EP4374124A1 - Wärmespeicher und wärmetauscher für diesen wärmespeicher - Google Patents

Wärmespeicher und wärmetauscher für diesen wärmespeicher

Info

Publication number
EP4374124A1
EP4374124A1 EP22758122.0A EP22758122A EP4374124A1 EP 4374124 A1 EP4374124 A1 EP 4374124A1 EP 22758122 A EP22758122 A EP 22758122A EP 4374124 A1 EP4374124 A1 EP 4374124A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
heat
pipe
pipe section
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22758122.0A
Other languages
English (en)
French (fr)
Inventor
Robert Laabmayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4374124A1 publication Critical patent/EP4374124A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0086Partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/02Flexible elements

Definitions

  • the invention relates to a heat accumulator and a heat exchanger for this heat accumulator with a first and second connection, with a corrugated pipe provided in the flow path between the first and second connection, which has a first pipe section, which is connected to the first connection, and one to the sen first pipe section having subsequent second pipe section, which runs hel-shaped.
  • corrugated pipes tend to expand longitudinally when the pressure of the media increases - which impairs the course of the corrugated pipe in the flow channel and thus endangers the efficiency of the heat exchanger.
  • uncontrolled longitudinal expansion on the corrugated pipe can jeopardize the design as well as the service life and functionality of the heat accumulator.
  • the invention has therefore set itself the task of improving a heat accumulator of the type described at the outset in a structurally simple manner in terms of its resistance to higher media pressures on the heat exchanger, in order to be able to use this heat accumulator in a more versatile manner.
  • the invention solves the problem set by the features of claim 1.
  • the heat exchanger has a stiffening provided in the corrugated pipe, which runs in the first pipe section and ends in the second pipe section, even higher pressures from media guided in the corrugated pipe can be withstood.
  • the stiffening ensures that the corrugated pipe runs in a fixed manner between the connection and the coil, which prevents longitudinal expansion of the corrugated pipe and thus instabilities. This greatly improves the pressure resistance of the heat exchanger.
  • the heat exchanger according to the invention is therefore more versatile, in particular it is also suitable for receiving media from a district heating network for heat exchange.
  • the stiffening can be made for the stiffening to end after a second winding of the helix of the second pipe section.
  • This stiffening can thus also stabilize the course of the helix of the corrugated tube. Due to a comparatively high dimensional stability of the coiled tubing, for example, it may already be sufficient if the stiffening ends after a first turn of the coiled tubing of the second tube section. It can be sufficient if the stiffening ends in the second turn of the helix.
  • the construction of the heat exchanger can be simplified if the stiffener is formed as an inner tube running in the corrugated tube.
  • an inner tube that is easy to handle is to be provided in the first tube section—which can further facilitate the manufacture of the heat accumulator.
  • the first and/or second connection has a connecting piece, and if a fluid-tight press fit is provided between the connecting piece and the corrugated tube, this can further simplify the construction.
  • the stiffening in the tube sections preferably rests loosely on the corrugated tube, which particularly stabilizes the tube sections over the course and can thus further increase the stability of the heat exchanger.
  • the corrugated pipe has a third pipe section which is connected to the second connection. If the heat exchanger also has a further stiffening provided in the corrugated pipe, which runs in the third pipe section and ends in the second pipe section, a heat exchanger can be created that is superior in terms of pressure resistance over the entire length.
  • the heat exchanger according to the invention can be particularly suitable for a heat accumulator with a container for receiving a heat transfer medium.
  • connections of the heat exchanger can form external connections on the heat accumulator or can be connected to external connections of the heat accumulator.
  • the heat exchanger according to the invention can particularly stand out in the case of a heat accumulator which has a flow channel provided in the container, which is designed to form free convection of the heat transfer medium, the second tube section being located in the flow channel.
  • the efficiency of the heat exchanger can be increased if the flow channel in the area of the second tube section is designed to run vertically in one direction.
  • the wall of the flow channel has thermal insulation, this can further increase the efficiency of the heat exchanger.
  • FIG. 1 shows a sectional view of a heat accumulator with a heat exchanger
  • FIG. 2 shows an enlarged partial view of the heat exchanger of the heat accumulator shown in FIG.
  • the heat accumulator 1 shown by way of example in FIG. 1 has a container 2 which is surrounded by a container wall 3 . External insulation connects to this container wall 3 .
  • the heat transfer medium 4 of the heat-loaded container 2 has a vertical temperature gradient which can be used for free convection 5 .
  • a flow channel 6 is provided in the heat accumulator 1 for this purpose.
  • the heat accumulator 1 is loaded via an indirect heat exchanger 7 or load ent.
  • This heat exchanger 7 has a first connection 8 and a second connection 9, between which connections 8, 9 a flow path 10 for a liquid medium 11 is formed.
  • the connections 8, 9 of the heat exchanger 7 are provided in the heat accumulator 1 and are connected to external connections 80, 90 of the heat accumulator 1 via connection lines 81, 91.
  • the connections 8, 9 of the heat exchanger on the heat accumulator 1 form external connections 80, 90 - which is not illustrated.
  • the heat exchanger 7 includes a corrugated tube 12, namely a spiral corrugated tube—preferably made of stainless steel.
  • the corrugated pipe 12 runs in the container 2 and is connected to the two connections 8, 9.
  • the corrugated pipe 12 has a plurality of pipe sections 13a, 13b, 13c.
  • the first pipe section 13a connects to the first connection 8 .
  • the third pipe section 13c connects to the second connection 9 .
  • the first and third tube sections 13a, 13c each connect to the second tube section 13b, which second tube section 13b is provided in the flow channel 6—as can be seen in FIG.
  • the second pipe section 13b also runs helically. As is known, a turbulent flow can thus be generated in the flow channel 6 in conjunction with the shape of the corrugated pipe, which leads to a high degree of efficiency in the heat exchanger 7 .
  • the heat exchanger 7 has a reinforcement 14 .
  • This stiffener 14 runs along the entire first Rohrab-section 13a and ends in the second pipe section 13b with a particular stump FEN, stiffening end 14b - as Fig. 2 to see in detail.
  • this reinforcement 14 ends after a first turn 15a of the helix 15 of the second pipe section 13b.
  • the course of the corrugated tube 12 is thus fixed up to the self-stabilizing shape of the helix. This ensures that the heat exchanger 7 can withstand high pressure, since the stiffening absorbs an axial load on the corrugated pipe 12, among other things.
  • the corrugated pipe 12 is therefore particularly stable against axial, tensile and/or compressive stresses.
  • this reinforcement 14 ends after a second turn 15b of the helix 15 of the second tube section 13b—which is not shown.
  • the reinforcement 14 is designed as an inner tube 14a that is preferably smooth on the outside and/or inside.
  • This reinforcement 14 runs with the corrugated pipe 12 into a connection piece 16 of the first connection 8, as can be seen in FIG.
  • a fluid-tight press fit 17 is provided between the connecting piece 16 , the corrugated tube 12 and the reinforcement 14 in order to ensure a pressure-tight hydraulic transition into the corrugated tube 12 on the heat exchanger 7 .
  • the stiffening 14 in the pipe sections 13a, 13b rests loosely on the corrugated pipe 12 at most in sections--which can be seen in FIG. This enables a certain mobility on the corrugated tube 12, for example to be able to compensate for pressure fluctuations on the liquid medium 11, but the course of the corrugated tube 12 remains fixed in these sections.
  • the second helically running pipe section 13b is therefore provided with a reinforcement 14 at both ends. This ensures high dimensional and pressure stability.
  • the same structure is also provided on the second connection 9 of the heat exchanger, from which the corrugated pipe 12 has a third pipe section 13c.
  • a reinforcement 14 is provided in the corrugated pipe 12, the section in the third Rohrab 13c runs and ends in the second pipe section 13b.
  • the active power of the heat exchanger 7 in the heat accumulator is further increased by the fact that the flow channel 6 is designed to run vertically in a single direction in the area of the second pipe section 13b.
  • the wall 6a of the flow channel 6 has thermal insulation 18, as can be seen in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Gezeigt werden ein Wärmespeicher (1 ) und ein Wärmetauscher (7) hierfür mit einem ersten und zweiten Anschluss (8, 9), mit einem im Strömungspfad (10) zwischen erstem und zweitem Anschluss (8, 9) vorgesehenes Wellrohr (12), das einen ersten Rohrabschnitt (13a), der an den ersten Anschluss (8) angeschlossen ist, und einen an diesen ersten Rohrabschnitt (13a) anschließenden zweiten Rohrabschnitt (13b) aufweist, der wendeiförmig verläuft. Um hohe Druckbeständigkeit sicherzustellen, wird vorgeschlagen, dass der Wärmetauscher (7) eine im Wellrohr (12) vorgesehene Versteifung (14) aufweist, die im ersten Rohrabschnitt (13a) verläuft und im zweiten Rohrabschnitt (13b) endet.

Description

Wärmespeicher und Wärmetauscher für diesen Wärmespeicher
Technisches Gebiet
Die Erfindung betrifft einen Wärmespeicher und einen Wärmetauscher für diesen Wärmespeicher mit einem ersten und zweiten Anschluss, mit einem im Strömungs pfad zwischen erstem und zweitem Anschluss vorgesehenes Wellrohr, das einen ers ten Rohrabschnitt, der an den ersten Anschluss angeschlossen ist, und einen an die sen ersten Rohrabschnitt anschließenden zweiten Rohrabschnitt aufweist, der wen delförmig verläuft.
Stand der Technik
Zur Erwärmung eines Wärmeträgers eines Wärmespeichers ist es bekannt (EP2489945A2), im Behälter des Wärmespeichers einen Strömungskanal vorzuse hen, der ein Wellrohr eines Wärmetauschers aufweist. Dem Wärmetauscher sind am Behälter zwei Außenanschlüsse zugeordnet, über die das Wellrohr mit einem flüssi gen Medium beschickt werden kann. Das im Behälter vorgesehene Wellrohr weist einen ersten Rohrabschnitt auf, der an den Außenanschluss angeschlossen ist. An diesen ersten Rohrabschnitt schließt ein zweiter Rohrabschnitt an, der im Strömungs kanal vorgesehen ist und dort wendelförmig verläuft. Die konstruktive Ausführung des zweiten Rohrabschnitts sorgt für einen hohen Wirkungsgrad am Wärmetauscher - dies unter anderem durch die turbulente Strömung aufgrund des Wellrohrs. Nachteilig weisen Wellrohre bei erhöhtem Mediendruck die Tendenz zu Längsausdehnung auf - was den Verlauf des Wellrohrs im Strömungskanal beeinträchtigt und damit den Wirkungsgrad des Wärmetauschers gefährdet. Zudem kann eine unkontrollierte Län genausdehnung am Wellrohr die Konstruktion sowie die Lebensdauer und Funktio nalität des Wärmespeichers gefährden.
Darstellung der Erfindung Die Erfindung hat sich daher die Aufgabe gestellt, einen Wärmespeicher der eingangs geschilderten Art auf konstruktiv einfache Weise in der Standfestigkeit gegenüber hö heren Mediendrücken am Wärmetauscherzu verbessern, um diesen Wärmespeicher vielseitiger verwenden zu können.
Die Erfindung löst die gestellte Aufgabe durch die Merkmale des Anspruchs 1.
Indem der Wärmetauscher eine im Wellrohr vorgesehene Versteifung aufweist, die im ersten Rohrabschnitt verläuft und im zweiten Rohrabschnitt endet, kann selbst hö heren Drücken von im Wellrohr geführten Medien standgehalten werden. Die Verstei fung sorgt nämlich für einen festgelegten Verlauf des Wellrohrs zwischen Anschluss und Wendel, was Längsausdehnung des Wellrohrs und damit Instabilitäten vermei det. Dies verbessert die Druckbeständigkeit des Wärmetauschers erheblich. Der er findungsgemäße Wärmetauscher ist daher vielseitiger einsetzbar, insbesondere ist er auch für die Aufnahme von Medien von einem Fernheiznetzwerk zum Wärme tausch geeignet.
Um die Druckstabilität des Wärmetauschers weiter zu erhöhen, kann vorgesehen sein, dass die Versteifung nach einer zweiten Windung der Wendel des zweiten Rohr abschnitts endet. Diese Versteifung kann damit auch den Verlauf der Wendel des Wellrohrs stabilisieren. Aufgrund einer vergleichsweise hohen Formstabilität der Rohrwendel kann beispielsweise bereits ausreichend sein, wenn die Versteifung nach einer ersten Windung der Wendel des zweiten Rohrabschnitts endet. Dabei kann ausreichend sein, wenn die Versteifung in der zweiten Windung der Wendel endet.
Die Konstruktion des Wärmetauschers kann vereinfacht werden, wenn die Verstei fung als ein Innenrohr ausgebildet ist, das im Wellrohr verläuft. Ein Innenrohr ist zu dem einfach handhabbar im ersten Rohrabschnitt vorzusehen - was die Herstellung des Wärmespeichers weiter erleichtern kann. Weist der erste und/oder zweite Anschluss ein Anschlussstück auf, und ist zwischen Anschlussstück und Wellrohr ein fluiddichter Presssitz vorgesehen, kann dies die Konstruktion weiter vereinfachen.
Dies insbesondere, wenn das Wellrohr zwischen Anschlussstück und Versteifung vorgesehen ist und sich der Presssitz zwischen Anschlussstück, Wellrohr und Ver steifung ausbildet. Zudem kann damit ein besonders druckbeständiger Übergang zwi schen Anschluss und Wellrohr sicherstellen werden - was die Druckstabilität des Wär metauschers weiter erhöhen kann.
Vorzugsweise liegt die Versteifung in den Rohrabschnitten lose am Wellrohr an, was die Rohrabschnitte im Verlauf besonders stabilisiert und damit die Standfestigkeit des Wärmetauschers weiter erhöhen kann.
Weist das Wellrohr einen dritten Rohrabschnitt auf, der an dem zweiten Anschluss angeschlossen ist. Weist der Wärmetauscher zudem eine im Wellrohr vorgesehene weitere Versteifung auf, die im dritten Rohrabschnitt verläuft und im zweiten Rohrab schnitt endet, kann ein über die gesamte Länge hinsichtlich Druckbeständigkeit her vorragender Wärmetauscher geschaffen werden.
Der erfindungsgemäße Wärmetauscher kann sich insbesondere bei einem Wärme speicher mit einem Behälter zur Aufnahme eines Wärmeträgers eignen.
Dabei können die Anschlüsse des Wärmetauschers Außenanschlüsse am Wärme speicher ausbilden oder mit Außenanschlüssen des Wärmespeichers verbunden sein.
Besonders kann sich der erfindungsgemäße Wärmetauscher bei einem Wärmespei cher auszeichnen, der einen im Behälter vorgesehenen Strömungskanal aufweist, der zur Ausbildung einer freien Konvektion des Wärmeträgers ausgebildet ist, wobei sich der zweite Rohrabschnitt im Strömungskanal befindet.
Der Wirkungsgrad des Wärmetauschers ist erhöhbar, wenn der Strömungskanal im Bereich des zweiten Rohrabschnitts in eine Richtung vertikal verlaufend ausgeführt ist.
Weist die Wand des Strömungskanals eine Wärmeisolierung auf, kann dies den Wir kungsgrad des Wärmetauschers weiter erhöhen.
Kurze Beschreibung der Zeichnung
In den Figuren ist beispielsweise der Erfindungsgegenstand anhand einer Ausfüh rungsvariante näher dargestellt. Es zeigen
Fig. 1 eine Schnittansicht zu einem Wärmespeicher mit einem Wärmetauscher und Fig. 2 eine vergrößerte Teilansicht zum Wärmetauscher des nach Fig. 1 dargestell ten Wärmespeichers.
Weg zur Ausführung der Erfindung
Der nach Fig. 1 beispielsweise dargestellte Wärmespeicher 1 weist einen Behälter 2 auf, der von einer Behälterwand 3 umfasst ist. An diese Behälterwand 3 schließt eine Außenisolierung an.
Der Wärmeträger 4 des wärmebeladenen Behälters 2 weist einen vertikaler Tempe raturgradienten auf, der für eine freie Konvektion 5 genützt werden kann. Zu diesem Zweck ist im Wärmespeicher 1 ein Strömungskanal 6 vorgesehen.
Der Wärmespeicher 1 wird übereinen indirekten Wärmetauscher 7 beladen oder ent laden. Dieser Wärmetauscher 7 weist einen ersten Anschluss 8 und einen zweiten Anschluss 9 auf, zwischen welchen Anschlüssen 8, 9 sich ein Strömungspfad 10 für ein flüssiges Medium 11 ausbildet. Die Anschlüsse 8, 9 des Wärmetauschers 7 sind im Wärmespeicher 1 vorgesehen und mit Außenanschlüsse 80, 90 des Wärmespeichers 1 über Anschlussleitungen 81, 91 verbunden. Es ist aber auch vorstellbar, dass die Anschlüsse 8, 9 des Wärmetau schers am Wärmespeicher 1 Außenanschlüsse 80, 90 ausbilden - was nicht darge stellt ist.
Zudem gehört dem Wärmetauscher 7 ein Wellrohr 12 zu, nämlich ein Spiralwellrohr - vorzugsweise aus Edelstahl. Das Wellrohr 12 verläuft im Behälter 2 und ist an die beiden Anschlüsse 8, 9 angeschlossen.
Dabei weist das Wellrohr 12 mehrere Rohrabschnitte 13a, 13b, 13c auf. Der erste Rohrabschnitt 13a schließt an den ersten Anschluss 8 an. Der dritte Rohrabschnitt 13c schließt an den zweiten Anschluss 9 an. Erster und dritter Rohrabschnitt 13a, 13c schließen jeweils an den zweiten Rohrabschnitt 13b an, welcher zweite Rohrabschnitt 13b im Strömungskanal 6 vorgesehen ist - wie in Fig. 1 zu erkennen.
Der zweite Rohrabschnitt 13b verläuft zudem wendelförmig. Damit kann im Zusam menhang mit der Wellrohrform bekanntermaßen im Strömungskanal 6 eine turbulente Strömung erzeugt werden, was zu einem hohen Wirkungsgrad am Wärmetauscher 7 führt.
Um den bekannten Nachteil eines Wellrohrs 12 hinsichtlich einer geringen Druckbe ständigkeit in Längsrichtung zu beseitigen, weist der Wärmetauscher 7 eine Verstei fung 14 auf. Diese Versteifung 14 verläuft entlang des gesamten ersten Rohrab schnitts 13a und endet im zweiten Rohrabschnitt 13b mit einem, insbesondere stump fen, Versteifungsende 14b - wie Fig. 2 im Detail zu erkennen.
Damit kann das Wellrohr 12 auch bei höherem Innendruck des flüssigen Mediums 11 seitlich nicht ausweichen, was eine Längsausdehnung des Wellrohrs 12 verhindert. Damit ist der Wärmetauscher 7 auch gegenüber einem hohen hydraulischen Druck standfester, was die Verwendungsmöglichkeit des Wärmespeicher 1 bzw. des Wär metauschers 7 erweitert - beispielsweise auch in Richtung eines Anschlusses an ein nicht näher dargestelltes Fernwärmenetz. Wie der Fig. 2 entnommen werden kann, endet diese Versteifung 14 nach einer ers ten Windung 15a der Wendel 15 des zweiten Rohrabschnitts 13b. Damit ist bis zur sich selbst stabilisierenden Form der Wendel das Wellrohr 12 im Verlauf fixiert. Dies stellt eine hohe Druckbeständigkeit des Wärmetauschers 7 sicher, da die Versteifung unter anderem eine Axialbelastung des Wellrohrs 12 aufnimmt. Das Wellrohr 12 ist daher besonders standfest gegenüber axialen, zug- und/oder druckförmigen Bean spruchungen.
Es ist aber auch vorstellbar, dass dieses Versteifung 14 nach einer zweiten Windung 15b der Wendel 15 des zweiten Rohrabschnitts 13b endet - was nicht dargestellt ist.
Wie außerdem der Fig. 2 zu entnehmen, ist die Versteifung 14 als ein vorzugsweise außen und/oder innen glattes, Innenrohr 14a ausgebildet.
Diese Versteifung 14 verläuft mit dem Wellrohr 12 in ein Anschlussstück 16 des ers ten Anschlusses 8 ein, wie in Fig. 2 zu erkennen. Zwischen dem Anschlussstück 16, dem Wellrohr 12 und der Versteifung 14 ist ein fluiddichter Presssitz 17 vorgesehen, um einen druckfesten hydraulischen Übergang in das Wellrohr 12 am Wärmetauscher 7 sicherzustellen.
Zudem liegt höchstens abschnittsweise die Versteifung 14 in den Rohrabschnitten 13a, 13b lose am Wellrohr 12 an - was in der Fig. 2 zu erkennen ist. Damit wird eine gewisse Beweglichkeit am Wellrohr 12 ermöglicht, um beispielsweise Druckschwan kungen am flüssigen Medium 11 ausgleichen zu können, dennoch aber bleibt damit der Verlauf des Wellrohrs 12 in diesen Abschnitten fixiert. Der zweite wendelförmig verlaufende Rohrabschnitt 13b ist daher an beiden Enden mit einer Versteifung 14 versehen. Eine hohe Form- und Druckstabilität kann dadurch sichergestellt werden.
Der gleiche Aufbau ist auch am zweiten Anschluss 9 des Wärmetauschers vorgese hen, von dem ausgehend das Wellrohr 12 einen dritten Rohrabschnitt 13c aufweist. Auch hier ist im Wellrohr 12 eine Versteifung 14 vorgesehen, die im dritten Rohrab schnitt 13c verläuft und im zweiten Rohrabschnitt 13b endet.
Die Wirkleistung des Wärmetauschers 7 im Wärmespeicher erhöht sich weiter, indem der Strömungskanal 6 im Bereich des zweiten Rohrabschnitts 13b in eine einzige Richtung vertikal verlaufend ausgeführt ist. Zudem weist die Wand 6a des Strömungs kanals 6 eine Wärmeisolierung 18 auf, wie in Fig. 1 zu erkennen.

Claims

P a t e n t a n s p r ü c h e:
1. Wärmetauscher mit einem ersten und zweiten Anschluss (8, 9), mit einem im Strömungspfad (10) zwischen erstem und zweitem Anschluss (8, 9) vorgesehenes Wellrohr (12), das einen ersten Rohrabschnitt (13a), der an den ersten Anschluss (8) angeschlossen ist, und einen an diesen ersten Rohrabschnitt (13a) anschließenden zweiten Rohrabschnitt (13b) aufweist, der wendelförmig verläuft, dadurch gekenn zeichnet, dass der Wärmetauscher (7) eine im Wellrohr (12) vorgesehene Versteifung
(14) aufweist, die im ersten Rohrabschnitt (13a) verläuft und im zweiten Rohrabschnitt (13b) endet.
2. Wärmetauscher nach Anspruch 1 , dadurch gekennzeichnet, dass die Verstei fung (14) nach einer ersten, vorzugsweise in der zweiten, Windung (15a) der Wendel
(15) des zweiten Rohrabschnitts (13b) endet.
3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Versteifung (14) als ein Innenrohr (14a) ausgebildet ist.
4. Wärmetauscher nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der erste und/oder zweite Anschluss (8, 9) ein Anschlussstück (16) aufweist, und dass zwischen Anschlussstück (16) und Wellrohr (12) ein fluiddichter Presssitz (17) vorge sehen ist.
5. Wärmetauscher nach Anspruch 4, dadurch gekennzeichnet, dass das Wellrohr (12) zwischen Anschlussstück (16) und Versteifung (14) vorgesehen ist und dass sich der Presssitz (17) zwischen Anschlussstück (16), Wellrohr (12) und Versteifung (14) ausbildet.
6. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Versteifung (14) in den Rohrabschnitten (13a, 13b) lose am Wellrohr (12) anliegt. 7. Wärmetauscher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Wellrohr (12) einen dritten Rohrabschnitt (13c) aufweist, der an dem zweiten Anschluss (9) angeschlossen ist, und dass der Wärmetauscher (7) eine im Wellrohr (12) vorgesehene weitere Versteifung (14) aufweist, die im dritten Rohrabschnitt (13c) verläuft und im zweiten Rohrabschnitt (13b) endet.
8. Wärmespeicher mit einem Behälter (2) zur Aufnahme eines Wärmeträgers (4) und mit dem Wärmetauscher (7) nach einem der Ansprüche 1 bis 7.
9. Wärmespeicher nach Anspruch 8, dadurch gekennzeichnet, dass die An schlüsse (8, 9) des Wärmetauschers (7) mit Außenanschlüssen (80, 90) des Wärme speichers (1) verbunden sind.
10. Wärmespeicher nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Wärmespeicher einen im Behälter (2) vorgesehenen Strömungskanal (6) aufweist, der zur Ausbildung einer freien Konvektion des Wärmeträgers (4) ausgebildet ist, wo bei sich der zweite Rohrabschnitt (13b) im Strömungskanal (6) befindet.
11. Wärmespeicher nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Strömungskanal (6) im Bereich des zweiten Rohrabschnitts (13b) in eine Richtung vertikal verlaufend ausgeführt ist.
12. Wärmespeicher nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass die Wand (6a) des Strömungskanals (6) eine Wärmeisolierung (18) aufweist.
EP22758122.0A 2021-07-21 2022-07-21 Wärmespeicher und wärmetauscher für diesen wärmespeicher Pending EP4374124A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT601982021 2021-07-21
PCT/AT2022/060265 WO2023000011A1 (de) 2021-07-21 2022-07-21 Wärmespeicher und wärmetauscher für diesen wärmespeicher

Publications (1)

Publication Number Publication Date
EP4374124A1 true EP4374124A1 (de) 2024-05-29

Family

ID=83049702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22758122.0A Pending EP4374124A1 (de) 2021-07-21 2022-07-21 Wärmespeicher und wärmetauscher für diesen wärmespeicher

Country Status (2)

Country Link
EP (1) EP4374124A1 (de)
WO (1) WO2023000011A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007748B2 (en) * 2003-09-30 2006-03-07 Bradford White Corporation Indirect water heater and method of manufacturing same
DE202006004396U1 (de) * 2006-03-17 2007-05-10 Viessmann Werke Gmbh & Co Kg Wärmespeicher
DE102008059544A1 (de) * 2008-11-30 2010-06-02 Solarhybrid Ag Brauchwassererwärmer, Brauchwasserversorgungssystem mit einem Brauchwassererwärmer sowie Verfahren zu deren Betrieb
AT511289B1 (de) 2011-02-18 2013-01-15 Laabmayr Robert Wärmespeicher
DE202011107072U1 (de) * 2011-10-18 2011-12-28 Oliver Panarotto Wärme- oder Energiespeicher mit einem Anschlusssystem
DE102011118603A1 (de) * 2011-11-15 2013-05-16 Liebherr-Hausgeräte Ochsenhausen GmbH Verdampfermodul für ein Kühl- und/oder Gefriergerät
NO337174B1 (no) * 2013-12-19 2016-02-01 Lars Hansen Varmevekslerrør og framgangsmåte ved bruk av samme
DE202014100447U1 (de) * 2014-02-03 2015-05-05 Witzenmann Gmbh Schlauchhaltestruktur für ein Wärmetauschermodul für Warmwasserspeicher
FR3063135A3 (fr) * 2017-02-21 2018-08-24 Stephane Richard Brasseur d'air, concu pour une utilisation en milieu corrosif et, ou poussiereux

Also Published As

Publication number Publication date
WO2023000011A1 (de) 2023-01-26

Similar Documents

Publication Publication Date Title
DE102009028306B4 (de) Doppelrohr
EP1842023B1 (de) Wärmeübertrager, insbesondere ladeluftkühler oder kühlmittelkühler für kraftfahrzeuge
EP1957864A2 (de) Dampferzeugerrohr, zugehöriges herstellungsverfahren sowie durchlaufdampferzeuger
EP0000497B1 (de) Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide
WO2015007375A1 (de) Wärmeübertrager mit elastischem element
EP2330326B1 (de) Rohrförmiges Bauteil
DE102008028853A1 (de) Integrierte, einen Sammler und einen inneren Wärmeübertrager umfassende Baueinheit sowie ein Verfahren zur Herstellung der Baueinheit
DE1096936B (de) Waermeaustauscher mit einem Buendel achsparalleler Rohre und gewellten Ablenkblechen zwischen den Rohren
WO2023000011A1 (de) Wärmespeicher und wärmetauscher für diesen wärmespeicher
DE3440060C2 (de)
EP3032189B1 (de) Erdwärmesondenrohr
DE202008012055U1 (de) Sondenkopf sowie Sonde zum Austausch von Wärmeenergie
DE2358849A1 (de) Rohrleitungskompensator
DE102012221925A1 (de) Wärmeübertrager
DE19633627A1 (de) Kupplungsvorrichtung für die Herstellung einer Rohrverbindung
DE102014226557A1 (de) Aufhängung zur Anbringung eines Innenbehälters an einem Außenbehälter eines kryogenen Druckbehälters sowie kryogener Druckbehälter
EP3953654B1 (de) Stegdesign - und anordnung zur verringerung einer radialen fehlverteilung in einem gewickelten wärmeübertrager
EP1927803B1 (de) Flexibles Leitungselement für innendruckbeaufschlagte Leitungen
DE202021102351U1 (de) Mehrrohrschwingungsdämpfer und ein Mittelrohr für einen Mehrrohrschwingungsdämpfer
DE102007027639A1 (de) Wärmetauscher für eine Fluggasturbine
DE1012572B (de) Futterrohre, insbesondere fuer Tiefbohrloecher
EP1363081B1 (de) Solaranlage
DE7912786U1 (de) Waermetauscher
EP3367019A1 (de) Erdwärmesonde
AT511321B1 (de) Sonnenkollektor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR