile machine for manufacturing yarn 14 .
- the electric power input Pn and the supply current In which is consumed by the respective drive 30, 50 during its idle running, i.e., without the sliver 18 , differs from the power input Ps and the current Is, which is consumed by the respective drive 30, 50 during the drafting of the sliver 18 in the drafting device 2 or during the feeding of the sliver 18 in the feeding device 3.
- this difference is detectable during the introduction of the sliver 18 into the feeding device 3 or into the drafting device 2 , when this difference manifests itself as a so-called transition process.
- the power input P and/or the current I does not change and/or a change in the speed S of one of the drives 30 , 50 does not occur during the introduction of the sliver 18 into the feeding device 3 or into the drafting device 2 , it means that the sliver 18 has not been introduced and a signal is generated by the control device 11 about the failure to introduce the sliver 18 , i.e., about missing sliver 18 . Subsequently, corresponding service operations are carried out at the relevant workstation.
- the method according to the invention is such that during the yarn production process 14 , i.e., during spinning, as well as during the spinning resumption process, i.e. during spinning-in, the size of the supply current I and/or the value of the power input P and/or the speed S of the at least one individual electric drive 30 , 50 of the drafting device 2 or feeding device 3 is monitored at the workstation 1 , and a change in the size of the supply current I and/or a change in the value of the power input P and/or a change in the speed S of this individual electric driver 30 , 50 of the drafting device 2 or the feeding device 3 is detected.
- the size of the detected change in the supply current I and/or in the value of the power input P and/or the speed S of this individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 is evaluated and compared to the set decision level R of the change in the size of the supply current I and/or the values of the power input P and/or the speed S of this individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 . According to the result of this comparison, information about the presence or absence of the sliver 18 in the drafting device 2 or the feeding device 3 . is generated, e.g., by the control device 11.
- the change in the speed S of the respective individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 is preferably monitored during the intervention of the regulation loop of the control of this electric drive 30 , 50 of the drafting device 2 or the feeding device 3 , for example, by setting a constant speed S of the individual electric drive S of the drafting device 2 or of the feeding device 3 before introducing the sliver 18 into the drafting device 2 or the feeding device 3 and during introducing the sliver 18 into the drafting device 2 or the feeding device 3, the control device 11 deactivates the operation of the control regulation loop of the respective drive 30 , 50 of the drafting device 2 or the feeding device 3 , wherein the moment of introduction of the sliver 18 into the drafting device 2 or the feeding device 3 is detected as a permanent decrease in the speed S of the individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 , see Fig. 4 .
- the change in the speed S of the respective individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 is preferably monitored in such a manner that before introducing the sliver 18 into the drafting device 2 or the feeding device 3 the operation of the control regulation loop of the respective drive 30, 50 of the drafting device 2 or the feeding device 3 is slowed down by the intervention of the control device 11 , thereby achieving an accentuation of the detectable transient phenomenon caused by the introduction of the sliver 18 into the drafting device 2 or the feeding device 3 .
- the decision level R of the size of the supply current I and/or the power input P and/or the speed S of the individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 is, according to one exemplary embodiment, determined as an average size of the supply current I and/or the power input P and/or the speed S of the individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 measured at least at one workstation of the textile machine during spinning, i.e., with the sliver 18 in the drafting device 2 or in the feeding device 3 , and during idling, i.e., without the sliver 18 in the drafting device 2 or in the feeding device 3 .
- These average values of the supply current I and/or the power input P and/or the speed S of the individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 are preferably generated by the central control system of the machine and are distributed (sent out) to the individual workstations and their spinning units 1 .
- the detection of the presence of the sliver 18 in the drafting device 2 or the feeding device 3 is performed by means of a program, i.e., software, in the control device 11 in such a manner that first the feeding device 3 or the drafting device 2 is started, then a time window C is determined for the monitoring (measurement) of the supply current I and/or the power input P and/or the speed S of the respective individual electric drive 30 , 50 of the drafting device 2 or the feeding device 3 .
- a program i.e., software
- control system 11 of the workstation knows with a relatively high degree of accuracy at which point after the initiation of rotation of the respective drive 3 0 , 50 of the drafting device 2 or the feeding device 3 the sliver 18 should actually be introduced between the monitored elements of the drafting device 2 or the feeding device 3 , it is possible to determine a time window C for the evaluation (measurement) of the relevant parameters in order to monitor the change in the supply current I and/or the electrical input P and/or the speed S of at least one monitored drive 30, 50 by means of the control software of the control system 11 so as to eliminate possible disturbing influences arising, for example, during the start-up and run-up of the respective electric drive.
- the size of the supply current I and/or the value of the power input P and/or the speed S of the electric drive 50 of the output rollers 5 of the drafting device 2 of the sliver 18 is monitored at the moment without the presence of the sliver 18 between the output rollers 5 , also monitored is the time course of the electric current I and/or the value of the power input P and/or speed S of this electric drive 50 of the output rollers 5 of the drafting device 2 of the sliver 18 during the start of introduction of the sliver 18, and then the size of the electric current I and/or the value of the power input P and/or the speed S of this electric drive 50 of the output rollers 5 of the drafting device 2 of the sliver 18 with the sliver 18 between these output rollers 5 is monitored, wherein the detected values are evaluated and compared to the set decision level R for the subsequent generating of a signal about the presence or absence of the sliver 18 in the drafting device 2.
- the size of the supply current I and/or the value of the power input P and/or the speed S of the electric drive 30 of the feeding rollers 31 , 32 of the drafting device 2 or of the drive of the feeding roller 33 of the feeding device 3 in the state without the presence of the sliver 18 is monitored, also monitored is the time course of the electric current I and/or the value of the power input P and/or the speed S of the electric drive 30 of the feeding rollers 31 , 32 of the drafting device 2 or the drive 30 of the feeding roller 33 of the feeding device 3 during the transient phenomenon after starting introduction of the sliver 18 by the drafting device 2 or the feeding device 3 , also monitored is the size of the electric current I and/or the value of the power input P and/or the speed S of the electric drive 30 of the feeding rollers 31 , 32 of the drafting device 2 or the drive of the feeding roller 33 of the feeding device 3 when the sliver 18 is present between the feeding rollers 31 , 32 of the drafting device 2 or between the feeding roller 33 and
- a change in the supply electric current I or a change in the power input P is detected from the monitored values, and at the same time a short-term change in the speed S of the drive 50 of the output rollers 5 of the drafting device 2 of the spinning unit 1 is detected at the workstation of the air-jet spinning machine.
- a change in the supply current I or a change in the power input P is detected from the monitored values and at the same time a short-term change in the speed S of the drive 30 of the feeding rollers 31 , 32 of the drafting device 2 of the spinning unit 1 is detected at the workstation of the air-jet spinning machine.
- a change in the supply current I or a change in the power input P is detected and at the same time is detected a short-term change in the speed S of the drive 30 of the feeding roller 33 of the feeding device 3 of the spinning unit 1 at the workstation of the rotor spinning machine.
- a change in the supply current I and a change in the power input P and/or a change in the speed S of the drive 30 of the feeding rollers 31 , 32 of the drafting device 2 of the spinning unit 1 at the workstation of the air-jet spinning machine and/or of the drive 50 of the output rollers 5 of the drafting device 2 of the spinning unit 1 at the workstation of the air-jet spinning machine or these changes are detected on the drive 30 of the feeding roller 33 of the feeding device 3 of the spinning unit 1 at the workstation of the rotor spinning machine.
- the speed S of at least one electric drive 30 , 50 of the feeding device 3 or the drafting device 2 of the sliver 18 to be monitored is, e.g., the instantaneous angular speed of the respective electric drive 30 , 50 of the drafting device 2 or the feeding device 3 .
- the measured data on the size of the supply current I and/or power input P and/or speed S from all the spinning units 1 of the entire spinning machine is transmitted to the central control system of the spinning machine in which evaluated and determined are the average values of the current I and/or the power input P and/or the speed S of one of the drives 30 , 50 of the feeding device 3 or of the drafting device 2 of both the spinning units 1 , which are currently producing yarn 14, i.e., which are currently spinning, and the spinning units 1 , which are not currently producing yarn 14, i.e., which are currently not spinning.
- a decision level R is then determined, which is subsequently set in all the control devices 11 of the workstations of the entire machine to be subsequently used by the monitoring, evaluation and comparison device 10 at each respective workstation for performing the method according to the present invention.
- the measured parameters of the short-term decrease or short-term increase in the instantaneous speed S of the respective drive 30 , 50 of the drafting device 2 or the feeding device 3 due to the presence or absence of the sliver 18 in the drafting device 2 or the feeding device 3 are also sent to the central machine control system, in which they are statistically evaluated and subsequently, the determined or set values of the decision level R are sent back to the individual control devices 11 of the workstations of the machine.
- changes in the supply current I, the power input P and the speed S of all the drives 30 , 50 of the drafting device 2 are evaluated simultaneously or in a temporal succession determined by the speed of movement of the sliver 18 in the drafting device 2 or in the feeding device 3 , changes in the electric current I, the power input P and the speed S of all the drives 30 , 50 of the drafting device 2 .
- the electric drive 30, 50 is formed by a BLDC or a stepper electric motor.
- the drives 30 , 50 are formed by another suitable type of electric drives.
- the invention can be used to detect the presence of a sliver at the entrance of a workstation of a textile machine for processing the sliver, ideally at the entrance of a textile spinning machine for producing yarn from the sliver.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Quality & Reliability (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2022-490A CZ2022490A3 (cs) | 2022-11-22 | 2022-11-22 | Způsob detekce přítomnosti vlákenného pramene na vstupu do pracovního místa textilního stroje pro zpracování vlákenného pramene, zejména stroje pro výrobu příze, zařízení k jeho provádění, podávací nebo průtahové ústrojí pramene vláken a textilní stroj |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4375404A1 true EP4375404A1 (de) | 2024-05-29 |
Family
ID=90922315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23210047.9A Pending EP4375404A1 (de) | 2022-11-22 | 2023-11-15 | Verfahren und vorrichtung zum detektieren des vorhandenseins eines faserbandes am eingang einer textilmaschine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4375404A1 (de) |
CN (1) | CN118062666A (de) |
CZ (1) | CZ2022490A3 (de) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4150534A (en) | 1976-10-14 | 1979-04-24 | W. Schlafhorst & Co. | Method and apparatus for exchanging sliver cans |
GB2154619A (en) | 1984-02-22 | 1985-09-11 | Skf Textilmasch Komponenten | A spinning machine draw frame having a sliver stop device |
GB2163781A (en) | 1984-07-10 | 1986-03-05 | Truetzschler & Co | Producing a uniform continuous supply of fibres to open end opening device |
WO1999020819A1 (en) | 1997-10-21 | 1999-04-29 | Rieter Elitex A.S. | A method of yarn spinning by transforming a fibre bundle on a spinning machine and a spinning machine for carrying out the method |
WO2009059704A1 (de) * | 2007-11-10 | 2009-05-14 | Oerlikon Textile Gmbh & Co. Kg | Verfahren zum betreiben einer arbeitsstelle einer kreuzspulen herstellenden textilmaschine |
JP2009155781A (ja) | 2007-12-27 | 2009-07-16 | Murata Mach Ltd | 紡績機 |
CN201276629Y (zh) | 2008-10-21 | 2009-07-22 | 陕西宝成航空精密制造股份有限公司 | 纺纱机上的缺条检测装置 |
CN202047193U (zh) | 2011-04-27 | 2011-11-23 | 刘梅城 | 一种纱条控制装置 |
CN204185605U (zh) | 2014-09-13 | 2015-03-04 | 青岛东昌纺机制造有限公司 | 棉条直径检测及断条装置 |
CN106895776A (zh) | 2015-12-18 | 2017-06-27 | 邓宝光 | 一种棉条检测装置 |
EP3231902A1 (de) | 2016-04-12 | 2017-10-18 | Rieter CZ s.r.o. | Verfahren zur steuerung einer textilmaschine mit einer reihe von arbeitsplätzen, die nebeneinander angeordnet sind, und die textilmaschine |
EP3438334A1 (de) | 2017-08-02 | 2019-02-06 | Murata Machinery, Ltd. | Luftspinnmaschine und anzeigesteuerungsverfahren |
WO2019229059A1 (de) * | 2018-05-29 | 2019-12-05 | Maschinenfabrik Rieter Ag | Verfahren zum ermitteln von eigenschaften eines fasermaterials an einer arbeitsstelle einer textilmaschine und eine textilmaschine |
EP3599299A1 (de) * | 2018-07-23 | 2020-01-29 | Murata Machinery, Ltd. | Lastüberwachungssystem, streckvorrichtung, spinneinheit und spinnmaschine |
-
2022
- 2022-11-22 CZ CZ2022-490A patent/CZ2022490A3/cs unknown
-
2023
- 2023-11-15 EP EP23210047.9A patent/EP4375404A1/de active Pending
- 2023-11-22 CN CN202311567474.XA patent/CN118062666A/zh active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4150534A (en) | 1976-10-14 | 1979-04-24 | W. Schlafhorst & Co. | Method and apparatus for exchanging sliver cans |
GB2154619A (en) | 1984-02-22 | 1985-09-11 | Skf Textilmasch Komponenten | A spinning machine draw frame having a sliver stop device |
GB2163781A (en) | 1984-07-10 | 1986-03-05 | Truetzschler & Co | Producing a uniform continuous supply of fibres to open end opening device |
WO1999020819A1 (en) | 1997-10-21 | 1999-04-29 | Rieter Elitex A.S. | A method of yarn spinning by transforming a fibre bundle on a spinning machine and a spinning machine for carrying out the method |
WO2009059704A1 (de) * | 2007-11-10 | 2009-05-14 | Oerlikon Textile Gmbh & Co. Kg | Verfahren zum betreiben einer arbeitsstelle einer kreuzspulen herstellenden textilmaschine |
JP2009155781A (ja) | 2007-12-27 | 2009-07-16 | Murata Mach Ltd | 紡績機 |
CN201276629Y (zh) | 2008-10-21 | 2009-07-22 | 陕西宝成航空精密制造股份有限公司 | 纺纱机上的缺条检测装置 |
CN202047193U (zh) | 2011-04-27 | 2011-11-23 | 刘梅城 | 一种纱条控制装置 |
CN204185605U (zh) | 2014-09-13 | 2015-03-04 | 青岛东昌纺机制造有限公司 | 棉条直径检测及断条装置 |
CN106895776A (zh) | 2015-12-18 | 2017-06-27 | 邓宝光 | 一种棉条检测装置 |
EP3231902A1 (de) | 2016-04-12 | 2017-10-18 | Rieter CZ s.r.o. | Verfahren zur steuerung einer textilmaschine mit einer reihe von arbeitsplätzen, die nebeneinander angeordnet sind, und die textilmaschine |
EP3438334A1 (de) | 2017-08-02 | 2019-02-06 | Murata Machinery, Ltd. | Luftspinnmaschine und anzeigesteuerungsverfahren |
WO2019229059A1 (de) * | 2018-05-29 | 2019-12-05 | Maschinenfabrik Rieter Ag | Verfahren zum ermitteln von eigenschaften eines fasermaterials an einer arbeitsstelle einer textilmaschine und eine textilmaschine |
EP3802926A1 (de) | 2018-05-29 | 2021-04-14 | Maschinenfabrik Rieter AG | Verfahren zum ermitteln von eigenschaften eines fasermaterials an einer arbeitsstelle einer textilmaschine und eine textilmaschine |
EP3599299A1 (de) * | 2018-07-23 | 2020-01-29 | Murata Machinery, Ltd. | Lastüberwachungssystem, streckvorrichtung, spinneinheit und spinnmaschine |
Also Published As
Publication number | Publication date |
---|---|
CZ2022490A3 (cs) | 2024-05-29 |
CN118062666A (zh) | 2024-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101849049B (zh) | 用于操作制造交叉卷绕筒子的纺织机械的工位的方法 | |
US4404791A (en) | Spinning machine | |
GB2063931A (en) | Textile machine shut-off device | |
EP3566987A1 (de) | Garnwickelmaschine und garnwickelverfahren | |
CN113727928B (zh) | 在纱线制造纺织机的工作站处对纱线进行非接触式光学检测的方法、纱线光学传感器和纺织机 | |
CN105492356A (zh) | 清纱器以及纺纱机的配备有清纱器的纺纱器以及用于运行纺纱器的方法 | |
US10000867B2 (en) | Device and method for determining the diameter of a yarn balloon formed by a running yarn at a workstation of a textile machine | |
CN1272484C (zh) | 在纺纱器上捻接纱线或起动纺纱过程方法及所用的纺纱器 | |
US7644474B2 (en) | Apparatus on a spinning preparation machine for monitoring fibre material | |
EP2169097B1 (de) | Fremdstoff erfassungsvorrichtung und -verfahren in textilmaschine | |
EP4375404A1 (de) | Verfahren und vorrichtung zum detektieren des vorhandenseins eines faserbandes am eingang einer textilmaschine | |
US6679043B2 (en) | Spinning machine | |
CN211771734U (zh) | 半自动转杯纺纱机 | |
CN106048787B (zh) | 用于终止自由端纺纱机器的工位处的纺纱操作的方法 | |
JP2020002479A (ja) | 繊維処理方法、繊維処理システム、及び繊維処理プログラム | |
CN211689337U (zh) | 一种新型倍捻机 | |
CN112105766B (zh) | 用于确定梳理机上的锡林占用量的方法以及具有相关的控制装置的梳理机 | |
EP3686330B1 (de) | Spinnverfahren, spinnmaschine und spinnprogramm | |
US5175982A (en) | Process and an arrangement for feeding slivers to a spinning unit | |
JP2003166134A (ja) | 紡機のドラフトローラの緩み検知装置 | |
CN110747542A (zh) | 负载监视系统、牵伸装置、纺纱单元、纺纱机 | |
CN112593316B (zh) | 计算装置、空气纺纱机以及纤维屑产生量输出方法 | |
EP4375405A1 (de) | Vorrichtung und verfahren zum ermitteln einer ursache einer fehlfunktion bei einer mehrzahl von textilmaschinen | |
CN111793863B (zh) | 纺纱方法以及纺纱机械 | |
US20240310829A1 (en) | Device and method for determining information for at least partially improving operation of a spinning mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIETER AG |