EP4357525A1 - Method for assisted operation assistance of a soil compaction machine and soil compaction machine - Google Patents

Method for assisted operation assistance of a soil compaction machine and soil compaction machine Download PDF

Info

Publication number
EP4357525A1
EP4357525A1 EP23165120.9A EP23165120A EP4357525A1 EP 4357525 A1 EP4357525 A1 EP 4357525A1 EP 23165120 A EP23165120 A EP 23165120A EP 4357525 A1 EP4357525 A1 EP 4357525A1
Authority
EP
European Patent Office
Prior art keywords
soil compaction
compaction machine
vibration input
soil
reversing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23165120.9A
Other languages
German (de)
French (fr)
Inventor
Niels Laugwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP4357525A1 publication Critical patent/EP4357525A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • G07C5/06Registering or indicating driving, working, idle, or waiting time only in graphical form
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/282Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/282Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit
    • E01C19/283Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit pedestrian-controlled, e.g. with safety arrangements for operator
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements

Definitions

  • the invention relates to a method for assisted operation of a soil compaction machine. Furthermore, the invention relates to a soil compaction machine, in particular a tandem roller or a roller train, with at least one roller drum and a control device.
  • Generic soil compaction machines are, for example, from the EN 10 2018 007 825 A1 known to the applicant. They are typically used in road and path construction and in the construction of runways and airfields. These are usually self-propelled machines, which in particular have a machine frame supported by a chassis.
  • the chassis typically comprises at least one roller drum and optionally wheels.
  • the chassis can also have, for example, two roller drums, which are separated from one another and arranged one behind the other, in particular in the working direction of the soil compaction machine, so that when the soil compaction machine moves forward, a certain position on the ground is successively driven over by both roller drums arranged one behind the other.
  • the working direction of the soil compaction machine corresponds to a longitudinal machine axis or a front/back direction of the soil compaction machine.
  • the current working direction can be a forward or an opposite backward direction, with a reversing working mode usually being present.
  • the roller drums are typically metallic hollow cylinders, for example made of steel, which can in particular have a smooth outer surface.
  • soil compaction machines When soil compaction machines are in operation, they are moved with at least one or two roller drums over a soil to be compacted, for example an asphalt layer laid by a road finisher.
  • the drive energy required to operate the soil compaction machine is typically provided by a drive motor, for example an internal combustion engine, usually a diesel engine, or an electric motor.
  • a vibration exciter is provided in or on the rolling band, via which the rolling band can be set into vibration.
  • the rolling band can be set into vibration.
  • a desired adjustment of the compaction of the rolling band can be set.
  • Such soil compaction machines usually have a driver's cab for an operator, from which the soil compaction machine is controlled by the operator.
  • the operator controls in particular the travel of the soil compaction machine over the soil to be compacted. For example, both the direction of travel and the travel speed are specified by the operator.
  • the operator typically controls the operation of the vibration exciter(s) in the roller drum(s). These can be switched on and off and sometimes varied in terms of their frequency and/or amplitude.
  • Soil compaction machines of this type typically have a control device, which can be an on-board computer or part of an on-board computer, for example.
  • the control device is typically equipped with at least one sensor that records at least one parameter of the operation of the soil compaction machine.
  • Such a parameter can be the direction of travel, the travel speed, the steering angle, the operating state of one or more vibration exciters, an acceleration value, a value associated with the soil stiffness, a travel path, etc.
  • soil compaction machines of this type typically have a display device connected to the control device, for example a screen or a display. The measured values of the sensor can be shown on this display, for example.
  • the control device can be designed to receive control commands from the operator - for example via the display device, which can include a touchscreen, additional and/or separate input devices, etc. - and to control the soil compaction machine using these control commands.
  • Soil compaction machines are typically driven over an area to be compacted several times. This usually requires the soil compaction machine to be reversed several times. In other words, the direction of travel is reversed several times so that the soil compaction machine moves back and forth over the soil to be compacted. The soil compaction machine can therefore drive over the same spot several times.
  • the aim of soil compaction machines is usually to create and leave behind a soil surface that is as smooth and homogeneously compacted as possible. For example, the evenness of a road is an important criterion relevant to remuneration, which is therefore of great practical and economic interest.
  • the roller drums of the soil compaction machine will leave a bump in the surface to be compacted when reversing, i.e. when changing direction, if the ground is still deformable under the machine's own weight, for example when the asphalt temperature is still relatively high.
  • This bump then typically has to be smoothed out as well as possible on subsequent passes in order to obtain a road surface of the desired quality.
  • the operators of the soil compaction machines are typically instructed to turn shortly before the soil compaction machine comes to a standstill when reversing, so that the roller drums and thus also the bump left by them are aligned at an angle to the working direction when reversing.
  • Such diagonal bumps can be smoothed out much more easily and quickly on subsequent passes than bumps that run perpendicular to the working direction.
  • the operator of the soil compaction machine must typically ensure that the operation of the vibration exciter(s) is controlled in such a way that too much vibration energy or too many impulses per defined distance are not introduced into the soil, for example the asphalt layer, at one point or over too short a distance. This can also promote the formation of undesirable ground waves.
  • the vibration input into the soil must therefore be reduced in good time before or during the braking of the soil compaction machine before reversing, for example by switching off the vibration exciter in good time while the soil compaction machine is still traveling sufficiently fast.
  • the operator can therefore actively influence the waviness or evenness of the compacted soil left behind by the machine and thus the quality of the work result through the way in which he controls the soil compaction machine.
  • a considerable amount of experience and skill is required on the part of the operator.
  • the operator is usually unable to recognize the levelness achieved during operation. Measuring the evenness of the soil during operation is technically complex and is therefore typically not carried out. There is therefore no possibility for the operator to adapt his driving style based on the current or last achieved result, ideally during operation.
  • the object of the present invention is to provide a method or a soil compaction machine with which which the evenness of the compacted soil can be improved.
  • driving errors that can occur around the reversing of the soil compaction machine should be reduced.
  • feedback on the work result should be provided during and/or after compaction operation without the need to measure the evenness of the soil.
  • the feedback on the previous work process should make it possible to improve future work processes with regard to the optimal evenness of the compacted soil.
  • the solution is achieved with a method for assisted operation of a soil compaction machine.
  • it is a method for controlling the compaction process during compaction operation of the soil compaction machine or a method for monitoring the operation of the soil compaction machine during compaction operation by the operator.
  • the method is based on the control of the soil compaction machine by an operator. This is done in a known manner by entering appropriate control commands, for example with regard to direction of travel, speed of travel, activation and/or setting of one or more vibration exciters, etc.
  • a soil compaction machine of this type therefore operates in a conventional manner, in which the operator guides it over the soil to be compacted.
  • the soil to be compacted is in particular an asphalt layer laid by a road finisher, still hot or still sufficiently warm for surface deformation by the soil compaction machine, from which, for example, a roadway or similar is created after compaction.
  • Controlling the soil compaction machine therefore includes, in particular, driving over the soil to be compacted several times or reversing the soil compaction machine several times.
  • the soil compaction machine is preferably repeatedly braked, in particular to a standstill, and then accelerated again in a direction opposite to the original direction of travel.
  • at least one roller drum of the soil compaction machine is at least partially set into vibration by a vibration exciter in order to achieve dynamic soil compaction. This can be, for example, vibration or oscillation vibrations or any superposition of these.
  • Controlling the soil compaction machine by an operator is understood in this case to mean, in particular, semi-autonomous operation.
  • an automatic reversing system could be used in which an operator triggers a reversing process by means of a control input, for example by pressing a button, whereby braking, reducing the vibration input, accelerating in the opposite direction and subsequent increase in the vibration input is carried out automatically by the control device.
  • the operator can start the automatic reversing, for example, according to his own judgment or, for example, after reaching a mark, for example a light spot projected onto the ground, which can be arranged at a set distance from the reversing point that is necessary for the reversing process.
  • the automatic reversing is particularly preferably designed in such a way that it only controls the braking and subsequent acceleration in the opposite direction of travel, in particular up to a desired target speed, but does not take over steering processes, which preferably have to be controlled exclusively manually.
  • the soil compaction machine preferably comprises at least one suitable recording device, for example at least one sensor, which records the respective parameter or variables directly or indirectly and in particular forwards it to the control device.
  • the recording and determination of various parameters, variables, times or locations can preferably also include, throughout the present description, that the recorded or determined values are stored for later use, for example in a memory, in particular an electronic one, of the control device.
  • a sensor of the recording device can be provided that records several parameters or variables, or a separate sensor can be provided for each parameter or variable.
  • soil compaction machines usually already determine the driving speed directly or indirectly, the value of this parameter is usually already available, for example, and can be used for the method according to the invention.
  • the change in driving speed can in turn also be calculated from a repeatedly or continuously measured driving speed.
  • it is also possible to record the movement or acceleration of the soil compaction machine for example, using an electronic compass or an IMU ( inertial measurement unit ).
  • the use of GNSS systems (global navigation satellite system ) to repeatedly or continuously record the location of the soil compaction machine and/or their temporal comparison is possible.
  • the movement of the soil compaction machine can also be determined by optically recording the surroundings of the soil compaction machine.
  • a camera or the image from a camera can be used to determine the movement of the soil compaction machine.
  • the variables mentioned which are not directly the driving speed, the change in driving speed and/or a reversal of the direction of travel, can preferably be used to determine these.
  • the variables mentioned can also be used directly in the next step of the process.
  • a point in time is then determined at which the soil compaction machine reverses.
  • the turning point of the soil compaction machine is determined. It is therefore preferably determined when a reversal of direction takes place or when a driving speed first drops to zero and then increases again in the opposite direction. This is referred to here as reversing the soil compaction machine.
  • the position of the soil compaction machine is also recorded, for example by a distance measurement or by a GNSS system, the location at which the soil compaction machine is located at the time at which the reversal takes place is also determined. This location can therefore also be used as a starting point for the further process.
  • the method according to the invention therefore provides for the detection of a steering angle of the soil compaction machine and/or a vibration input from a vibration exciter into the ground or a vibration related to the steering angle. or a quantity correlating with the vibration input.
  • one or more sensors can be provided on the soil compaction machine as part of the recording device, which record the respective parameters or quantities and forward their values to the control device.
  • a sensor can be provided which records the steering angle or the vibration input directly or indirectly via a correlating parameter. From a repeated or continuous measurement of the location of the soil compaction machine, it can also be concluded that the soil compaction machine is inclined based on the distance traveled, which in turn correlates with the steering angle. Alternatively, the braking distance covered and the steering movement carried out during this can be used to conclude that the soil compaction machine is inclined.
  • the vibration input is a measure of how much energy is transferred from the vibration exciter to the ground.
  • the vibration input can be influenced by adjusting the frequency and/or the amplitude of the vibration exciter. Switching off the vibration exciter, for example, leads to the frequency decreasing, in particular to zero.
  • the amplitude of the vibration exciter can be adjusted, in particular to zero, for example by changing the eccentricity of the flywheel masses of the vibration exciter. This can also change the vibration input into the ground. Values that correlate with the vibration input are therefore, for example, the frequency and/or the amplitude and/or the eccentricity of the flywheel masses of the vibration exciter.
  • the so-called IPF value impacts per foot
  • IPF value impacts per foot
  • the amplitude refers to the portion of the vibration directed in the vertical direction.
  • the amplitude of the portion of the vibration directed in the horizontal direction can also be taken into account.
  • the control of the soil compaction machine during reversing or around reversing is particularly important for the evenness of the compacted soil.
  • Of interest here is therefore both the control of the soil compaction machine before reversing and after reversing.
  • the steering angle and/or the vibration input or the variables correlated with this are therefore recorded according to the invention within a time interval and/or within a distance around the already determined time of reversing and/or around the already determined location of the soil compaction machine at this time.
  • the parameters or variables mentioned are therefore recorded before and after reversing.
  • the steering angle and/or the vibration input or the quantities correlating with it are therefore, depending on which measurements are carried out, linked in time or place with the parameters of driving speed, change in driving speed and/or reversal of direction or the quantities correlating with it. For example, it is recorded which steering angle and/or which vibration input is present together with which driving speed of the soil compaction machine.
  • the interval and/or the distance can initially be chosen arbitrarily and can, for example, cover the entire working period or the entire construction site of the soil compaction machine. It is important that they cover the reversing process of the soil compaction machine under consideration. Preferred, more specific intervals/distances are explained in more detail below.
  • a key point of the method according to the invention is a comparison of the recorded or determined steering angle and/or vibration input within the interval and/or the distance with specified reference values for a target steering angle and/or a target vibration input.
  • waves in the soil that is still to be compacted that are aligned at an angle to the working direction and that arise when reversing can be better compensated for in subsequent passes.
  • excessive vibration input on a distance that is too short also contributes to wave formation.
  • a target steering angle and/or a target vibration input can therefore be derived from these relationships. These can, for example, be related to a driving speed, a change in driving speed or similar of the soil compaction machine.
  • a target steering angle can indicate a value for how much the operator should steer until the roller comes to a standstill when reversing in order to arrange the resulting ground wave at an angle to the working direction so that it can be optimally smoothed out in subsequent passes.
  • a target vibration input can, for example, specify a value for how high the maximum vibration input can be at which driving speed of the soil compaction machine.
  • reference values for a target steering angle and/or a target vibration input are stored in a memory that is accessible to the control device. These can be fixed limit values.
  • the reference values can, for example, be punctual, for example in the sense of "from a driving speed X only a maximum of Y vibration input", or continuous, for example in the sense of characteristic maps that specify a wide range of driving speeds and the maximum permissible vibration input in each case.
  • the reference values can also include a calculation rule from which the target steering angle and/or the target vibration input can be determined for a given driving speed and/or acceleration around the reversing. Since the reversing of the soil compaction machine in operation, at least in comparable work situations, always proceeds almost the same, the reference values can alternatively be based on a time interval and/or a distance before and/or after reversing instead of the driving speed.
  • Such reference values could therefore, for example, provide information such as "switch off the vibration exciter at the latest X seconds or Y meters before reversing" or "switch on the vibration exciter at the earliest X seconds or Y meters after reversing".
  • the result can therefore, for example, be information about whether the steering angle and/or vibration input set by the operator corresponds to the reference values or not.
  • the result can also include how much the steering angle and/or vibration input set by the operator deviates from the reference values.
  • the result can include information about how much the steering angle set by the operator is smaller than the target steering angle when reversing the soil compaction machine. Since a steering angle that is too narrow when reversing can also be bad for the evenness of the ground, the target steering angle can also be an interval, which therefore specifies both a lower and an upper limit for the steering angle.
  • the result can also include information about how much the steering angle set by the operator is larger when reversing the soil compaction machine than the upper limit specified by the target steering angle. This is done in particular in addition to the monitoring of the lower limit already described.
  • the result can also include information about how much the vibration input set by the operator around the reversing is greater than the target vibration input.
  • “Around the reversing" here refers to a reference to the interval and/or the distance around the determined time of the reversing and/or the location of the soil compaction machine at that time.
  • the result of the comparison therefore includes information about the extent to which the control carried out by the operator of the soil compaction machine corresponds to an optimal control in terms of optimal evenness of the compacted soil.
  • the method according to the invention also includes outputting and/or storing the result of the comparison or comparisons.
  • the result can be output or displayed on a display device so that it is visible to the operator of the soil compaction machine.
  • an acoustic output is also conceivable.
  • the operator receives immediate feedback as to whether or not his control of the soil compaction machine during the previous reversing was optimal in relation to the resulting evenness of the compacted soil. If necessary, the operator also receives feedback from the result as to the extent to which his control of the soil compaction machine during the previous reversing deviated from optimal control. This information can be used by the operator to carry out future reversing of the soil compaction machine more optimally.
  • the result of the comparison according to the invention therefore only provides the operator with information about the sequence of the last reversing that has already been completed. However, this information can be used positively to improve each subsequent reversing, thereby providing overall assisted operation of the soil compaction machine and improving the evenness of the soil overall after the compaction work has been completed. Since this is a professional working environment, it can be assumed that the operator will implement corresponding instructions wherever possible. In addition or alternatively, the result can also be saved, for example stored in a memory of the control device. The operator can then, for example, view the result after completion of the work and thus receive feedback on the workflow. This can also be used for future work to improve the resulting evenness of the compacted soil.
  • the saved results are read out, for example by an operator of the soil compaction machine, who does not necessarily have to be the operator.
  • This provides the operator with feedback on the quality of the control of the soil compaction machine. In this way, the operator can determine, for example, whether the operator requires additional driver training or not. This can also improve the evenness of the soil in future work.
  • the soil compaction machine has a device for remote data transmission and the result or results of the comparison are automatically transmitted to the operator, for example uploaded to a central server of the operator.
  • the recording of the parameters of driving speed, change in driving speed and/or reversal of driving direction as well as steering angle and/or vibration input or quantities correlating with the parameters mentioned were repeated at discrete, in particular temporal and/or spatial, intervals. As long as the discrete intervals are chosen close enough to determine the time of reversing of the soil compaction machine with sufficient accuracy, the method can be carried out with such data. However, it is preferably provided that the detection of at least one of the parameters driving speed, change in driving speed and/or reversal of driving direction or at least one variable correlating with one of the parameters mentioned and/or the detection of the steering angle and/or the vibration input or a variable correlating therewith is carried out continuously. In this way, the time of reversing can be determined particularly precisely. In addition, the value of the respective parameters can be determined particularly precisely, for example at a time when a certain driving speed is present or when a certain vibration input occurs.
  • the interval and/or the distance can be set in such a way that only the control of the soil compaction machine in the immediate temporal and/or spatial vicinity of the reversing is considered.
  • the size of the interval or the distance can be defined separately for each individual case, for example based on functional criteria.
  • the interval or the distance can be set in such a way that the start is specified by the driving speed of the soil compaction machine falling below a threshold value that signals that operation with a working speed in one direction of travel is terminated.
  • the working speed describes a driving speed at which the soil compaction machine is typically operated in working mode while it travels straight ahead over soil to be compacted. Such typical working speeds depend on the type of soil compaction machine and are known to the person skilled in the art.
  • the end of the interval or the distance can be specified by the driving speed of the soil compaction machine increasing above the threshold value, thus signaling that acceleration is being returned to the working speed.
  • the start and the end can be specified by the same threshold value or by different threshold values.
  • the threshold value can be, for example, 3 km/h or 5 km/h or 7 km/h.
  • the working speed can be fixed and, for example, also correspond to the threshold value or be a fixed value, for example 1 km/h or 2 km/h or 3 km/h, above the threshold value.
  • the interval and/or the distance are set such that the reversing is in the middle of the interval and/or the distance.
  • the interval can be set such that it covers a maximum of 20 seconds, preferably a maximum of 15 seconds or a maximum of 10 seconds and particularly preferably a maximum of 5 seconds before and/or after the reversing.
  • the distance can be set such that it covers a maximum of 50 m, preferably a maximum of 40 m or a maximum of 30 m or a maximum of 20 m or a maximum of 10 m and particularly preferably a maximum of 5 m before and/or after reversing.
  • the time or location of the reversal must of course already have been determined. This means that at least for those parameters and sizes that have to be recorded before the reversal, values recorded in the past must be used at the time when it is determined when the reversal took place. Even if the method then only uses values that lie in the interval or distance under consideration, it is nevertheless preferable that the values are recorded over the entire working operation of the soil compaction machine. However, since not all of this data is required, it can preferably be provided, for example, that the data is only retained or stored until the time of the subsequent reversal has been determined. From this moment on, it is then sufficient to only retain the data that lies within the interval or distance under consideration.
  • Previous data can, however, be deleted.
  • a type of rolling memory can also preferably be used for this, which always contains the most recently recorded data or values of the recorded parameters.
  • the rolling memory can be designed in such a way that it is at least large enough to store the data from that part of the interval and/or the distance before reversing. Data from further back can, however, be overwritten.
  • the reference values used for comparison include a target steering angle that indicates how large the steering angle should be at the determined time of reversing.
  • the target steering angle indicates how much the operator of the soil compaction machine should or should steer before the soil compaction machine comes to a standstill when reversing.
  • the effect on the evenness of the compacted soil does not initially depend on the direction of the steering angle. It is therefore irrelevant whether the steering is to the left or to the right. This can therefore be freely selected depending on the conditions on the construction site. For example, only the amount of the steering angle in deviation from straight ahead driving is considered. Accordingly, the target steering angle also refers to the amount of the steering angle in deviation from straight ahead driving.
  • the target steering angle and/or the steering angle can be defined in particular as the deviation of the rolling direction of the soil compaction machine shortly before it comes to a standstill at the reversal point when reversing from the rolling direction at this reversal point in at least one previous or subsequent pass in which the soil compaction machine does not reverse.
  • position data is collected over the entire work sequence of the soil compaction machine, for example.
  • the rolling direction corresponds in particular to the current travel or working direction of the soil compaction machine. In this way, it is also taken into account, for example, that the soil to be compacted can also lie in a curve. can.
  • the steering angle then takes into account the deviation from the curvature of the curve caused by steering.
  • the steering takes place against the direction of the curve. This can also be monitored according to the invention and included in the evaluation.
  • the target steering angle can also relate to the front and/or rear roller drum and/or to an inclined position of the soil compaction machine. It is, for example, at least 20°, preferably at least 25° or at least 30° or at least 35° or at least 40°, particularly preferably at least 45° or at least 50° or at least 55° or at least 60°.
  • the vibration input into the ground must be reduced or decreased in good time before reversing. In particular, it must be prevented that the soil compaction machine, when traveling particularly slowly, makes a significant vibration input into the ground shortly before coming to a standstill. After reversing, the vibration input may only be increased again when the soil compaction machine has already accelerated to a sufficiently high driving speed. It is therefore preferred that the vibration input is reduced, in particular to zero, before reversing and that the reference values used for comparison include a target vibration input that indicates how large the vibration input should be at most, in particular in relation to the driving speed of the soil compaction machine.
  • the vibration input is increased, in particular starting from zero, after reversing and that the reference values used for comparison include a target vibration input that indicates how large the vibration input should be at most, in particular in relation to the driving speed of the soil compaction machine.
  • the IPF value is preferably used as a measure of the vibration input.
  • the frequency, amplitude, eccentricity and/or the vibration energy provided by the vibration exciter can be used.
  • the target vibration input can indicate the driving speed of the soil compaction machine at which no more vibration input should be made before reversing and/or the driving speed of the soil compaction machine at which vibration input should be made again after reversing.
  • the target vibration input can, for example, include an IPF value as a limit value.
  • a slight deviation from this is still considered optimal. For example, a deviation of a maximum of 20%, preferably a maximum of 15% or a maximum of 10% or a maximum of 5%, from the IPF value stored as a reference value for the target vibration input can still be considered optimal. This can be taken into account when comparing the procedure and also in the evaluation.
  • vibration exciters especially circular exciters, inevitably pass through a resonance frequency when switched on and off, at which increased vibration amplitudes occur for a short time and therefore also a higher vibration input into the ground. This therefore also leads to waves in the ground.
  • the effect occurs particularly when the vibration exciter is switched off, i.e. before the soil compaction machine reverses.
  • optimal control of the soil compaction machine therefore provides that the waves that have arisen are driven over again after reversing with the highest possible compaction power. This means that in the best case the waves should also be driven over with a high vibration input, for example the maximum intended work output of the vibration exciter.
  • the vibration exciter When accelerating the soil compaction machine after reversing, the vibration exciter must therefore be switched on again earlier or closer to the reversal point than it was switched off before reversing. This can also be monitored by the method according to the invention and included in the evaluation explained in more detail below. For this purpose, it can preferably be provided that within the interval and/or the distance, a position of the maximum vibration input is determined before reversing, and that the reference value for the target vibration input indicates the minimum vibration input with which this position should be passed after reversing.
  • the position of the maximum vibration input refers in particular to the position at which the vibration exciter passes through its resonance frequency when the vibration input is reduced.
  • This position can be determined, for example, via the driving speed, the change in driving speed or a location determination, for example via GNSS, as already described above.
  • the target vibration input can specify that this position should be passed after reversing with a nominal vibration input, for example the maximum compaction power of the vibration exciter.
  • the nominal vibration input refers in particular to a vibration input with which the vibration exciter works optimally at the given position of the soil to be compacted. This can be specified, for example, by an automatic system, such as the applicant's "Asphalt Manager".
  • the position of the maximum vibration input is determined separately for each roller drum of the soil compaction machine and considered individually as described above.
  • the soil compaction machine has a front and a rear roller drum that are spaced apart from each other in the longitudinal direction of the machine, it is also important for optimal control of the soil compaction machine that the roller drum that is at the rear in the current direction of travel or working direction rolls over the position of the maximum vibration input of the front roller drum before reversing.
  • the vibration exciter of the front roller drum goes through its resonance frequency and has an increased vibration input, which leads to the formation of waves. These waves should therefore ideally be rolled over by the rear roller drum before reversing, for which it is important that the vibration input is reduced in good time before reversing, for example that the vibration exciter is switched off in good time before reversing.
  • a position of the maximum vibration input of a front roller drum of the soil compaction machine is determined before reversing, and that it is monitored whether a rear roller drum of the soil compaction machine passes this position before reversing. Whether or not this succeeds and, if so, to what extent, can then also be included in the evaluation explained in more detail below.
  • the actual effect of the described control of the soil compaction machine by the operator on the evenness of the compacted soil is also influenced by external circumstances. These are referred to here as operating conditions.
  • operating conditions For example, the consistency of an asphalt layer laid by a road paver depends largely on its temperature. The hotter the asphalt, the easier it is to form undesirable waves, so that a deviation from the reference values results in greater unevenness than with cooler asphalt.
  • the temperature of the asphalt is also influenced by external circumstances, such as the weather. Soil stiffness, which also depends on the properties of the soil beneath the asphalt, also has an influence here. It also makes a difference whether the soil to be compacted has a slope.
  • a slope can, for example, have a positive or negative influence on the effects of braking on an asphalt layer, depending on the direction of travel. It is therefore preferred that when comparing the recorded values with the reference values, at least one external operating state is also taken into account, the operating state including, for example, a soil temperature and/or a soil stiffness and/or weather conditions and/or a transverse and/or longitudinal gradient of the soil.
  • the external operating states can either be recorded by sensors, for which purpose the soil compaction machine is preferably equipped with one or more sensors that can detect the respective operating states. The measurement results of the sensors are transmitted accordingly to the control device, which can then take the external operating conditions into account when making comparisons. In addition or as an alternative, the external operating conditions can also be entered by the operator on the control device.
  • the control device adapts the reference values based on the operating condition or conditions. For example, it may be necessary to use stricter reference values if the ground temperature is particularly high. If, on the other hand, the ground temperature is particularly low, the reference values can be selected to be less strict, since the influence of the driving maneuvers of the soil compaction machine on cool ground or asphalt is less.
  • the reference values can also be adapted qualitatively or quantitatively based on the external operating conditions. For example, the reference values can be increased or decreased by a fixed value if corresponding external operating conditions exist, for example particularly hot asphalt. Alternatively and preferably, it can be provided that the adaptation of the reference values is gradually modified according to the external operating conditions.
  • the reference values can be specified for a specific initial value of the external operating conditions, such as ground temperature, outside temperature, amount of precipitation, slope angle, etc., and adapted to external operating conditions that deviate from these using a calculation rule.
  • the reference values are dynamically and quantitatively adapted to the external operating conditions or the current conditions on the construction site.
  • Outputting the result of the comparison can include a display for the operator of the soil compaction machine.
  • the operator can use this feedback to adapt the control of the soil compaction machine for future reversing in order to achieve optimal results in terms of the evenness of the compacted soil.
  • the operator is shown instructions on how the deviation can be reduced or avoided in the future.
  • the operator is also given information on how he can specifically optimize the control of the soil compaction machine. This also applies to all other aspects of the control of the soil compaction machine that are described here and that can be included in the evaluation.
  • Such instructions can be, for example, "switch off the vibration exciter earlier", “switch on the vibration exciter later” or “steer more strongly when reversing”.
  • Several such instructions can also be displayed simultaneously if several deviations from the reference values were detected during the underlying reversing. These instructions can be displayed, for example, visually, in particular in writing, on the display devices. displayed. In addition or as an alternative, it is also possible to provide the information acoustically, for example via a voice output.
  • the operator of the soil compaction machine is automatically assisted during operation, providing him with insights into the effects of the control of the soil compaction machine on the evenness of the compacted soil, which is usually only available to very experienced operators. Even inexperienced operators can thus achieve increased evenness of the soil. Experienced operators, in turn, can further perfect their specialist knowledge.
  • the operator is shown a note with the instruction if an external operating condition has led to an adjustment of the reference value(s) that increases a deviation of the steering angle and/or the vibration input within the interval and/or the distance from the reference value(s).
  • This therefore always comes into play when external operating conditions exist that increase the effects of the operator's driving behavior on the evenness of the ground.
  • Such notes can therefore be, for example, "steer more when reversing due to the high ground temperature", “steer more when reversing due to the steep gradient” or "switch off the vibration exciter even earlier due to the low ground stiffness". In this way, the operator is given additional specialist knowledge in addition to improving the current work result.
  • the result of the comparison can be output numerically.
  • the numerical deviation of the recorded steering angle and/or vibration input from the reference value(s) could be output.
  • the result of the comparison is automatically evaluated. It is therefore preferable that the result of the comparison is assigned a rating that becomes worse with greater deviation from the reference value(s) or the optimal control of the soil compaction machine, and that this is also output or saved. For example, different levels could be defined that represent a spectrum from no deviation to slight deviation to high deviation.
  • a standard grading system could be used, for example in levels from 1 (very good) to 6 (unsatisfactory).
  • a rating in fewer levels for example in three levels, would also be possible. These could be, for example, "no deviation", "low deviation” and "high deviation”.
  • the respective limit values of the individual stages can either be fixed or adjustable by the operator or operator of the soil compaction machine. For example, it can be taken into account that with different Construction sites may have different requirements for the evenness of the compacted soil.
  • the rating can be displayed in the form of a symbol, for example a pictogram or a smiley with a facial expression corresponding to the rating.
  • the method can also monitor other points that can influence the evenness of the compacted soil.
  • the soil compaction machine must be braked to reverse and then accelerated again. Both the braking and the acceleration of the soil compaction machine should be as gentle as possible, i.e. without jerky or sudden changes in the driving speed. Such jerky changes in the driving speed can also lead to waves in the ground. It is therefore preferably provided that jerky changes in the driving speed are also recorded and included in the evaluation. In particular, jerky changes in the driving speed within the interval and/or within the distance are recorded. Such cases are characterized by a rapid increase in the amount of the driving speed and/or acceleration, i.e. the change in the driving speed, of the soil compaction machine.
  • Threshold values can also be provided for this, which serve to detect jerky changes in the driving speed. If such jerky changes are recorded, this can be included in the evaluation and in particular also taken into account in the instructions for action. For example, a message will be displayed telling you to brake or accelerate more gently.
  • assisted operating support and an associated improvement in the evenness of the compacted soil can be achieved if the method according to the invention is only applied to a single reversal of the soil compaction machine. The operator can then use the resulting feedback to optimize future reversals if necessary. However, it is preferred that the method is carried out for several, in particular all, reversing processes within a work interval. In this way, the operator is continuously assisted and an optimal work result is achieved.
  • a work interval describes, for example, an operator's working day or an operator's working time on a specific construction site. In principle, however, smaller work intervals could also be considered, for example one or more hours of a work day or work assignment.
  • an overall rating is created from the individual ratings of all reversing processes in the work interval, which is also output or saved.
  • the overall rating can, for example, follow the same pattern as the rating of an individual reversal.
  • a school grading system can also be used here. or similar.
  • the overall rating is, for example, the average of all ratings for the work interval.
  • the overall rating can be used by the operator to find out whether the control of the soil compaction machine he carried out was appropriate for the current construction site and/or whether his control of the soil compaction machine has improved or worsened. At the same time, an operator of the soil compaction machine can determine whether and which operators need additional training.
  • the method described above therefore preferably determines one or more of the parameters mentioned, identifies a reversing process from them, for example by determining a reversal of the direction of travel, then compares the actual reversing process with an optimal reversing process with regard to one or more of the parameters mentioned, for example by comparing it with one or more characteristic maps, formulas, etc., and uses this comparison to evaluate how close the actual reversing process comes to the theoretically optimal reversing process in the manner described above.
  • This evaluation result can then be displayed to the driver, for example, who in this way receives an indication while driving on how he can further optimize his driving style in this operating situation.
  • a soil compaction machine in particular a tandem roller or roller train, with at least one roller drum and a control device, whereby the soil compaction machine is designed to carry out the method.
  • the control device is designed to carry out the method, of course with the exception of the method step of controlling the soil compaction machine by the operator.
  • the soil compaction machine can be equipped like the generic soil compaction machine described at the beginning. All features, effects and advantages described for the method according to the invention also apply in a figurative sense to the soil compaction machine according to the invention and vice versa. Reference is made to the other embodiments only to avoid repetition.
  • Figure 1 a tandem roller and Figure 2 a roller train.
  • the soil compaction machines 1 preferably have a machine frame 3 and a driver's cab 2.
  • the tandem roller according to Figure 1 preferably has a front and a rear roller drum 5, while the roller train according to Figure 2 preferably has a front roller drum 5 and preferably wheels 7 on the rear frame.
  • the soil compaction machines 1 preferably travel in or against the working direction R over the soil 8, for example an asphalt layer laid by a road finisher, and compact it.
  • they preferably have a drive motor 4, which can be, for example, an internal combustion engine or an electric motor.
  • the roller drums 5 can each be equipped with a vibration exciter 10, which causes the respective roller drum 5 to vibrate in order to influence the compaction performance.
  • the soil compaction machines 1 also preferably comprise a control device 6, which in particular carries out the essential steps of the method.
  • the control device 6 can also be connected to a display device 9, for example a display.
  • input devices such as buttons, levers, etc. can be present, via which the driver of the soil compaction machine can carry out control commands, for example with regard to the driving speed, steering specifications, settings for an excitation device, etc.
  • control device 6 can be connected to a sensor 11 or to several sensors 11 of one or more detection devices which is or are preferably designed to detect the driving speed and/or the change in driving speed and/or the reversal of the direction of travel and/or the steering angle and/or the vibration input or quantities correlated therewith.
  • the soil compaction machine 1 can also have a data transmission device 12 which can be designed, for example, to transmit data via the Internet or via another wireless data connection.
  • FIG 3 a reversing of the soil compaction machine 1 is shown.
  • representations a) to e) show the same soil compaction machine 1 on the same construction site section in a bird's eye view, but in chronologically successive snapshots.
  • the soil compaction machine 1 travels at a travel speed v in the working direction R, whereby the travel speed v in representation a) corresponds to a working speed of the soil compaction machine 1 at which it usually compacts the soil 8.
  • representation b) the soil compaction machine 1 has already been partially braked, so that the travel speed v is lower than that of representation a).
  • representation c) the soil compaction machine 1 has come to a standstill.
  • the time shown in representation c) is therefore the time of reversing or the turning point of the soil compaction machine 1 when the machine starts moving again in the opposite direction, as shown in d).
  • the soil compaction machine 1 has already been accelerated in the opposite direction of travel, i.e. against the working direction R, and is traveling at a travel speed v which, however, is still below the working speed or the working speed to be achieved by the soil compaction machine 1.
  • the soil compaction machine 1 has been accelerated again to a travel speed v which corresponds to the working speed.
  • the distance L to which the method can refer can run through the distance from the turning point of the soil compaction machine 1 to the location at which the soil compaction machine 1 has again reached a travel speed v which corresponds to the predetermined working speed.
  • the distance L can also be specified by a distance, for example 30 m.
  • the soil compaction machine 1 or its roller drums 5 leave a soil wave 13 at the location of reversing or at the turning point of the soil compaction machine 1.
  • these bumps 13 are aligned perpendicular to the working direction R, since no steering was used when reversing.
  • Such bumps 13 are only poorly smoothed out during subsequent passes of the soil compaction machine 1. There is therefore an increased risk that the bumps 13 will still affect the evenness of the ground at the end of the work. 8 negatively influence.
  • Figure 4 shows the same process as Figure 3 The only difference is that the operator of soil compaction machine 1 in Figure 4 when reversing, as shown in particular in illustration c).
  • the resulting bumps 13 are no longer aligned perpendicular to the working direction R with regard to the longitudinal course of their trough, but obliquely to the working direction R.
  • Such bumps 13 are smoothed out significantly more efficiently during subsequent passes of the soil compaction machine 1 than the bumps 13 according to Figure 3 , as they are driven over at an oblique angle.
  • the procedure according to Figure 4 a much more level compacted soil 8.
  • the Figures 5 and 6 show the process of reversing the soil compaction machine 1, analogous to the Figures 3 and 4 .
  • the effects 14 can be understood as impacts in the sense of an IPF value.
  • an effect 14 indicates a location where the vibration of the rolling band 5 presses it onto the ground 8.
  • vibration energy is transferred to the ground 8 at the locations of the effects 14.
  • the distance between the effects 14 is a measure of the vibration input, whereby effects 14 shown closer to each other mean a higher vibration input.
  • the Figures 5 and 6 merely schematic diagrams intended to make the underlying processes understandable, but do not represent them in a realistic manner.
  • illustrations a) to c) show the case where the vibration input into the ground 8 is reduced too late before the soil compaction machine 1 is reversed, for example to zero.
  • the reduction in the vibration input is achieved, for example, by switching off the vibration exciter 10 or the vibration of the roller drum 5.
  • the reduction in the vibration input only takes place at a time when the soil compaction machine 1 has already been braked to a travel speed v that is so low that too many influences 14 or too great a vibration input occur over a short distance. This is shown by the influences 14 arranged closely together in illustration c).
  • the vibration input into the soil 8 is increased again too soon after the soil compaction machine 1 has been reversed, for example starting from zero.
  • the vibration exciter 10 or the vibration of the roller drum 5 is switched on.
  • the vibration input is increased at a time when the soil compaction machine 1 has only accelerated to a driving speed v that is too low, so that the influences 14 are too close together, at least over a section of the route, or the vibration input is too great, which in turn can cause bumps in the ground.
  • FIG. 6 Also in Figure 6 the process of reversing the soil compaction machine 1 is shown.
  • the soil compaction machine 1 brakes to reverse, whereby here in particular the vibration input is reduced in good time before the machine comes to a standstill.
  • the vibration exciter 10 is switched off sufficiently early so that the reduction in the driving speed v of the soil compaction machine 1 is compensated by a reduction in the vibration input, for example by a reduction in the frequency of the vibration exciter 10.
  • the vibration input therefore decreases essentially to the same extent as the driving speed v and there are no sections on which the vibration input is too great, i.e. on which too much compaction takes place. This is shown by the even spacing of the influences 14.
  • Figure 7 shows the temporal relationship between the driving speed v, the change in driving speed a as well as the steering angle w and the vibration input S of the soil compaction machine 1.
  • diagrams are shown one above the other for these respective values, the abscissa of which indicates the time t that is spread over all diagrams of the Figure 7
  • the corresponding values of the parameters mentioned are then plotted on the ordinate of the respective diagrams.
  • the top diagram of the Figure 7 shows, for example, the driving speed v of the soil compaction machine 1. From left to right it is shown that the soil compaction machine 1 is accelerated from a standstill until it has reached a constant driving speed v, for example the working speed. After the soil compaction machine 1 has covered a distance at this driving speed v, it is braked again to a standstill. It is then accelerated again in the same direction as before until it has again reached a constant driving speed v.
  • This process therefore involves braking and subsequent acceleration of the soil compaction machine 1, whereby the direction of travel has not changed. Although this process can also influence the evenness of the ground 8 after work, it does not involve reversing the soil compaction machine 1, which is what is particularly important here.
  • interval T The time period around the reversal is referred to as interval T.
  • This can, for example, have a fixed amount or, alternatively, can be determined, for example, by when the soil compaction machine 1 was braked from the working speed before reversing and accelerated back to the working speed after reversing.
  • the soil compaction machine 1 travels at an essentially constant travel speed v, for example the working speed, and is then reversed again.
  • the soil compaction machine 1 is thus braked again to a standstill and then accelerated in the opposite direction.
  • This reversal also takes place within a time interval T.
  • This second interval T can in principle be just as long as the first interval T.
  • the intervals T are of different sizes, for example in particular when they are functionally determined, for example based on a value of the travel speed v.
  • the diagram of the travel speed v also shows how a reversal of the soil compaction machine 1 can be concluded based on the travel speed v or a reversal of the direction of travel. This results in particular from a reversal of the sign of the driving speed v.
  • FIG. 7 a diagram of the acceleration or the change in driving speed a of the soil compaction machine 1.
  • the change in driving speed a can also be used to identify a reversal of the soil compaction machine 1.
  • such a double, identically directed change in driving speed a does not occur when driving straight ahead in one direction without interruption.
  • FIG. 7 a diagram of the steering angle w is shown. Since the direction of the steering when reversing is not important, at least with regard to the evenness of the ground 8 after work, only the amount of the steering angle w is shown. In addition, the diagram only shows steering angles w that correspond to a steering during reversing within the intervals T. Other steering angles w that occur while the soil compaction machine 1 is traveling are not shown. In particular, the diagram shows that the steering angle w in the first interval T shown on the left remains below a threshold value shown by the dashed line parallel to the abscissa.
  • the diagram shows that the steering angle w in the second interval T shown on the right is above the threshold value shown by the dashed line parallel to the abscissa.
  • the operator has therefore turned sufficiently far when reversing the soil compaction machine 1, which means that the bumps 13 created at the reversal point are aligned at an angle to the working direction R in such a way that they can be optimally smoothed out during subsequent passes of the soil compaction machine 1.
  • the overall evenness of the compacted soil 8 left behind by the soil compaction machine 1 is positively influenced.
  • the situation of reversing in the second interval T shown on the right therefore corresponds to that according to Figure 4 .
  • the lowest in Figure 7 The diagram shown relates to the vibration input S.
  • the vibration input S is only increased during operation of the soil compaction machine 1, or the vibration exciter 10 is only operated with energy transfer to the soil 8, when the soil compaction machine 1 is traveling at a sufficient speed v.
  • This is also shown, for example, on the left in the diagram when the soil compaction machine 1 is paused in its forward travel.
  • the reversing of the soil compaction machine 1 has a special significance, if only because it occurs particularly frequently during operation of the soil compaction machine 1.
  • the vibration input S is reduced before the machine comes to a standstill, in particular to zero. After the direction of travel is reversed, the vibration input S is then typically increased again. However, it can also happen that a vibration input S is used or is present only before or only after reversing. Even then, the method can be applied to reduce the vibration input S before reversing or to increase the vibration input S after reversing.
  • the diagram in the first interval T shown on the left shows that the vibration input S is reduced early before reversing so that the driving speed v is sufficiently high as long as a vibration input S is still present.
  • the vibration input S is only increased again when the soil compaction machine 1 has reached a sufficient driving speed v. This means that there are no sections of the route in which excessive compaction of the soil 8 takes place or in which excessive vibration input S is present.
  • the control of the soil compaction machine 1 in this interval T is therefore optimal with regard to the evenness of the soil 8 left behind. The situation therefore corresponds to that of the Figure 6 .
  • the diagram in the second interval T shown on the right shows that the vibration input S is reduced too late before the machine comes to a standstill when reversing.
  • the vibration input S is still at a maximum even when the driving speed v of the soil compaction machine 1 has already decreased to such an extent that the soil 8 driven over by the soil compaction machine 1 is compacted too much.
  • the Figures 8, 9 and 10 show by way of example how a display of the result of the comparison could look during the output on the display device 9.
  • the display device 9 can be, for example, a screen or a display which is connected to the control device 6.
  • the result of the comparison can be output, for example, via a rating symbol 15 which symbolizes the rating determined by the comparison.
  • the rating symbol 15 is a smiley which, depending on the result of the comparison or the quality of the rating, for example indicates compliance with the reference values ( Figure 8 ), a slight deviation from the reference values ( Figure 9 ) or a significant deviation from the reference values ( Figure 10 ).
  • an operator can immediately see at a glance whether the control of the soil compaction machine 1 complied with the specifications during the previous reversing or not. If necessary, he can adapt the control of the soil compaction machine 1 for future reversing.
  • an instruction 16 for example in written form, can be output on the display device 9 in addition to the evaluation symbol 15. Alternatively, the instruction 16 could also be output acoustically.
  • the instruction 16 preferably includes concrete information about which reference values were not adhered to during the last reversing and/or how the deviation from the reference values can be avoided or at least reduced during future reversing.
  • Figure 11 finally shows a flow chart of the method 20.
  • This begins with the control 21 of the soil compaction machine 1 by an operator.
  • the operator operates the soil compaction machine 1 on a construction site to compact a soil 8.
  • several passes of the soil compaction machine 1 are required to compact the soil 8.
  • the method 20 provides for the detection 22 of at least one of the parameters travel speed v, change in travel speed a and/or reversal of travel direction or at least one variable correlating with one of the parameters mentioned.
  • a point in time at which the soil compaction machine 1 is reversed is determined 27 from the at least one recorded parameter or the at least one recorded size. This preferably also records the location of the soil compaction machine 1 at this point in time when a position or path detection takes place. By determining when the soil compaction machine 1 is reversed takes place, the control of the soil compaction machine 1 by the operator around the reversing can be checked.
  • a steering angle w of the soil compaction machine 1 and/or a vibration input S of a vibration exciter 10 in the soil 8 or a variable correlating with the steering angle w or with the vibration input S is recorded within a time interval T and/or a distance L around the determined time of reversing and/or around a location of the soil compaction machine 1 at this time.
  • the steering angle w at the time of reversing and for the vibration input S around the reversing which are intended to ensure optimal evenness of the soil 8 after the work process.
  • Whether the recommendations are adhered to can be determined by comparing 24 the recorded steering angle w and/or vibration input S within the interval T and/or the distance L with predetermined reference values for a target steering angle and/or a target vibration input. In particular, it can be seen directly from this whether or not the operator is complying with the recommendations when controlling the soil compaction machine 1. In addition, it can also be determined quantitatively to what extent the recommendations are not being complied with. In order to obtain assisted operating support or assistance for the operator, the result of the comparison 24 is output 25 and/or saved 26. The operator and possibly also an operator of the soil compaction machine 1 therefore receive overall feedback on the extent to which the control of the soil compaction machine 1 during reversing corresponds to the recommendations for optimal evenness of the compacted soil 8.
  • the operator can therefore adapt the way in which he controls the soil compaction machine 1 in the future and improve his work results.
  • the operator in turn, can determine to what extent an operator needs training or instruction. All in all, the method 20 according to the invention therefore enables an improvement in the evenness of the compacted soil 8 without having to detect this evenness using sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Road Paving Machines (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Verfahren (20) zur assistierten Bedienunterstützung einer Bodenverdichtungsmaschine (1), umfassend die Schritte: Steuern (21) der Bodenverdichtungsmaschine (1) durch einen Bediener; Erfassen (22) wenigstens eines der Parameter Fahrgeschwindigkeit (v), Fahrgeschwindigkeitsänderung (a) und/oder Fahrrichtungsumkehr oder wenigstens einer mit einem der genannten Parameter korrelierenden Größe; Ermitteln (27) eines Zeitpunkts, an dem ein Reversieren der Bodenverdichtungsmaschine (1) stattfindet, aus dem wenigstens einen in Schritt b) erfassten Parameter oder der wenigstens einen in Schritt b) erfassten Größe; Erfassen (23) eines Lenkwinkels (w) der Bodenverdichtungsmaschine (1) und/oder eines Schwingungseintrags (S) eines Schwingungserregers (10) in den Boden (8) oder einer mit dem Lenkwinkel (w) oder mit dem Schwingungseintrag (S) korrelierenden Größe innerhalb eines zeitlichen Intervalls (T) und/oder einer Wegstrecke (L) um den in Schritt c) ermittelten Zeitpunkt und/oder um einen Ort der Bodenverdichtungsmaschine (1) zu diesem Zeitpunkt; Vergleichen (24) des in Schritt d) erfassten Lenkwinkels (w) und/oder Schwingungseintrags (S) innerhalb des Intervalls (T) und/oder der Wegstrecke (L) mit vorgegebenen Referenzwerten für einen Soll-Lenkwinkel und/oder einen Soll-Schwingungseintrag; Ausgeben (25) und/oder Abspeichern (26) eines Ergebnisses des Vergleichs (24).Method (20) for assisted operation of a soil compaction machine (1), comprising the steps: controlling (21) the soil compaction machine (1) by an operator; detecting (22) at least one of the parameters travel speed (v), change in travel speed (a) and/or reversal of travel direction or at least one variable correlating with one of the said parameters; determining (27) a point in time at which a reversal of the soil compaction machine (1) takes place from the at least one parameter detected in step b) or the at least one variable detected in step b); Detecting (23) a steering angle (w) of the soil compaction machine (1) and/or a vibration input (S) of a vibration exciter (10) into the soil (8) or a variable correlating with the steering angle (w) or with the vibration input (S) within a time interval (T) and/or a distance (L) around the point in time determined in step c) and/or around a location of the soil compaction machine (1) at this point in time; comparing (24) the steering angle (w) and/or vibration input (S) detected in step d) within the interval (T) and/or the distance (L) with predetermined reference values for a target steering angle and/or a target vibration input; outputting (25) and/or storing (26) a result of the comparison (24).

Description

Die Erfindung betrifft ein Verfahren zur assistierten Bedienunterstützung einer Bodenverdichtungsmaschine. Darüber hinaus betrifft die Erfindung eine Bodenverdichtungsmaschine, insbesondere eine Tandemwalze oder einen Walzenzug, mit wenigstens einer Walzbandage und einer Steuereinrichtung.The invention relates to a method for assisted operation of a soil compaction machine. Furthermore, the invention relates to a soil compaction machine, in particular a tandem roller or a roller train, with at least one roller drum and a control device.

Gattungsgemäße Bodenverdichtungsmaschinen sind beispielsweise aus der DE 10 2018 007 825 A1 der Anmelderin bekannt. Sie werden typischerweise im Straßen- und Wegebau sowie beim Bau von Start-, Landebahnen und Plätzen eingesetzt. Es handelt sich dabei üblicherweise um selbstfahrende Maschinen, die insbesondere einen von einem Fahrwerk getragenen Maschinenrahmen aufweisen. Das Fahrwerk umfasst typischerweise wenigstens eine Walzbandage und gegebenenfalls Räder. Das Fahrwerk kann beispielsweise auch zwei Walzbandagen aufweisen, die insbesondere in Arbeitsrichtung der Bodenverdichtungsmaschine voneinander getrennt und hintereinander angeordnet sind, so dass bei einer Vorwärtsfahrt der Bodenverdichtungsmaschine eine bestimmte Position auf dem Bodenuntergrund sukzessive von beiden hintereinander angeordneten Walzbandagen überfahren wird. Die Arbeitsrichtung der Bodenverdichtungsmaschine entspricht dabei einer Maschinenlängsachse beziehungsweise einer vorne/hinten-Richtung der Bodenverdichtungsmaschine. Die aktuelle Arbeitsrichtung kann eine Vorwärts- oder eine entgegengesetzte Rückwärtsrichtung sein, wobei üblicherweise ein reversierender Arbeitsbetrieb vorliegt. Bei den Walzbandagen handelt es sich typischerweise um metallische Hohlzylinder, beispielsweise aus Stahl, die insbesondere eine glatte Außenmantelfläche aufweisen können. Im Arbeitsbetrieb der Bodenverdichtungsmaschinen werden diese mit der wenigstens einen beziehungsweise den zwei Walzbandagen über einen zu verdichtenden Boden, beispielsweise eine von einem Straßenfertiger verlegte Asphaltschicht, bewegt. Die für den Betrieb der Bodenverdichtungsmaschine erforderliche Antriebsenergie wird typischerweise von einem Antriebsmotor zur Verfügung gestellt, beispielsweise ein Verbrennungsmotor, üblicherweise ein Dieselmotor, oder ein Elektromotor. Um die Verdichtung des Bodens durch die Walzbandagen über das Eigengewicht der Maschine hinaus zu erhöhen, ist es ferner bekannt, dass ein Schwingungserreger in oder an der Walzbandage vorgesehen ist, über den die Walzbandage in Schwingungen versetzt werden kann. Je nach der Art der Schwingungen, deren Frequenz und deren Amplitude, kann eine gewünschte Anpassung der Verdichtung der Walzbandage eingestellt werden.Generic soil compaction machines are, for example, from the EN 10 2018 007 825 A1 known to the applicant. They are typically used in road and path construction and in the construction of runways and airfields. These are usually self-propelled machines, which in particular have a machine frame supported by a chassis. The chassis typically comprises at least one roller drum and optionally wheels. The chassis can also have, for example, two roller drums, which are separated from one another and arranged one behind the other, in particular in the working direction of the soil compaction machine, so that when the soil compaction machine moves forward, a certain position on the ground is successively driven over by both roller drums arranged one behind the other. The working direction of the soil compaction machine corresponds to a longitudinal machine axis or a front/back direction of the soil compaction machine. The current working direction can be a forward or an opposite backward direction, with a reversing working mode usually being present. The roller drums are typically metallic hollow cylinders, for example made of steel, which can in particular have a smooth outer surface. When soil compaction machines are in operation, they are moved with at least one or two roller drums over a soil to be compacted, for example an asphalt layer laid by a road finisher. The drive energy required to operate the soil compaction machine is typically provided by a drive motor, for example an internal combustion engine, usually a diesel engine, or an electric motor. In order to increase the compaction of the soil by the roller drums beyond the machine's own weight, It is also known that a vibration exciter is provided in or on the rolling band, via which the rolling band can be set into vibration. Depending on the type of vibration, its frequency and its amplitude, a desired adjustment of the compaction of the rolling band can be set.

Derartige Bodenverdichtungsmaschinen weisen üblicherweise einen Fahrerstand für einen Bediener auf, von dem aus die Bodenverdichtungsmaschine vom Bediener gesteuert wird. Der Bediener steuert dabei insbesondere die Fahrt der Bodenverdichtungsmaschine über den zu verdichtenden Boden. Hierbei wird beispielsweise sowohl die Fahrtrichtung als auch die Fahrgeschwindigkeit vom Bediener vorgegeben. Gleichzeitig wird vom Bediener typischerweise der Betrieb des oder der Schwingungserreger in der oder den Walzbandagen gesteuert. Diese können an- und abgeschaltet werden und teilweise hinsichtlich ihrer Frequenz und/oder Amplitude variiert werden. Gattungsgemäße Bodenverdichtungsmaschinen weisen typischerweise eine Steuereinrichtung auf, die beispielsweise ein Bordcomputer oder Teil eines Bordcomputers sein kann. Die Steuereinrichtung ist typischerweise mit wenigstens einem Sensor ausgestattet, der wenigstens einen Parameter des Betriebs der Bodenverdichtungsmaschine erfasst. Ein solcher Parameter kann die Fahrtrichtung, die Fahrgeschwindigkeit, der Lenkwinkel, der Betriebszustand eines oder mehrerer Schwingungserreger, ein Beschleunigungswert, ein mit der Bodensteifigkeit assoziierter Wert, ein Fahrweg etc. sein. Darüber hinaus weisen gattungsgemäße Bodenverdichtungsmaschinen typischerweise eine mit der Steuereinrichtung verbundene Anzeigeeinrichtung, beispielsweise einen Bildschirm oder ein Display, auf. Auf diesem Display können beispielsweise die Messwerte des Sensors angezeigt werden. Darüber hinaus kann die Steuereinrichtung dazu ausgebildet sein, Steuerbefehle des Bedieners aufzunehmen - beispielsweise auch über die Anzeigeeinrichtung, die einen Touchscreen umfassen kann, ergänzende und/oder separate Eingabeeinrichtungen etc. - und anhand dieser Steuerbefehle die Bodenverdichtungsmaschine zu steuern.Such soil compaction machines usually have a driver's cab for an operator, from which the soil compaction machine is controlled by the operator. The operator controls in particular the travel of the soil compaction machine over the soil to be compacted. For example, both the direction of travel and the travel speed are specified by the operator. At the same time, the operator typically controls the operation of the vibration exciter(s) in the roller drum(s). These can be switched on and off and sometimes varied in terms of their frequency and/or amplitude. Soil compaction machines of this type typically have a control device, which can be an on-board computer or part of an on-board computer, for example. The control device is typically equipped with at least one sensor that records at least one parameter of the operation of the soil compaction machine. Such a parameter can be the direction of travel, the travel speed, the steering angle, the operating state of one or more vibration exciters, an acceleration value, a value associated with the soil stiffness, a travel path, etc. In addition, soil compaction machines of this type typically have a display device connected to the control device, for example a screen or a display. The measured values of the sensor can be shown on this display, for example. In addition, the control device can be designed to receive control commands from the operator - for example via the display device, which can include a touchscreen, additional and/or separate input devices, etc. - and to control the soil compaction machine using these control commands.

Die Bodenverdichtungsmaschinen werden typischerweise mehrfach über einen zu verdichtenden Bereich geführt. Hierzu ist üblicherweise ein mehrfaches Reversieren der Bodenverdichtungsmaschine notwendig. Mit anderen Worten wird die Fahrtrichtung mehrfach umgekehrt, sodass die Bodenverdichtungsmaschine auf dem zu verdichtenden Boden hin und her fährt. Ein und dieselbe Bodenstelle kann somit mehrfach von der Bodenverdichtungsmaschine überfahren werden. Das Arbeitsziel der Bodenverdichtungsmaschinen ist es dabei regelmäßig, eine möglichst glatte und gleichzeitig homogen verdichtete Oberfläche des Bodens herzustellen und zu hinterlassen. Beispielsweise ist die Ebenheit einer Fahrbahn ein wesentliches, vergütungsrelevantes Kriterium, welches daher von großem praktischem und wirtschaftlichem Interesse ist.Soil compaction machines are typically driven over an area to be compacted several times. This usually requires the soil compaction machine to be reversed several times. In other words, the direction of travel is reversed several times so that the soil compaction machine moves back and forth over the soil to be compacted. The soil compaction machine can therefore drive over the same spot several times. The aim of soil compaction machines is usually to create and leave behind a soil surface that is as smooth and homogeneously compacted as possible. For example, the evenness of a road is an important criterion relevant to remuneration, which is therefore of great practical and economic interest.

Es ist allerdings unvermeidlich, dass die Walzbandagen der Bodenverdichtungsmaschine bei noch vom Maschineneigengewicht verformbaren Bodenuntergrund, beispielsweise dann, wenn die Asphalttemperatur noch vergleichsweise hoch ist, beim Reversieren, also bei einer Fahrtrichtungsumkehr, eine Bodenwelle in der zu verdichtenden Oberfläche hinterlassen. Diese Bodenwelle muss dann typischerweise bei nachfolgenden Überfahrten möglichst gut glatt gedrückt werden, um einen Fahrbahnbelag in gewünschter Güte zu erhalten. Um dies zu vereinfachen, sind die Bediener der Bodenverdichtungsmaschinen typischerweise angehalten, kurz vor dem Stillstand der Bodenverdichtungsmaschine beim Reversieren einzulenken, sodass die Walzbandagen und damit auch die von diesen hinterlassene Welle beim Reversieren schräg zur Arbeitsrichtung ausgerichtet ist. Derartige schräge Wellen können bei nachfolgenden Überfahrten deutlich einfacher und schneller glattgedrückt werden als Wellen, die senkrecht zur Arbeitsrichtung verlaufen.However, it is unavoidable that the roller drums of the soil compaction machine will leave a bump in the surface to be compacted when reversing, i.e. when changing direction, if the ground is still deformable under the machine's own weight, for example when the asphalt temperature is still relatively high. This bump then typically has to be smoothed out as well as possible on subsequent passes in order to obtain a road surface of the desired quality. To make this easier, the operators of the soil compaction machines are typically instructed to turn shortly before the soil compaction machine comes to a standstill when reversing, so that the roller drums and thus also the bump left by them are aligned at an angle to the working direction when reversing. Such diagonal bumps can be smoothed out much more easily and quickly on subsequent passes than bumps that run perpendicular to the working direction.

Darüber hinaus muss der Bediener der Bodenverdichtungsmaschine typischerweise darauf achten, den Betrieb des oder der Schwingungserreger so zu steuern, dass nicht an einem Punkt oder über eine zu kurze Strecke zu viel Vibrationsenergie bzw. zu viele Impulse pro definierter Wegstrecke in den Boden, beispielsweise die Asphaltschicht, eingebracht werden. Auch dies kann das Entstehen von unerwünschten Bodenwellen fördern. Es muss daher rechtzeitig vor oder während des Abbremsens der Bodenverdichtungsmaschine vor dem Reversieren der Schwingungseintrag in den Boden reduziert werden, beispielsweise indem der Schwingungserreger rechtzeitig abgeschaltet wird, während die Bodenverdichtungsmaschine noch ausreichend schnell fährt.In addition, the operator of the soil compaction machine must typically ensure that the operation of the vibration exciter(s) is controlled in such a way that too much vibration energy or too many impulses per defined distance are not introduced into the soil, for example the asphalt layer, at one point or over too short a distance. This can also promote the formation of undesirable ground waves. The vibration input into the soil must therefore be reduced in good time before or during the braking of the soil compaction machine before reversing, for example by switching off the vibration exciter in good time while the soil compaction machine is still traveling sufficiently fast.

Insgesamt kann daher der Bediener durch die Art und Weise, in der er die Bodenverdichtungsmaschine steuert, aktiven Einfluss auf die Welligkeit beziehungsweise die Ebenheit des von der Maschine hinterlassenen, verdichteten Bodens und damit auf die Qualität des Arbeitsergebnisses nehmen. Um qualitativ hochwertige Arbeitsergebnisse zu erzielen, ist allerdings ein erhebliches Maß an Erfahrung und Können des Bedieners notwendig. Es kommt daher oft zu Situationen, in denen Bediener mit ausreichendem Training nicht zur Verfügung stehen, sodass mangels Fachwissen die Bodenverdichtungsmaschine nicht so eingesetzt wird, dass eine optimale Ebenheit des verdichteten Bodens, beispielsweise der Fahrbahn, erzielt wird. Darüber hinaus kann der Bediener die erzielte Ebenheit im Regelfall während des Arbeitsbetriebes nicht erkennen. Eine Messung der Ebenheit des Bodens während des Arbeitsvorganges ist technisch aufwendig und wird daher typischerweise nicht vorgenommen. Es besteht daher keine Möglichkeit, dass der Bediener seine Fahrweise anhand des aktuell beziehungsweise zuletzt erzielten Ergebnisses im Idealfall im laufenden Betrieb anpasst.Overall, the operator can therefore actively influence the waviness or evenness of the compacted soil left behind by the machine and thus the quality of the work result through the way in which he controls the soil compaction machine. However, in order to achieve high-quality work results, a considerable amount of experience and skill is required on the part of the operator. Situations often arise in which operators with sufficient training are not available, so that due to a lack of specialist knowledge, the soil compaction machine is not used in such a way that the compacted soil, for example the roadway, is optimally even. In addition, the operator is usually unable to recognize the levelness achieved during operation. Measuring the evenness of the soil during operation is technically complex and is therefore typically not carried out. There is therefore no possibility for the operator to adapt his driving style based on the current or last achieved result, ideally during operation.

Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren beziehungsweise eine Bodenverdichtungsmaschine anzugeben, mit dem beziehungsweise mit der die Ebenheit des verdichteten Bodens verbessert werden kann. Insbesondere Fahrfehler, die um das Reversieren der Bodenverdichtungsmaschine herum auftreten können, sollen reduziert werden. Bevorzugt soll während und/oder nach dem Verdichtungsbetrieb eine Rückmeldung über das Arbeitsergebnis bereitgestellt werden, ohne dass hierzu eine Messung der Ebenheit des Bodens notwendig ist. Die Rückmeldung über den zurückliegenden Arbeitsablauf soll es ermöglichen, zukünftige Arbeitsvorgänge im Hinblick auf optimale Ebenheit des verdichteten Bodens zu verbessern.Against this background, the object of the present invention is to provide a method or a soil compaction machine with which which the evenness of the compacted soil can be improved. In particular, driving errors that can occur around the reversing of the soil compaction machine should be reduced. Preferably, feedback on the work result should be provided during and/or after compaction operation without the need to measure the evenness of the soil. The feedback on the previous work process should make it possible to improve future work processes with regard to the optimal evenness of the compacted soil.

Die Lösung der Aufgabe gelingt mit einem Verfahren und einer Bodenverdichtungsmaschine gemäß den unabhängigen Ansprüchen. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.The problem is solved with a method and a soil compaction machine according to the independent claims. Preferred developments are specified in the dependent claims.

Konkret gelingt die Lösung mit einem Verfahren zur assistierten Bedienunterstützung einer Bodenverdichtungsmaschine. Mit anderen Worten handelt es sich um ein Verfahren zur Kontrolle des Verdichtungsprozesses während des Verdichtungsbetriebes der Bodenverdichtungsmaschine beziehungsweise um ein Verfahren zur Überwachung der Bedienung der Bodenverdichtungsmaschine im Verdichtungsbetrieb durch den Bediener. Dem Verfahren zu Grunde liegt das Steuern der Bodenverdichtungsmaschine durch einen Bediener. Dies erfolgt in an sich bekannter Weise durch die Eingabe entsprechende Steuerbefehle, beispielsweise hinsichtlich Fahrrichtung, Fahrgeschwindigkeit, Aktivierung und/oder Einstellung eines oder mehrerer Schwingungserreger etc. Es erfolgt daher ein konventioneller Arbeitsbetrieb einer gattungsgemäßen Bodenverdichtungsmaschine, bei dem diese vom Bediener über den zu verdichtenden Boden geführt wird. Der zu verdichtende Boden ist hierbei insbesondere eine von einem Straßenfertiger verlegte, noch heiße bzw. für eine Oberflächenverformung durch die Bodenverdichtungsmaschine noch hinreichend warme Asphaltschicht, aus der nach der Verdichtung beispielsweise eine Fahrbahn oder ähnliches entsteht. Das Steuern der Bodenverdichtungsmaschine umfasst daher insbesondere das mehrfache Überfahren des zu verdichtenden Bodens beziehungsweise ein mehrfaches Reversieren der Bodenverdichtungsmaschine. Die Bodenverdichtungsmaschine wird hierbei bevorzugt immer wieder abgebremst, insbesondere bis zum Stillstand, und dann in einer der ursprünglichen Fahrtrichtung entgegengesetzten Fahrtrichtung erneut beschleunigt. Bevorzugt wird hierbei zumindest teilweise wenigstens eine Walzbandage der Bodenverdichtungsmaschine von einem Schwingungserreger in Schwingungen versetzt, um eine dynamisch Bodenverdichtung zu erreichen. Hierbei kann es sich beispielsweise um Vibrations- oder Oszillationsschwingungen oder eine beliebige Überlagerung dieser handeln. Unter einem Steuern der Bodenverdichtungsmaschine durch einen Bediener wird vorliegend insbesondere auch ein teilautonomer Betrieb verstanden. So könnte beispielsweise eine Reversierautomatik zum Einsatz kommen, bei der ein Bediener durch eine Steuereingabe, beispielsweise einen Tastendruck, einen Reversiervorgang auslöst, wobei das Abbremsen, das Reduzieren des Schwingungseintrags, das Beschleunigen in entgegengesetzter Richtung und das nachfolgende Erhöhen des Schwingungseintrages automatisch von der Steuereinrichtung durchgeführt wird. Der Bediener kann die Reversierautomatik beispielsweise nach freier Einschätzung starten oder beispielsweise nach dem Erreichen einer Markierung, beispielsweise eines auf den Boden projizierten Lichtfleckes, der in einem festgelegten, für den Reversiervorgang notwendigen Abstand vor dem Umkehrpunkt angeordnet sein kann. Wichtig ist, dass allerdings der Fahrer selbstverständlich weiterhin die Hoheit über die Steuerung der Maschine behält und jederzeit in den Ablauf eingreifen kann, wodurch die Reversierautomatik sofort beendet und die Steuerung der Maschine wieder vollständig vom Bediener übernommen wird. Insbesondere diese Fälle, in denen der Bediener die Steuerung wieder übernimmt, sind für das erfindungsgemäße Verfahren von Interesse, da die Reversierautomatik bereits optimale Fahrweisen berücksichtigt. Die Reversierautomatik ist aus diesem Grunde auch besonders bevorzugt in der Weise ausgebildet, dass sie nur das Abbremsen und das anschließende Beschleunigen in die entgegengesetzte Fahrtrichtung, insbesondere bis hin zu einer gewünschten Zielgeschwindigkeit steuert, nicht aber Lenkvorgänge übernimmt, die vorzugsweise exklusiv manuell gesteuert werden müssen.Specifically, the solution is achieved with a method for assisted operation of a soil compaction machine. In other words, it is a method for controlling the compaction process during compaction operation of the soil compaction machine or a method for monitoring the operation of the soil compaction machine during compaction operation by the operator. The method is based on the control of the soil compaction machine by an operator. This is done in a known manner by entering appropriate control commands, for example with regard to direction of travel, speed of travel, activation and/or setting of one or more vibration exciters, etc. A soil compaction machine of this type therefore operates in a conventional manner, in which the operator guides it over the soil to be compacted. The soil to be compacted is in particular an asphalt layer laid by a road finisher, still hot or still sufficiently warm for surface deformation by the soil compaction machine, from which, for example, a roadway or similar is created after compaction. Controlling the soil compaction machine therefore includes, in particular, driving over the soil to be compacted several times or reversing the soil compaction machine several times. The soil compaction machine is preferably repeatedly braked, in particular to a standstill, and then accelerated again in a direction opposite to the original direction of travel. Preferably, at least one roller drum of the soil compaction machine is at least partially set into vibration by a vibration exciter in order to achieve dynamic soil compaction. This can be, for example, vibration or oscillation vibrations or any superposition of these. Controlling the soil compaction machine by an operator is understood in this case to mean, in particular, semi-autonomous operation. For example, an automatic reversing system could be used in which an operator triggers a reversing process by means of a control input, for example by pressing a button, whereby braking, reducing the vibration input, accelerating in the opposite direction and subsequent increase in the vibration input is carried out automatically by the control device. The operator can start the automatic reversing, for example, according to his own judgment or, for example, after reaching a mark, for example a light spot projected onto the ground, which can be arranged at a set distance from the reversing point that is necessary for the reversing process. It is important, however, that the driver naturally still retains control of the machine and can intervene in the process at any time, whereby the automatic reversing immediately ends and the operator takes over control of the machine completely. In particular, these cases in which the operator takes over control again are of interest for the method according to the invention, since the automatic reversing already takes optimal driving styles into account. For this reason, the automatic reversing is particularly preferably designed in such a way that it only controls the braking and subsequent acceleration in the opposite direction of travel, in particular up to a desired target speed, but does not take over steering processes, which preferably have to be controlled exclusively manually.

Im erfindungsgemäßen Verfahren erfolgt nun ein Erfassen wenigstens eines der Parameter Fahrgeschwindigkeit, Fahrgeschwindigkeitsänderung und/oder Fahrtrichtungsumkehr. Alternativ kann auch eine andere Größe erfasst werden, die mit einem der genannten Parameter korreliert. Dafür umfasst die Bodenverdichtungsmaschine bevorzugt wenigstens eine geeignete Erfassungseinrichtung, beispielweise wenigstens einen Sensor, der den oder die jeweiligen Parameter oder die jeweilige Größe direkt oder indirekt erfasst und insbesondere an die Steuereinrichtung weiterleitet. Das Erfassen und das Ermitteln von verschiedenen Parametern, Größen, Zeitpunkten oder Orten kann in der gesamten vorliegenden Beschreibung bevorzugt ebenfalls umfassen, dass die erfassten beziehungsweise ermittelten Werte zur späteren Verwendung abgespeichert werden, beispielsweise in einem, insbesondere elektronischen, Speicher der Steuereinrichtung. Grundsätzlich kann ein Sensor der Erfassungseinrichtung vorgesehen sein, der mehrere Parameter oder Größen erfasst, oder für jeden Parameter oder jede Größe kann ein eigener Sensor vorgesehen sein. Da Bodenverdichtungsmaschinen üblicherweise bereits direkt oder indirekt die Fahrgeschwindigkeit ermitteln, ist der Wert dieses Parameters beispielsweise üblicherweise schon vorhanden und kann für das erfindungsgemäße Verfahren eingesetzt werden. Die Fahrgeschwindigkeitsänderung wiederum kann auch rechnerisch aus einer wiederholt oder kontinuierlich gemessenen Fahrgeschwindigkeit ermittelt werden. Darüber hinaus ist es ebenfalls möglich, die Bewegung beziehungsweise Beschleunigung der Bodenverdichtungsmaschine beispielsweise über einen elektronischen Kompass oder eine IMU (inertiale Messeinheit, engl. inertial measurement unit) zu erfassen. Auch der Einsatz von GNSS-Systemen (globales Navigationssatellitensystem, engl. global navigation satellite system) zur wiederholten oder kontinuierlichen Erfassung des Ortes der Bodenverdichtungsmaschine und/oder deren zeitlicher Vergleich ist möglich. Darüber hinaus kann ebenfalls über eine optische Erfassung der Umgebung der Bodenverdichtungsmaschine auf deren Bewegung geschlossen werden. Beispielsweise kann eine Kamera beziehungsweise das Bild einer Kamera genutzt werden, um auf die Bewegung der Bodenverdichtungsmaschine zu schließen. Aus den genannten Größen, die nicht unmittelbar die Fahrgeschwindigkeit, die Fahrgeschwindigkeitsänderung und/oder eine Fahrtrichtungsumkehr sind, kann bevorzugt auf diese rückgeschlossen werden. Alternativ können die genannten Größen auch direkt im nächsten Schritt des Verfahrens zur Anwendung kommen.In the method according to the invention, at least one of the parameters of driving speed, change in driving speed and/or reversal of driving direction is recorded. Alternatively, another variable that correlates with one of the parameters mentioned can also be recorded. For this purpose, the soil compaction machine preferably comprises at least one suitable recording device, for example at least one sensor, which records the respective parameter or variables directly or indirectly and in particular forwards it to the control device. The recording and determination of various parameters, variables, times or locations can preferably also include, throughout the present description, that the recorded or determined values are stored for later use, for example in a memory, in particular an electronic one, of the control device. In principle, a sensor of the recording device can be provided that records several parameters or variables, or a separate sensor can be provided for each parameter or variable. Since soil compaction machines usually already determine the driving speed directly or indirectly, the value of this parameter is usually already available, for example, and can be used for the method according to the invention. The change in driving speed can in turn also be calculated from a repeatedly or continuously measured driving speed. In addition, it is also possible to record the movement or acceleration of the soil compaction machine, for example, using an electronic compass or an IMU ( inertial measurement unit ). The use of GNSS systems (global navigation satellite system ) to repeatedly or continuously record the location of the soil compaction machine and/or their temporal comparison is possible. In addition, the movement of the soil compaction machine can also be determined by optically recording the surroundings of the soil compaction machine. For example, a camera or the image from a camera can be used to determine the movement of the soil compaction machine. The variables mentioned, which are not directly the driving speed, the change in driving speed and/or a reversal of the direction of travel, can preferably be used to determine these. Alternatively, the variables mentioned can also be used directly in the next step of the process.

Aus dem wenigstens einen erfassten Parameter beziehungsweise der wenigstens einen erfassten Größe erfolgt dann ein Ermitteln eines Zeitpunkts, an dem ein Reversieren der Bodenverdichtungsmaschine stattfindet. Mit anderen Worten wird der Umkehrpunkt der Bodenverdichtungsmaschine ermittelt. Es wird also bevorzugt ermittelt, wann eine Fahrtrichtungsumkehr stattfindet beziehungsweise wann eine Fahrgeschwindigkeit erst auf null absinkt und dann in entgegengesetzter Richtung wieder zunimmt. Dies wird vorliegend als Reversieren der Bodenverdichtungsmaschine bezeichnet. Wird die Position der Bodenverdichtungsmaschine ebenfalls erfasst, beispielsweise durch eine Wegmessung oder durch ein GNSS-System, so steht auch derjenige Ort fest, an dem die Bodenverdichtungsmaschine sich zu diesem Zeitpunkt, an dem das Reversieren stattfindet, befindet. Auch dieser Ort kann daher als Ausgangspunkt für das weitere Verfahren genutzt werden.From the at least one recorded parameter or the at least one recorded size, a point in time is then determined at which the soil compaction machine reverses. In other words, the turning point of the soil compaction machine is determined. It is therefore preferably determined when a reversal of direction takes place or when a driving speed first drops to zero and then increases again in the opposite direction. This is referred to here as reversing the soil compaction machine. If the position of the soil compaction machine is also recorded, for example by a distance measurement or by a GNSS system, the location at which the soil compaction machine is located at the time at which the reversal takes place is also determined. This location can therefore also be used as a starting point for the further process.

Optimal ist es, wenn unterhalb einer gewissen Fahrgeschwindigkeit der Bodenverdichtungsmaschine und insbesondere im Stillstand kein Schwingungseintrag durch die Erregereinheit mehr in den Boden stattfindet, also keine Vibrations- beziehungsweise Schwingungsenergie mehr auf den Boden übertragen wird. Eine solche punktuelle Verdichtung durch die Schwingungen kann ansonsten schnell zu einer übermäßigen Wellenbildung führen. Die Bediener der Bodenverdichtungsmaschinen sind daher dazu angehalten, den Schwingungseintrag in den Boden rechtzeitig vor dem Stillstand der Maschine während des Reversierens zu reduzieren, insbesondere auf null. Hierzu kann der Schwingungserreger beispielsweise abgeschaltet werden, oder die Amplitude der erzeugten Schwingung wird, insbesondere auf null, reduziert, beispielsweise durch Drehen der Amplitude in die Horizontale. Beim Abschalten des Erregers durchläuft dieser typischerweise einen Resonanzbereich, bei dem die Amplitude der erzeugten Schwingungen ansteigt. Insbesondere beim Durchlaufen des Resonanzbereiches muss daher noch eine ausreichend hohe Fahrgeschwindigkeit der Bodenverdichtungsmaschine sichergestellt sein. Darüber hinaus soll, wie eingangs bereits erläutert, vor dem Stillstand der Maschine eingelenkt werden, sodass die beim Reversieren unweigerlich hinterlassene Welle im Boden schräg zur Geradeausarbeitsrichtung ausgerichtet ist. Das erfindungsgemäße Verfahren sieht daher ein Erfassen eines Lenkwinkels der Bodenverdichtungsmaschine und/oder eines Schwingungseintrags eines Schwingungserregers in den Boden oder einer mit dem Lenkwinkel oder mit dem Schwingungseintrag korrelierenden Größe vor. Auch hierfür können als Teil der Erfassungseinrichtung ein oder mehrere Sensoren an der Bodenverdichtungsmaschine vorgesehen sein, die die jeweiligen Parameter oder Größen erfassen und deren Werte an die Steuereinrichtung weiterleiten. So kann beispielsweise ein Sensor vorgesehen sein, der unmittelbar oder mittelbar über einen korrelierenden Parameter den Lenkwinkel oder den Schwingungseintrag erfasst. Aus einer wiederholten oder kontinuierlichen Messung des Ortes der Bodenverdichtungsmaschine kann über den zurückgelegten Weg auch auf eine Schrägstellung der Bodenverdichtungsmaschine geschlossen werden, was wiederum mit dem Lenkwinkel korreliert. Alternativ kann der zurückgelegte Bremsweg und die dabei durchgeführte Lenkbewegung genutzt werden, um auf die Schrägstellung der Bodenverdichtungsmaschine zu schließen. Der Schwingungseintrag ist ein Maß dafür, wie viel Energie vom Schwingungserreger auf den Boden übertragen wird. Dies hängt maßgeblich von der Frequenz und der Amplitude des Schwingungserregers, bei dem es sich regelmäßig um einen oder mehrere Unwuchterreger handelt, ab. Entsprechend kann der Schwingungseintrag durch eine Verstellung der Frequenz und/oder der Amplitude des Schwingungserregers beeinflusst werden. Ein Abschalten des Schwingungserregers führt beispielsweise dazu, dass die Frequenz zurückgeht, insbesondere bis auf null. Ergänzend oder alternativ kann die Amplitude des Schwingungserregers, insbesondere bis auf null, verstellt werden, beispielsweise durch eine Veränderung der Exzentrizität der Schwungmassen des Schwingungserregers. Auch hierdurch lässt sich der Schwingungseintrag in den Boden verändern. Mit dem Schwingungseintrag korrelierende Größen sind daher beispielsweise die Frequenz und/oder die Amplitude und/oder die Exzentrizität der Schwungmassen des Schwingungserregers. Besonders bevorzugt wird hierzu ebenfalls der sogenannte IPF-Wert (engl. impacts per foot) herangezogen, der angibt, wie oft ein Schwingungserreger in einem bestimmten Streckenabschnitt auf den Boden einwirkt. Details zum IPF-Wert können beispielsweise der DE 10 2018 007 825 A1 der Anmelderin entnommen werden. Insbesondere bezieht sich vorliegend die Amplitude auf den in vertikaler Richtung gerichteten Anteil der Schwingung. Ergänzend oder alternativ kann ebenfalls die Amplitude des in horizontaler Richtung gerichteten Anteils der Schwingung berücksichtigt werden.It is optimal if, below a certain driving speed of the soil compaction machine and especially when it is at a standstill, no more vibrations are introduced into the ground by the exciter unit, i.e. no more vibration or oscillation energy is transferred to the ground. Such localized compaction due to the vibrations can otherwise quickly lead to excessive wave formation. The operators of the soil compaction machines are therefore required to reduce the vibrations introduced into the ground in good time before the machine comes to a standstill during reversing, in particular to zero. To do this, the vibration exciter can be switched off, for example, or the amplitude of the vibration generated can be reduced, in particular to zero, for example by turning the amplitude to the horizontal. When the exciter is switched off, it typically passes through a resonance range in which the amplitude of the vibrations generated increases. A sufficiently high driving speed of the soil compaction machine must therefore be ensured, especially when passing through the resonance range. In addition, as already explained at the beginning, the machine should be turned before it comes to a standstill, so that the wave in the ground that is inevitably left behind when reversing is aligned at an angle to the straight-ahead working direction. The method according to the invention therefore provides for the detection of a steering angle of the soil compaction machine and/or a vibration input from a vibration exciter into the ground or a vibration related to the steering angle. or a quantity correlating with the vibration input. For this purpose, one or more sensors can be provided on the soil compaction machine as part of the recording device, which record the respective parameters or quantities and forward their values to the control device. For example, a sensor can be provided which records the steering angle or the vibration input directly or indirectly via a correlating parameter. From a repeated or continuous measurement of the location of the soil compaction machine, it can also be concluded that the soil compaction machine is inclined based on the distance traveled, which in turn correlates with the steering angle. Alternatively, the braking distance covered and the steering movement carried out during this can be used to conclude that the soil compaction machine is inclined. The vibration input is a measure of how much energy is transferred from the vibration exciter to the ground. This depends largely on the frequency and amplitude of the vibration exciter, which is usually one or more unbalance exciters. Accordingly, the vibration input can be influenced by adjusting the frequency and/or the amplitude of the vibration exciter. Switching off the vibration exciter, for example, leads to the frequency decreasing, in particular to zero. In addition or alternatively, the amplitude of the vibration exciter can be adjusted, in particular to zero, for example by changing the eccentricity of the flywheel masses of the vibration exciter. This can also change the vibration input into the ground. Values that correlate with the vibration input are therefore, for example, the frequency and/or the amplitude and/or the eccentricity of the flywheel masses of the vibration exciter. The so-called IPF value ( impacts per foot ) is also particularly preferred for this purpose, as it indicates how often a vibration exciter impacts the ground in a certain section of the route. Details of the IPF value can be found, for example, in the EN 10 2018 007 825 A1 from the applicant. In particular, the amplitude refers to the portion of the vibration directed in the vertical direction. In addition or alternatively, the amplitude of the portion of the vibration directed in the horizontal direction can also be taken into account.

Wie eingangs erläutert, ist für die Ebenheit des verdichteten Bodens insbesondere die Steuerung der Bodenverdichtungsmaschine beim Reversieren beziehungsweise um das Reversieren herum von Bedeutung. Von Interesse ist hierbei also sowohl das Steuern der Bodenverdichtungsmaschine vor dem Reversieren als auch nach den Reversieren. Der Lenkwinkel und/oder der Schwingungseintrag beziehungsweise die hiermit korrelierenden Größen werden daher erfindungsgemäß innerhalb eines zeitlichen Intervalls und/oder innerhalb einer Wegstrecke um den bereits ermittelten Zeitpunkt des Reversierens und/oder um den bereits ermittelten Ort der Bodenverdichtungsmaschine zu diesem Zeitpunkt erfasst. Es werden daher die genannten Parameter beziehungsweise Größen vor und nach dem Reversieren erfasst. Der Lenkwinkel und/oder der Schwingungseintrag oder damit korrelierende Größen werden daher, je nachdem, welche Messungen durchgeführt werden, zeitlich oder örtlich mit den ebenfalls ermittelten Parametern Fahrgeschwindigkeit, Fahrgeschwindigkeitsänderung und/oder Fahrtrichtungsumkehr oder den damit korrelierenden Größen verknüpft. Es wird also beispielsweise erfasst, welcher Lenkwinkel und/oder welcher Schwingungseintrag jeweils zusammen mit welcher Fahrgeschwindigkeit der Bodenverdichtungsmaschine vorliegen. Das Intervall und/oder die Wegstrecke können dabei erst einmal beliebig gewählt werden und beispielsweise den gesamten Arbeitseinsatz beziehungsweise die gesamte Baustelle der Bodenverdichtungsmaschine umfassen. Wichtig ist, dass sie den betrachteten Reversiervorgang der Bodenverdichtungsmaschine umfassen. Bevorzugte speziellere Intervalle/Wegstrecken werden nachstehend noch näher erläutert.As explained at the beginning, the control of the soil compaction machine during reversing or around reversing is particularly important for the evenness of the compacted soil. Of interest here is therefore both the control of the soil compaction machine before reversing and after reversing. The steering angle and/or the vibration input or the variables correlated with this are therefore recorded according to the invention within a time interval and/or within a distance around the already determined time of reversing and/or around the already determined location of the soil compaction machine at this time. The parameters or variables mentioned are therefore recorded before and after reversing. The steering angle and/or the vibration input or the quantities correlating with it are therefore, depending on which measurements are carried out, linked in time or place with the parameters of driving speed, change in driving speed and/or reversal of direction or the quantities correlating with it. For example, it is recorded which steering angle and/or which vibration input is present together with which driving speed of the soil compaction machine. The interval and/or the distance can initially be chosen arbitrarily and can, for example, cover the entire working period or the entire construction site of the soil compaction machine. It is important that they cover the reversing process of the soil compaction machine under consideration. Preferred, more specific intervals/distances are explained in more detail below.

Ein Kernpunkt des erfindungsgemäßen Verfahrens besteht in einem Vergleichen des erfassten bzw. ermittelten Lenkwinkels und/oder Schwingungseintrags innerhalb des Intervalls und/oder der Wegstrecke mit vorgegebenen Referenzwerten für einen Soll-Lenkwinkel und/oder einen Soll-Schwingungseintrag. Wie eingangs erwähnt, ist es bekannt, dass schräg zur Arbeitsrichtung ausgerichtete Wellen im noch zu verdichtenden Boden, die beim Reversieren entstehen, bei nachfolgenden Überfahrten besser ausgeglichen werden können. Darüber hinaus ist bekannt, dass ein übermäßiger Schwingungseintrag auf einer zu kleinen Wegstrecke ebenfalls zu Wellenbildung beiträgt. Aus diesen Zusammenhängen können daher ein Soll-Lenkwinkel und/oder ein Soll-Schwingungseintrag abgeleitet werden. Diese können beispielsweise auf eine Fahrgeschwindigkeit, eine Fahrgeschwindigkeitsänderung oder ähnliches der Bodenverdichtungsmaschine bezogen sein. So kann ein Soll-Lenkwinkel beispielsweise einen Wert dafür angeben, wie stark bis zum Stillstand der Walze beim Reversieren vom Bediener eingelenkt werden sollte, um die entstehende Bodenwelle derart schräg zur Arbeitsrichtung anzuordnen, dass sie bei nachfolgenden Überfahrten optimal geglättet werden kann. Ein Soll-Schwingungseintrag kann beispielsweise einen Wert dafür angeben, wie hoch der Schwingungseintrag bei welcher Fahrgeschwindigkeit der Bodenverdichtungsmaschine maximal sein darf. Konkret sind derartige Referenzwerte für einen Soll-Lenkwinkel und/oder einen Soll-Schwingungseintrag für die Steuereinrichtung zugänglich in einem Speicher hinterlegt. Es kann sich hierbei um fest vorgegebene Grenzwerte handeln. Die Referenzwerte können dabei beispielsweise punktuell, beispielsweise im Sinne von "ab einer Fahrgeschwindigkeit X nur noch maximal Y Schwingungseintrag", oder kontinuierlich, beispielsweise im Sinne von Kennfeldern, die einen breiten Bereich von Fahrgeschwindigkeiten und dabei jeweils maximal zulässigem Schwingungseintrag vorgeben, sein. Darüber hinaus können die Referenzwerte auch eine Rechenvorschrift umfassen, aus der sich für eine gegebene Fahrgeschwindigkeit und/oder Beschleunigung um das Reversieren herum der Soll-Lenkwinkel und/oder der Soll-Schwingungseintrag bestimmen lassen. Da das Reversieren der Bodenverdichtungsmaschine im Arbeitsbetrieb typischerweise, zumindest in zueinander vergleichbaren Arbeitssituationen, immer fast gleich abläuft, können die Referenzwerte statt auf die Fahrgeschwindigkeit alternativ auch auf einen zeitlichen Abstand und/oder eine Wegstrecke vor und/oder nach dem Reversieren bezogen sein. Derartige Referenzwerte könnten daher beispielsweise Informationen im Sinne von "spätestens X Sekunden oder Y Meter vor dem Reversieren den Schwingungserreger abschalten" oder "frühestens X Sekunden oder Y Meter nach dem Reversieren den Schwingungserreger einschalten" vorgeben. Durch das Vergleichen des Lenkwinkels und/oder Schwingungseintrags mit den Referenzwerten für den Soll-Lenkwinkel und/oder den Soll-Schwingungseintrag kann ermittelt werden, inwiefern der vom Bediener der Bodenverdichtungsmaschine vor, während und nach dem Reversieren eingestellte Lenkwinkel beziehungsweise Schwingungseintrag den Vorgaben für eine optimale Ebenheit des verdichteten Bodens entspricht und/oder entsprochen hat. Das Ergebnis des Vergleiches beziehungsweise des Vergleichens kann rein qualitativ oder auch quantitativ sein. Das Ergebnis kann also beispielsweise eine Information darüber sein, ob der vom Bediener eingestellte Lenkwinkel und/oder Schwingungseintrag den Referenzwerten entspricht oder nicht. Darüber hinaus kann das Ergebnis insbesondere auch umfassen, um wieviel der vom Bediener eingestellte Lenkwinkel und/oder Schwingungseintrag von den Referenzwerten abweicht. Beispielsweise kann das Ergebnis Informationen darüber umfassen, um wieviel der vom Bediener eingestellte Lenkwinkel beim Reversieren der Bodenverdichtungsmaschine kleiner ist als der Soll-Lenkwinkel. Da auch ein zu enger Lenkwinkel beim Reversieren schlecht für die Ebenheit des Bodens sein kann, kann der Soll-Lenkwinkel ebenfalls ein Intervall sein, welches also sowohl eine Unter- als auch eine Obergrenze für den Lenkwinkel angibt. Entsprechend kann das Ergebnis auch Informationen darüber umfassen, um wie viel der vom Bediener eingestellte Lenkwinkel beim Reversieren der Bodenverdichtungsmaschine größer ist als die vom Soll-Lenkwinkel vorgegebene Obergrenze. Dies erfolgt insbesondere zusätzlich zur bereits beschriebenen Überwachung der Untergrenze. Ergänzend oder alternativ kann das Ergebnis ebenfalls Informationen darüber umfassen, um wieviel der vom Bediener eingestellte Schwingungseintrag um das Reversieren herum größer ist als der Soll-Schwingungseintrag. "Um das Reversieren herum" bezeichnet vorliegend einen Bezug auf das Intervall und/oder die Wegstrecke um den ermittelten Zeitpunkt des Reversierens und/oder um den Ort der Bodenverdichtungsmaschine zu diesem Zeitpunkt. Insgesamt umfasst das Ergebnis des Vergleichs also eine Information darüber, wie sehr die vom Bediener der Bodenverdichtungsmaschine vorgenommene Steuerung einer optimalen Steuerung im Sinne einer optimalen Ebenheit des verdichteten Bodens entspricht.A key point of the method according to the invention is a comparison of the recorded or determined steering angle and/or vibration input within the interval and/or the distance with specified reference values for a target steering angle and/or a target vibration input. As mentioned at the beginning, it is known that waves in the soil that is still to be compacted that are aligned at an angle to the working direction and that arise when reversing can be better compensated for in subsequent passes. In addition, it is known that excessive vibration input on a distance that is too short also contributes to wave formation. A target steering angle and/or a target vibration input can therefore be derived from these relationships. These can, for example, be related to a driving speed, a change in driving speed or similar of the soil compaction machine. For example, a target steering angle can indicate a value for how much the operator should steer until the roller comes to a standstill when reversing in order to arrange the resulting ground wave at an angle to the working direction so that it can be optimally smoothed out in subsequent passes. A target vibration input can, for example, specify a value for how high the maximum vibration input can be at which driving speed of the soil compaction machine. Specifically, such reference values for a target steering angle and/or a target vibration input are stored in a memory that is accessible to the control device. These can be fixed limit values. The reference values can, for example, be punctual, for example in the sense of "from a driving speed X only a maximum of Y vibration input", or continuous, for example in the sense of characteristic maps that specify a wide range of driving speeds and the maximum permissible vibration input in each case. In addition, the reference values can also include a calculation rule from which the target steering angle and/or the target vibration input can be determined for a given driving speed and/or acceleration around the reversing. Since the reversing of the soil compaction machine in operation, at least in comparable work situations, always proceeds almost the same, the reference values can alternatively be based on a time interval and/or a distance before and/or after reversing instead of the driving speed. Such reference values could therefore, for example, provide information such as "switch off the vibration exciter at the latest X seconds or Y meters before reversing" or "switch on the vibration exciter at the earliest X seconds or Y meters after reversing". By comparing the steering angle and/or vibration input with the reference values for the target steering angle and/or the target vibration input, it can be determined to what extent the steering angle or vibration input set by the operator of the soil compaction machine before, during and after reversing corresponds and/or corresponded to the specifications for optimal evenness of the compacted soil. The result of the comparison or comparison can be purely qualitative or quantitative. The result can therefore, for example, be information about whether the steering angle and/or vibration input set by the operator corresponds to the reference values or not. In addition, the result can also include how much the steering angle and/or vibration input set by the operator deviates from the reference values. For example, the result can include information about how much the steering angle set by the operator is smaller than the target steering angle when reversing the soil compaction machine. Since a steering angle that is too narrow when reversing can also be bad for the evenness of the ground, the target steering angle can also be an interval, which therefore specifies both a lower and an upper limit for the steering angle. Accordingly, the result can also include information about how much the steering angle set by the operator is larger when reversing the soil compaction machine than the upper limit specified by the target steering angle. This is done in particular in addition to the monitoring of the lower limit already described. In addition or as an alternative, the result can also include information about how much the vibration input set by the operator around the reversing is greater than the target vibration input. "Around the reversing" here refers to a reference to the interval and/or the distance around the determined time of the reversing and/or the location of the soil compaction machine at that time. Overall, the result of the comparison therefore includes information about the extent to which the control carried out by the operator of the soil compaction machine corresponds to an optimal control in terms of optimal evenness of the compacted soil.

Das erfindungsgemäße Verfahren umfasst schließlich ebenfalls ein Ausgeben und/oder Abspeichern des Ergebnisses des Vergleichs beziehungsweise des Vergleichens. Beispielsweise kann das Ergebnis für den Bediener der Bodenverdichtungsmaschine sichtbar auf einer Anzeigeeinrichtung ausgegeben beziehungsweise angezeigt werden. Ergänzend oder alternativ ist auch beispielsweise eine akustische Ausgabe denkbar. Auf diese Weise erhält der Bediener unmittelbar eine Rückmeldung dazu, ob sein Steuern der Bodenverdichtungsmaschine beim zurückliegenden Reversieren in Bezug auf die resultierende Ebenheit des verdichteten Bodens optimal war oder nicht. Gegebenenfalls erhält der Bediener ebenfalls durch das Ergebnis eine Rückmeldung dazu, zu welchem Grad sein Steuern der Bodenverdichtungsmaschine beim zurückliegenden Reversieren von einem optimalen Steuern abgewichen ist. Diese Information kann vom Bediener dafür genutzt werden, das zukünftige Reversieren der Bodenverdichtungsmaschine optimaler durchzuführen. Zwar liefert das Ergebnis des erfindungsgemäßen Vergleichs dem Bediener also lediglich eine Information über den bereits vollzogenen Ablauf des letzten Reversierens. Diese Information kann allerdings positiv für die Verbesserung jedes nachfolgenden Reversierens genutzt werden, wodurch insgesamt eine assistierte Bedienunterstützung der Bodenverdichtungsmaschine realisiert wird und die Ebenheit des Bodens nach Abschluss der Verdichtungsarbeiten insgesamt verbessert ist. Da es sich um ein professionelles Arbeitsumfeld handelt, kann davon ausgegangen werden, dass der Bediener entsprechende Hinweise auch nach Möglichkeit umsetzt. Ergänzend oder alternativ kann das Ergebnis ebenfalls abgespeichert, also beispielsweise in einem Speicher der Steuereinrichtung hinterlegt werden. Der Bediener kann dann beispielsweise nach Abschluss des Arbeitseinsatzes das Ergebnis einsehen und auf diese Weise ein Feedback zum Arbeitsablauf erhalten. Auch dies kann dann für zukünftige Arbeitseinsätze genutzt werden, um die resultierende Ebenheit des verdichteten Bodens zu verbessern. Darüber hinaus kann vorgesehen sein, dass die gespeicherten Ergebnisse ausgelesen werden, beispielsweise von einem Betreiber der Bodenverdichtungsmaschine, der nicht zwingend der Bediener sein muss. Dem Betreiber steht hierdurch also eine Rückmeldung über die Qualität der Steuerung der Bodenverdichtungsmaschine zur Verfügung. Auf diese Weise kann der Betreiber beispielsweise feststellen, ob der Bediener zusätzliches Fahrertraining benötigt oder nicht. Auch hierdurch lässt sich die Ebenheit des Bodens bei zukünftigen Arbeitseinsätzen verbessern. Um diesen Vorgang weiter zu vereinfachen, kann es beispielsweise vorgesehen sein, dass die Bodenverdichtungsmaschine eine Einrichtung zur Datenfernübertragung aufweist und das Ergebnis beziehungsweise die Ergebnisse des Vergleichens automatisch an den Betreiber übermittelt, beispielsweise auf einen zentralen Server des Betreibers hochgeladen, werden.Finally, the method according to the invention also includes outputting and/or storing the result of the comparison or comparisons. For example, the result can be output or displayed on a display device so that it is visible to the operator of the soil compaction machine. In addition or Alternatively, an acoustic output is also conceivable. In this way, the operator receives immediate feedback as to whether or not his control of the soil compaction machine during the previous reversing was optimal in relation to the resulting evenness of the compacted soil. If necessary, the operator also receives feedback from the result as to the extent to which his control of the soil compaction machine during the previous reversing deviated from optimal control. This information can be used by the operator to carry out future reversing of the soil compaction machine more optimally. The result of the comparison according to the invention therefore only provides the operator with information about the sequence of the last reversing that has already been completed. However, this information can be used positively to improve each subsequent reversing, thereby providing overall assisted operation of the soil compaction machine and improving the evenness of the soil overall after the compaction work has been completed. Since this is a professional working environment, it can be assumed that the operator will implement corresponding instructions wherever possible. In addition or alternatively, the result can also be saved, for example stored in a memory of the control device. The operator can then, for example, view the result after completion of the work and thus receive feedback on the workflow. This can also be used for future work to improve the resulting evenness of the compacted soil. In addition, it can be provided that the saved results are read out, for example by an operator of the soil compaction machine, who does not necessarily have to be the operator. This provides the operator with feedback on the quality of the control of the soil compaction machine. In this way, the operator can determine, for example, whether the operator requires additional driver training or not. This can also improve the evenness of the soil in future work. To further simplify this process, it can be provided, for example, that the soil compaction machine has a device for remote data transmission and the result or results of the comparison are automatically transmitted to the operator, for example uploaded to a central server of the operator.

Grundsätzlich würde es ausreichen, wenn das Erfassen der Parameter Fahrgeschwindigkeit, Fahrgeschwindigkeitsänderung und/oder Fahrtrichtungsumkehr sowie Lenkwinkel und/oder Schwingungseintrag beziehungsweise mit den genannten Parametern korrelierender Größen in diskreten, insbesondere zeitlichen und/oder örtlichen, Abständen wiederholt werden würde. Solange die diskreten Abstände eng genug gewählt werden, um den Zeitpunkt des Reversierens der Bodenverdichtungsmaschine ausreichend genau zu bestimmen, kann das Verfahren mit derartigen Daten durchgeführt werden. Bevorzugt ist es allerdings vorgesehen, dass das Erfassen wenigstens eines der Parameter Fahrgeschwindigkeit, Fahrgeschwindigkeitsänderung und/oder Fahrtrichtungsumkehr oder wenigstens einer mit einem der genannten Parameter korrelierenden Größe und/oder das Erfassen des Lenkwinkels und/oder des Schwingungseintrags oder einer damit korrelierenden Größe kontinuierlich erfolgt. Auf diese Weise kann der Zeitpunkt des Reversierens besonders genau festgestellt werden. Darüber hinaus kann besonders genau festgestellt werden, welchen Wert die jeweiligen Parameter haben, beispielsweise zu einem Zeitpunkt, an dem eine gewisse Fahrgeschwindigkeit vorliegt oder an dem ein gewisser Schwingungseintrag erfolgt.In principle, it would be sufficient if the recording of the parameters of driving speed, change in driving speed and/or reversal of driving direction as well as steering angle and/or vibration input or quantities correlating with the parameters mentioned were repeated at discrete, in particular temporal and/or spatial, intervals. As long as the discrete intervals are chosen close enough to determine the time of reversing of the soil compaction machine with sufficient accuracy, the method can be carried out with such data. However, it is preferably provided that the detection of at least one of the parameters driving speed, change in driving speed and/or reversal of driving direction or at least one variable correlating with one of the parameters mentioned and/or the detection of the steering angle and/or the vibration input or a variable correlating therewith is carried out continuously. In this way, the time of reversing can be determined particularly precisely. In addition, the value of the respective parameters can be determined particularly precisely, for example at a time when a certain driving speed is present or when a certain vibration input occurs.

Wie bereits erwähnt, ist es der Fokus des erfindungsgemäßen Verfahrens, die Steuerung der Bodenverdichtungsmaschine um das Reversieren herum zu optimieren. Entsprechend kann das Intervall und/oder die Wegstrecke derart festgelegt werden, dass nur die Steuerung der Bodenverdichtungsmaschine in unmittelbarer zeitlicher und/oder räumlicher Umgebung des Reversierens betrachtet wird. Beispielsweise kann die Größe des Intervalls beziehungsweise der Wegstrecke für jeden Einzelfall separat definiert sein, beispielsweise anhand von funktionalen Kriterien. Bevorzugt kann das Intervall beziehungsweise die Wegstrecke derart festgelegt werden, dass der Anfang dadurch vorgegeben wird, dass die Fahrgeschwindigkeit der Bodenverdichtungsmaschine unter einen Schwellenwert sinkt, der signalisiert, dass ein Betrieb mit einer Arbeitsgeschwindigkeit in eine Fahrrichtung beendet wird. Die Arbeitsgeschwindigkeit beschreibt dabei eine Fahrgeschwindigkeit, mit der die Bodenverdichtungsmaschine typischerweise im Arbeitsbetrieb betrieben wird, während sie eine Geradeausfahrt über zu verdichtenden Boden vollzieht. Derartige typische Arbeitsgeschwindigkeiten sind vom Typ der Bodenverdichtungsmaschine abhängig und dem Fachmann bekannt. Analog kann das Ende des Intervalls beziehungsweise der Wegstrecke dadurch vorgegeben werden, dass die Fahrgeschwindigkeit der Bodenverdichtungsmaschine über den Schwellenwert ansteigt, sodass signalisiert wird, dass wieder auf die Arbeitsgeschwindigkeit beschleunigt wird. Der Anfang und das Ende können dabei von demselben Schwellenwert oder von unterschiedlichen Schwellenwerten vorgegeben werden. Der Schwellenwert kann beispielsweise 3 km/h oder 5 km/h oder 7 km/h betragen. Die Arbeitsgeschwindigkeit kann fest vorgegeben sein und beispielsweise ebenfalls dem Schwellenwert entsprechen oder in einem festen Wert, beispielsweise 1 km/h oder 2 km/h oder 3 km/h, über dem Schwellenwert liegen. Bevorzugt werden das Intervall und/oder die Wegstrecke derart festgelegt, dass das Reversieren in der Mitte des Intervalls und/oder der Wegstrecke liegt. Beispielsweise kann das Intervall derart festgelegt werden, dass es maximal 20 Sekunden, bevorzugt maximal 15 Sekunden oder maximal 10 Sekunden und besonders bevorzugt maximal 5 Sekunden vor und/oder nach dem Reversieren umfasst. Ergänzend oder alternativ kann die Wegstrecke derart festgelegt werden, dass sie maximal 50 m, bevorzugt maximal 40 m oder maximal 30 m oder maximal 20 m oder maximal 10 m und besonders bevorzugt maximal 5 m vor und/oder nach dem Reversieren umfasst. Um das Intervall beziehungsweise die Wegstrecke derart festzulegen, muss selbstverständlich bereits der Zeitpunkt beziehungsweise der Ort des Reversierens ermittelt worden sein. Dies bedeutet, dass zumindest für diejenigen Parameter und Größen, die vor dem Reversieren erfasst werden müssen, zum Zeitpunkt, an dem feststeht, wann reversiert wurde, auf in der Vergangenheit erfasste Werte zurückgegriffen werden muss. Auch wenn das Verfahren dann nur auf Werte zurückgreift, die im betrachteten Intervall beziehungsweise in der betrachteten Wegstrecke liegen, so ist es daher dennoch bevorzugt, dass die Werte über den gesamten Arbeitsbetrieb der Bodenverdichtungsmaschine erfasst werden. Da allerdings nicht sämtliche dieser Daten benötigt werden, kann es beispielsweise bevorzugt vorgesehen sein, dass die Daten nur so lange vorgehalten beziehungsweise gespeichert werden, bis der Zeitpunkt des darauffolgenden Reversierens ermittelt wurde. Ab diesem Moment reicht es dann aus, nur die Daten beizubehalten, die innerhalb des betrachteten Intervalls beziehungsweise der betrachteten Wegstrecke liegen. Vorhergehende Daten können dagegen gelöscht werden. Hierfür kann bevorzugt ebenfalls eine Art rollierender Speicher eingesetzt werden, der immer die zuletzt erfassten Daten beziehungsweise Werte der erfassten Parameter enthält. Der rollierende Speicher kann dabei derart ausgelegt sein, dass er zumindest groß genug ist, die Daten aus demjenigen Teil des Intervalls und/oder der Wegstrecke abzuspeichern, die vor dem Reversieren liegt. Weiter zurückliegende Daten können dagegen überschrieben werden.As already mentioned, the focus of the method according to the invention is to optimize the control of the soil compaction machine around the reversing. Accordingly, the interval and/or the distance can be set in such a way that only the control of the soil compaction machine in the immediate temporal and/or spatial vicinity of the reversing is considered. For example, the size of the interval or the distance can be defined separately for each individual case, for example based on functional criteria. Preferably, the interval or the distance can be set in such a way that the start is specified by the driving speed of the soil compaction machine falling below a threshold value that signals that operation with a working speed in one direction of travel is terminated. The working speed describes a driving speed at which the soil compaction machine is typically operated in working mode while it travels straight ahead over soil to be compacted. Such typical working speeds depend on the type of soil compaction machine and are known to the person skilled in the art. Similarly, the end of the interval or the distance can be specified by the driving speed of the soil compaction machine increasing above the threshold value, thus signaling that acceleration is being returned to the working speed. The start and the end can be specified by the same threshold value or by different threshold values. The threshold value can be, for example, 3 km/h or 5 km/h or 7 km/h. The working speed can be fixed and, for example, also correspond to the threshold value or be a fixed value, for example 1 km/h or 2 km/h or 3 km/h, above the threshold value. Preferably, the interval and/or the distance are set such that the reversing is in the middle of the interval and/or the distance. For example, the interval can be set such that it covers a maximum of 20 seconds, preferably a maximum of 15 seconds or a maximum of 10 seconds and particularly preferably a maximum of 5 seconds before and/or after the reversing. In addition or alternatively, the distance can be set such that it covers a maximum of 50 m, preferably a maximum of 40 m or a maximum of 30 m or a maximum of 20 m or a maximum of 10 m and particularly preferably a maximum of 5 m before and/or after reversing. In order to determine the interval or the In order to determine the distance in this way, the time or location of the reversal must of course already have been determined. This means that at least for those parameters and sizes that have to be recorded before the reversal, values recorded in the past must be used at the time when it is determined when the reversal took place. Even if the method then only uses values that lie in the interval or distance under consideration, it is nevertheless preferable that the values are recorded over the entire working operation of the soil compaction machine. However, since not all of this data is required, it can preferably be provided, for example, that the data is only retained or stored until the time of the subsequent reversal has been determined. From this moment on, it is then sufficient to only retain the data that lies within the interval or distance under consideration. Previous data can, however, be deleted. A type of rolling memory can also preferably be used for this, which always contains the most recently recorded data or values of the recorded parameters. The rolling memory can be designed in such a way that it is at least large enough to store the data from that part of the interval and/or the distance before reversing. Data from further back can, however, be overwritten.

Wie bereits angedeutet, ist es bevorzugt, dass die zum Vergleichen herangezogenen Referenzwerte einen Soll-Lenkwinkel umfassen, der angibt, wie groß der Lenkwinkel zum ermittelten Zeitpunkt des Reversierens mindestens sein soll. Der Soll-Lenkwinkel gibt mit anderen Worten also an, wie stark der Bediener der Bodenverdichtungsmaschine einlenken soll bzw. sollte, bevor die Bodenverdichtungsmaschine beim Reversieren in den Stillstand gelangt. Hierbei kommt es für den Effekt auf die Ebenheit des verdichteten Bodens erst einmal nicht auf die Richtung des Lenkwinkels an. Es ist daher unerheblich, ob nach links oder nach rechts eingelenkt wird. Dies kann also je nach den Gegebenheiten der Baustelle frei gewählt werden. Betrachtet wird daher beispielsweise lediglich der Betrag des Lenkwinkels in Abweichung von einer Geradeausfahrt. Entsprechend bezieht sich auch der Soll-Lenkwinkel auf den Betrag des Lenkwinkels in Abweichung von einer Geradeausfahrt. Der Soll-Lenkwinkel und/oder der Lenkwinkel kann insbesondere definiert sein als Abweichung der Walzrichtung der Bodenverdichtungsmaschine kurz vor dem Stillstand am Umkehrpunkt beim Reversieren von der Walzrichtung an diesem Umkehrpunkt bei wenigstens einer vorhergehenden oder nachfolgenden Überfahrt, bei der die Bodenverdichtungsmaschine kein Reversieren durchführt. Um dies beurteilen zu können, werden beispielsweise Positionsdaten über den gesamten Arbeitsablauf der Bodenverdichtungsmaschine gesammelt. Die Walzrichtung entspricht dabei insbesondere der aktuellen Fahrt- oder Arbeitsrichtung der Bodenverdichtungsmaschine. Auf diese Weise wird beispielsweise ebenfalls berücksichtigt, dass der zu verdichtende Boden auch in einer Kurve liegen kann. Der Lenkwinkel berücksichtigt dann die Abweichung durch das Einlenken von der Krümmung der Kurve. Insbesondere, wenn der zu verdichtende Boden in einer Kurve liegt, ist es darüber hinaus bevorzugt, dass das Einlenken entgegen der Kurvenrichtung erfolgt. Auch dies kann erfindungsgemäß überwacht werden und in die Wertung mit einfließen. Der Soll-Lenkwinkel kann sich darüber hinaus auf die vordere und/oder die hintere Walzbandage und/oder auf eine Schrägstellung der Bodenverdichtungsmaschine beziehen. Er beträgt beispielsweise mindestens 20°, bevorzugt mindestens 25° oder mindestens 30° oder mindestens 35° oder mindestens 40°, besonders bevorzugt mindestens 45° oder mindestens 50° oder mindestens 55° oder mindestens 60°.As already indicated, it is preferred that the reference values used for comparison include a target steering angle that indicates how large the steering angle should be at the determined time of reversing. In other words, the target steering angle indicates how much the operator of the soil compaction machine should or should steer before the soil compaction machine comes to a standstill when reversing. The effect on the evenness of the compacted soil does not initially depend on the direction of the steering angle. It is therefore irrelevant whether the steering is to the left or to the right. This can therefore be freely selected depending on the conditions on the construction site. For example, only the amount of the steering angle in deviation from straight ahead driving is considered. Accordingly, the target steering angle also refers to the amount of the steering angle in deviation from straight ahead driving. The target steering angle and/or the steering angle can be defined in particular as the deviation of the rolling direction of the soil compaction machine shortly before it comes to a standstill at the reversal point when reversing from the rolling direction at this reversal point in at least one previous or subsequent pass in which the soil compaction machine does not reverse. In order to be able to assess this, position data is collected over the entire work sequence of the soil compaction machine, for example. The rolling direction corresponds in particular to the current travel or working direction of the soil compaction machine. In this way, it is also taken into account, for example, that the soil to be compacted can also lie in a curve. can. The steering angle then takes into account the deviation from the curvature of the curve caused by steering. In particular, when the soil to be compacted is in a curve, it is also preferred that the steering takes place against the direction of the curve. This can also be monitored according to the invention and included in the evaluation. The target steering angle can also relate to the front and/or rear roller drum and/or to an inclined position of the soil compaction machine. It is, for example, at least 20°, preferably at least 25° or at least 30° or at least 35° or at least 40°, particularly preferably at least 45° or at least 50° or at least 55° or at least 60°.

Der Schwingungseintrag in den Boden muss vor dem Reversieren rechtzeitig verringert beziehungsweise reduziert werden. Insbesondere muss verhindert werden, dass die Bodenverdichtungsmaschine bei besonders langsamer Fahrt kurz vor dem Stillstand noch einen nennenswerten Schwingungseintrag in den Boden leistet. Nach dem Reversieren darf der Schwingungseintrag dann auch erst wieder gesteigert werden, wenn die Bodenverdichtungsmaschine bereits wieder auf eine ausreichend große Fahrgeschwindigkeit beschleunigt wurde. Es ist daher bevorzugt, dass vor dem Reversieren ein Reduzieren, insbesondere auf null, des Schwingungseintrags stattfindet und die zum Vergleichen herangezogenen Referenzwerte einen Soll-Schwingungseintrag umfassen, der angibt, wie groß der Schwingungseintrag, insbesondere bezogen auf die Fahrgeschwindigkeit der Bodenverdichtungsmaschine, maximal sein soll. Ergänzend oder alternativ ist es bevorzugt, dass nach dem Reversieren ein Erhöhen, insbesondere ausgehend von null, des Schwingungseintrags stattfindet und die zum Vergleichen herangezogenen Referenzwerte einen Soll-Schwingungseintrag umfassen, der angibt, wie groß der Schwingungseintrag, insbesondere bezogen auf die Fahrgeschwindigkeit der Bodenverdichtungsmaschine, maximal sein soll. Wie bereits angesprochen, wird als Maß für den Schwingungseintrag bevorzugt der IPF-Wert herangezogen. Ergänzend oder alternativ kann die Frequenz, die Amplitude, die Exzentrizität und/oder die bereitgestellte Vibrationsenergie des Schwingungserregers herangezogen werden. Beispielsweise kann der Soll-Schwingungseintrag angeben, ab welcher Fahrgeschwindigkeit der Bodenverdichtungsmaschine vor dem Reversieren kein Schwingungseintrag mehr und/oder ab welcher Fahrgeschwindigkeit der Bodenverdichtungsmaschine nach dem Reversieren wieder ein Schwingungseintrag geleistet werden soll. Als optimal kann beispielsweise ein Reduzieren des Schwingungseintrags auf null bei noch konstanter Fahrgeschwindigkeit, also beispielsweise der Arbeitsgeschwindigkeit, gelten. Hierbei ist allerdings zu beachten, dass die Arbeitsgeschwindigkeit nicht immer gleich sein muss und beispielausweise auch vor und nach dem Reversieren unterschiedlich sein kann. Ein Vorteil des IPF-Wertes liegt darin, dass er den Schwingungseintrag zugleich auf die zurückgelegte Wegstrecke bezieht und daher erst einmal unabhängig von der Fahrgeschwindigkeit ist. Daher kann der Soll-Schwingungseintrag beispielsweise einen IPF-Wert als Grenzwert umfassen. Bevorzugt wird allerdings auch eine geringfügige Abweichung von diesem noch als optimal angesehen. Beispielsweise kann eine Abweichung von maximal 20 %, bevorzugt maximal 15 % oder maximal 10 % oder maximal 5 %, vom als Referenzwert für den Soll-Schwingungseintrag hinterlegten IPF-Wert noch als optimal angesehen werden. Dies kann entsprechend in das Vergleichen des Verfahrens und auch in die Wertung mit eingehen.The vibration input into the ground must be reduced or decreased in good time before reversing. In particular, it must be prevented that the soil compaction machine, when traveling particularly slowly, makes a significant vibration input into the ground shortly before coming to a standstill. After reversing, the vibration input may only be increased again when the soil compaction machine has already accelerated to a sufficiently high driving speed. It is therefore preferred that the vibration input is reduced, in particular to zero, before reversing and that the reference values used for comparison include a target vibration input that indicates how large the vibration input should be at most, in particular in relation to the driving speed of the soil compaction machine. In addition or alternatively, it is preferred that the vibration input is increased, in particular starting from zero, after reversing and that the reference values used for comparison include a target vibration input that indicates how large the vibration input should be at most, in particular in relation to the driving speed of the soil compaction machine. As already mentioned, the IPF value is preferably used as a measure of the vibration input. In addition or as an alternative, the frequency, amplitude, eccentricity and/or the vibration energy provided by the vibration exciter can be used. For example, the target vibration input can indicate the driving speed of the soil compaction machine at which no more vibration input should be made before reversing and/or the driving speed of the soil compaction machine at which vibration input should be made again after reversing. For example, reducing the vibration input to zero while the driving speed, for example the working speed, is still constant can be considered optimal. However, it should be noted that the working speed does not always have to be the same and can also be different before and after reversing. One advantage of the IPF value is that it relates the vibration input to the distance traveled and is therefore initially independent of the driving speed. Therefore, the target vibration input can, for example, include an IPF value as a limit value. Preferably However, a slight deviation from this is still considered optimal. For example, a deviation of a maximum of 20%, preferably a maximum of 15% or a maximum of 10% or a maximum of 5%, from the IPF value stored as a reference value for the target vibration input can still be considered optimal. This can be taken into account when comparing the procedure and also in the evaluation.

Wie bereits angesprochen, durchlaufen Schwingungserreger, insbesondere Kreiserreger, beim Ein- und Ausschalten unvermeidlich eine Resonanzfrequenz, bei der kurzzeitig vergrößerte Schwingamplituden auftreten und daher auch ein höherer Schwingungseintrag in den Boden stattfinden. Dies führt daher ebenfalls zu Wellen im Boden. Der Effekt tritt besonders beim Abschalten des Schwingungserregers, also vor dem Reversieren der Bodenverdichtungsmaschine, auf. Um diese Wellen beim Reversieren möglichst gut zu glätten, sieht eine optimale Steuerung der Bodenverdichtungsmaschine daher vor, dass die entstandenen Wellen nach dem Reversieren bereits mit möglichst hoher Verdichtungsleistung nochmals überfahren werden. Dies bedeutet, dass die Wellen im besten Fall ebenfalls mit hohem Schwingungseintrag, beispielsweise der maximal vorgesehenen Arbeitsleistung des Schwingungserregers, überfahren werden sollen. Der Schwingungserreger muss daher beim Beschleunigen der Bodenverdichtungsmaschine nach dem Reversieren früher beziehungsweise näher am Umkehrpunkt wieder eingeschaltet werden, als er vor dem Reversieren ausgeschaltet wurde. Auch dies kann vom erfindungsgemäßen Verfahren überwacht werden und in die nachstehend noch näher erläuterte Wertung mit einfließen. Hierfür kann es bevorzugt vorgesehen sein, dass innerhalb des Intervalls und/oder der Wegstrecke eine Position des maximalen Schwingungseintrags vor dem Reversieren ermittelt wird, und dass der Referenzwert für den Soll-Schwingungseintrag angibt, mit welchem minimalen Schwingungseintrag diese Position nach dem Reversieren überfahren werden soll. Die Position des maximalen Schwingungseintrages bezeichnet insbesondere diejenige Position, an der der Schwingungserreger beim Reduzieren des Schwingungseintrages seine Resonanzfrequenz durchläuft. Die Ermittlung dieser Position kann beispielsweise über die Fahrgeschwindigkeit, die Fahrgeschwindigkeitsänderung oder eine Ortsbestimmung, beispielsweise per GNSS, wie vorstehend bereits beschrieben erfolgen. Beispielsweise kann der Soll-Schwingungseintrag vorgeben, dass diese Position nach dem Reversieren bereits mit einem Nenn-Schwingungseintrag, beispielsweise der maximalen Verdichtungsleistung des Schwingungserregers, überfahren werden soll. Der Nenn-Schwingungseintrag bezeichnet insbesondere einen Schwingungseintrag, mit dem der Schwingungserreger an der gegebenen Position des zu verdichtenden Bodens optimal arbeitet. Dies kann beispielsweise durch eine Automatik vorgegeben werden, wie beispielsweise durch den "Asphalt Manager" der Anmelderin. Besonders bevorzugt wird die Position des maximalen Schwingungseintrages für jede Walzbandage der Bodenverdichtungsmaschine separat bestimmt und einzeln wie vorstehend beschrieben betrachtet.As already mentioned, vibration exciters, especially circular exciters, inevitably pass through a resonance frequency when switched on and off, at which increased vibration amplitudes occur for a short time and therefore also a higher vibration input into the ground. This therefore also leads to waves in the ground. The effect occurs particularly when the vibration exciter is switched off, i.e. before the soil compaction machine reverses. In order to smooth out these waves as well as possible when reversing, optimal control of the soil compaction machine therefore provides that the waves that have arisen are driven over again after reversing with the highest possible compaction power. This means that in the best case the waves should also be driven over with a high vibration input, for example the maximum intended work output of the vibration exciter. When accelerating the soil compaction machine after reversing, the vibration exciter must therefore be switched on again earlier or closer to the reversal point than it was switched off before reversing. This can also be monitored by the method according to the invention and included in the evaluation explained in more detail below. For this purpose, it can preferably be provided that within the interval and/or the distance, a position of the maximum vibration input is determined before reversing, and that the reference value for the target vibration input indicates the minimum vibration input with which this position should be passed after reversing. The position of the maximum vibration input refers in particular to the position at which the vibration exciter passes through its resonance frequency when the vibration input is reduced. This position can be determined, for example, via the driving speed, the change in driving speed or a location determination, for example via GNSS, as already described above. For example, the target vibration input can specify that this position should be passed after reversing with a nominal vibration input, for example the maximum compaction power of the vibration exciter. The nominal vibration input refers in particular to a vibration input with which the vibration exciter works optimally at the given position of the soil to be compacted. This can be specified, for example, by an automatic system, such as the applicant's "Asphalt Manager". Particularly preferably, the position of the maximum vibration input is determined separately for each roller drum of the soil compaction machine and considered individually as described above.

Weist die Bodenverdichtungsmaschine eine vordere und eine hintere Walzbandage auf, die in Maschinenlängsrichtung voneinander beabstandet sind, so ist für eine optimale Steuerung der Bodenverdichtungsmaschine ebenfalls wichtig, dass die in aktueller Fahrtrichtung beziehungsweise Arbeitsrichtung hintere Walzbandage die Position des maximalen Schwingungseintrags der vorderen Walzbandage vor dem Reversieren noch überrollt. Wie vorstehend bereits erläutert, durchläuft der Schwingungserreger der vorderen Walzbandage beim Reduzieren des Schwingungseintrags seine Resonanzfrequenz und weist hierbei einen erhöhten Schwingungseintrag auf, der zu Wellenbildung führt. Diese Wellen sollen daher optimalerweise noch vor dem Reversieren von der hinteren Walzbandage überrollt werden, wofür es wichtig ist, dass der Schwingungseintrag rechtzeitig vor dem Reversieren reduziert wird, also beispielsweise der Schwingungserreger rechtzeitig vor dem Reversieren abgeschaltet wird. Um auch dies im erfindungsgemäßen Verfahren zu berücksichtigen, ist es bevorzugt, dass innerhalb des Intervalls und/oder der Wegstrecke eine Position des maximalen Schwingungseintrags einer vorderen Walzbandage der Bodenverdichtungsmaschine vor dem Reversieren ermittelt wird, und dass überwacht wird, ob eine hintere Walzbandage der Bodenverdichtungsmaschine diese Position vor dem Reversieren überfährt. Ob und gegebenenfalls zu welchem Grad dies gelingt oder nicht, kann dann ebenfalls in die nachstehend noch näher erläuterte Wertung mit eingehen.If the soil compaction machine has a front and a rear roller drum that are spaced apart from each other in the longitudinal direction of the machine, it is also important for optimal control of the soil compaction machine that the roller drum that is at the rear in the current direction of travel or working direction rolls over the position of the maximum vibration input of the front roller drum before reversing. As already explained above, when the vibration input is reduced, the vibration exciter of the front roller drum goes through its resonance frequency and has an increased vibration input, which leads to the formation of waves. These waves should therefore ideally be rolled over by the rear roller drum before reversing, for which it is important that the vibration input is reduced in good time before reversing, for example that the vibration exciter is switched off in good time before reversing. In order to take this into account in the method according to the invention, it is preferred that within the interval and/or the distance a position of the maximum vibration input of a front roller drum of the soil compaction machine is determined before reversing, and that it is monitored whether a rear roller drum of the soil compaction machine passes this position before reversing. Whether or not this succeeds and, if so, to what extent, can then also be included in the evaluation explained in more detail below.

Wie groß der Effekt der beschriebenen Steuerung der Bodenverdichtungsmaschine durch den Bediener auf die Ebenheit des verdichteten Bodens tatsächlich ist, wird ebenfalls von äußeren Umständen beeinflusst. Diese werden vorliegend als Betriebszustände bezeichnet. Beispielsweise hängt die Konsistenz einer von einem Straßenfertiger verlegten Asphaltschicht maßgeblich von deren Temperatur ab. Je heißer der Asphalt ist, desto einfacher entstehen unerwünschte Wellen, so dass ein Abweichen von den Referenzwerten größere Unebenheiten zur Folge hat als bei kühlerem Asphalt. Gleichzeitig wird die Temperatur des Asphalts ebenfalls von äußeren Umständen beeinflusst, beispielsweise vom Wetter. Auch die Bodensteifigkeit, bei der es also auch auf die Eigenschaften des unter dem Asphalt liegenden Bodens ankommt, nimmt hier einen Einfluss. Darüber hinaus macht es einen Unterschied, ob der zu verdichtende Boden ein Gefälle aufweist. Ein Gefälle kann beispielsweise die Auswirkungen des Abbremsens auf einer Asphaltschicht positiv oder negativ beeinflussen, je nach Fahrtrichtung. Es ist daher insgesamt bevorzugt, dass beim Vergleichen der erfassten Werte mit den Referenzwerten zusätzlich wenigstens ein äußerer Betriebszustand mit berücksichtigt wird, wobei der Betriebszustand beispielsweise eine Bodentemperatur und/oder eine Bodensteifigkeit und/oder Wetterbedingungen und/oder ein Quer- und/oder Längsgefälle des Bodens umfasst. Die äußeren Betriebszustände können dabei entweder sensorisch erfasst werden, wozu die Bodenverdichtungsmaschine bevorzugt mit einem oder mehreren Sensoren ausgestattet ist, die die jeweiligen Betriebszustände detektieren können. Die Messergebnisse der Sensoren werden entsprechend an die Steuereinrichtung weitergeleitet, die die äußeren Betriebszustände dann beim Vergleichen berücksichtigen kann. Ergänzend oder alternativ können die äußeren Betriebszustände auch vom Bediener an der Steuereinrichtung eingegeben werden. Bevorzugt ist vorgesehen, dass die Steuereinrichtung die Referenzwerte anhand des Betriebszustands beziehungsweise der Betriebszustände anpasst. So kann es beispielsweise notwendig sein, strengere Referenzwerte anzuwenden, wenn die Bodentemperatur besonders hoch ist. Ist die Bodentemperatur dagegen besonders niedrig, können die Referenzwerte weniger streng gewählt werden, da der Einfluss der Fahrmanöver der Bodenverdichtungsmaschine auf kühlem Boden beziehungsweise Asphalt geringer ist. Auch die Anpassung der Referenzwerte anhand der äußeren Betriebszustände kann qualitativ oder quantitativ erfolgen. Beispielsweise können die Referenzwerte um einen fest vorgegebenen Wert erhöht oder erniedrigt werden, wenn entsprechende äußere Betriebszustände vorliegen, beispielweise besonders heißer Asphalt. Alternativ und bevorzugt kann es vorgesehen sein, dass die Anpassung der Referenzwerte graduell gemäß den äußeren Betriebszuständen modifiziert wird. Beispielsweise können die Referenzwerte für einen bestimmten Ausgangswert der äußeren Betriebszustände vorgegeben werden, beispielsweise Bodentemperatur, Außentemperatur, Niederschlagsmenge Gefällewinkel etc., und anhand einer Rechenvorschrift an hiervon abweichende äußere Betriebszustände angepasst werden. Die Referenzwerte werden in diesem Fall dynamisch und quantitativ an die äußeren Betriebszustände beziehungsweise die aktuellen Gegebenheiten der Baustelle angepasst.The actual effect of the described control of the soil compaction machine by the operator on the evenness of the compacted soil is also influenced by external circumstances. These are referred to here as operating conditions. For example, the consistency of an asphalt layer laid by a road paver depends largely on its temperature. The hotter the asphalt, the easier it is to form undesirable waves, so that a deviation from the reference values results in greater unevenness than with cooler asphalt. At the same time, the temperature of the asphalt is also influenced by external circumstances, such as the weather. Soil stiffness, which also depends on the properties of the soil beneath the asphalt, also has an influence here. It also makes a difference whether the soil to be compacted has a slope. A slope can, for example, have a positive or negative influence on the effects of braking on an asphalt layer, depending on the direction of travel. It is therefore preferred that when comparing the recorded values with the reference values, at least one external operating state is also taken into account, the operating state including, for example, a soil temperature and/or a soil stiffness and/or weather conditions and/or a transverse and/or longitudinal gradient of the soil. The external operating states can either be recorded by sensors, for which purpose the soil compaction machine is preferably equipped with one or more sensors that can detect the respective operating states. The measurement results of the sensors are transmitted accordingly to the control device, which can then take the external operating conditions into account when making comparisons. In addition or as an alternative, the external operating conditions can also be entered by the operator on the control device. Preferably, the control device adapts the reference values based on the operating condition or conditions. For example, it may be necessary to use stricter reference values if the ground temperature is particularly high. If, on the other hand, the ground temperature is particularly low, the reference values can be selected to be less strict, since the influence of the driving maneuvers of the soil compaction machine on cool ground or asphalt is less. The reference values can also be adapted qualitatively or quantitatively based on the external operating conditions. For example, the reference values can be increased or decreased by a fixed value if corresponding external operating conditions exist, for example particularly hot asphalt. Alternatively and preferably, it can be provided that the adaptation of the reference values is gradually modified according to the external operating conditions. For example, the reference values can be specified for a specific initial value of the external operating conditions, such as ground temperature, outside temperature, amount of precipitation, slope angle, etc., and adapted to external operating conditions that deviate from these using a calculation rule. In this case, the reference values are dynamically and quantitatively adapted to the external operating conditions or the current conditions on the construction site.

Das Ausgeben des Ergebnisses des Vergleichs kann ein Anzeigen für den Bediener der Bodenverdichtungsmaschine umfassen. Wie bereits erläutert, kann der Bediener aufgrund dieses Feedbacks die Steuerung der Bodenverdichtungsmaschine für zukünftiges Reversieren anpassen, um optimale Ergebnisse in Bezug auf die Ebenheit des verdichteten Bodens zu erreichen. Bevorzugt ist es nun vorgesehen, dass dem Bediener in dem Fall, in dem eine Abweichung des Lenkwinkels und/oder des Schwingungseintrags innerhalb des Intervalls und/oder der Wegstrecke von den Referenzwerten festgestellt wurde, eine Handlungsanweisung angezeigt wird, wie die Abweichung zukünftig reduziert oder vermieden werden kann. Neben dem reinen Ergebnis des Vergleichs wird dem Bediener also auch eine Information vermittelt, wie er konkret die Steuerung der Bodenverdichtungsmaschine optimieren kann. Dies gilt ebenfalls für sämtlichen weiteren Aspekte der Steuerung der Bodenverdichtungsmaschine, die hierin beschrieben sind, und die in die Wertung eingehen können. Auch diese können zur Anzeige von Hinweisen zur Verbesserung der Steuerung der Bodenverdichtungsmaschine durch den Bediener genutzt werden. Derartige Hinweise können beispielsweise sein "Schwingungserreger früher ausschalten", "Schwingungserreger später einschalten" oder "beim Reversieren stärker einlenken". Es können auch mehrere derartige Hinweise gleichzeitig angezeigt werden, falls beim zugrundeliegenden Reversieren mehrere Abweichungen von den Referenzwerten festgestellt wurden. Diese Hinweise können beispielsweise optisch, insbesondere schriftlich, auf der Anzeigeeinrichtungen angezeigt werden. Ergänzend oder alternativ ist es ebenfalls möglich, die Hinweise akustisch, beispielsweise über eine Sprachausgabe, auszugeben. Auf diese Weise wird dem Bediener der Bodenverdichtungsmaschine während des Betriebes automatisch assistiert, so dass ihm Einblicke in die Auswirkungen der Steuerung der Bodenverdichtungsmaschine auf die Ebenheit des verdichteten Bodens bereitgestellt werden, über die üblicherweise nur sehr erfahrene Bediener verfügen. Auch unerfahrene Bediener können so eine erhöhte Ebenheit des Bodens erreichen. Erfahrene Bediener wiederum können ihr Fachwissen weiter perfektionieren.Outputting the result of the comparison can include a display for the operator of the soil compaction machine. As already explained, the operator can use this feedback to adapt the control of the soil compaction machine for future reversing in order to achieve optimal results in terms of the evenness of the compacted soil. Preferably, if a deviation of the steering angle and/or the vibration input within the interval and/or the distance from the reference values is determined, the operator is shown instructions on how the deviation can be reduced or avoided in the future. In addition to the pure result of the comparison, the operator is also given information on how he can specifically optimize the control of the soil compaction machine. This also applies to all other aspects of the control of the soil compaction machine that are described here and that can be included in the evaluation. These can also be used to display tips on how the operator can improve the control of the soil compaction machine. Such instructions can be, for example, "switch off the vibration exciter earlier", "switch on the vibration exciter later" or "steer more strongly when reversing". Several such instructions can also be displayed simultaneously if several deviations from the reference values were detected during the underlying reversing. These instructions can be displayed, for example, visually, in particular in writing, on the display devices. displayed. In addition or as an alternative, it is also possible to provide the information acoustically, for example via a voice output. In this way, the operator of the soil compaction machine is automatically assisted during operation, providing him with insights into the effects of the control of the soil compaction machine on the evenness of the compacted soil, which is usually only available to very experienced operators. Even inexperienced operators can thus achieve increased evenness of the soil. Experienced operators, in turn, can further perfect their specialist knowledge.

Um noch mehr Informationen für den Bediener bereitzustellen, kann es bevorzugt vorgesehen sein, dass dem Bediener mit der Handlungsanweisung ein Hinweis angezeigt wird, falls ein äußerer Betriebszustand zu einer Anpassung des oder der Referenzwerte geführt hat, die eine Abweichung des Lenkwinkels und/oder des Schwingungseintrags innerhalb des Intervalls und/oder der Wegstrecke von dem oder den Referenzwerten vergrößert. Dies kommt also immer dann zum Tragen, wenn äußere Betriebszustände vorliegen, die die Auswirkungen des Fahrverhaltens des Bedieners auf die Ebenheit des Bodens erhöhen. Derartige Hinweise können also beispielsweise "aufgrund der hohen Bodentemperatur beim Reversieren mehr einlenken", "aufgrund des hohen Gefälles beim Reversieren mehr einlenken" oder "aufgrund der niedrigen Bodensteifigkeit Schwingungserreger noch früher ausschalten" sein. Auf diese Weise wird dem Bediener neben der Verbesserung des aktuellen Arbeitsergebnisses zusätzliches Fachwissen vermittelt.In order to provide the operator with even more information, it can preferably be provided that the operator is shown a note with the instruction if an external operating condition has led to an adjustment of the reference value(s) that increases a deviation of the steering angle and/or the vibration input within the interval and/or the distance from the reference value(s). This therefore always comes into play when external operating conditions exist that increase the effects of the operator's driving behavior on the evenness of the ground. Such notes can therefore be, for example, "steer more when reversing due to the high ground temperature", "steer more when reversing due to the steep gradient" or "switch off the vibration exciter even earlier due to the low ground stiffness". In this way, the operator is given additional specialist knowledge in addition to improving the current work result.

Grundsätzlich kann das Ergebnis des Vergleichs numerisch ausgegeben werden. Es könnte also ganz konkret die zahlenmäßige Abweichung des erfassten Lenkwinkels und/oder Schwingungseintrags von dem oder den Referenzwerten ausgegeben werden. Um dem Bediener allerdings nicht während sämtlicher weiteren Pflichten, die er während des Arbeitsbetriebes zu erfüllen hat, auch noch aufzubürden, dass er sich Gedanken darüber machen muss, wie schlimm die angezeigte Abweichung denn nun tatsächlich ist, ist es bevorzugt, dass das Ergebnis des Vergleichs automatisch gewertet wird. Es ist also bevorzugt, dass dem Ergebnis des Vergleichs eine Wertung zugeordnet wird, die mit höherer Abweichung von dem oder den Referenzwerten beziehungsweise der optimalen Steuerung der Bodenverdichtungsmaschine schlechter wird, und die insbesondere ebenfalls ausgegeben oder abgespeichert wird. Beispielsweise könnten verschiedene Stufen definiert werden, die ein Spektrum von keiner Abweichung über geringfügige Abweichung bis zu hoher Abweichung abbilden. Hier könnte beispielsweise auf ein übliches Notensystem, beispielsweise in Stufen von 1 (sehr gut) bis 6 (ungenügend), zurückgegriffen werden. Alternativ wäre auch eine Wertung in weniger Stufen, beispielsweise in drei Stufen, möglich. Diese könnten beispielsweise "keine Abweichung", "geringe Abweichung" und "hohe Abweichung" sein. Die jeweiligen Grenzwerte der einzelnen Stufen können entweder fest vorgegeben sein oder vom Bediener oder Betreiber der Bodenverdichtungsmaschine einstellbar sein. So kann beispielsweise berücksichtigt werden, dass bei unterschiedlichen Baustellen unterschiedliche Anforderungen an die Ebenheit des verdichteten Bodens vorliegen können. Um das Ablesen der Wertung für den Bediener noch einfacher zu gestalten, kann es vorgesehen sein, die Wertung in Form eines Symbols, beispielsweise eines Piktogramms oder eines Smileys mit einem der Wertung entsprechenden Gesichtsausdruck, anzuzeigen.In principle, the result of the comparison can be output numerically. In concrete terms, the numerical deviation of the recorded steering angle and/or vibration input from the reference value(s) could be output. In order not to burden the operator with having to think about how bad the displayed deviation actually is while carrying out all the other duties he has to perform during work, it is preferable that the result of the comparison is automatically evaluated. It is therefore preferable that the result of the comparison is assigned a rating that becomes worse with greater deviation from the reference value(s) or the optimal control of the soil compaction machine, and that this is also output or saved. For example, different levels could be defined that represent a spectrum from no deviation to slight deviation to high deviation. Here, for example, a standard grading system could be used, for example in levels from 1 (very good) to 6 (unsatisfactory). Alternatively, a rating in fewer levels, for example in three levels, would also be possible. These could be, for example, "no deviation", "low deviation" and "high deviation". The respective limit values of the individual stages can either be fixed or adjustable by the operator or operator of the soil compaction machine. For example, it can be taken into account that with different Construction sites may have different requirements for the evenness of the compacted soil. To make it even easier for the operator to read the rating, the rating can be displayed in the form of a symbol, for example a pictogram or a smiley with a facial expression corresponding to the rating.

Neben den genannten Kriterien kann das Verfahren auch weitere Punkte überwachen, die Einfluss auf die Ebenheit des verdichteten Bodens nehmen können. Wie bereits beschrieben, muss die Bodenverdichtungsmaschine zum Reversieren abgebremst und danach wieder beschleunigt werden. Sowohl das Abbremsen als auch das Beschleunigen der Bodenverdichtungsmaschine soll dabei möglichst sanft erfolgen, also ohne ruckartige beziehungsweise sprunghafte Veränderungen der Fahrgeschwindigkeit. Derartige ruckartige Änderungen der Fahrgeschwindigkeit können ebenfalls zu Wellen im Boden führen. Es ist daher bevorzugt vorgesehen, dass ebenfalls ruckartige Veränderungen der Fahrgeschwindigkeit erfasst werden und in die Wertung mit eingehen. Insbesondere werden ruckartige Veränderungen der Fahrgeschwindigkeit innerhalb des Intervalls und/oder innerhalb der Wegstrecke erfasst. Derartige Fälle sind von einem schnellen betragsmäßigen Anstieg der Fahrgeschwindigkeit und/oder der Beschleunigung, also der Fahrgeschwindigkeitsänderung, der Bodenverdichtungsmaschine gekennzeichnet. Auch hierfür können entsprechend Schwellenwerte vorgesehen sein, die zum Erkennen von ruckartigen Veränderungen der Fahrgeschwindigkeit dienen. Werden derartige ruckartigen Änderungen erfasst, so kann dies in die Wertung mit eingehen und insbesondere auch in der Handlungsanweisung berücksichtigt werden. Es wird dann beispielsweise ein Hinweis mit angezeigt, dass sanfter gebremst oder beschleunigt werden soll.In addition to the criteria mentioned, the method can also monitor other points that can influence the evenness of the compacted soil. As already described, the soil compaction machine must be braked to reverse and then accelerated again. Both the braking and the acceleration of the soil compaction machine should be as gentle as possible, i.e. without jerky or sudden changes in the driving speed. Such jerky changes in the driving speed can also lead to waves in the ground. It is therefore preferably provided that jerky changes in the driving speed are also recorded and included in the evaluation. In particular, jerky changes in the driving speed within the interval and/or within the distance are recorded. Such cases are characterized by a rapid increase in the amount of the driving speed and/or acceleration, i.e. the change in the driving speed, of the soil compaction machine. Threshold values can also be provided for this, which serve to detect jerky changes in the driving speed. If such jerky changes are recorded, this can be included in the evaluation and in particular also taken into account in the instructions for action. For example, a message will be displayed telling you to brake or accelerate more gently.

Grundsätzlich lässt sich bereits eine assistierte Bedienunterstützung und eine damit verbundene Verbesserung der Ebenheit des verdichteten Bodens erreichen, wenn das erfindungsgemäße Verfahren nur auf ein einziges Reversieren der Bodenverdichtungsmaschine angewendet wird. Der Bediener kann dann das hieraus entstehende Feedback nutzen, um zukünftiges Reversieren gegebenenfalls optimaler zu gestalten. Bevorzugt ist es allerdings, dass das Verfahren für mehrere, insbesondere sämtliche Reversiervorgänge innerhalb eines Arbeitsintervalls durchgeführt wird. Auf diese Weise wird der Bediener durchgehend assistiert und ein optimales Arbeitsergebnis erzielt. Ein Arbeitsintervall beschreibt dabei beispielsweise einen Arbeitstag eines Bedieners oder eine Arbeitszeit eines Bedieners auf einer bestimmten Baustelle. Grundsätzlich könnten allerdings auch kleinere Arbeitsintervalle gewähnt werden, beispielsweise eine oder mehrere Stunden eines Arbeitstages oder Arbeitseinsatzes. Insbesondere kann es vorgesehen sein, dass aus den einzelnen Wertungen sämtlicher Reversiervorgänge des Arbeitsintervalls eine Gesamtwertung erstellt wird, die ebenfalls ausgegeben oder abgespeichert wird. Die Gesamtwertung kann dabei beispielsweise demselben Schema folgen wie die Wertung eines einzelnen Reversierens. Beispielsweise kann hier also auch ein Schulnotensystem oder ähnliches eingesetzt werden. Bei der Gesamtwertung handelt es sich beispielsweise um den Mittelwert sämtlicher Wertungen des Arbeitsintervalls. Die Gesamtwertung kann vom Bediener dazu herangezogen werden, herauszufinden, ob die von ihm durchgeführte Steuerung der Bodenverdichtungsmaschine für die aktuelle Baustelle angemessen war und/oder ob sich seine Steuerung der Bodenverdichtungsmaschine verbessert oder verschlechtert hat. Gleichzeitig kann ein Betreiber der Bodenverdichtungsmaschine feststellen, ob und welche Bediener zusätzlichen Schulungs- oder Trainingsbedarf haben.In principle, assisted operating support and an associated improvement in the evenness of the compacted soil can be achieved if the method according to the invention is only applied to a single reversal of the soil compaction machine. The operator can then use the resulting feedback to optimize future reversals if necessary. However, it is preferred that the method is carried out for several, in particular all, reversing processes within a work interval. In this way, the operator is continuously assisted and an optimal work result is achieved. A work interval describes, for example, an operator's working day or an operator's working time on a specific construction site. In principle, however, smaller work intervals could also be considered, for example one or more hours of a work day or work assignment. In particular, it can be provided that an overall rating is created from the individual ratings of all reversing processes in the work interval, which is also output or saved. The overall rating can, for example, follow the same pattern as the rating of an individual reversal. For example, a school grading system can also be used here. or similar. The overall rating is, for example, the average of all ratings for the work interval. The overall rating can be used by the operator to find out whether the control of the soil compaction machine he carried out was appropriate for the current construction site and/or whether his control of the soil compaction machine has improved or worsened. At the same time, an operator of the soil compaction machine can determine whether and which operators need additional training.

Das vorstehend beschriebene Verfahren ermittelt somit bevorzugt einen oder mehrere genannte Parameter, identifiziert daraus einen Reversiervorgang, beispielsweise durch Ermittlung einer Fahrrichtungsumkehr, vergleicht dann den tatsächlichen Reversiervorgang hinsichtlich eines oder mehrerer der genannten Parameter mit einem optimalen Reversiervorgang, beispielweise durch einen Vergleich mit einem oder mehreren Kennfeldern, Formeln etc., und bewertet anhand dieses Vergleichs, wie nah der tatsächlich erfolgte Reversiervorgang an den theoretisch optimalen Reversiervorgang herankommt in der vorstehend beschriebenen Weise. Dieses Bewertungsergebnis kann dann beispielsweise dem Fahrer angezeigt werden, der auf diese Weise auch bereits im laufenden Fahrbetrieb einen Hinweis bekommt, wie er seine Fahrweise in dieser Betriebssituation weiter optimieren kann.The method described above therefore preferably determines one or more of the parameters mentioned, identifies a reversing process from them, for example by determining a reversal of the direction of travel, then compares the actual reversing process with an optimal reversing process with regard to one or more of the parameters mentioned, for example by comparing it with one or more characteristic maps, formulas, etc., and uses this comparison to evaluate how close the actual reversing process comes to the theoretically optimal reversing process in the manner described above. This evaluation result can then be displayed to the driver, for example, who in this way receives an indication while driving on how he can further optimize his driving style in this operating situation.

Die Lösung der eingangs genannten Aufgabe gelingt ebenfalls mit einer Bodenverdichtungsmaschine, insbesondere Tandemwalze oder Walzenzug, mit wenigstens einer Walzbandage und einer Steuereinrichtung, wobei die Bodenverdichtungsmaschine zur Durchführung des Verfahrens ausgebildet ist. Insbesondere ist die Steuereinrichtung zur Durchführung des Verfahrens, selbstverständlich mit Ausnahme des Verfahrensschrittes des Steuerns der Bodenverdichtungsmaschine durch den Bediener, ausgebildet. Die Bodenverdichtungsmaschine kann dabei wie die eingangs beschriebene gattungsgemäße Bodenverdichtungsmaschine ausgestattet sein. Sämtliche für das erfindungsgemäße Verfahren beschriebenen Merkmale, Wirkungen und Vorteile gelten im übertragenen Sinne ebenfalls für die erfindungsgemäße Bodenverdichtungsmaschine und umgekehrt. Es wird lediglich zur Vermeidung von Wiederholungen auf die jeweils anderen Ausführungen Bezug genommen.The solution to the problem mentioned at the beginning is also achieved with a soil compaction machine, in particular a tandem roller or roller train, with at least one roller drum and a control device, whereby the soil compaction machine is designed to carry out the method. In particular, the control device is designed to carry out the method, of course with the exception of the method step of controlling the soil compaction machine by the operator. The soil compaction machine can be equipped like the generic soil compaction machine described at the beginning. All features, effects and advantages described for the method according to the invention also apply in a figurative sense to the soil compaction machine according to the invention and vice versa. Reference is made to the other embodiments only to avoid repetition.

Die Erfindung wird nachstehend anhand der in den Figuren gezeigten Ausführungsbeispiele näher erläutert. Es zeigen schematisch:

Figur 1:
eine Seitenansicht einer Tandemwalze;
Figur 2:
eine Seitenansicht eines Walzenzuges;
Figur 3:
das Auftreten von Wellen im Boden beim Reversieren ohne Einlenken;
Figur 4:
das Auftreten von schrägen Wellen im Boden beim Reversieren mit Einlenken;
Figur 5:
das Auftreten von Wellen im Boden durch zu spätes Reduzieren des Schwingungseintrags;
Figur 6:
die Vermeidung von Wellen im Boden durch frühzeitiges Reduzieren des Schwingungseintrags;
Figur 7:
den Verlauf verschiedener Parameter beim Reversieren;
Figur 8:
die Ausgabe einer positiven Wertung und einer Handlungsanweisung;
Figur 9:
die Ausgabe einer mittleren Wertung und einer Handlungsanweisung;
Figur 10:
die Ausgabe einer schlechten Wertung und einer Handlungsanweisung; und
Figur 11:
ein Ablaufdiagramm des Verfahrens.
The invention is explained in more detail below with reference to the embodiments shown in the figures. They show schematically:
Figure 1:
a side view of a tandem roller;
Figure 2:
a side view of a roller train;
Figure 3:
the appearance of waves in the ground when reversing without turning;
Figure 4:
the appearance of oblique waves in the ground when reversing with steering;
Figure 5:
the occurrence of waves in the ground due to reducing the vibration input too late;
Figure 6:
the prevention of waves in the ground by reducing the vibration input at an early stage;
Figure 7:
the course of various parameters during reversing;
Figure 8:
the issuing of a positive evaluation and an instruction for action;
Figure 9:
the issuance of an average rating and an instruction for action;
Figure 10:
the issue of a bad rating and an instruction for action; and
Figure 11:
a flow chart of the procedure.

Gleiche beziehungsweise gleich wirkende Bauteile sind in den Figuren mit den gleichen Bezugszeichen beziffert. Sich wiederholende Bauteile sind nicht in jeder Figur gesondert bezeichnet.Identical components or components with the same effect are numbered with the same reference numerals in the figures. Repeating components are not designated separately in each figure.

In den Figuren 1 und 2 sind zwei Bodenverdichtungsmaschinen 1 dargestellt. Konkret zeigt Figur 1 eine Tandemwalze und Figur 2 einen Walzenzug. Die Bodenverdichtungsmaschinen 1 weisen bevorzugt einen Maschinenrahmen 3 und einen Fahrerstand 2 auf. Die Tandemwalze gemäß Figur 1 weist bevorzugt eine vordere und eine hintere Walzbandage 5 auf, während der Walzenzug gemäß Figur 2 bevorzugt eine vordere Walzbandage 5 und am Hinterrahmen bevorzugt Räder 7 aufweist. Im Arbeitsbetrieb fahren die Bodenverdichtungsmaschinen 1 bevorzugt in oder entgegen der Arbeitsrichtung R über den Boden 8, beispielsweise eine von einem Straßenfertiger verlegte Asphaltschicht, und verdichten diesen. Hierfür weisen sie bevorzugt einen Antriebsmotor 4 auf, der beispielsweise ein Verbrennungsmotor oder ein Elektromotor sein kann. Die Walzbandagen 5 können jeweils mit einem Schwingungserreger 10 ausgestattet sein, der die jeweilige Walzbandage 5 zur Beeinflussung der Verdichtungsleistung in Schwingungen versetzt. Die Bodenverdichtungsmaschinen 1 umfassen ferner bevorzugt eine Steuereinrichtung 6, die insbesondere die wesentlichen Schritte des Verfahrens ausführt. Hierfür kann die Steuereinrichtung 6 ebenfalls mit einer Anzeigeeinrichtungen 9, beispielsweise einem Display, verbunden sein. Ferner können Eingabeeinrichtungen, wie beispielsweise Taster, Hebel etc. vorhanden sein, über die der Fahrer der Bodenverdichtungsmaschine Steuerbefehle, beispielsweise hinsichtlich der Fahrgeschwindigkeit, Lenkvorgaben, Einstellungen zu einer Erregereinrichtung etc., vornehmen kann. Darüber hinaus kann die Steuereinrichtung 6 mit einem Sensor 11 oder mit mehreren Sensoren 11 einer oder mehrerer Erfassungseinrichtungen verbunden sein, der oder die bevorzugt zur Erfassung der Fahrgeschwindigkeit und/oder der Fahrgeschwindigkeitsänderung und/oder der Fahrtrichtungsumkehr und/oder des Lenkwinkels und/oder des Schwingungseintrages oder von hiermit korrelierenden Größen ausgebildet sind. Um das Ergebnis des erfindungsgemäßen Vergleichs auch kabellos beispielsweise an einen zentralen Server übermitteln zu können, kann die Bodenverdichtungsmaschine 1 darüber hinaus eine Datenübertragungseinrichtung 12 aufweisen, die beispielsweise dazu ausgebildet sein kann, Daten über das Internet oder über eine andere kabellose Datenverbindung zu übertragen.In the Figures 1 and 2 Two soil compaction machines 1 are shown. Specifically, Figure 1 a tandem roller and Figure 2 a roller train. The soil compaction machines 1 preferably have a machine frame 3 and a driver's cab 2. The tandem roller according to Figure 1 preferably has a front and a rear roller drum 5, while the roller train according to Figure 2 preferably has a front roller drum 5 and preferably wheels 7 on the rear frame. During operation, the soil compaction machines 1 preferably travel in or against the working direction R over the soil 8, for example an asphalt layer laid by a road finisher, and compact it. For this purpose, they preferably have a drive motor 4, which can be, for example, an internal combustion engine or an electric motor. The roller drums 5 can each be equipped with a vibration exciter 10, which causes the respective roller drum 5 to vibrate in order to influence the compaction performance. The soil compaction machines 1 also preferably comprise a control device 6, which in particular carries out the essential steps of the method. For this purpose, the control device 6 can also be connected to a display device 9, for example a display. Furthermore, input devices such as buttons, levers, etc. can be present, via which the driver of the soil compaction machine can carry out control commands, for example with regard to the driving speed, steering specifications, settings for an excitation device, etc. In addition, the control device 6 can be connected to a sensor 11 or to several sensors 11 of one or more detection devices which is or are preferably designed to detect the driving speed and/or the change in driving speed and/or the reversal of the direction of travel and/or the steering angle and/or the vibration input or quantities correlated therewith. In order to be able to transmit the result of the comparison according to the invention wirelessly, for example to a central server, the soil compaction machine 1 can also have a data transmission device 12 which can be designed, for example, to transmit data via the Internet or via another wireless data connection.

In Figur 3 ist ein Reversieren der Bodenverdichtungsmaschine 1 dargestellt. Insbesondere zeigen die Darstellungen a) bis e) dieselbe Bodenverdichtungsmaschine 1 auf demselben Baustellenabschnitt in Draufsicht aus der Vogelperspektive, allerdings in zeitlich aufeinander folgenden Momentaufnahmen. So fährt die Bodenverdichtungsmaschine 1 in Darstellung a) mit einer Fahrgeschwindigkeit v in Arbeitsrichtung R, wobei die Fahrgeschwindigkeit v in Darstellung a) einer Arbeitsgeschwindigkeit der Bodenverdichtungsmaschine 1 entspricht, in der diese üblicherweise den Boden 8 verdichtet. In Darstellung b) wurde die Bodenverdichtungsmaschine 1 bereits teilweise abgebremst, sodass die Fahrgeschwindigkeit v kleiner ist als diejenige der Darstellung a). In Darstellung c) ist die Bodenverdichtungsmaschine 1 zum Stillstand gekommen. Der in Darstellung c) dargestellte Zeitpunkt ist also der Zeitpunkt des Reversierens beziehungsweise der Umkehrpunkt der Bodenverdichtungsmaschine 1, wenn die Maschine, wie in d) dargestellt, in entgegengesetzter Fahrtrichtung wieder anfährt. Zum Zeitpunkt der Darstellung d) wiederum ist die Bodenverdichtungsmaschine 1 bereits in entgegengesetzter Fahrtrichtung, also entgegen der Arbeitsrichtung R beschleunigt worden und fährt mit einer Fahrgeschwindigkeit v, die betragsmäßig allerdings noch unter der Arbeitsgeschwindigkeit bzw. der zu erreichenden Arbeitsgeschwindigkeit der Bodenverdichtungsmaschine 1 liegt. In der Situation gemäß Darstellung e) ist die Bodenverdichtungsmaschine 1 wieder auf eine Fahrgeschwindigkeit v beschleunigt worden, die der Arbeitsgeschwindigkeit entspricht. Die Wegstrecke L, auf die sich das Verfahren beispielsweise beziehen kann, kann durch den Abstand des Umkehrpunktes der Bodenverdichtungsmaschine 1 bis zu demjenigen Ort verlaufen, an dem die Bodenverdichtungsmaschine 1 wieder eine Fahrgeschwindigkeit v erreicht hat, die der vorgegebenen Arbeitsgeschwindigkeit entspricht. Alternativ kann die Wegstrecke L auch durch eine Distanz vorgegeben sein, beispielsweise 30 m.In Figure 3 a reversing of the soil compaction machine 1 is shown. In particular, representations a) to e) show the same soil compaction machine 1 on the same construction site section in a bird's eye view, but in chronologically successive snapshots. In representation a), the soil compaction machine 1 travels at a travel speed v in the working direction R, whereby the travel speed v in representation a) corresponds to a working speed of the soil compaction machine 1 at which it usually compacts the soil 8. In representation b), the soil compaction machine 1 has already been partially braked, so that the travel speed v is lower than that of representation a). In representation c), the soil compaction machine 1 has come to a standstill. The time shown in representation c) is therefore the time of reversing or the turning point of the soil compaction machine 1 when the machine starts moving again in the opposite direction, as shown in d). At the time of representation d), the soil compaction machine 1 has already been accelerated in the opposite direction of travel, i.e. against the working direction R, and is traveling at a travel speed v which, however, is still below the working speed or the working speed to be achieved by the soil compaction machine 1. In the situation according to representation e), the soil compaction machine 1 has been accelerated again to a travel speed v which corresponds to the working speed. The distance L to which the method can refer, for example, can run through the distance from the turning point of the soil compaction machine 1 to the location at which the soil compaction machine 1 has again reached a travel speed v which corresponds to the predetermined working speed. Alternatively, the distance L can also be specified by a distance, for example 30 m.

Wie in Figur 3 in den Darstellungen d) und e) gezeigt ist, hinterlässt die Bodenverdichtungsmaschine 1 beziehungsweise deren Walzbandagen 5 am Ort des Reversierens beziehungsweise am Umkehrpunkt der Bodenverdichtungsmaschine 1 jeweils eine Bodenwelle 13. Im Fall der Figur 3 sind diese Bodenwellen 13 senkrecht zur Arbeitsrichtung R ausgerichtet, da beim Reversieren nicht eingelenkt wurde. Derartige Bodenwellen 13 werden bei nachfolgenden Überfahrten der Bodenverdichtungsmaschine 1 nur schlecht geglättet. Es besteht daher eine erhöhte Gefahr, dass die Bodenwellen 13 auch am Ende der Arbeit noch die Ebenheit des Bodens 8 negativ beeinflussen. Figur 4 zeigt denselben Vorgang wie Figur 3. Der einzige Unterschied liegt darin, dass der Bediener der Bodenverdichtungsmaschine 1 in Figur 4 beim Reversieren einlenkt, wie insbesondere in Darstellung c) gezeigt. Durch das Einlenken sind die entstehenden Bodenwellen 13 hinsichtlich des Längsverlaufes ihres Wellentals nicht mehr senkrecht zur Arbeitsrichtung R, sondern schräg zur Arbeitsrichtung R ausgerichtet. Derartige Bodenwellen 13 werden bei nachfolgenden Überfahrten der Bodenverdichtungsmaschine 1 deutlich effizienter geglättet als die Bodenwellen 13 gemäß Figur 3, da sie in einem schrägen Winkel überfahren werden. Insgesamt entsteht daher durch das Vorgehen gemäß Figur 4 ein deutlich ebenerer verdichteter Boden 8.As in Figure 3 As shown in the illustrations d) and e), the soil compaction machine 1 or its roller drums 5 leave a soil wave 13 at the location of reversing or at the turning point of the soil compaction machine 1. In the case of Figure 3 these bumps 13 are aligned perpendicular to the working direction R, since no steering was used when reversing. Such bumps 13 are only poorly smoothed out during subsequent passes of the soil compaction machine 1. There is therefore an increased risk that the bumps 13 will still affect the evenness of the ground at the end of the work. 8 negatively influence. Figure 4 shows the same process as Figure 3 The only difference is that the operator of soil compaction machine 1 in Figure 4 when reversing, as shown in particular in illustration c). As a result of the reversing, the resulting bumps 13 are no longer aligned perpendicular to the working direction R with regard to the longitudinal course of their trough, but obliquely to the working direction R. Such bumps 13 are smoothed out significantly more efficiently during subsequent passes of the soil compaction machine 1 than the bumps 13 according to Figure 3 , as they are driven over at an oblique angle. Overall, the procedure according to Figure 4 a much more level compacted soil 8.

Die Figuren 5 und 6 zeigen den Ablauf eines Reversierens der Bodenverdichtungsmaschine 1, analog zu den Figuren 3 und 4. In den Figuren 5 und 6 sind nun Einwirkungen 14 von Schwingungen der Walzbandagen 5 auf den Boden 8 gezeigt. Die Einwirkungen 14 können dabei als Impacts im Sinne eines IPF-Wertes verstanden werden. Beispielsweise zeigt eine Einwirkung 14 einen Ort an, an dem durch die Schwingung der Walzbandage 5 diese auf den Boden 8 gedrückt wird. Mit anderen Worten wird an den Orten der Einwirkungen 14 Schwingungsenergie auf den Boden 8 übertragen. Der Abstand zwischen den Einwirkungen 14 ist dabei ein Maß für den Schwingungseintrag, wobei näher aneinander dargestellte Einwirkungen 14 einen höheren Schwingungseintrag bedeuten. Selbstredend handelt es sich bei den Figuren 5 und 6 lediglich um Prinzipskizzen, die die zugrundeliegenden Vorgänge verständlich machen sollen, diese allerdings nicht in realistischer Weise darstellen.The Figures 5 and 6 show the process of reversing the soil compaction machine 1, analogous to the Figures 3 and 4 . In the Figures 5 and 6 now the effects 14 of vibrations of the rolling bands 5 on the ground 8 are shown. The effects 14 can be understood as impacts in the sense of an IPF value. For example, an effect 14 indicates a location where the vibration of the rolling band 5 presses it onto the ground 8. In other words, vibration energy is transferred to the ground 8 at the locations of the effects 14. The distance between the effects 14 is a measure of the vibration input, whereby effects 14 shown closer to each other mean a higher vibration input. Of course, the Figures 5 and 6 merely schematic diagrams intended to make the underlying processes understandable, but do not represent them in a realistic manner.

In Figur 5 sind zwei separate Fehler in der Bedienung durch den Bediener gezeigt. Insbesondere zeigen die Darstellungen a) bis c) den Fall, dass der Schwingungseintrag in den Boden 8 zu spät vor dem Reversieren der Bodenverdichtungsmaschine 1 reduziert wird, beispielsweise auf null. Das Reduzieren des Schwingungseintrags wird beispielsweise dadurch erreicht, dass der Schwingungserreger 10 beziehungsweise die Vibration der Walzbandage 5 abgeschaltet wird. Das Reduzieren des Schwingungseintrags erfolgt erst zu einem Zeitpunkt, bei dem die Bodenverdichtungsmaschine 1 bereits auf eine Fahrgeschwindigkeit v abgebremst wurde, die so klein ist, dass auf einer kurzen Wegstrecke zu viele Einwirkungen 14 beziehungsweise ein zu großer Schwingungseintrag stattfindet. Dies ist durch die eng aneinander angeordneten Einwirkungen 14 in Darstellung c) gezeigt. Dort, wo die Einwirkungen 14 zu eng aneinander liegen beziehungsweise der Schwingungseintrag zu groß ist, können Bodenwellen entstehen, die der Ebenheit des zurückgelassenen Bodens 8 nach der Arbeit abträglich sind. In den Darstellungen d) und e) ist dagegen der Fall dargestellt, dass der Schwingungseintrag in den Boden 8 zu früh nach dem Reversieren der Bodenverdichtungsmaschine 1 wieder erhöht wird, beispielsweise ausgehend von null. Hierfür wird beispielsweise der Schwingungserreger 10 beziehungsweise die Vibration der Walzbandage 5 eingeschaltet. Insbesondere wird der Schwingungseintrag zu einem Zeitpunkt erhöht, an dem die Bodenverdichtungsmaschine 1 erst auf eine zu kleine Fahrgeschwindigkeit v beschleunigt wurde, so dass es wieder dazu kommt, dass die Einwirkungen 14 zumindest über eine Teilstrecke hinweg zu eng aneinander liegen beziehungsweise der Schwingungseintrag zu groß ist, wodurch wiederum Bodenwellen entstehen können. Dies wird in den Darstellungen d) und e) ebenfalls durch die nah aneinander liegenden Einwirkungen 14 gezeigt. Im schlimmsten Fall treten die gezeigten Fälle gemäß den Darstellungen a) bis c) und d) bis e) gemeinsam bei einem einzigen Reversieren der Bodenverdichtungsmaschine 1 auf. Selbstverständlich können die beiden Fälle allerdings auch alleine bei einem Reversieren der Bodenverdichtungsmaschine 1 auftreten. Dies wird gegebenenfalls in der Wertung des Reversierens berücksichtigt.In Figure 5 two separate errors in operation by the operator are shown. In particular, illustrations a) to c) show the case where the vibration input into the ground 8 is reduced too late before the soil compaction machine 1 is reversed, for example to zero. The reduction in the vibration input is achieved, for example, by switching off the vibration exciter 10 or the vibration of the roller drum 5. The reduction in the vibration input only takes place at a time when the soil compaction machine 1 has already been braked to a travel speed v that is so low that too many influences 14 or too great a vibration input occur over a short distance. This is shown by the influences 14 arranged closely together in illustration c). Where the influences 14 are too close together or the vibration input is too great, ground waves can arise that are detrimental to the evenness of the soil 8 left behind after the work. In the illustrations d) and e), however, the case is shown in which the vibration input into the soil 8 is increased again too soon after the soil compaction machine 1 has been reversed, for example starting from zero. For this purpose, for example, the vibration exciter 10 or the vibration of the roller drum 5 is switched on. In particular, the vibration input is increased at a time when the soil compaction machine 1 has only accelerated to a driving speed v that is too low, so that the influences 14 are too close together, at least over a section of the route, or the vibration input is too great, which in turn can cause bumps in the ground. This is also shown in illustrations d) and e) by the influences 14 being close to one another. In the worst case, the cases shown in illustrations a) to c) and d) to e) occur together when the soil compaction machine 1 is reversed just once. Of course, the two cases can also occur alone when the soil compaction machine 1 is reversed. This is taken into account when evaluating the reversing.

Auch in Figur 6 ist der Ablauf eines Reversierens der Bodenverdichtungsmaschine 1 gezeigt. In Figur 6 ist in den Darstellungen a) bis c) dargestellt, dass die Bodenverdichtungsmaschine 1 zum Reversieren abbremst, wobei hier insbesondere der Schwingungseintrag rechtzeitig vor dem Stillstand reduziert wird. Beispielsweise wird der Schwingungserreger 10 ausreichend früh abgeschaltet, so dass der Rückgang der Fahrgeschwindigkeit v der Bodenverdichtungsmaschine 1 durch einen Rückgang des Schwingungseintrags, beispielsweise durch ein Abnehmen der Frequenz des Schwingungserregers 10, ausgeglichen wird. Der Schwingungseintrag nimmt daher im Wesentlichen im gleichen Maße wie die Fahrgeschwindigkeit v ab und es entstehen keine Teilstrecken, auf denen der Schwingungseintrag zu groß ist, sprich, auf denen zu stark verdichtet wird. Dies ist durch den gleichmäßigen Abstand der Einwirkungen 14 dargestellt. Auf diese Weise entstehen auch keine oder zumindest keine nennenswerten Bodenwellen, die der Ebenheit des verdichteten Bodens 8 am Ende des Arbeitsbetriebes abträglich sind. In den Darstellungen d) und e) der Figur 6 ist derjenige Fall dargestellt, in dem die Bodenverdichtungsmaschine 1 nach der Fahrtrichtungsumkehr erneut beschleunigt. Hierbei wird der Schwingungseintrag in den Boden 8 allerdings erst zu einem Zeitpunkt wieder erhöht, bei dem die Fahrgeschwindigkeit v der Bodenverdichtungsmaschine 1 bereits ausreichend hoch ist, sodass auch hier keine Teilstrecken mit zu hohem Schwingungseintrag entstehen. Beispielsweise wird hierzu der Schwingungserreger 10 erst dann wieder angeschaltet, nachdem die Bodenverdichtungsmaschine 1 eine ausreichend große Fahrgeschwindigkeit v erreicht hat. Auf diese Weise wird die Entstehung von Bodenwellen verhindert, was durch den gleichmäßigen Abstand der Einwirkungen 14 dargestellt ist. In Figur 6 ist daher ein Reversieren dargestellt, bei dem sowohl vor als auch nach dem Umkehrpunkt optimal gesteuert wird. Wie bereits erläutert, können Fehler allerdings auch separat voneinander vor oder nach dem Umkehrpunkt auftreten, was entsprechend in der Wertung berücksichtigt wird.Also in Figure 6 the process of reversing the soil compaction machine 1 is shown. In Figure 6 In the illustrations a) to c) it is shown that the soil compaction machine 1 brakes to reverse, whereby here in particular the vibration input is reduced in good time before the machine comes to a standstill. For example, the vibration exciter 10 is switched off sufficiently early so that the reduction in the driving speed v of the soil compaction machine 1 is compensated by a reduction in the vibration input, for example by a reduction in the frequency of the vibration exciter 10. The vibration input therefore decreases essentially to the same extent as the driving speed v and there are no sections on which the vibration input is too great, i.e. on which too much compaction takes place. This is shown by the even spacing of the influences 14. In this way, no or at least no significant ground waves are created that are detrimental to the evenness of the compacted soil 8 at the end of the working operation. In the illustrations d) and e) of the Figure 6 the case is shown in which the soil compaction machine 1 accelerates again after reversing the direction of travel. However, the vibration input into the soil 8 is only increased again at a time when the driving speed v of the soil compaction machine 1 is already sufficiently high, so that here too no sections with excessive vibration input arise. For example, the vibration exciter 10 is only switched on again after the soil compaction machine 1 has reached a sufficiently high driving speed v. In this way, the formation of ground waves is prevented, which is shown by the uniform spacing of the influences 14. In Figure 6 A reversal is therefore shown, where optimal control is provided both before and after the reversal point. As already explained, however, errors can also occur separately before or after the reversal point, which is taken into account accordingly in the evaluation.

Die in den Figuren 4 und 6 jeweils optimierten Prozesse werden zudem besonders bevorzugt miteinander kombiniert, d.h. es erfolgt bevorzugt ein Schrägeinlenken, wie in Fig. 4 gezeigt, und ein ausreichend frühes und spätes Aus- und Einschalten der Schwingungserreger, wie in Fig. 6 dargestellt.The Figures 4 and 6 The optimized processes are also particularly preferably combined with each other, ie an oblique steering is preferred, as in Fig.4 shown, and a sufficiently early and late switching on and off of the vibration exciters, as in Fig.6 shown.

Figur 7 zeigt den zeitlichen Zusammenhang zwischen der Fahrgeschwindigkeit v, der Fahrgeschwindigkeitsänderung a sowie dem Lenkwinkel w und dem Schwingungseintrag S der Bodenverdichtungsmaschine 1. Hierfür sind für diese jeweiligen Werte Diagramme übereinander dargestellt, deren Abszisse jeweils die Zeit t angibt, die über sämtliche Diagramme der Figur 7 hinweg synchronisiert ist. Auf der Ordinate der jeweiligen Diagramme sind dann die entsprechenden Werte der genannten Parameter aufgetragen. Figure 7 shows the temporal relationship between the driving speed v, the change in driving speed a as well as the steering angle w and the vibration input S of the soil compaction machine 1. For this purpose, diagrams are shown one above the other for these respective values, the abscissa of which indicates the time t that is spread over all diagrams of the Figure 7 The corresponding values of the parameters mentioned are then plotted on the ordinate of the respective diagrams.

Das oberste Diagramm der Figur 7 zeigt beispielsweise die Fahrgeschwindigkeit v der Bodenverdichtungsmaschine 1. Von links nach rechts ist dargestellt, dass die Bodenverdichtungsmaschine 1 aus dem Stillstand beschleunigt wird, bis sie eine konstante Fahrgeschwindigkeit v erreicht hat, beispielsweise die Arbeitsgeschwindigkeit. Nachdem die Bodenverdichtungsmaschine 1 eine Strecke mit dieser Fahrgeschwindigkeit v zurückgelegt hat, wird sie wieder bis in den Stillstand abgebremst. Anschließend wird sie wieder in dieselbe Richtung wie zuvor beschleunigt, bis sie wieder eine konstante Fahrgeschwindigkeit v erreicht hat. Bei diesem Vorgang handelt es sich also um ein Abbremsen und nachfolgendes Beschleunigen der Bodenverdichtungsmaschine 1, wobei sich die Fahrtrichtung nicht geändert hat. Zwar kann auch dieser Vorgang auf die Ebenheit des Bodens 8 nach der Arbeit Einfluss nehmen, es handelt sich hierbei allerdings nicht um ein Reversieren der Bodenverdichtungsmaschine 1, worauf es vorliegend besonders ankommen soll. Nach einer Strecke mit konstanter Fahrgeschwindigkeit v wird die Bodenverdichtungsmaschine 1 erneut bis zum Stillstand abgebremst, dann allerdings in die entgegengesetzte Richtung beschleunigt, beispielsweise wieder bis auf die Arbeitsgeschwindigkeit, nur in der entgegengesetzten Richtung. Mit anderen Worten hat hier ein Reversieren der Bodenverdichtungsmaschine 1 stattgefunden. Der Zeitabschnitt um das Reversieren wird als Intervall T bezeichnet. Dieses kann beispielsweise einen festen Betrag haben oder alternativ auch beispielsweise dadurch festgelegt werden, wann die Bodenverdichtungsmaschine 1 vor dem Reversieren aus der Arbeitsgeschwindigkeit abgebremst und nach dem Reversieren wieder auf die Arbeitsgeschwindigkeit beschleunigt wurde. Im weiteren Verlauf fährt die Bodenverdichtungsmaschine 1 mit im Wesentlichen konstanter Fahrgeschwindigkeit v, beispielsweise der Arbeitsgeschwindigkeit, und wird dann erneut reversiert. Die Bodenverdichtungsmaschine 1 wird also wieder bis auf den Stillstand abgebremst und danach in die entgegengesetzte Richtung beschleunigt. Auch dieses Reversieren findet innerhalb eines zeitlichen Intervalls T statt. Dieses zweite Intervall T kann grundsätzlich genauso groß sein wie das erste Intervall T. Es ist allerdings auch denkbar, dass die Intervalle T unterschiedlich groß sind, beispielsweise insbesondere dann, wenn diese funktional festgelegt werden, beispielsweise anhand eines Wertes der Fahrgeschwindigkeit v. Aus dem Diagramm der Fahrgeschwindigkeit v geht darüber hinaus ebenfalls hervor, wie anhand der Fahrgeschwindigkeit v oder einer Fahrrichtungsumkehr auf ein Reversieren der Bodenverdichtungsmaschine 1 geschlossen werden kann. Dies ergibt sich insbesondere aus einer Umkehr des Vorzeichens der Fahrgeschwindigkeit v.The top diagram of the Figure 7 shows, for example, the driving speed v of the soil compaction machine 1. From left to right it is shown that the soil compaction machine 1 is accelerated from a standstill until it has reached a constant driving speed v, for example the working speed. After the soil compaction machine 1 has covered a distance at this driving speed v, it is braked again to a standstill. It is then accelerated again in the same direction as before until it has again reached a constant driving speed v. This process therefore involves braking and subsequent acceleration of the soil compaction machine 1, whereby the direction of travel has not changed. Although this process can also influence the evenness of the ground 8 after work, it does not involve reversing the soil compaction machine 1, which is what is particularly important here. After a distance at a constant driving speed v, the soil compaction machine 1 is braked again to a standstill, but then accelerated in the opposite direction, for example back to the working speed, only in the opposite direction. In other words, the soil compaction machine 1 has been reversed here. The time period around the reversal is referred to as interval T. This can, for example, have a fixed amount or, alternatively, can be determined, for example, by when the soil compaction machine 1 was braked from the working speed before reversing and accelerated back to the working speed after reversing. In the further course, the soil compaction machine 1 travels at an essentially constant travel speed v, for example the working speed, and is then reversed again. The soil compaction machine 1 is thus braked again to a standstill and then accelerated in the opposite direction. This reversal also takes place within a time interval T. This second interval T can in principle be just as long as the first interval T. However, it is also conceivable that the intervals T are of different sizes, for example in particular when they are functionally determined, for example based on a value of the travel speed v. The diagram of the travel speed v also shows how a reversal of the soil compaction machine 1 can be concluded based on the travel speed v or a reversal of the direction of travel. This results in particular from a reversal of the sign of the driving speed v.

Direkt unter dem Diagramm der Fahrgeschwindigkeit v zeigt Figur 7 ein Diagramm der Beschleunigung beziehungsweise der Fahrgeschwindigkeitsänderung a der Bodenverdichtungsmaschine 1. Wie gezeigt kann auch die Fahrgeschwindigkeitsänderung a zur Identifizierung eines Reversierens der Bodenverdichtungsmaschine 1 genutzt werden. Insbesondere ergibt sich beim Reversieren eine durch den Stillstand der Maschine getrennte zweifache Fahrgeschwindigkeitsänderung a in dieselbe Richtung, woraus auf ein Reversieren geschlossen werden kann. Wie sich aus dem linken Teil des Diagramms ergibt, liegt eine derartige doppelte, gleich gerichtete Fahrgeschwindigkeitsänderung a bei einer unterbrochenen Geradeausfahrt in einer Richtung nicht vor.Directly below the diagram of the driving speed v shows Figure 7 a diagram of the acceleration or the change in driving speed a of the soil compaction machine 1. As shown, the change in driving speed a can also be used to identify a reversal of the soil compaction machine 1. In particular, when reversing, there is a double change in driving speed a in the same direction, separated by the machine coming to a standstill, from which it can be concluded that reversing has occurred. As can be seen from the left part of the diagram, such a double, identically directed change in driving speed a does not occur when driving straight ahead in one direction without interruption.

Unter dem Diagramm der Fahrgeschwindigkeitsänderung a ist in Figur 7 ein Diagramm des Lenkwinkels w gezeigt. Da es auf die Richtung des Einlenkens beim Reversieren nicht ankommt, zumindest in Bezug auf die Ebenheit des Bodens 8 nach dem Arbeitsbetrieb, ist lediglich der Betrag des Lenkwinkels w dargestellt. Darüber hinaus zeigt das Diagramm lediglich Lenkwinkel w, die einem Einlenken während des Reversierens innerhalb der Intervalle T entsprechen. Andere, während der Fahrt der Bodenverdichtungsmaschine 1 auftretende Lenkwinkel w sind nicht dargestellt. Insbesondere zeigt das Diagramm, dass der Lenkwinkel w im ersten, links dargestellten, Intervall T unter einem durch die gestrichelte Linie parallel zur Abszisse dargestellten Schwellenwert bleibt. Dies bedeutet, dass der Bediener während diesem Reversieren der Bodenverdichtungsmaschine 1 nicht ausreichend eingelenkt hat, sodass die am Umkehrpunkt entstehenden Bodenwellen 13 nicht ausreichend schräg zur Arbeitsrichtung R ausgerichtet sind, um in nachfolgenden Überfahrten der Bodenverdichtungsmaschine 1 optimal geglättet zu werden. Mit anderen Worten liegt eine Abweichung von einem Referenzwert vor, der beispielsweise durch den angedeuteten Schwellenwert gegeben ist. Die ansprechende Abweichung kann quantitativ bestimmt werden und geht in eine entsprechende Wertung des Reversierens der Bodenverdichtungsmaschine 1 durch den Bediener ein. Die Situation des Reversierens im ersten, links dargestellten Intervall T entspricht daher derjenigen gemäß Figur 3. Im Gegensatz dazu zeigt das Diagramm, dass der Lenkwinkel w im zweiten, rechts dargestellten, Intervall T über dem durch die gestrichelte Linie parallel zur Abszisse dargestellten Schwellenwert liegt. Hier hat der Bediener also beim Reversieren der Bodenverdichtungsmaschine 1 ausreichend weit eingelenkt, was dazu führt, dass die am Umkehrpunkt entstehenden Bodenwellen 13 derart schräg zur Arbeitsrichtung R ausgerichtet sind, dass sie bei nachfolgenden Überfahrten der Bodenverdichtungsmaschine 1 optimal geglättet werden können. Auf diese Weise wird daher insgesamt die Ebenheit des von der Bodenverdichtungsmaschine 1 hinterlassenen, verdichteten Bodens 8 positiv beeinflusst. Die Situation des Reversierens im zweiten, rechts dargestellten Intervall T entspricht daher derjenigen gemäß Figur 4.Below the diagram of the driving speed change a is Figure 7 a diagram of the steering angle w is shown. Since the direction of the steering when reversing is not important, at least with regard to the evenness of the ground 8 after work, only the amount of the steering angle w is shown. In addition, the diagram only shows steering angles w that correspond to a steering during reversing within the intervals T. Other steering angles w that occur while the soil compaction machine 1 is traveling are not shown. In particular, the diagram shows that the steering angle w in the first interval T shown on the left remains below a threshold value shown by the dashed line parallel to the abscissa. This means that the operator did not steer sufficiently during this reversing of the soil compaction machine 1, so that the bumps 13 in the ground that arise at the reversal point are not aligned sufficiently obliquely to the working direction R in order to be optimally smoothed out in subsequent passes of the soil compaction machine 1. In other words, there is a deviation from a reference value that is given, for example, by the indicated threshold value. The relevant deviation can be determined quantitatively and is included in a corresponding evaluation of the reversing of the soil compaction machine 1 by the operator. The situation of reversing in the first interval T shown on the left therefore corresponds to that according to Figure 3 . In contrast, the diagram shows that the steering angle w in the second interval T shown on the right is above the threshold value shown by the dashed line parallel to the abscissa. Here, the operator has therefore turned sufficiently far when reversing the soil compaction machine 1, which means that the bumps 13 created at the reversal point are aligned at an angle to the working direction R in such a way that they can be optimally smoothed out during subsequent passes of the soil compaction machine 1. In this way, the overall evenness of the compacted soil 8 left behind by the soil compaction machine 1 is positively influenced. The situation of reversing in the second interval T shown on the right therefore corresponds to that according to Figure 4 .

Das unterste in Figur 7 dargestellte Diagramm betrifft den Schwingungseintrag S. Um eine punktuell zu starke Verdichtung des Bodens 8 zu vermeiden, da diese zu Wellenbildung führen würde, ist es im Arbeitsbetrieb der Bodenverdichtungsmaschine 1 vorgesehen, dass der Schwingungseintrag S nur dann erhöht wird, beziehungsweise der Schwingungserreger 10 nur dann mit einer Energieübertragung auf den Boden 8 betrieben wird, wenn die Bodenverdichtungsmaschine 1 mit einer ausreichenden Fahrgeschwindigkeit v fährt. Dies ist beispielsweise auch links im Diagramm bei der pausierten Vorwärtsfahrt der Bodenverdichtungsmaschine 1 dargestellt. Auch hier hat allerdings das Reversieren der Bodenverdichtungsmaschine 1 einen besonderen Stellenwert, schon alleine, weil es im Arbeitsbetrieb der Bodenverdichtungsmaschine 1 besonders häufig vorkommt. Wie in den Intervallen T um das Reversieren der Bodenverdichtungsmaschine 1 dargestellt ist, wird der Schwingungseintrag S vor dem Stillstand der Maschine reduziert, insbesondere auf null. Nach der Fahrrichtungsumkehr wiederum wird der Schwingungseintrag S dann typischerweise wieder erhöht. Es kann allerdings auch vorkommen, dass nur vor oder nur nach dem Reversieren ein Schwingungseintrag S genutzt wird beziehungsweise vorliegt. Auch dann kann das Verfahren auf das Reduzieren des Schwingungseintrages S vor dem Reversieren oder auf das Erhöhen des Schwingungseintrags S nach dem Reversieren angewendet werden. Insbesondere zeigt das Diagramm im ersten, links dargestellten, Intervall T, dass der Schwingungseintrag S frühzeitig vor dem Reversieren reduziert wird, so dass die Fahrgeschwindigkeit v ausreichend groß ist, so lange noch ein Schwingungseintrag S vorliegt. Darüber hinaus wird der Schwingungseintrag S erst dann wieder erhöht, wenn die Bodenverdichtungsmaschine 1 eine ausreichende Fahrgeschwindigkeit v erreicht hat. Es entstehen hierbei also keine Streckenabschnitte, in denen ein übermäßiges Verdichten des Bodens 8 stattfindet oder in denen ein übermäßiger Schwingungseintrag S vorliegt. Die Steuerung der Bodenverdichtungsmaschine 1 in diesem Intervall T ist daher optimal bezüglich der Ebenheit des hinterlassenen Bodens 8. Die Situation entspricht daher derjenigen der Figur 6. Darüber hinaus zeigt das Diagramm im zweiten, rechts dargestellten, Intervall T, dass der Schwingungseintrag S vor dem Stillstand der Maschine beim Reversieren zu spät reduziert wird. Der Schwingungseintrag S ist auch dann noch maximal, wenn die Fahrgeschwindigkeit v der Bodenverdichtungsmaschine 1 bereits in einem Maße abgenommen hat, die dazu führt, dass der von der Bodenverdichtungsmaschine 1 überfahrene Boden 8 zu stark verdichtet wird. In diesem Fall kommt es also zu Bodenwellen, die die Ebenheit des hinterlassenen Bodens 8 negativ beeinflussen. Nach dem Umkehrpunkt dagegen entspricht das Erhöhen des Schwingungseintrags S demjenigen des vorhergehenden Intervalls T, so dass der Schwingungseintrag S erst dann erhöht wird, wenn die Fahrgeschwindigkeit v der Bodenverdichtungsmaschine 1 bereits ausreichend groß ist. Die dargestellte Situation im zweiten, rechts dargestellten, Intervall T ist also zusammengesetzt aus analogen Situationen zu den Darstellungen a) bis c) der Figur 5 und den Darstellungen d) und e) der Figur 6.The lowest in Figure 7 The diagram shown relates to the vibration input S. In order to avoid excessive compaction of the soil 8 in certain places, as this would lead to the formation of waves, it is provided that the vibration input S is only increased during operation of the soil compaction machine 1, or the vibration exciter 10 is only operated with energy transfer to the soil 8, when the soil compaction machine 1 is traveling at a sufficient speed v. This is also shown, for example, on the left in the diagram when the soil compaction machine 1 is paused in its forward travel. Here too, however, the reversing of the soil compaction machine 1 has a special significance, if only because it occurs particularly frequently during operation of the soil compaction machine 1. As shown in the intervals T around the reversing of the soil compaction machine 1, the vibration input S is reduced before the machine comes to a standstill, in particular to zero. After the direction of travel is reversed, the vibration input S is then typically increased again. However, it can also happen that a vibration input S is used or is present only before or only after reversing. Even then, the method can be applied to reduce the vibration input S before reversing or to increase the vibration input S after reversing. In particular, the diagram in the first interval T shown on the left shows that the vibration input S is reduced early before reversing so that the driving speed v is sufficiently high as long as a vibration input S is still present. In addition, the vibration input S is only increased again when the soil compaction machine 1 has reached a sufficient driving speed v. This means that there are no sections of the route in which excessive compaction of the soil 8 takes place or in which excessive vibration input S is present. The control of the soil compaction machine 1 in this interval T is therefore optimal with regard to the evenness of the soil 8 left behind. The situation therefore corresponds to that of the Figure 6 . In addition, the diagram in the second interval T shown on the right shows that the vibration input S is reduced too late before the machine comes to a standstill when reversing. The vibration input S is still at a maximum even when the driving speed v of the soil compaction machine 1 has already decreased to such an extent that the soil 8 driven over by the soil compaction machine 1 is compacted too much. In this case, there are therefore undulations in the ground that have a negative effect on the evenness of the soil 8 left behind. After the reversal point, however, the increase in the vibration input S corresponds to that of the previous interval T, so that the vibration input S is only increased when the driving speed v of the soil compaction machine 1 is already sufficiently high. The situation shown in the second interval T shown on the right is therefore composed of analogous situations to the representations a) to c) of the Figure 5 and the representations d) and e) of the Figure 6 .

Die Figuren 8, 9 und 10 zeigen beispielhaft, wie eine Anzeige des Ergebnisses des Vergleichs im Zuge der Ausgabe an der Anzeigeeinrichtung 9 aussehen könnte. Die Anzeigeeinrichtung 9 kann beispielsweise einen Bildschirm oder ein Display sein, welcher mit der Steuereinrichtung 6 verbunden ist. Das Ausgeben des Ergebnisses des Vergleichs kann dabei beispielsweise über ein Wertungssymbol 15 erfolgen, welches die vom Vergleich ermittelte Wertung symbolisiert. Im gezeigten Beispiel handelt es sich bei dem Wertungssymbol 15 um einen Smiley, der je nach dem Ergebnis des Vergleichs beziehungsweise je nach Qualität der Wertung beispielsweise ein Einhalten der Referenzwerte (Figur 8), eine geringfügige Abweichung von den Referenzwerten (Figur 9) oder ein signifikantes Abweichen von den Referenzwerten (Figur 10) darstellt. Auf diese Weise kann ein Bediener auf einen Blick sofort erkennen, ob die Steuerung der Bodenverdichtungsmaschine 1 beim zurückliegenden Reversieren den Vorgaben entsprochen hat oder nicht. Gegebenenfalls kann er die Steuerung der Bodenverdichtungsmaschine 1 für zukünftiges Reversieren anpassen. Um dem Bediener bei der Bedienung zu assistieren beziehungsweise ihn zu unterstützen, kann neben dem Wertungssymbol 15 ebenfalls eine Handlungsanweisung 16, beispielsweise in Schriftform, auf der Anzeigeeinrichtung 9 ausgegeben werden. Alternativ könnte die Handlungsanweisung 16 ebenfalls akustisch ausgegeben werden. Die Handlungsanweisung 16 umfasst dabei bevorzugt konkrete Hinweise, welche Referenzwerte beim letzten Reversieren nicht eingehalten wurden und/oder wie die Abweichung von den Referenzwerten bei zukünftigem Reversieren vermieden oder zumindest verringert werden kann.The Figures 8, 9 and 10 show by way of example how a display of the result of the comparison could look during the output on the display device 9. The display device 9 can be, for example, a screen or a display which is connected to the control device 6. The result of the comparison can be output, for example, via a rating symbol 15 which symbolizes the rating determined by the comparison. In the example shown, the rating symbol 15 is a smiley which, depending on the result of the comparison or the quality of the rating, for example indicates compliance with the reference values ( Figure 8 ), a slight deviation from the reference values ( Figure 9 ) or a significant deviation from the reference values ( Figure 10 ). In this way, an operator can immediately see at a glance whether the control of the soil compaction machine 1 complied with the specifications during the previous reversing or not. If necessary, he can adapt the control of the soil compaction machine 1 for future reversing. In order to assist or support the operator during operation, an instruction 16, for example in written form, can be output on the display device 9 in addition to the evaluation symbol 15. Alternatively, the instruction 16 could also be output acoustically. The instruction 16 preferably includes concrete information about which reference values were not adhered to during the last reversing and/or how the deviation from the reference values can be avoided or at least reduced during future reversing.

Figur 11 zeigt schließlich ein Ablaufdiagramm des Verfahrens 20. Dieses beginnt mit dem Steuern 21 der Bodenverdichtungsmaschine 1 durch einen Bediener. Der Bediener betreibt die Bodenverdichtungsmaschine 1 auf einer Baustelle zur Verdichtung eines Bodens 8. Typischerweise werden zur Verdichtung des Bodens 8 mehrere Überfahrten der Bodenverdichtungsmaschine 1 benötigt. Es kommt daher zu einem wiederholten Reversieren der Bodenverdichtungsmaschine 1, wobei die Art und Weise, in der der Bediener die Bodenverdichtungsmaschine 1 beim Reversieren steuert, einen verstärkten Einfluss auf die resultierende Ebenheit des Bodens 8 nimmt. Aus diesem Grund sieht das Verfahren 20 ein Erfassen 22 wenigstens eines der Parameter Fahrgeschwindigkeit v, Fahrgeschwindigkeitsänderung a und/oder Fahrrichtungsumkehr oder wenigstens einer mit einem der genannten Parameter korrelierenden Größe vor. Derartige Parameter werden an Bodenverdichtungsmaschinen 1 oftmals sowieso bereits erfasst, so dass hierfür benötigte Sensoren 11 teilweise bereits vorhanden sein können. Als nächstes erfolgt ein Ermitteln 27 eines Zeitpunkts, an dem ein Reversieren der Bodenverdichtungsmaschine 1 stattfindet, aus dem wenigstens einen erfassten Parameter oder der wenigstens einen erfassten Größe. Hierdurch wird bevorzugt ebenfalls der Ort der Bodenverdichtungsmaschine 1 zu diesem Zeitpunkt erfasst, wenn eine Positions- oder eine Wegerfassung stattfindet. Durch die Feststellung, wann ein Reversieren der Bodenverdichtungsmaschine 1 stattfindet, kann das Steuern der Bodenverdichtungsmaschine 1 durch den Bediener um das Reversieren herum überprüft werden. Hierzu erfolgt ein Erfassen 23 eines Lenkwinkels w der Bodenverdichtungsmaschine 1 und/oder eines Schwingungseintrages S eines Schwingungserregers 10 in den Boden 8 oder einer mit dem Lenkwinkel w oder mit dem Schwingungseintrag S korrelierenden Größe innerhalb eines zeitlichen Intervalls T und/oder einer Wegstrecke L um den ermittelten Zeitpunkt des Reversierens und/oder um einen Ort der Bodenverdichtungsmaschine 1 zu diesem Zeitpunkt. Für den Lenkwinkel w zum Zeitpunkt des Reversierens sowie für den Schwingungseintrag S um das Reversieren herum bestehen Empfehlungen, die für eine optimale Ebenheit des Bodens 8 nach dem Arbeitsvorgang sorgen sollen. Ob die Empfehlungen eingehalten werden, ergibt sich aus einem Vergleichen 24 des erfassten Lenkwinkels w und/oder Schwingungseintrag S innerhalb des Intervalls T und/oder der Wegstrecke L mit vorgegebenen Referenzwerten für einen Soll-Lenkwinkel und/oder einen Soll-Schwingungseintrag. Insbesondere kann hieraus unmittelbar abgelesen werden, ob der Bediener bei der Steuerung der Bodenverdichtungsmaschine 1 die Empfehlungen einhält oder nicht. Darüber hinaus kann auch quantitativ ermittelt werden, inwiefern die Empfehlungen gegebenenfalls nicht eingehalten werden. Um hieraus eine assistierte Bedienunterstützung beziehungsweise eine Hilfestellung für den Bediener zu gewinnen, erfolgt ein Ausgeben 25 und/oder ein Abspeichern 26 des Ergebnisses des Vergleichs 24. Der Bediener und gegebenenfalls ebenfalls ein Betreiber der Bodenverdichtungsmaschine 1 erhalten daher insgesamt eine Rückmeldung darüber, inwiefern die Steuerung der Bodenverdichtungsmaschine 1 während des Reversierens den Empfehlungen für eine optimale Ebenheit des verdichteten Bodens 8 entspricht. Der Bediener kann daher die Art und Weise, wie er die Bodenverdichtungsmaschine 1 in Zukunft steuert, anpassen und seine Arbeitsergebnisse verbessern. Der Betreiber wiederum kann feststellen, inwiefern ein Bediener Schulungs- oder Trainingsbedarf hat. Alles in allem ermöglicht das erfindungsgemäße Verfahren 20 daher eine Verbesserung der Ebenheit des verdichteten Bodens 8, ohne diese Ebenheit selbst sensorisch erfassen zu müssen. Figure 11 finally shows a flow chart of the method 20. This begins with the control 21 of the soil compaction machine 1 by an operator. The operator operates the soil compaction machine 1 on a construction site to compact a soil 8. Typically, several passes of the soil compaction machine 1 are required to compact the soil 8. This results in repeated reversing of the soil compaction machine 1, whereby the manner in which the operator controls the soil compaction machine 1 when reversing has a greater influence on the resulting evenness of the soil 8. For this reason, the method 20 provides for the detection 22 of at least one of the parameters travel speed v, change in travel speed a and/or reversal of travel direction or at least one variable correlating with one of the parameters mentioned. Such parameters are often already detected on soil compaction machines 1 anyway, so that the sensors 11 required for this may already be present in some cases. Next, a point in time at which the soil compaction machine 1 is reversed is determined 27 from the at least one recorded parameter or the at least one recorded size. This preferably also records the location of the soil compaction machine 1 at this point in time when a position or path detection takes place. By determining when the soil compaction machine 1 is reversed takes place, the control of the soil compaction machine 1 by the operator around the reversing can be checked. For this purpose, a steering angle w of the soil compaction machine 1 and/or a vibration input S of a vibration exciter 10 in the soil 8 or a variable correlating with the steering angle w or with the vibration input S is recorded within a time interval T and/or a distance L around the determined time of reversing and/or around a location of the soil compaction machine 1 at this time. There are recommendations for the steering angle w at the time of reversing and for the vibration input S around the reversing, which are intended to ensure optimal evenness of the soil 8 after the work process. Whether the recommendations are adhered to can be determined by comparing 24 the recorded steering angle w and/or vibration input S within the interval T and/or the distance L with predetermined reference values for a target steering angle and/or a target vibration input. In particular, it can be seen directly from this whether or not the operator is complying with the recommendations when controlling the soil compaction machine 1. In addition, it can also be determined quantitatively to what extent the recommendations are not being complied with. In order to obtain assisted operating support or assistance for the operator, the result of the comparison 24 is output 25 and/or saved 26. The operator and possibly also an operator of the soil compaction machine 1 therefore receive overall feedback on the extent to which the control of the soil compaction machine 1 during reversing corresponds to the recommendations for optimal evenness of the compacted soil 8. The operator can therefore adapt the way in which he controls the soil compaction machine 1 in the future and improve his work results. The operator, in turn, can determine to what extent an operator needs training or instruction. All in all, the method 20 according to the invention therefore enables an improvement in the evenness of the compacted soil 8 without having to detect this evenness using sensors.

Claims (14)

Verfahren (20) zur assistierten Bedienunterstützung einer Bodenverdichtungsmaschine (1), umfassend die Schritte: a) Steuern (21) der Bodenverdichtungsmaschine (1) durch einen Bediener; b) Erfassen (22) wenigstens eines der Parameter Fahrgeschwindigkeit (v), Fahrgeschwindigkeitsänderung (a) und/oder Fahrrichtungsumkehr oder wenigstens einer mit einem der genannten Parameter korrelierenden Größe; c) Ermitteln (27) eines Zeitpunkts, an dem ein Reversieren der Bodenverdichtungsmaschine (1) stattfindet, aus dem wenigstens einen in Schritt b) erfassten Parameter oder der wenigstens einen in Schritt b) erfassten Größe; d) Erfassen (23) eines Lenkwinkels (w) der Bodenverdichtungsmaschine (1) und/oder eines Schwingungseintrags (S) eines Schwingungserregers (10) in den Boden (8) oder einer mit dem Lenkwinkel (w) oder mit dem Schwingungseintrag (S) korrelierenden Größe innerhalb eines zeitlichen Intervalls (T) und/oder einer Wegstrecke (L) um den in Schritt c) ermittelten Zeitpunkt und/oder um einen Ort der Bodenverdichtungsmaschine (1) zu diesem Zeitpunkt; e) Vergleichen (24) des in Schritt d) erfassten Lenkwinkels (w) und/oder Schwingungseintrags (S) innerhalb des Intervalls (T) und/oder der Wegstrecke (L) mit vorgegebenen Referenzwerten für einen Soll-Lenkwinkel und/oder einen Soll-Schwingungseintrag; f) Ausgeben (25) und/oder Abspeichern (26) eines Ergebnisses des Vergleichs (24). Method (20) for assisted operation of a soil compaction machine (1), comprising the steps: a) controlling (21) the soil compaction machine (1) by an operator; b) detecting (22) at least one of the parameters driving speed (v), driving speed change (a) and/or reversal of driving direction or at least one variable correlating with one of said parameters; c) determining (27) a point in time at which a reversal of the soil compaction machine (1) takes place from the at least one parameter detected in step b) or the at least one variable detected in step b); d) detecting (23) a steering angle (w) of the soil compaction machine (1) and/or a vibration input (S) of a vibration exciter (10) into the soil (8) or a variable correlating with the steering angle (w) or with the vibration input (S) within a time interval (T) and/or a distance (L) around the time determined in step c) and/or around a location of the soil compaction machine (1) at this time; e) comparing (24) the steering angle (w) and/or vibration input (S) detected in step d) within the interval (T) and/or the distance (L) with predetermined reference values for a desired steering angle and/or a desired vibration input; f) Outputting (25) and/or storing (26) a result of the comparison (24). Verfahren (20) nach Anspruch 1,
dadurch gekennzeichnet,
dass das Erfassen (22, 23) in den Schritten b) und/oder d) kontinuierlich erfolgt.
Method (20) according to claim 1,
characterized,
that the detection (22, 23) in steps b) and/or d) is carried out continuously.
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Intervall (T) und/oder die Wegstrecke (L) derart festgelegt wird, dass das Reversieren in der Mitte des Intervalls (T) und/oder der Wegstrecke (L) liegt.
Method (20) according to one of the preceding claims,
characterized,
that the interval (T) and/or the distance (L) is determined such that the reversing is in the middle of the interval (T) and/or the distance (L).
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die zum Vergleichen (24) in Schritt e) herangezogenen Referenzwerte einen Soll-Lenkwinkel umfassen, der angibt, wie groß der Lenkwinkel (w) zum im Schritt c) ermittelten Zeitpunkt des Reversierens mindestens sein soll.
Method (20) according to one of the preceding claims,
characterized,
that the reference values used for comparison (24) in step e) include a target steering angle which indicates how large the steering angle (w) should at least be at the time of reversing determined in step c).
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass vor dem Reversieren ein Reduzieren, insbesondere auf null, des Schwingungseintrags (S) stattfindet und die zum Vergleichen (24) in Schritt e) herangezogenen Referenzwerte einen Soll-Schwingungseintrag umfassen, der angibt, wie groß der Schwingungseintrag (S), insbesondere bezogen auf die Fahrgeschwindigkeit (v) der Bodenverdichtungsmaschine (1), maximal sein soll und/oder dass nach dem Reversieren ein Erhöhen, insbesondere ausgehend von null, des Schwingungseintrags (S) stattfindet und die zum Vergleichen (24) in Schritt e) herangezogenen Referenzwerte einen Soll-Schwingungseintrag umfassen, der angibt, wie groß der Schwingungseintrag (S), insbesondere bezogen auf die Fahrgeschwindigkeit (v) der Bodenverdichtungsmaschine (1), maximal sein soll.
Method (20) according to one of the preceding claims,
characterized, that before reversing, a reduction, in particular to zero, of the vibration input (S) takes place and the reference values used for comparison (24) in step e) comprise a target vibration input which indicates how large the vibration input (S), in particular in relation to the driving speed (v) of the soil compaction machine (1), should be at most and/or that after reversing, an increase, in particular starting from zero, of the vibration input (S) takes place and the reference values used for comparison (24) in step e) comprise a target vibration input which indicates how large the vibration input (S) should be at maximum, in particular in relation to the driving speed (v) of the soil compaction machine (1).
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass innerhalb des Intervalls (T) und/oder der Wegstrecke (L) eine Position des maximalen Schwingungseintrags (S) vor dem Reversieren ermittelt wird, und dass der Referenzwert für den Soll-Schwingungseintrag angibt, mit welchem minimalem Schwingungseintrags (S) diese Position nach dem Reversieren überfahren werden soll.
Method (20) according to one of the preceding claims,
characterized,
that within the interval (T) and/or the distance (L) a position of the maximum vibration input (S) is determined before reversing, and that the reference value for the target vibration input indicates the minimum vibration input (S) with which this position is to be passed after reversing.
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass innerhalb des Intervalls (T) und/oder der Wegstrecke (L) eine Position des maximalen Schwingungseintrags (S) einer vorderen Walzbandage (5) der Bodenverdichtungsmaschine (1) vor dem Reversieren ermittelt wird, und dass überwacht wird, ob eine hintere Walzbandage (5) der Bodenverdichtungsmaschine (1) diese Position vor dem Reversieren überfährt.
Method (20) according to one of the preceding claims,
characterized,
that within the interval (T) and/or the distance (L) a position of the maximum vibration input (S) of a front roller drum (5) of the soil compaction machine (1) is determined before reversing, and that it is monitored whether a rear roller drum (5) of the soil compaction machine (1) passes this position before reversing.
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in Schritt e) zusätzlich wenigstens ein äußerer Betriebszustand mit berücksichtigt wird, wobei der Betriebszustand beispielsweise eine Bodentemperatur und/oder eine Bodensteifigkeit und/oder Wetterbedingungen und/oder ein Quer- und/oder Längsgefälle des Bodens (8) umfasst, wobei insbesondere die Referenzwerte anhand des Betriebszustands angepasst werden.
Method (20) according to one of the preceding claims,
characterized,
that in step e) at least one external operating state is additionally taken into account, wherein the operating state comprises, for example, a soil temperature and/or a soil stiffness and/or weather conditions and/or a transverse and/or longitudinal gradient of the soil (8), wherein in particular the reference values are adapted based on the operating state.
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Ausgeben (25) des Ergebnisses des Vergleichs (24) in Schritt f) ein Anzeigen für den Bediener der Bodenverdichtungsmaschine (1) umfasst, wobei dem Bediener in dem Fall, in dem eine Abweichung des Lenkwinkels (w) und/oder des Schwingungseintrags (S) innerhalb des Intervalls (T) und/oder der Wegstrecke (L) von den Referenzwerten festgestellt wurde, eine Handlungsanweisung (16) angezeigt wird, wie die Abweichung zukünftig reduziert oder vermieden werden kann.
Method (20) according to one of the preceding claims,
characterized,
that the output (25) of the result of the comparison (24) in step f) comprises a display for the operator of the soil compaction machine (1), wherein in the case in which a deviation of the steering angle (w) and/or the vibration input (S) within the interval (T) and/or the distance (L) from the reference values was determined, the operator is shown an instruction (16) on how the deviation can be reduced or avoided in the future.
Verfahren (20) nach den Ansprüchen 8 und 9,
dadurch gekennzeichnet,
dass dem Bediener mit der Handlungsanweisung ein Hinweis angezeigt wird, falls ein äußerer Betriebszustand zu einer Anpassung der Referenzwerte geführt hat, die eine Abweichung des Lenkwinkels (w) und/oder des Schwingungseintrags (S) innerhalb des Intervalls (T) und/oder der Wegstrecke (L) von den Referenzwerten vergrößert.
Method (20) according to claims 8 and 9,
characterized,
that the operator is given a message with the instruction to act if an external operating condition has led to an adjustment of the reference values which increases a deviation of the steering angle (w) and/or the vibration input (S) within the interval (T) and/or the distance (L) from the reference values.
Verfahren (20) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in Schritt e) dem Ergebnis des Vergleichs (24) eine Wertung zugeordnet wird, die mit höherer Abweichung von den Referenzwerten schlechter wird, und die insbesondere ebenfalls in Schritt f) ausgegeben oder abgespeichert wird.
Method (20) according to one of the preceding claims,
characterized,
that in step e) the result of the comparison (24) is assigned a rating which becomes worse with greater deviation from the reference values and which is in particular also output or stored in step f).
Verfahren (20) nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet,
dass ebenfalls ruckartige Veränderungen der Fahrgeschwindigkeit (v) erfasst werden und in die Wertung mit eingehen.
Method (20) according to the preceding claim,
characterized,
that sudden changes in driving speed (v) are also recorded and included in the evaluation.
Verfahren (20) nach einem der Ansprüche 11 oder 12,
dadurch gekennzeichnet,
dass das Verfahren (20) für sämtliche Reversiervorgänge innerhalb eines Arbeitsintervalls durchgeführt wird, wobei aus den einzelnen Wertungen aus Schritt e) eine Gesamtwertung erstellt wird, die ebenfalls in Schritt f) ausgegeben oder abgespeichert wird.
Method (20) according to one of claims 11 or 12,
characterized,
that the method (20) is carried out for all reversing processes within a working interval, whereby an overall rating is created from the individual ratings from step e), which is also output or stored in step f).
Bodenverdichtungsmaschine (1), insbesondere Tandemwalze oder Walzenzug, mit wenigstens einer Walzbandage (5) und einer Steuereinrichtung (6),
dadurch gekennzeichnet,
dass die Bodenverdichtungsmaschine (1) zur Durchführung des Verfahrens (20), und insbesondere die Steuereinrichtung (6) zur Durchführung der Schritte b) bis f) des Verfahrens (20), gemäß einem der vorhergehenden Ansprüche ausgebildet ist.
Soil compaction machine (1), in particular tandem roller or roller train, with at least one roller drum (5) and a control device (6),
characterized,
that the soil compaction machine (1) for carrying out the method (20), and in particular the control device (6) for carrying out steps b) to f) of the method (20), is designed according to one of the preceding claims.
EP23165120.9A 2022-04-09 2023-03-29 Method for assisted operation assistance of a soil compaction machine and soil compaction machine Pending EP4357525A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022108663.1A DE102022108663A1 (en) 2022-04-09 2022-04-09 METHOD FOR ASSISTED OPERATING SUPPORT OF A SOIL COMPACTION MACHINE AND SOIL COMPACTION MACHINE

Publications (1)

Publication Number Publication Date
EP4357525A1 true EP4357525A1 (en) 2024-04-24

Family

ID=85781920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23165120.9A Pending EP4357525A1 (en) 2022-04-09 2023-03-29 Method for assisted operation assistance of a soil compaction machine and soil compaction machine

Country Status (4)

Country Link
US (1) US20230326263A1 (en)
EP (1) EP4357525A1 (en)
CN (1) CN116892147A (en)
DE (1) DE102022108663A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018007825A1 (en) 2018-10-04 2020-04-09 Bomag Gmbh Method for controlling a soil compaction machine and soil compaction machine
DE102019002442A1 (en) * 2019-04-03 2020-10-08 Bomag Gmbh Method for the semi-autonomous control of a construction machine, in particular a soil compaction machine and construction machine, in particular a soil compaction machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201240A1 (en) 2014-01-23 2015-07-23 Hamm Ag Self-propelled road construction machine, in particular road roller, and method for driving a road construction machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018007825A1 (en) 2018-10-04 2020-04-09 Bomag Gmbh Method for controlling a soil compaction machine and soil compaction machine
DE102019002442A1 (en) * 2019-04-03 2020-10-08 Bomag Gmbh Method for the semi-autonomous control of a construction machine, in particular a soil compaction machine and construction machine, in particular a soil compaction machine

Also Published As

Publication number Publication date
US20230326263A1 (en) 2023-10-12
CN116892147A (en) 2023-10-17
DE102022108663A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
EP3456878B1 (en) Method for monitoring the compression process in road construction and street roller
EP1985761B1 (en) Method for determining the degree of compaction of asphalt and compacting machine as well as system for determining degree of compaction
DE69434631T2 (en) Method and device for measuring the degree of compaction of a floor surface
EP2514871B1 (en) Method for laying and compacting an asphalt layer
EP3124698B1 (en) Road finisher with roller indication display device
EP3593613A1 (en) Method for controlling a data transmission between an agricultural machine and an external transmit/receive unit
DE112017000242T5 (en) CONTROL SYSTEM FOR COORDINATING INSTALLATION OPERATIONS
DE112009001610T5 (en) Paving system and plaster method
DE102019125702A1 (en) AUTOMATIC BUILDING SITE PLANNING FOR AUTONOMOUS CONSTRUCTION VEHICLES
DE102018132113A1 (en) System and method for compacting a surface of a job
DE102006001818A1 (en) Commercial vehicle`s driver assisting method, involves evaluating topography of route in computerized manner during adjustment of driving parameters, where topography data are called for topography of route from data memory
EP1103658B1 (en) Device and method for controlling the compaction effect of vibrating devices
EP0994448A2 (en) Method and device to select traffic information for a vehicle
DE112016004648T5 (en) LORRY CAR POSITION CONTROL SYSTEM FOR MILLING OPERATIONS
DE102019125045A1 (en) BUILDING PLANNING FOR AUTONOMOUS CONSTRUCTION VEHICLES
DE102015000856A1 (en) Method for operating a motor vehicle and motor vehicle
EP3147406B1 (en) Measuring system and method for compression control and computer program with a program code for execution of the method
DE102019127640A1 (en) CONTROLLING MACHINE OPERATION, INCLUDING MACHINE ROTATION RADIUS
EP3896223A1 (en) Method for manufacturing a road paving and asphalting system
EP4357525A1 (en) Method for assisted operation assistance of a soil compaction machine and soil compaction machine
EP4056760B1 (en) Road finisher with levelling cascade control
DE102021120207A1 (en) System and method for operating a compressor
DE102015000402A1 (en) Motor vehicle and method for operating a cruise control system
EP3872260B1 (en) Road finisher with projector
DE10007357A1 (en) Running gear regulation device for motor vehicle acquires road information from processing system containing navigation system, sets up running gear or its parts before traveling road section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR