EP4371668A1 - Rührwerksmühle mit korb mit schlitzen - Google Patents

Rührwerksmühle mit korb mit schlitzen Download PDF

Info

Publication number
EP4371668A1
EP4371668A1 EP23210562.7A EP23210562A EP4371668A1 EP 4371668 A1 EP4371668 A1 EP 4371668A1 EP 23210562 A EP23210562 A EP 23210562A EP 4371668 A1 EP4371668 A1 EP 4371668A1
Authority
EP
European Patent Office
Prior art keywords
grinding
basket
slots
chamber
agitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23210562.7A
Other languages
English (en)
French (fr)
Inventor
Robert Grandl
Lars-Peter Weiland
Holger Möschl
Witali Sudermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Feinmahltechnik GmbH
Original Assignee
Netzsch Feinmahltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Feinmahltechnik GmbH filed Critical Netzsch Feinmahltechnik GmbH
Publication of EP4371668A1 publication Critical patent/EP4371668A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/168Mills in which a fixed container houses stirring means tumbling the charge with a basket media milling device arranged in or on the container, involving therein a circulatory flow of the material to be milled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/161Arrangements for separating milling media and ground material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/183Feeding or discharging devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/183Feeding or discharging devices
    • B02C17/1835Discharging devices combined with sorting or separating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C2017/165Mills in which a fixed container houses stirring means tumbling the charge with stirring means comprising more than one agitator

Definitions

  • the invention relates to an agitator mill with a basket with slots according to the preamble of claim 1 and the corresponding basket according to the preamble of claim 6.
  • Fig.1 1 schematically shows an agitator mill 1 with a horizontal agitator shaft 3.
  • the material to be ground is pumped into or through the grinding chamber 2 enclosed by the grinding container 16 via the inlet 17 of the agitator mill 1.
  • the material to be ground is a suspension or dispersion of a liquid, usually in the form of water, and solids.
  • a back mill 1 can also be used for dry grinding. It can then be designed as a back mill with a vertical shaft, for example, through which the material to be ground is carried by a gaseous fluid, usually in a falling stream.
  • the present invention relates in its broadest aspect to both types of agitator mills. It is particularly preferred for use in agitator mills with a horizontal agitator shaft 3.
  • the agitator shaft 3 can be driven, for example, via a belt drive 102 from a Electric motor 101.
  • the drive of the agitator mill 1 is usually located in a housing 103 adjacent to the grinding container 16.
  • the grinding bodies located in the grinding chamber 2, which are located near the grinding elements 5, are carried along in the circumferential direction of the grinding container 16.
  • the moving grinding bodies flow back in the direction of the agitator shaft 3 as soon as they have reached the apex area. This creates a circulating movement of the grinding bodies between two grinding elements 5.
  • the movement of the grinding media causes collisions and rolling over between the solids of the grinding material suspension pumped through the grinding chamber 2 and the grinding media. These collisions and rolling over lead to the splintering of fine particles from the solids in the grinding material suspension, so that the solids arriving at the outlet 7 of the agitator mill 1 are ultimately significantly smaller than the solids fed in at the inlet 17.
  • a sieve or preferably a sieve in the form of a gap tube 8 is usually installed in front of the outlet 7 and/or carried by the outlet 7.
  • a basket 6 is installed around this gap tube 8 and encompasses this gap tube 8. The basket serves to prevent the grinding media, which tend to be pushed towards the gap tube by the pressure of the feed pump, exerting undesirable grinding media pressure on the gap tube.
  • the basket 6 is usually attached in a rotationally fixed manner to the free end of the agitator shaft 3 facing the outlet 7. It then rotates with the agitator shaft 3.
  • the area between the rotating basket 6 and the gap tube 8 forms the separation chamber 9, since here the material to be ground or the grinding material suspension is separated from the grinding bodies and finally exits the agitator mill 1 via the gap tube 8 and the outlet 7.
  • the basket 6 can only fulfil its function if grinding media that have entered the separation chamber 9 have the opportunity to get out of the separation chamber and back into the grinding chamber 2. Otherwise, the separation chamber 9 is soon filled with grinding media and the grinding media then block the gap tube and possibly even cause it to wear out prematurely.
  • Fig.2 shows a basket 6 of a stirrer mill designed in this way, which served as a test or comparison object prior to the invention.
  • Fig.2 the grinding media and/or grinding material flows, which have already been mentioned and which take place in the grinding container 16, are shown schematically.
  • the basket 6 preferably also has grinding elements 5 on its outer surface, which cause a movement or circling of the grinding media in the area between the basket and the inner wall of the grinding container 16. This circling of the grinding media makes it easier for the grinding media located in the separation chamber 9 to escape back into the grinding chamber 2 through the openings 104.
  • the DE 44 12 408 C2 describes an agitator mill with - a grinding container which encloses a grinding chamber which can be partially filled with grinding auxiliary bodies and through which grinding material can flow mainly axially, an agitator shaft which carries agitator elements arranged axially one behind the other, an outlet body which is connected to a grinding material outlet (48) of the grinding container, and a pre-classifying device which has a pre-classifying disk with an axial passage arranged immediately in front of the outlet body and which conveys auxiliary grinding bodies which have reached its area of action preferably radially outwards, characterized in that the pre-classifying disk is at the same time part of a rotating cage which encloses the outlet body to such an extent that it can be reached for a substantial part of the material to be ground through the pre-classifying disk.
  • the object of the invention is to further improve the separation performance of the can.
  • an agitator mill is assumed with a grinding chamber containing grinding elements and an agitator shaft rotating around a horizontal agitator shaft axis.
  • the agitator shaft carries several grinding elements connected to it in a rotationally fixed manner and spaced apart from one another in the direction of the horizontal axis. These grinding elements are preferably designed in the form of grinding disks. When the agitator mill is in operation, they move the grinding elements described above.
  • the agitator shaft has a basket on the outlet side.
  • the basket preferably connects directly to the agitator shaft and is connected to it directly or indirectly.
  • the agitator shaft and the basket are preferably not integrally formed with each other, which is why the agitator shaft and basket are two individual parts and the agitator shaft does not take on any direct tasks of the basket.
  • the length of the basket is preferably at most one third, particularly preferably even a maximum of a quarter of the length of the agitator shaft.
  • the basket is preferably fitted with additional grinding elements on its outer circumference. As already mentioned, this not only allows an additional grinding effect to be achieved in the radial circumferential area between the outer circumference of the basket and the inner wall of the grinding container. Rather, this also creates the circular movement of the grinding elements that promotes the re-emergence of the grinding elements from the separation chamber.
  • These grinding elements on the basket are preferably not designed like the grinding elements on the agitator shaft. While the grinding elements on the agitator shaft are preferably designed in the form of grinding disks, the grinding elements on the basket are preferably designed in the form of pins.
  • the "slotted tube” is preferably a tube with various slots and/or differently shaped openings in the narrower sense, but in the broader sense the term “slotted tube” includes any type of sieve body.
  • this overlapping arrangement of the basket creates a free area between the inner surface of the basket and the outer surface of the outlet or the can supported by the outlet. This area is called the "separation space”.
  • the agitator mill according to the invention is characterized in that the basket in question has slots for returning grinding media from the separation chamber into the grinding chamber. These slots are designed in such a way that they open into the free front surface of the basket facing away from the grinding chamber.
  • the Fig.2 The entry area shown directly behind the free front face of the basket, in which the flow flows in a predominantly horizontal direction to enter the separation space, forms a too pronounced constriction. The latter because the Fig.2 The basket shown forms a circumferentially closed ring structure in this area.
  • the grinding media When flowing through the narrow section, the grinding media flow theoretically has a higher flow velocity, which is actually desirable. However, the grinding media are mainly carried along in the axial direction and also have only limited opportunities to leave the basket. As a result, the grinding media often collide with the basket and/or the gap tube, which slows them down considerably. In addition, the narrow section is often so narrow that some grinding media collide with themselves, the basket and/or the gap tube at the entrance to the separation chamber and thus initially lose kinetic energy.
  • the grinding media When the grinding media finally reach the outer peripheral surface of the gap tube under the openings, they often have too little kinetic energy to escape the suction of the gap tube and use the openings to exit back into the grinding chamber. As a result, some of the grinding media come to a standstill and settle on the outer peripheral surface of the gap tube. This further reduces the grinding media dynamics. Under unfavorable circumstances, the gap tube is at risk of becoming blocked after a certain period of operation.
  • the "grinding chamber” referred to is the space inside the grinding container that is located between the inlet and outlet and is filled with grinding media and/or grinding material or grinding material suspension and is not enclosed by the basket.
  • the grinding chamber is thus essentially the interior of the grinding container minus the internals that penetrate it and minus the separation space.
  • the slots formed according to the invention thus result in the radial gap between the inner surface of the basket and the outer surface of the outlet or gap tube, which has to be passed through as the flow enters the separation chamber, being significantly enlarged at least in some areas.
  • a "jamming" of the grinding media and/or the material to be ground or the grinding material suspension at the entrance to the basket is reduced and/or the grinding media being guided to the sieve is prevented and the grinding media can, at least in part, enter the separation chamber much more easily and with greater dynamics.
  • a desirable Flow whereby the grinding media are kept away from the gap tube and are carried through the slots more quickly and/or more easily from the separation chamber into the grinding chamber.
  • the gap tube is blocked less and experiences less stress and/or less wear, because the grinding media are returned to the grinding chamber more quickly and/or in a way that is gentler on the gap tube.
  • additional turbulence is created and the surrounding grinding media bed is activated.
  • the "slots" are breakthroughs and/or openings and/or incisions with an elongated shape as a whole, which are provided in or on the basket.
  • a slot according to the invention provides a breakthrough in the outer surface of the basket to the grinding chamber at least in one area, but preferably not over the entire length of the slot. In this way, material can border on the slot in some areas, whereby the slot is virtually “covered”, “lined” and/or surrounded by the material of the basket.
  • a slot according to the invention preferably does not have the same cross-section over its entire length and can change its extent and/or its shape in certain regions.
  • a basket according to the invention is designed in such a way that each slot on its side facing away from the grinding chamber has material radially outwards and thus above the slot in areas directly adjacent to the slot.
  • the slot is thus designed to be “roofed”, whereby an “end ring” is formed in this area, which forms a preferably continuous circumferential surface.
  • a preferred embodiment of the invention is that the slots also pass through the wheel disk that connects the basket to the agitator shaft, so that the slot in question is also connected to the grinding chamber via the wheel disk itself. This gives the grinding media the opportunity to also pass from the separation chamber into the grinding chamber via this wheel disk, promoted by the grinding media dynamics taking place in the grinding chamber on the other side of the wheel disk. This makes it even easier to remove the grinding media from the separation chamber.
  • the slots tunnel under a stabilization ring formed on the side or in the area of the free end of the basket facing away from the grinding chamber.
  • This stabilization ring is preferably designed in such a way that it extends radially outward further into the grinding chamber than the remaining diameter of the basket, which on the one hand increases the stability of the basket and on the other hand further improves the flow guidance or dynamics.
  • Another preferred embodiment consists in the fact that the main axes of the slots extend completely or at least essentially parallel to the agitator shaft axis. This is achieved when these main axes deviate from the agitator shaft axis by a maximum of 10°, preferably a maximum of 5°.
  • the main axes run along the entire length of the slot, i.e. its entire extension length, preferably also parallel to the longitudinal axis of the basket and are located in the middle of the slot and thus at half the width of the slot.
  • flanks of the slots leading in the working direction of rotation have an angle of attack of 0° to 45° compared to the imaginary radial through their main axis. In this way, “shoveling surfaces" are formed on the basket, which lead to the grinding media being deflected and thus discharged even better.
  • Fig. 3 to Fig. 5 a first preferred embodiment of the basket 6 according to the invention in various views.
  • the basket 6 is fitted on its outer circumference with additional grinding elements 18, which are arranged in the form of pins in horizontal rows running parallel to the agitator shaft axis 4, regularly around the circumference of the basket 6.
  • the slots 10 are also distributed evenly over the circumference of the basket 6 and, as mentioned, cut both the wheel disk 12 facing the grinding chamber 2 and the front face 11 facing away from the grinding chamber 2. It can be advantageous if not every individual slot 10 is assigned one of the said rows, but instead there are immediately adjacent slots whose connecting area does not have any of the said rows.
  • the slot 10 also tunnels under the end ring 19 on the side facing the front face 11, the end ring 19 being designed to be closed all the way around.
  • the front view of basket 6 is in Fig.5 shown, looking at the front face 11 facing away from the grinding chamber.
  • the angle of attack A of the slots can be seen, which means that the flanks 15 of the slots 10 leading in the working direction of rotation or their imaginary extensions are not radially perpendicular to the outer contour of the basket 6.
  • This angle of attack A is preferably between 0° and 45°.
  • an imaginary slot can also be seen in dashed lines, which is exactly radially perpendicular to the outer contour of the basket 6.
  • the angle from the main axis of such a slot to the main axis 14 of a slot 10 according to the invention is plotted, which corresponds to the angle of attack A.
  • the Fig. 6 to Fig. 8 show a second preferred embodiment of the basket 6, wherein the basket 6 carries a stabilization ring 13 with an increased outer diameter.
  • the slots 10 also tunnel under an end ring 19 on the side facing the end face 11, wherein the end ring 19 is part of the stabilization ring 13.
  • the slots 10 preferably also run through the wheel disk 12 and the end face 11 facing the grinding chamber.
  • the basket 6 is also equipped with additional grinding elements 18, whereby the above also applies here.
  • the stabilization ring itself can also be provided with additional grinding elements 18, in particular with protruding pins or other agitators, which carry the grinding bodies in the circumferential direction.
  • the pins of the stabilization ring are preferably arranged in alignment with the other pins of the basket described above, usually parallel to the agitator shaft axis 4, cf. Fig. 6 and 7 .
  • such a basket 6 is in Fig.8 shown in its preferred installation position, in which it encompasses an outlet 7 which carries a gap tube 8. It can be advantageous if the outlet 7 has a constriction (as in this case, designed like a "spool of thread" and possibly equipped with inlet and outlet slopes) which is arranged in such a way that the gap through which the flow into the separation chamber 9 takes place is enlarged by it.
  • a constriction as in this case, designed like a "spool of thread” and possibly equipped with inlet and outlet slopes
  • Fig.9 finally shows a further preferred embodiment of the basket 6, wherein the basket 6 also carries a stabilization ring 13, which however has a pure cylinder section shape.
  • the slots 10 here tunnel under the entire stabilization ring 13, which thus functions as an end ring at the same time.
  • Fig.9 also shows schematically the flow behavior in the grinding container 16 of a stirred mill 1.
  • the general functioning of a stirred mill should be mentioned, which is explained in the section "Technical Background" with the help of the Fig.1 and Fig.2
  • the basic function and flow behavior is the same or similar up to the area of basket 6 and should therefore not be repeated here.
  • the basket 6 shown has slots 10 which cut both the wheel disc 12 and the front surface 11 facing away from the grinding chamber.
  • the Fig. 10 and Fig. 11 show a further preferred embodiment of the basket 6 with slots 10 and additional grinding elements 18, whereby the outer contour of the basket 6 is designed in the form of a truncated cone.
  • This design ensures that the air flows over the conical structure (unlike Fig.9 ) a flow obstacle is avoided and a continuously increasing flow dynamic is achieved as the flow over the basket.
  • the conical structure forms a kind of integral stabilization ring in the area of its free front end, in which no sudden narrowing takes place.
  • the slots 10 in turn tunnel under a circumferentially closed end ring 19.
  • the basket forms a cylindrical inner circumferential surface on the inside, so that the separation chamber 9 does not taper conically (coming from the free front surface of the basket). This would be unproductive, as with a conical separation chamber there would be a risk that grinding media would jam after entering the separation chamber due to the conical inner profile.
  • the Fig. 12 and Fig. 13 show a further preferred embodiment of the basket 6. This also has a stabilization ring 13 and the slots 10 tunnel under an end ring 19. However, the slots 10 here run or are designed in such a way that they only penetrate the end face 11 by means of a circular bore.
  • the Fig. 14 and Fig. 15 show a further preferred embodiment of the basket 6.
  • This also has a stabilization ring 13 and the slots 10 tunnel under an end ring 19.
  • the slots 10 here run or are designed in such a way that they have an area in the area of the front surface 11 or on the side facing the front surface 11 where material is provided directly below the slots 10, whereby the slots 10 are virtually "lined" in some areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

Rührwerksmühle mit einem Mahlkörper beinhaltenden Mahlraum und einer darin um eine horizontale Rührwellenachse umlaufenden Rührwelle, die mehrere drehfest mit ihr verbundene, voneinander in Richtung der horizontalen Achse voneinander beabstandete Mahlorgane, bevorzugt in Gestalt von Mahlscheiben, trägt, die die Mahlkörper bewegen, wobei die Rührwelle auslassseitig einen Korb (6) besitzt, der bevorzugt an seinem Außenumfang mit Mahlorganen (18) besetzt ist und der den spaltrohrtragenden Auslass übergreift, wodurch zwischen der Innenoberfläche des Korbes und dem spaltrohrtagenden Auslass ein Trennraum gebildet wird, wobei der Korb Schlitze (10) zur Rückführung von Mahlkörpern aus dem Trennraum in den Mahlraum aufweist, die in die freie, dem Mahlraum abgewandte Stirnfläche (11) des Korbes ausmünden.

Description

  • Die Erfindung betrifft eine Rührwerksmühle mit einem Korb mit Schlitzen nach dem Oberbegriff des Anspruchs 1 und den entsprechenden Korb nach dem Oberbegriff des Anspruchs 6.
  • TECHNISCHER HINTERGRUND
  • Das grundlegende Prinzip einer Rührwerksmühle soll zunächst anhand der Fig. 1 erklärt werden.
  • In Fig. 1 ist schematisch eine Rührwerksmühle 1 mit horizontaler Rührwelle 3 dargestellt. Auf die Darstellung der im Mahlbehälter 16 befindlichen Mahlkörper, welche in der Regel als Stahl- oder Keramikkugeln ausgeführt sind, wurde verzichtet.
  • Im Betrieb der Rührwerksmühle 1 wird über den Einlass 17 der Rührwerksmühle 1 das zu mahlende Gut in bzw. durch den vom Mahlbehälter 16 umschlossenen Mahlraum 2 gepumpt. Bei dem zu mahlenden Gut handelt es sich im Falle der Nassvermahlung um eine Suspension bzw. Dispersion aus einer Flüssigkeit, meist in Gestalt von Wasser, und Feststoffen. In anderen Fällen kann eine solche Rückwerksmühle 1 auch zur Trockenvermahlung eingesetzt werden. Sie kann dann etwa als Rückwerksmühle mit vertikaler Welle konzipiert sein, durch die das Mahlgut von einem gasförmigen Fluid hindurchgetragen wird, meist im Fallstrom.
  • Die vorliegende Erfindung betrifft ihrem weitesten Aspekt nach beide Arten der Rührwerksmühlen. Ganz besonders bevorzugt ist ihr Einsatz bei Rührwerksmühlen mit horizontaler Rührwelle 3.
  • Durch eine Rotationsbewegung der Rührwelle 3 werden die drehfest mit der Rührwelle 3 verbundenen Mahlorgane 5, welche häufig auch als Mahlscheiben ausgeführt und bezeichnet werden, in Rotation versetzt. Ebenfalls möglich, auch im Rahmen der sogleich zu beschreibenden Erfindung, ist die Ausbildung der Mahlorgane 5 in Form von einzelnen Stiften. Zur Erzeugung der Rotationsbewegung kann die Rührwelle 3 beispielsweise über einen Riementrieb 102 von einem Elektromotor 101 angetrieben werden. Der Antrieb der Rührwerksmühle 1 befindet sich dabei meist in einem an den Mahlbehälter 16 angrenzenden Gehäuse 103.
  • Durch die Rotation der Mahlorgane 5 werden die im Mahlraum 2 befindlichen Mahlkörper, welche sich in der Nähe der Mahlorgane 5 befinden, in Umfangsrichtung des Mahlbehälters 16 mitgenommen. Im Mittelbereich zwischen je zwei Mahlorganen 5 fließen die bewegten Mahlkörper, sobald sie den Scheitelbereich erreicht haben, wieder zurück in Richtung der Rührwelle 3. Somit entsteht zwischen je zwei Mahlorganen 5 eine Zirkulationsbewegung der Mahlkörper.
  • Durch die Bewegung der Mahlkörper werden Kollisionen und Überrollungen zwischen den Feststoffen der durch den Mahlraum 2 gepumpten Mahlgutsuspension und den Mahlkörpern hervorgerufen. Diese Kollisionen und Überrollungen führen zum Absplittern feiner Partikel von den Festoffen in der Mahlgutsuspension, sodass die am Auslass 7 der Rührwerksmühle 1 ankommenden Feststoffe letztendlich deutlich kleiner sind als die am Einlass 17 zugeführten Feststoffe.
  • Um zu gewährleisten, dass Mahlkörper nicht aus dem Mahlraum ausgetragen werden, ist vor dem Auslass 7 und/oder vom Auslass 7 getragen meist noch ein Sieb bzw. bevorzugt ein Sieb in Gestalt eines Spaltrohrs 8 angebracht, im Folgenden stellvertretend "Spaltrohr" genannt. Um dieses Spaltrohr 8 herum ist ein dieses Spaltrohr 8 umgreifender Korb 6 angebracht. Der Korb dient dazu, zu verhindern, dass von den durch den Druck der Speisepumpe tendenziell in Richtung Spaltrohr gedrängten Mahlkörpern unzuträglicher Mahlkörperdruck auf das Spaltrohr ausgeübt wird.
  • Der Korb 6 ist zumeist am freien, dem Auslass 7 zugewandten Ende der Rührwelle 3 drehfest angebracht. Er rotiert dann mit der Rührwelle 3 mit.
  • Der Bereich zwischen dem umlaufenden Korb 6 und dem Spaltrohr 8 bildet den Trennraum 9 aus, da hier das zu mahlende Gut bzw. die Mahlgutsuspension von den Mahlkörpern getrennt und schließlich über das Spaltrohr 8 und den Auslass 7 wieder aus der Rührwerksmühle 1 austritt.
  • Im Regelfall kann der Korb 6 aber seine Funktion nur dann erfüllen, wenn in den Trennraum 9 eingetretene Mahlkörper die Möglichkeit haben, auch wieder aus dem Trennraum heraus, zurück in den Mahlraum 2 zu gelangen. Denn andernfalls ist der Trennraum 9 alsbald mit Mahlkörpern aufgefüllt und die Mahlkörper blockieren dann das Spaltrohr und lassen es womöglich sogar vorzeitig verschleißen.
  • Um das zu verhindern, werden diverse Durchbrüche 104 im Korb 6 vorgesehen. Durch diese Durchbrüche 104 können die Mahlkörper leichter wieder vom Trennraum 9 in den Mahlraum 2 übertreten. Fig. 2 zeigt einen derartig gestalteten Korb 6 einer Rührwerksmühle, die im Vorfeld der Erfindung als Versuchs- bzw. Vergleichsobjekt gedient hat. Dabei sind in Fig. 2 die Mahlkörper- und/oder Mahlgutströme, die schon angesprochen wurden und die im Mahlbehälter 16 stattfinden, schematisch dargestellt. Wie man sieht, trägt der Korb 6 auf seiner Außenmantelfläche bevorzugt ebenfalls Mahlorgane 5, die eine Bewegung bzw. ein Kreisen der Mahlkörper im Bereich zwischen dem Korb und der Innenwand des Mahlbehälters 16 verursachen. Dieses Kreisen der Mahlkörper erleichtert es den im Trennraum 9 befindlichen Mahlkörpern, durch die Durchbrüche 104 hindurch wieder in den Mahlraum 2 zu entweichen.
  • Die Erfinder haben aber festgestellt, dass auch bei der von Fig. 2 gezeigten Korb-Konstruktion nach wie vor eine gewisse Tendenz der in den Trennraum 9 eingetretenen Mahlkörper besteht, sich dicht am Spaltrohr 8 anzulagern und das Spaltrohr 8 zu blockieren oder gar unnötigen Verschleiß zu verursachen. Beides beeinträchtigt die Abscheideleistung des Spaltrohres 8. Diese Tendenz ist durch die Pfeile, die in Fig. 2 in Richtung des Spaltrohres 8 zeigen, schematisch angedeutet. Es können zwar auch Mahlkörper durch die Durchbrüche 104 aus dem Trennraum 9 ausgetragen werden; die Tendenz der Mahlkörper ist es jedoch eher, sich zum Spaltrohr 8 hin zu bewegen.
  • Die DE 44 12 408 C2 beschreibt eine Rührwerksmühle mit- einem Mahlbehälter, der einen mit Mahlhilfskörpern teilweise füllbaren und von Mahlgut hauptsächlich axial durchströmbaren Mahlraum umschließt, einer Rührwelle, die axial hintereinander angeordnete Rührelemente trägt, einem Auslasskörper, der einem Mahlgutauslass (48) des Mahlbehälters vorgeschaltet ist, und einer Vorklassiereinrichtung, die eine unmittelbar vor dem Auslasskörper angeordnete Vorklassierscheibe mit axialem Durchlaß aufweist und in ihren Wirkungsbereich gelangte Mahlhilfskörper bevorzugt radial nach außen fördert, dadurch gekennzeichnet, dass die Vorklassierscheibe zugleich Bestandteil eines rotierenden Käfigs ist, der den Auslasskörper so weitgehend umschließt, dass dieser für einen wesentlichen Teil des Mahlguts durch die Vorklassierscheibe hindurch erreichbar ist.
  • DIE ZUGRUNDE LIEGENDE AUFGABE
  • Angesichts dessen ist es die Aufgabe der Erfindung, die Abscheideleistung des Spaltrohres weiter zu verbessern.
  • DIE ERFINDUNGSGEMÄSSE LÖSUNG
  • Erfindungsgemäß wird dieses Problem mit den Merkmalen des ersten Hauptanspruchs gelöst.
  • Zu diesem Zweck wird von einer Rührwerksmühle mit einem Mahlkörper beinhaltenden Mahlraum und einer darin um eine horizontale Rührwellenachse umlaufenden Rührwelle ausgegangen. Die Rührwelle trägt mehrere drehfest mit ihr verbundene, in Richtung der horizontalen Achse voneinander beabstandete Mahlorgane. Diese Mahlorgane sind bevorzugt in Gestalt von Mahlscheiben ausgebildet. Sie bewegen im Betrieb der Rührwerksmühle die eingangs beschriebenen Mahlkörper.
  • Die Rührwelle besitzt hierbei auslassseitig einen Korb. Dies bedeutet, dass der Korb bevorzugt direkt an die Rührwelle anschließt und direkt oder indirekt mit dieser verbunden ist. Die Rührwelle und der Korb sind hierbei jedoch bevorzugt nicht integral miteinander ausgebildet, weshalb Rührwelle und Korb zwei individuelle Teile darstellen und die Rührwelle keine direkten Aufgaben des Korbes übernimmt. Zudem beträgt die Länge des Korbes bevorzugt höchstens ein Drittel, besonders bevorzugt sogar höchstens ein Viertel der Länge der Rührwelle.
  • Bevorzugt ist der Korb an seinem Außenumfang mit zusätzlichen Mahlorganen besetzt. Hierdurch kann, wie schon angesprochen, nicht nur eine zusätzliche Mahlwirkung im radialen Umfangsbereich zwischen dem Außenumfang des Korbes und der Innenwand des Mahlbehälters erreicht werden. Vielmehr wird hierdurch gerade auch jene kreisende Bewegung der Mahlkörper erzeugt, die den Wiederaustritt der Mahlkörper aus dem Trennraum begünstigt. Diese Mahlorgane am Korb sind hierbei bevorzugt nicht wie die Mahlorgane der Rührwelle ausgeführt. Während die Mahlorgane der Rührwelle bevorzugt in Gestalt von Mahlscheiben ausgeführt sind, sind die Mahlorgane des Korbes bevorzugt in Gestalt von Stiften ausgeführt.
  • Dieser angesprochene Korb übergreift im bestimmungsgemäßen Betrieb den Auslass zumindest teilweise, wobei der Auslass das Spaltrohr trägt. Es ist bevorzugt so, dass der Korb das Spaltrohr in seiner gesamten Länge übergreift.
    Das "Spaltrohr" ist im Zuge dieser Ausführungen im engeren Sinne bevorzugt ein Rohr mit diversen Schlitzen und/oder andersförmigen Durchbrüchen, im weiteren Sinne umfasst der Begriff "Spaltrohr" jedoch jegliche Art von Siebkörper.
  • Wie schon in einem vorangegangenen Abschnitt erklärt, bildet sich durch diese übergreifende Anordnung des Korbes ein freier Bereich zwischen der Innenoberfläche des Korbes und der Außenoberfläche des Auslasses bzw. des Spaltrohrs, das vom Auslass getragen wird, aus. Dieser Bereich wird als "Trennraum" bezeichnet.
  • Die erfindungsgemäße Rührwerksmühle zeichnet sich dadurch aus, dass der angesprochene Korb Schlitze zur Rückführung von Mahlkörpern aus dem Trennraum in den Mahlraum aufweist. Diese Schlitze sind so gestaltet, dass sie in die freie, dem Mahlraum abgewandte Stirnfläche des Korbes ausmünden.
  • Dem liegt folgende Erkenntnis der Erfinder zugrunde: Der von Fig. 2 gezeigte Eintrittsbereich direkt hinter der freien Stirnfläche des Korbes, in dem die Strömung in überwiegend horizontaler Richtung fließt, um in den Trennraum einzutreten, bildet eine zu ausgeprägte Engstelle. Letzteres deshalb, weil der von Fig. 2 gezeigte Korb in diesem Bereich eine in Umfangsrichtung in sich geschlossene Ringstruktur ausbildet.
  • Beim Durchfließen der Engstelle erhält die Mahlkörperströmung theoretisch zwar eine höhere Strömungsgeschwindigkeit, was eigentlich erwünscht wäre. Die Mahlkörper werden jedoch vor allem in axialer Richtung mitgenommen und haben zudem nur begrenzte Möglichkeiten zum Verlassen des Korbes. Somit prallen die Mahlkörper oftmals an den Korb und/oder das Spaltrohr, wodurch sie stark verlangsamt werden. Zudem ist die Engstelle oftmals auch derart eng gestaltet, dass einige Mahlkörper schon am Eingang in den Trennraum mit sich selbst, dem Korb und/oder dem Spaltrohr kollidieren und dadurch schon initial kinetische Energie verlieren.
  • Erreichen die Mahlkörper schließlich die Außenumfangsfläche des Spaltrohres unter den Durchbrüchen, dann haben sie oft nur noch eine zu geringe kinetische Energie, um sich dem Sog des Spaltrohres zu entziehen und die Durchbrüche zum Wiederaustritt in den Mahlraum zu nutzen. Dadurch kommt ein Teil der Mahlkörper zum Stillstand und lagert sich an der Außenumfangsfläche des Spaltrohres an. Hierdurch wird die Mahlkörperdynamik weiter reduziert. Unter ungünstigen Umständen droht das Spaltrohr nach einiger Betriebszeit blockiert zu werden.
  • Der angesprochene "Mahlraum" ist derjenige Raum im Inneren des Mahlbehälters, der zwischen Einlass und Auslass liegt und mit Mahlkörpern und/oder Mahlgut bzw. Mahlgutsuspension gefüllt und gleichzeitig nicht vom Korb umschlossen ist. Somit ist der Mahlraum quasi das Innere des Mahlbehälters abzüglich der ihn durchdringenden Einbauten und abzüglich des Trennraums.
  • Die erfindungsgemäß ausgeformten Schlitze haben somit zur Folge, dass der im Zuge des Strömungseintritts in den Trennraum zu passierende Radialspalt zwischen Innenoberfläche des Korbes und Außenoberfläche des Auslasses bzw. Spaltrohrs zumindest bereichsweise deutlich vergrößert ist. Ein "Stauen" der Mahlkörper und/oder des zu mahlendes Gutes bzw. der Mahlgutsuspension am Eingang zum Korb wird reduziert und/oder ein Hinleiten der Mahlkörper zum Sieb wird verhindert und die Mahlkörper können, zumindest teilweise, deutlich leichter und mit höherer Dynamik in den Trennraum eintreten. Dort entsteht sodann eine wünschenswerte Strömung, wodurch die Mahlkörper eher vom Spaltrohr ferngehalten werden und durch die Schlitze wieder schneller und/oder leichter vom Trennraum in den Mahlraum ausgeführt werden.
  • Hierdurch wird das Spaltrohr weniger stark blockiert und erfährt weniger Belastung und/oder weniger Verschleiß, denn die Mahlkörper werden schneller und/oder auf einem für das Spaltrohr schonenderen Weg in den Mahlraum zurückgeführt. Im Wesentlichen in dem Bereich, in dem die Mahlkörper durch die Schlitze direkt eingetragen werden (v.a. im Bereich zwischen Außenumfang des Korbes und der Innenwand des Mahlbehälters), entstehen zusätzliche Verwirbelungen und das umliegende Mahlkörperbett wird aktiviert.
  • Im Allgemeinen kann so eine gesteigerte mahlende Wirkung der Rührwerksmühle erreicht werden, das Spaltrohr erfährt im Betrieb einen geringeren Verschleiß und es setzen sich weniger Mahlkörper im oder am Spaltrohr fest. So kann die Rührwerksmühle bei einem höheren Durchsatz betrieben werden bei erhöhter Lebensdauer des Korbes und bei geringerem Wartungsaufwand.
  • Die "Schlitze" sind hierbei Durchbrüche und/oder Öffnungen und/oder Einschnitte mit in Gesamtheit länglicher Form, welche in oder an dem Korb vorgesehen sind.
  • Ein erfindungsgemäßer Schlitz bietet hierbei zumindest in einem Bereich einen Durchbruch der Außenfläche des Korbes zum Mahlraum, jedoch bevorzugt nicht über die gesamte Länge des Schlitzes. So kann bereichsweise an den Schlitz Material angrenzen, wodurch der Schlitz quasi vom Material des Korbes "überdacht", "unterfüttert" und/oder umgeben ist.
  • Ein erfindungsgemäßer Schlitz hat zudem bevorzugt nicht über seine gesamte Länge den gleichen Querschnitt und kann bereichsweise seine Ausdehnung und/oder seine Form ändern.
  • Im Zuge der angesprochenen "Überdachung" eines Schlitzes des Korbes sei hier zudem noch angesprochen, dass es bevorzugt ist, dass ein erfindungsgemäßer Korb so ausgeführt ist, dass jeder Schlitz auf seiner dem Mahlraum abgewandten Seite bereichsweise direkt an den Schlitz angrenzend Material radial nach außen und damit über dem Schlitz aufweist. Der Schlitz ist somit "überdacht" ausgeführt, wodurch sich in diesem Bereich ein "Endring" ausbildet, welcher eine bevorzugt durchgängige Umfangsfläche ausbildet.
  • Dies ist notwendig, um den Korb zu stabilisieren und Schwingungen zu vermeiden. Jeder Schlitz untertunnelt somit den Endring.
  • BEVORZUGTE WEITERBILDUNGEN
  • Es besteht eine Reihe von Möglichkeiten, um die Erfindung so auszugestalten, dass ihre Wirksamkeit oder Brauchbarkeit noch weiter verbessert wird.
  • Eine bevorzugte Ausführungsform der Erfindung besteht darin, dass die Schlitze auch die Radscheibe durchqueren, die den Korb mit der Rührwelle verbindet, sodass der betreffende Schlitz auch über die Radscheibe selbst mit dem Mahlraum verbunden ist. Hierdurch wird den Mahlkörpern die Möglichkeit gegeben, auch über diese Radscheibe vom Trennraum in den Mahlraum zu gelangen, gefördert durch die im Mahlraum auf der anderen Seite der Radscheibe ablaufende Mahlkörperdynamik. Hierdurch wird das Austragen der Mahlkörper aus dem Trennraum zusätzlich erleichtert.
  • Darüber hinaus ist es besonders bevorzugt, dass die Schlitze einen auf der Seite bzw. im Bereich des freien, dem Mahlraum abgewandten Endes des Korbes ausgebildeten Stabilisationsring untertunneln. Dieser Stabilisationsring ist bevorzugt so ausgeführt, dass er radial nach außen weiter in den Mahlraum ragt als der restliche Durchmesser des Korbes, wodurch einerseits die Stabilität des Korbes erhöht wird und andererseits die Strömungsführung bzw. -dynamik noch weiter verbessert wird.
  • Eine weitere bevorzugte Ausführungsform besteht darin, dass sich die Hauptachsen der Schlitze vollständig oder zumindest im Wesentlichen parallel zur Rührwellenachse erstrecken. Dies ist erreicht, wenn diese Hauptachsen um höchstens 10°, bevorzugt höchstens 5° von der Rührwellenachse abweichen. Die Hauptachsen laufen hierbei entlang der gesamten Länge des Schlitzes, also seiner gesamten Ausbreitungslänge, bevorzugt auch parallel zur Längsachse des Korbes und befinden sich in der Mitte des Schlitzes und damit auf der Hälfte der Breite des Schlitzes.
  • Darüber hinaus ist es besonders bevorzugt, wenn die in Arbeitsdrehrichtung voreilenden Flanken der Schlitze gegenüber der gedachten Radialen durch ihre Hauptachse einen Anstellwinkel von 0° bis 45° aufweisen. Auf diese Art und Weise bilden sich am Korb quasi "schaufelnd wirkende Flächen" aus, die dazu führen, dass die Mahlkörper abgelenkt und somit nochmals besser ausgetragen werden.
  • FIGURENLISTE
    • Die Fig. 1 zeigt eine Rührwerksmühle nach dem Stand der Technik aus geschnittener Seitenansicht.
    • Die Fig. 2 zeigt den Mahlbehälter einer Rührwerksmühle aus geschnittener Seitenansicht, wobei der Korb nach hausinternen Überlegungen Durchbrüche aufweist.
    • Die Fig. 3 zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Korbes in Seitenansicht.
    • Die Fig. 4 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes aus Fig. 3 in dreidimensionaler Ansicht.
    • Die Fig. 5 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes aus Fig. 3 in Frontansicht.
    • Die Fig. 6 zeigt ein zweites Ausführungsbeispiel des erfindungsgemäßen Korbes mit Stabilisationsring in dreidimensionaler Ansicht.
    • Die Fig. 7 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes mit Stabilisationsring aus Fig. 6 in Seitenansicht.
    • Die Fig. 8 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes mit Stabilisationsring aus Fig. 6 in geschnittener Seitenansicht, wobei der Korb einen spaltrohrtragenden Auslass umgreift.
    • Die Fig. 9 zeigt den Mahlbehälter einer Rührwerksmühle aus geschnittener Seitenansicht mit einem dritten Ausführungsbeispiel des erfindungsgemäßen Korbes mit einer anderen Stabilisationsringform.
    • Die Fig. 10 zeigt ein viertes Ausführungsbeispiel des erfindungsgemäßen Korbes in Seitenansicht.
    • Die Fig. 11 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes aus Fig. 10 in dreidimensionaler Ansicht.
    • Die Fig. 12 zeigt ein fünftes Ausführungsbeispiel des erfindungsgemäßen Korbes in Frontansicht.
    • Die Fig. 13 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes aus Fig. 12 in dreidimensionaler Ansicht.
    • Die Fig. 14 zeigt ein sechstes Ausführungsbeispiel des erfindungsgemäßen Korbes in Frontansicht.
    • Die Fig. 15 zeigt das Ausführungsbeispiel des erfindungsgemäßen Korbes aus Fig. 14 in dreidimensionaler Ansicht.
    BEVORZUGTE AUSFÜHRUNGSBEISPIELE
  • Zunächst zeigen Fig. 3 bis Fig. 5 ein erstes bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Korbes 6 in verschiedenen Ansichten. Der Korb 6 ist hierbei an seinem Außenumfang mit zusätzlichen Mahlorganen 18 besetzt, die in Gestalt von Stiften in horizontalen, parallel zur Rührwellenachse 4 verlaufenden Reihen regelmäßig über den Umfang des Korbes 6 angebracht sind. Die Schlitze 10 sind ebenfalls regelmäßig über den Umfang des Korbes 6 verteilt und schneiden wie erwähnt sowohl die dem Mahlraum 2 zugewandte Radscheibe 12 als auch die dem Mahlraum 2 abgewandte Stirnfläche 11. Es kann günstig sein, wenn nicht jedem einzelnen Schlitz 10 eine der besagten Reihen zugeordnet ist, sondern unmittelbar benachbarte Schlitze vorhanden sind, deren Verbindungsbereich keine der besagten Reihen trägt. Der Schlitz 10 untertunnelt zudem auf der der Stirnfläche 11 zugewandten Seite den Endring 19, wobei der Endring 19 umlaufend geschlossen ausgeführt ist.
  • Zur Vereinfachung und besseren Übersicht wird hier und in den weiteren Figuren nicht jeder Schlitz und nicht jedes Mahlorgan mit Bezugszeichen versehen, sondern nur beispielhaft ein Schlitz und nur ein oder zwei Mahlorgane.
  • Die Frontansicht des Korbes 6 ist in Fig. 5 abgebildet, wobei hier auf die dem Mahlraum abgewandte Stirnfläche 11 geblickt wird. Hier ist der Anstellwinkel A der Schlitze erkennbar, der dazu führt, dass die in Arbeitsdrehrichtung vorauseilenden Flanken 15 der Schlitze 10 bzw. deren imaginäre Verlängerungen radial nicht senkrecht auf die Außenkontur des Korbes 6 stehen. Dieser Anstellwinkel A liegt bevorzugt zwischen 0° und 45°. Zur besseren Veranschaulichung ist gestrichelt zudem ein imaginärer Schlitz zu erkennen, welcher eben genau radial senkrecht auf die Außenkontur des Korbes 6 steht. Von der Hauptachse eines derartigen Schlitzes wird der Winkel zur Hauptachse 14 eines erfindungsgemäßen Schlitzes 10 angetragen, was dem Anstellwinkel A entspricht.
  • Die Fig. 6 bis Fig. 8 zeigen eine zweite bevorzugte Ausführungsform des Korbes 6, wobei der Korb 6 einen Stabilisationsring 13 mit erhöhtem Außendurchmesser trägt. Die Schlitze 10 untertunneln zudem wiederum einen Endring 19 auf der der Stirnfläche 11 zugewandten Seite, wobei der Endring 19 hierbei Teil des Stabilisationsrings 13 ist. Die Schlitze 10 verlaufen hier bevorzugt ebenso durch die Radscheibe 12 und die dem Mahlraum zugewandte Stirnfläche 11. Der Korb 6 ist ebenso mit zusätzlichen Mahlorganen 18 besetzt, wobei auch hier das oben Gesagte gilt. Auch der Stabilisationsring selbst kann mit zusätzlichen Mahlorganen 18, insbesondere mit hervorstehenden Stiften oder sonstigen Agitatoren, versehen sein, die die Mahlkörper in Umfangsrichtung mitnehmen. Die Stifte des Stabilisationsrings sind bevorzugt mit den anderen bereits oben beschriebenen Stiften des Korbes in einer Flucht angeordnet, meist parallel zur Rührwellenachse 4, vgl. Fig. 6 und 7.
  • Zur besseren Übersicht ist ein derartig ausgebildeter Korb 6 in Fig. 8 in seiner bevorzugten Einbauposition dargestellt, in welcher er einen Auslass 7 umgreift, der ein Spaltrohr 8 trägt. Es kann günstig sein, wenn der Auslass 7 eine Einschnürung (wie hier "garnrollenartig" gestaltet und ggf. mit Einlauf- und Ablaufschrägen ausgestattet) aufweist, die so angeordnet ist, dass der Spalt, über den die Einströmung in den Trennraum 9 erfolgt, durch sie vergrößert wird. Auch wenn eine solche Einschnürung, anders als die erfindungsgemäßen Schlitze bzw. Durchbrüche, keinerlei in Umfangsrichtung "schaufelnde" Wirkung entfaltet und daher eine andere Dynamik hervorruft, kann sie doch den erfindungsgemäß zu erreichenden Effekt intensivieren helfen, gerade im synergistischen Zusammenspiel mit den erfindungsgemäßen Schlitzen oder Durchbrüchen.
  • Fig. 9 zeigt schließlich eine weitere bevorzugte Ausführungsform des Korbes 6, wobei der Korb 6 ebenso einen Stabilisationsring 13 trägt, der jedoch eine reine Zylinderabschnittsform aufweist. Die Schlitze 10 untertunneln hier den gesamten Stabilisationsring 13, der somit quasi gleichzeitig als Endring fungiert. Fig. 9 zeigt zudem schematisch das Strömungsverhalten im Mahlbehälter 16 einer Rührwerksmühle 1. An dieser Stelle sei auf die allgemeine Funktionsweise einer Rührwerksmühle hingewiesen, die im Abschnitt "Technischer Hintergrund" mithilfe der Fig. 1 und Fig. 2 beschrieben wurde. Die grundlegende Funktion und das Strömungsverhalten ist bis zum Bereich des Korbes 6 gleich bzw. ähnlich und soll deshalb an dieser Stelle nicht nochmals wiederholt werden. Der in Fig. 9 abgebildete Korb 6 besitzt jedoch Schlitze 10, die sowohl die Radscheibe 12 als auch die dem Mahlraum abgewandte Stirnfläche 11 schneiden. Hierdurch können Mahlkörper und/oder die Mahlgutsuspension leichter in den Trennraum 9 eintreten, und vor allem die Mahlkörper werden von der dadurch ausgebildeten Strömung durch die Schlitze wieder aus dem Trennraum 9 in den Mahlraum 2 ausgetragen, was hierbei auch über die zusätzliche Verbindung mit dem Mahlraum über die teilweise geschlitzte Radscheibe 12 erleichtert wird. Die Mahlkörper werden so vom Spaltrohr 8 bzw. dem spaltrohrtragenden Auslass 7 ferngehalten und führen nach der Austragung aus dem Trennraum 9 zu einer gesteigerten Mahlwirkung im Mahlraum 2.
  • Die Fig. 10 und Fig. 11 zeigen darüber hinaus eine weitere bevorzugte Ausführungsform des Korbes 6 mit Schlitzen 10 und zusätzlichen Mahlorganen 18, wobei hier die Außenkontur des Korbes 6 in Gestalt eines Kegelstumpfes ausgebildet ist. Durch diese Gestaltung wird bei der Überströmung der kegelartigen Struktur (anders als bei Fig. 9) ein Strömungshindernis vermieden und eine im Zuge der Überströmung des Korbes kontinuierlich ansteigende Dynamik der Strömung erreicht. Gleichzeitig bildet die kegelartige Struktur im Bereich ihres freien Stirnendes quasi einen integralen Stabilisierungsring aus, in dessen Bereich gerade keine sprungartige Verengung stattfindet. Die Schlitze 10 untertunneln hierbei wiederum einen umlaufend geschlossenen Endring 19.
  • Gut anhand der Fig. 11 zu erkennen ist, dass der Korb innen eine zylindrische Innenumfangsmantelfläche bildet, sodass der Trennraum 9 sich gerade nicht (von der freien Stirnfläche des Korbes her kommend) kegelig verjüngt. Das wäre unproduktiv, bestünde doch bei einem kegeligen Trennraum die Gefahr, dass sich Mahlkörper nach ihrem Eintritt in den Trennraum wegen des kegeligen Innenprofils verklemmen.
  • Die Fig. 12 und Fig. 13 zeigen eine weitere bevorzugte Ausführungsform des Korbes 6. Auch diese weist einen Stabilisationsring 13 auf und die Schlitze 10 untertunneln einen Endring 19. Die Schlitze 10 verlaufen hier jedoch so bzw. sind so gestaltet, dass sie die Stirnfläche 11 nur mittels einer kreisförmigen Bohrung durchtreten.
  • Die Fig. 14 und Fig. 15 zeigen eine weitere bevorzugte Ausführungsform des Korbes 6. Auch diese weist einen Stabilisationsring 13 auf und die Schlitze 10 untertunneln einen Endring 19. Die Schlitze 10 verlaufen hier jedoch so bzw. sind so gestaltet, dass sie im Bereich der Stirnfläche 11 bzw. auf der der Stirnfläche 11 zugewandten Seite einen Bereich aufweisen, wo Material direkt unterhalb der Schlitze 10 vorgesehen ist, wodurch die Schlitze 10 bereichsweise quasi "unterfüttert" sind.
  • BEZUGSZEICHENLISTE
  • 1
    Rührwerksmühle
    2
    Mahlraum
    3
    Rührwelle
    4
    Rührwellenachse
    5
    Mahlorgan an Rührwelle (Mahlscheibe)
    6
    Korb
    7
    Auslass
    8
    Spaltrohr
    9
    Trennraum
    10
    Schlitz
    11
    Stirnfläche (dem Mahlraum abgewandt)
    12
    Radscheibe
    13
    Stabilisationsring
    14
    Hauptachse eines Schlitzes
    15
    Flanke eines Schlitzes
    16
    Mahlbehälter
    17
    Einlass
    18
    Mahlorgan an Korb
    19
    Endring
    101
    Elektromotor
    102
    Riementrieb
    103
    Gehäuse
    104
    Durchbruch
    A
    Anstellwinkel

Claims (6)

  1. Rührwerksmühle (1) mit einem Mahlkörper beinhaltenden Mahlraum (2) und einer darin um eine horizontale Rührwellenachse (4) umlaufenden Rührwelle (3), die mehrere drehfest mit ihr verbundene, voneinander in Richtung der horizontalen Achse voneinander beabstandete Mahlorgane (5), bevorzugt in Gestalt von Mahlscheiben, trägt, die die Mahlkörper bewegen, wobei die Rührwelle (3) auslassseitig einen Korb (6) besitzt, der bevorzugt an seinem Außenumfang mit Mahlorganen (18) besetzt ist und der den spaltrohrtragenden Auslass (7) übergreift, wodurch zwischen der Innenoberfläche des Korbes (6) und dem spaltrohrtagenden Auslass (7) ein Trennraum (9) gebildet wird, dadurch gekennzeichnet, dass der Korb (6) Schlitze (10) zur Rückführung von Mahlkörpern aus dem Trennraum (9) in den Mahlraum (2) aufweist, die in die freie, dem Mahlraum (2) abgewandte Stirnfläche (11) des Korbes (6) ausmünden, wobei die Schlitze (10) zumindest bereichsweise ihre Ausdehnung und/oder Form ändern.
  2. Rührwerksmühle (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Schlitze (10) auch die Radscheibe (12) durchqueren, die den Korb (6) mit der Rührwelle (3) verbindet, sodass der betreffende Schlitz (10) auch über die Radscheibe (12) selbst mit dem Mahlraum (2) verbunden ist.
  3. Rührwerksmühle (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schlitze (10) einen auf der Seite bzw. im Bereich des freien Endes des Korbes (6) ausgebildeten Stabilisationsring (13) untertunneln.
  4. Rührwerksmühle (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Hauptachsen (14) der Schlitze (10) parallel zur Rührwellenachse (4) erstrecken.
  5. Rührwerksmühle (1) nach Anspruch 4, dadurch gekennzeichnet, dass die in Arbeitsdrehrichtung voreilenden Flanken (15) der Schlitze (10) gegenüber der gedachten Radialen durch ihre Hauptachse (14) einen Anstellwinkel (A) von 0° bis 45° aufweisen.
  6. Korb (6), welcher bevorzugt an seinem Außenumfang mit Mahlorganen (18) besetzt ist und den spaltrohrtragenden Auslass (7) übergreift, dadurch gekennzeichnet, dass der Korb (6) Schlitze (10) aufweist, die in die freie, dem Mahlraum (2) abgewandte Stirnfläche (11) des Korbes (6) ausmünden, wobei die Schlitze (10) zumindest bereichsweise ihre Ausdehnung und/oder Form ändern.
EP23210562.7A 2022-11-17 2023-11-17 Rührwerksmühle mit korb mit schlitzen Pending EP4371668A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022130383.7A DE102022130383A1 (de) 2022-11-17 2022-11-17 Rührwerksmühle mit Korb mit Schlitzen

Publications (1)

Publication Number Publication Date
EP4371668A1 true EP4371668A1 (de) 2024-05-22

Family

ID=88839424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23210562.7A Pending EP4371668A1 (de) 2022-11-17 2023-11-17 Rührwerksmühle mit korb mit schlitzen

Country Status (6)

Country Link
US (1) US20240165631A1 (de)
EP (1) EP4371668A1 (de)
JP (1) JP2024073396A (de)
KR (1) KR20240072947A (de)
CN (1) CN118045670A (de)
DE (1) DE102022130383A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412408C2 (de) 1994-04-11 2003-03-20 Netzsch Erich Holding Rührwerksmühle
US20060261201A1 (en) * 2005-05-17 2006-11-23 Tsuyoshi Ishikawa Circulation type media agitator mill
CN113908934A (zh) * 2021-09-26 2022-01-11 深圳市叁星飞荣机械有限公司 用于砂磨机的分离机构和砂磨机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412408C2 (de) 1994-04-11 2003-03-20 Netzsch Erich Holding Rührwerksmühle
US20060261201A1 (en) * 2005-05-17 2006-11-23 Tsuyoshi Ishikawa Circulation type media agitator mill
CN113908934A (zh) * 2021-09-26 2022-01-11 深圳市叁星飞荣机械有限公司 用于砂磨机的分离机构和砂磨机

Also Published As

Publication number Publication date
JP2024073396A (ja) 2024-05-29
US20240165631A1 (en) 2024-05-23
CN118045670A (zh) 2024-05-17
DE102022130383A1 (de) 2024-05-23
KR20240072947A (ko) 2024-05-24

Similar Documents

Publication Publication Date Title
EP2646160B1 (de) Dynamisches element für die trenneinrichtung einer rührwerkskugelmühle
EP3019276B1 (de) Rührwerkskugelmühle mit axialkanälen
EP2178642B1 (de) Rührwerksmühle
EP2178643B1 (de) Rührwerksmühle
EP3311922B1 (de) Rührwerkskugelmühle
DE4006604C2 (de)
EP3311921B1 (de) Rührwerkskugelmühle
EP3102332B1 (de) Rührwerkskugelmühle
DE2758047A1 (de) Zentrifugalmaschine vom duesen-typ, mit verbesserten schlammpumpkammern
DE2322772B2 (de) Abwasserpumpe
DE10064828B4 (de) Rührwerksmühle
EP4371668A1 (de) Rührwerksmühle mit korb mit schlitzen
EP4147782A1 (de) Rührwerksmühle
EP2683487B1 (de) Rührwerkskugelmühle
EP4371669A1 (de) Rührwerksmühle mit korb mit verdickung
EP2572035A1 (de) Pulper mit einem zuführraum und einem verdrängerraum
EP1949966B1 (de) Vollmantel-Schneckenzentrifuge mit einer Stauscheibe
EP1724021A1 (de) Rührwerksmühle
EP3946741B1 (de) Rührwerkskugelmühle
DE102020130055B4 (de) Rührwerksmühle
DE102022134099A1 (de) Rührwerksmühle
WO2024052131A1 (de) Rührwerksmühle mit besonderen mitnehmern
WO2023030575A1 (de) Dispergiereinheit
DD227339B5 (de) Ruehrwerksmuehle
EP4217536A1 (de) Mahlgarnitursegment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR