EP4314671B1 - Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée - Google Patents

Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée Download PDF

Info

Publication number
EP4314671B1
EP4314671B1 EP22782732.6A EP22782732A EP4314671B1 EP 4314671 B1 EP4314671 B1 EP 4314671B1 EP 22782732 A EP22782732 A EP 22782732A EP 4314671 B1 EP4314671 B1 EP 4314671B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
temperature
space
primary
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22782732.6A
Other languages
German (de)
English (en)
Other versions
EP4314671A1 (fr
Inventor
Jürgen Süss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecooltec Grosskopf GmbH
Original Assignee
Ecooltec Grosskopf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102022201790.0A external-priority patent/DE102022201790A1/de
Application filed by Ecooltec Grosskopf GmbH filed Critical Ecooltec Grosskopf GmbH
Publication of EP4314671A1 publication Critical patent/EP4314671A1/fr
Application granted granted Critical
Publication of EP4314671B1 publication Critical patent/EP4314671B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a device for tempering a room to be tempered, a method for tempering a room to be tempered and a method for producing the device.
  • the present invention relates to the tempering of a room to be tempered and in particular to the generation of cold or heat and distribution in mobile or stationary refrigeration applications.
  • the present invention relates to methods and devices for the generation of cold or heat and distribution in mobile cold applications or heat applications and can be used in road-bound motor vehicles or trailers or semi-trailers with a refrigerated body or a heated body, a rail- or sea-bound refrigerated or heated body or a container, or generally in rooms to be tempered in air or air conditioning applications, which are cooled or heated, for example, by means of a compression refrigeration machine.
  • this invention can also be used in the field of comfort air conditioning in mobile applications such as buses or rail-bound passenger cars in rail transport.
  • mobile applications such as buses or rail-bound passenger cars in rail transport.
  • a restriction to these areas is not necessary, since the solutions described here can also be used advantageously in stationary applications.
  • the compression refrigeration machine is the most common type of refrigeration machine. This type of machine uses the physical effect of the heat of vaporization when changing the state of matter from liquid to gaseous, or from gaseous to liquid.
  • a refrigerant with suitable thermodynamic material properties is moved in a closed circuit, as in Fig. 2a is shown. It undergoes the various changes in state of aggregation one after the other and repeatedly.
  • the gaseous refrigerant is first compressed by a compressor 1.
  • heat exchanger 2 condenser or heat sink of the process
  • the liquefied refrigerant is then expanded to the evaporation pressure via an expansion device 3, e.g.
  • the coolant evaporates by absorbing heat at a low temperature (evaporative cooling).
  • the heat absorbed in this process represents the cold used by the refrigeration system.
  • the absorbed heat flow is referred to as the cooling capacity.
  • the evaporator is therefore advantageously located directly in the refrigeration structure, in the refrigerated container or generally in the closed space 5 of the application to be cooled in order to keep heat transfer losses to a minimum by bringing the refrigerated goods into direct contact with the heat source as far as possible.
  • the cycle can now start again.
  • the process must be kept going from the outside by supplying mechanical work (drive power) via the compressor.
  • the coolant absorbs heat at a low temperature level and usually releases it to the environment at a higher temperature level by supplying technical work.
  • the identical process described is referred to as the heat pump process, as it is in Fig. 2b is shown when, instead of a cooling capacity or energy that is supplied to the evaporator, the condenser heat that the system's condenser gives off is to be used. In the present application, this results in the possibility of supplying energy in the form of heat for heating purposes to the described structure or to the closed interior of the application with suitable process control and arrangement of the system components.
  • One of the ways of achieving this is to connect the pressure-side outlet of the compressor to the heat exchanger, which is located in the closed structure, in such a way that it heats up when the system is in operation.
  • the other components then fulfil their function in accordance with the described application process for generating cold.
  • the heat supply can also be used to efficiently defrost or defrost the heat exchanger in a closed space, which can be either time-controlled or demand-controlled.
  • the refrigerant circuit essentially consists of four components: compressor 1, condenser 2, expansion device 3 and evaporator 4.
  • compressor 1, condenser 2, expansion device 3 and evaporator 4 In a single-stage or multi-stage refrigeration system, a distinction is generally made between high-pressure and low-pressure sides.
  • the high-pressure side extends from the pressure side of the compressor to the inlet of the refrigerant into the expansion device.
  • the low-pressure side comprises the part of the refrigerant circuit from the outlet of the refrigerant from the expansion device to the compressor inlet.
  • the refrigerant circuit is operated as a heat pump, i.e. the cooling capacity of the evaporator is not used, but the heat output provided by the condenser. This heat output can be used, as described, to heat up the application or to defrost the evaporator.
  • the refrigerant used in the cycle should have as little impact on the environment as possible, be cost-effective and particularly energy-efficient.
  • a key measure of the environmentally damaging effect of a refrigerant is its greenhouse potential, also known as GWP (Global Warming Potential). This value is given for refrigerants in relation to the GWP value of CO 2 (carbon dioxide). CO 2 has a GWP value of 1 by definition.
  • the greenhouse potential of the F-gases frequently used as refrigerants can have values of several thousand. This in turn means that one kilogram of F-gas that has entered the atmosphere during its production, use or disposal can correspond to the greenhouse effect of several tons of CO 2 .
  • F-gases The most important components of F-gases are carbon, hydrogen and fluorine. F-gases often decompose very slowly and, once released, remain in our atmosphere for hundreds or even thousands of years. Regardless of how long they stay and how high their greenhouse potential is, decomposition products are created when F-gases break down. These substances, such as trifluoroacetic acid or hydrogen fluoride, often have long-term negative effects on people and the environment.
  • F-gases as refrigerants is increasingly being restricted or even prohibited by international law through rules and regulations.
  • the acceptance of F-gases as refrigerants by consumers and users of refrigeration technology, as well as by society, is decreasing, and as a result the refrigeration and heat pump manufacturing industry is increasingly demanding alternatives to the current refrigeration technology based on the use of F-gases.
  • the EN 202022100810 U1 shows a heat pump system with a heat pump, a consumer circuit and a buffer tank in the consumer circuit, which is designed as a gas separator. Propane is used in the heat pump and the heat pump is located in a safety area outside a building.
  • the EN 102007039195 A1 shows an arrangement for air conditioning a vehicle, wherein a first circuit can be switched between a cooling mode and a heating mode.
  • CO2 circulates as a heat exchange fluid.
  • coolant circulates to power the vehicle.
  • US5694779A discloses a device for tempering a room to be tempered with a primary heat pump circuit with a combustible refrigerant, which is thermally coupled to a secondary circuit, wherein said secondary circuit is a thermosyphon with a non-combustible refrigerant.
  • the object of the present invention is to create an improved concept for tempering a room to be tempered.
  • the device further comprises a secondary circuit that is thermally coupled to the evaporator or the condenser via a heat exchanger and is fluidically decoupled, and which has one or more tempering elements that are arranged in the room to be tempered and that are connected to the heat exchanger by a line arrangement that has a secondary fluid that is different from the primary fluid, wherein the line arrangement penetrates the room boundary.
  • the present invention is based on the finding that in the primary heat pump circuit, which is arranged outside the room to be tempered, i.e. in the environment of the room to be tempered, a natural primary working fluid is used which can have properties that are unfavorable for a closed room, such as flammability if it is inhaled by an organism.
  • a different secondary fluid is used which is typically harmless or low-risk for an organism because it is not flammable.
  • primary working fluids and secondary fluids can be combined with one another which have favorable properties for a compression or primary heat pump circuit on the one hand and for a temperature control in a (closed) room to be temperature controlled on the other hand.
  • flammable primary working fluids as an example of a natural refrigerant enables high environmental compatibility and good energy-efficient properties in a compression cooling/heating cycle.
  • cooling/heating agents can usually only be used in enclosed spaces with considerable additional effort because their flammability requires this.
  • refrigerants are, for example, hydrocarbons (HC), such as propane (R290) or propene (R1270).
  • HC hydrocarbons
  • R290 propane
  • propene R1270
  • Other F-gas-free primary working fluids include NH 3 or NH 3 /DME (R723), which are only slightly flammable but are toxic to the human organism in enclosed spaces and are therefore not desirable.
  • This group of working materials for generating refrigeration also includes fluorinated hydrocarbons, which are flammable due to their molecular composition.
  • non-flammable and therefore low-risk cold/heat transfer media can be used, which ideally undergo a phase change when transporting cold or heat.
  • a secondary fluid is used that changes its state of aggregation when transporting heat. Heat is absorbed or released at a constant temperature and the thermosiphon principle is driven by the density difference between vapor and liquid.
  • the line arrangement cuts through the room boundary and because the elements of the primary heat pump circuit, including at least part of the heat exchanger, are arranged outside the room, it is avoided that a natural, such as flammable, working fluid enters the closed room. Only a non-critical heat medium with the heat/cold to be transported enters the closed room and releases the transported heat/cold to the room via the temperature control element.
  • the temperature control element will typically be a secondary fluid-air heat exchanger, while the heat exchanger will be a primary working fluid/secondary fluid heat exchanger. If heating is to be achieved as temperature control, the heat exchanger is coupled to the condenser of the primary heat pump circuit.
  • the heat exchanger is coupled to the evaporator of the primary heat pump circuit. thermally coupled.
  • the evaporator and the condenser are designed such that corresponding elements of the primary heat pump circuit can perform both functions depending on the operating direction of the compressor.
  • an implementation of the heat exchanger can be designed such that the actual evaporator or condenser of the primary heat pump circuit is connected in series with the primary working fluid-secondary fluid heat exchanger.
  • the functionality can also be integrated in a single element that, on the one hand, achieves the evaporation/condensation in the primary heat pump circuit and, on the other hand, transfers the heat or cold from the primary heat pump circuit to the secondary circuit.
  • the arrangement of the two elements i.e. whether the actual condenser or evaporator of the primary heat pump circuit is arranged before or after the primary working fluid-secondary fluid heat exchanger in the flow direction of the primary working fluid, or after this element, is freely selectable according to the actual circumstances. If the two functions of evaporation or condensation in the primary heat pump circuit and that of heat transfer from one fluid to the other, while the two fluids are strictly coupled to one another, are integrated in a single element, this element is also arranged outside the room to be tempered, i.e.
  • the tempering element is an air-secondary fluid heat exchanger with phase transition.
  • the line arrangement of the secondary circuit comprises a first part through which liquid secondary fluid flows and a second part through which vaporous secondary fluid flows.
  • the secondary circuit can be implemented without a drive, i.e. solely according to the thermosiphon concept, in that the secondary fluid is transported in the secondary circuit solely due to gravity and the density difference between the vapor and liquid phases of the secondary fluid.
  • a pump is arranged in the liquid-carrying part of the line arrangement to support the circulation of the secondary fluid.
  • a fan can be provided in the vapor-carrying part of the line arrangement.
  • a control system which, depending on the pumping direction in the secondary circuit means that during normal cooling application in the room to be tempered, defrosting is carried out at certain times in order to prevent the tempering element from icing up and thus a loss of efficiency.
  • the pump or fan which are controlled via the control system, can simultaneously ensure that when the room to be tempered is actually supposed to be heated, it switches to cooling mode at certain times, for example when a constant temperature is to be achieved, i.e. when air conditioning is to be created over a wide temperature range.
  • the control is designed to also change the circuit reversal in the primary heat pump circuit, which is equivalent to a reversal of the delivery direction of the compressor, so that when, for example, the primary heat pump circuit works in such a way that the evaporator is coupled to the heat exchanger, i.e. that a cooling application is being run, by switching the delivery direction of the compressor, the primary heat pump circuit works in such a way that the evaporator becomes a condenser. Heat is thus supplied to the heat exchanger, which means that heat is also supplied to the room to be tempered.
  • the switching of the delivery direction of the compressor can be achieved by switching the direction of rotation of a compressor wheel or by switching a four-way valve that is coupled to the pressure side and the suction side as well as the evaporator and condenser of the primary heat pump circuit.
  • the secondary circuit in an implementation not according to the invention has no pump or fan, i.e. it works according to a pure thermosyphon principle, it can also be achieved by switching the conveying direction of the compressor or by reversing the refrigeration circuit, e.g. by means of valves in the primary heat pump circuit, that by supplying the appropriate amount of cold or heat to the element to be tempered, it switches from a cooling mode to a heating mode, e.g. for short-term defrosting, or that it switches from a "normal" heating mode to a cooling mode, e.g. for tempering purposes, etc.
  • the aim is to use as little refrigerant as possible and to prevent the refrigerant from entering closed refrigerated structures and containers and other closed rooms to be air-conditioned.
  • Microchannel technology and plate heat exchangers are particularly suitable as heat exchanger technologies.
  • attention must be paid to the compactness of the overall system and the avoidance of storage volumes such as frequently used refrigerant collectors.
  • the compressor should have a low refrigerant volume and a low oil quantity in order to further reduce the refrigerant mass required for the process. This approach of reducing or minimizing refrigerant also applies to all other components used in the process and should ideally be taken into account when selecting and positioning them.
  • Fig.1 shows a device according to the invention for controlling the temperature of a room 5 to be temperature-controlled with a room boundary 20 which separates the room 5 to be temperature-controlled from an environment 21.
  • the device comprises a primary heat pump circuit 6 with an evaporator 4, a condenser 2, a compressor 1 and an expansion element 3, wherein the primary heat pump circuit has a natural primary working fluid, wherein the compressor 1, the evaporator 4, the condenser 2, the compressor 1 and the expansion element 3 are arranged outside the room 5 to be temperature-controlled.
  • the device according to the invention further comprises a secondary circuit which is thermally coupled and fluidically decoupled from the evaporator 4 or the condenser 2 via a heat exchanger 7 and has a temperature control element 14.
  • the temperature control element 14 is arranged in the room 5 to be temperature-controlled and connected to the heat exchanger 7 via a line arrangement 15a, 15b.
  • the line arrangement has a secondary fluid which is separated from the primary fluid. Furthermore, the line arrangement 15a, 15b is designed to penetrate the space boundary.
  • the secondary circuit is coupled to the evaporator 4 via the heat exchanger 7, then the arrangement is in cooling mode for the room to be tempered. The tempering is then cooling and the tempering element 14 functions as a cooling element. If, on the other hand, the secondary circuit is coupled to the condenser 2 of the primary heat pump circuit via the heat exchanger 7, then the tempering device works as a heating device and the tempering of the room 5 is heating, with the tempering element 14 working as a heating element.
  • the heat exchanger 7 can therefore comprise the evaporator or condenser as well as the heat exchanger 10, which is shown in various figures.
  • the temperature control element 14 can consist of the heat exchanger 11, which is shown in various figures, or can comprise one or more additional elements, such as sensors or the fan of Fig. 15 .
  • a controller 30 is provided in the embodiment according to the invention to switch the compressor 1 of the primary heat pump circuit in its delivery direction, specifically via a control signal 31, in order to switch the primary heat pump circuit with regard to the flow direction of the primary working fluid. This ensures that the function of the secondary circuit is also changed while the coupling of the secondary circuit remains the same, namely that the secondary circuit is in cooling mode or heating mode. If the secondary circuit is normally in cooling mode, the heating mode is used to defrost the temperature control element 14. If, on the other hand, the secondary circuit is mainly in heating mode, intermittent cooling can be used, for example to maintain a certain fixed temperature range.
  • the initiative for outputting the control signal 31 or the control signal 32 from the controller 30 to a pump element arranged in the secondary circuit according to the invention, such as element 8, can come from a sensor, a clock generator or from an external signal, as represented by a control input 33. If, on the other hand, the controller is designed in such a way that it is controlled via a sensor input or a clock generator, then the clock generator or the sensor input would be connected to the control input 33, or the control input 33 would not be present and the initiative for outputting the control signal 31/32 would be generated from the controller 30.
  • the compressor 1 has a conveying wheel.
  • the compressor is designed to reverse a direction of rotation of the conveying wheel in response to the control signal 31 for reversing the conveying direction.
  • the compressor comprises a four-way valve.
  • the compressor is designed to fluidically decouple a suction side of the compressor from the evaporator 4 and fluidically connect it to the condenser 2 or to fluidically decouple a pressure side of the compressor from the condenser 2 and fluidically connect it to the evaporator 4 in response to the control signal 31, for example starting from the cooling mode to reverse the conveying direction.
  • the element that was the evaporator in the cooling mode thus takes over the function of the condenser in the heating mode or defrost mode.
  • a suction side of the compressor is fluidically decoupled from the condenser 2 (which was the evaporator in the defrost mode) and fluidically connected to the evaporator 4 (which was the condenser in the defrost mode) and a pressure side of the compressor is fluidically decoupled from the evaporator 4 (which was the condenser in the defrost mode) and fluidically connected to the condenser 2 (which was the evaporator in the defrost mode).
  • the secondary circuit is provided with a pump 8 in order to circulate the secondary fluid in the secondary circuit and in particular in the line arrangement 15a, 15b.
  • the secondary fluid can be a secondary liquid if the temperature control element 14 works as a heat exchanger without phase change. If, on the other hand, the temperature control element 14 works as a heat exchanger with phase change, as is the case for example in the Fig. 4 to 12 , 15 is shown, then one part, for example part 15a of the line arrangement, is the liquid-carrying part, and the other part, such as part 15b, is the steam-carrying part of the line arrangement in the secondary circuit.
  • the cold and heat generated by the refrigerant process is then transported indirectly via a suitable heat exchanger, for example a plate heat exchanger 7, with a non-flammable, safe working medium, a so-called secondary fluid, into the refrigerated structure, refrigerated container or generally the room to be cooled.
  • a suitable heat exchanger for example a plate heat exchanger 7, with a non-flammable, safe working medium, a so-called secondary fluid, into the refrigerated structure, refrigerated container or generally the room to be cooled.
  • the refrigeration system therefore consists of a primary circuit for generating cold and a secondary circuit for transporting cold or heat.
  • This secondary circuit for distributing the generated cold and heat can be implemented in various ways. For example, it is possible to use a brine that is pumped by a suitable pump 8 and thus removes or introduces the heat from the room to be cooled or heated without a phase change in the secondary circuit 9 and transports it to the coolant-carrying part of the machine, i.e. the primary circuit.
  • phase change is advantageously a liquid-gas phase change in order to ensure that the secondary fluid can be pumped.
  • Solid-liquid phase change in the form of a slurry or mud e.g. a mixture of water ice and glycol, cannot be ruled out in principle.
  • thermosyphon circuit which in Fig.4 is shown.
  • the working medium with phase change of the secondary circuit (the secondary fluid) is liquefied in the evaporator 10 of the refrigeration part of the machine, in which it enters the heat exchanger (evaporator of the primary circuit) in vapor form in the upper part 10b and exits again in the lower area as a liquid 10a.
  • the liquid working medium is then led through suitable pipes into the closed space to be cooled, where it flows into a cooler 11, into which it entered in the lower part in liquid form 11a and in the upper part of the cooler in vapor form. 11b exits again and is then fed back to the heat exchanger 10 of the cold-generating part of the machine 7, in which the working medium is then liquefied again and flows back to the cooler in the cooling room by gravity alone, which leads to a level equalization.
  • This self-circulation has the advantage of not requiring a pump with the corresponding energy consumption and risk of failure, and only a minimal number of components have to be used.
  • the secondary circuit must be designed in such a way that when the system is in operation, a driving pressure difference is established due to geodetic height differences and/or the thermosyphon effect. It is particularly advantageous if the cooler is flooded when cooling, as this ensures maximum use of the air side of the cooler.
  • the process is reversed by supplying energy to the heat exchanger 10 and the liquid phase of the secondary fluid 10a evaporates and leaves the heat exchanger as a vaporous phase 10b and is fed to the heat exchanger 11 in the closed space through a suitable pipe.
  • the coolant enters the heat exchanger in the closed space 11 as vapor 11, is liquefied there, gives off its heat and flows in liquid form 11a out of the heat exchanger back into the heat exchanger 10 of the machine containing the coolant, where the evaporation process then begins again.
  • this process takes place exclusively on the basis of the geodetic height differences of the liquid phase in the two heat exchangers, with a level equalization always taking place in both components due to gravity.
  • each of the methods described also allows, if designed accordingly, the reversal of the cycle so that the heat exchanger 11 consists of Fig.4 in the closed room (5) can defrost or heat as required. Depending on the use of the room to be cooled, this process can occur several times a day and there is a requirement that defrosting can be done quickly and reliably.
  • the defrosting process is implemented by the cold-generating part of the machine, the primary circuit, no longer working as a refrigeration system, but in the heat pump or possibly also hot gas mode, as in Fig.5 As described, in heat pump mode the condenser becomes the evaporator and the evaporator becomes the condenser.
  • the condenser of the refrigerant circuit is no longer and instead the heat is released in the evaporator.
  • the cooling unit of the machine can release heat to the secondary circuit, which then transports the heat into the refrigerated container, thus ensuring that the cooler 11 in the refrigerated container is also heated, which enables the cooler in the container to be defrosted quickly and efficiently.
  • the condenser of the refrigeration part of the machine, as well as the heat exchanger in the closed room or container, are generally operated on the air side with forced convection, which is generated by suitable fans. Similar to the refrigeration part of the machine, the primary circuit, care should also be taken in the secondary circuit to keep the filling quantities of working material to a minimum and thus to use a cooler that not only has a small internal volume, but also a low thermal mass in order to be able to carry out the defrosting process as quickly and thus as energy efficiently as possible.
  • heat exchangers with a low refrigerant filling and minimal use of material for example microchannel technologies for the heat exchanger 11 in the closed room, are therefore suitable, which particularly meet the required requirements.
  • Other designs, such as finned heat exchangers can also be used as an alternative. Both heat exchanger types are ideally operated in a flooded manner.
  • thermosyphon solutions Due to the elimination of pumps through the use of thermosyphon solutions and the resulting energy advantages, as well as the reduction in the complexity of the systems, such solutions in the area of compact systems with spatial distances preferably of up to 10 meters and cooling or heating outputs of less than 50 kW and particularly preferably of up to 2 meters between the two heat exchangers 10 and 11 and with low cooling or heating outputs of less than 10 kW have particular advantages over the state of the art described at the beginning and are therefore to be preferred.
  • the refrigeration machine can also be used to heat the closed space if required, it is in any case advantageous to arrange the heat exchanger 11 in the closed space 5 geodetically below the heat exchanger 10, where it is cooled by the refrigerant is flowed through, whereby Fig.5 It does not matter how far below the heat exchanger in the closed space 11 is positioned in relation to the heat exchanger 10 through which the coolant flows.
  • This arrangement of the two heat exchangers in relation to one another ensures that the heat exchanger in the closed space 11 is completely filled with the secondary fluid 11a at every operating point, while the heat exchanger 10 through which the coolant flows is available with its entire surface for the liquefaction of the vaporous coolant 10a that is fed to it from the heat exchanger 11 in the closed space 5.
  • the heat exchanger 11 which is installed in this space 5 is located geodetically above the heat exchanger 10 through which the coolant flows. It does not matter how the difference in the geodetic height is actually selected in the application. In any case, it is ensured that the energy supplied to the heat exchanger 10 evaporates the secondary fluid, the steam 11b then flows into the heat exchanger 11 in the closed space 5 and releases the previously absorbed heat to the space during its condensation. After the heat has been released, the condensed secondary fluid 11a flows back through the heat exchanger 10 through which the coolant flows, driven by gravity, in order to be evaporated again there by the addition of heat.
  • a pump 8 provides a remedy for the problems just described. It is important that this pump, in contrast to pumps normally used, does not have to have a special delivery stroke in the sense of a large delivery head, but only the Self-balancing of the liquid levels in the heat exchangers 10 and 11, which is already provided by the thermosiphon effect described, is supported. Desirably, this support of the independent flow takes place by reversing the direction of rotation of the rotor 13 and by, for example or in particular, switching the polarity of the stator 120 in both flow directions of the secondary fluid, so that the heat exchanger 11 located in the closed space 5 can be both cooled and heated for the reasons already described.
  • Fig. 8a shows the variant in which both the rotor 13 and the stator 120 of the motor driving the propeller 140 are located in the pipe and thus in the secondary fluid.
  • the electrical power driving the motor must be guided through the pipe that carries the secondary fluid, which can be ensured by a component 15 that simultaneously positions the motor in the pipe.
  • Fig. 8b the variant of the pump is shown in which the stator 120 of the pump motor is located in the atmosphere outside the pipe through which the secondary fluid flows, while the rotor 13, which drives the propeller 140 via its shaft, is located in the fluid flow inside the pipe.
  • the stator 120 of the pump motor is located in the atmosphere outside the pipe through which the secondary fluid flows, while the rotor 13, which drives the propeller 140 via its shaft, is located in the fluid flow inside the pipe.
  • Fig.7 is in the arrangement of the heat exchangers 10 and 11 as shown in Fig.4 is shown, the resulting height difference of the liquid levels 10a and 11a of the secondary fluid in the two heat exchangers 10 and 11 is shown when such a pump is used.
  • the heat exchanger 11 in the closed space 5 has a higher liquid level 11a than the heat exchanger 10 connected to the coolant. This makes it possible to apply coolant to a larger area of the heat exchanger 11 in the closed space 5, while at the same time a larger area 10b is available in the heat exchanger 10 for liquefying the secondary fluid, which increases the transmitted power of the two heat exchangers.
  • Fig.9 illustrated operating case of heating up the heat exchanger 11 to heat the closed space 5, or for defrosting in the event of icing of the heat exchanger 11.
  • the pump sucks the liquid secondary fluid 11a out of the heat exchanger 11 in the closed space 5 and conveys it into the heat exchanger 10 charged with coolant, whereby the liquid phase of the secondary fluid 10a in this heat exchanger has a higher liquid level than in the heat exchanger 11.
  • FIG. 10 and Fig. 11 Finally, the operating cases are shown which arise when, due to structural conditions, an alignment of the two heat transfers 10 and 11 at the same geodetic height is not possible.
  • Fig.10 The case is shown in which the heat exchanger 10 containing the coolant is located below the heat exchanger 11 located in the closed space 5 when it is impacted.
  • the pump succeeds in raising the liquid level of the secondary fluid 11a so that it is above the liquid level 10a in the heat exchanger containing the coolant. In this way, the function of the heat transfer is maintained despite the possibilities being impaired by the design conditions.
  • Fig. 11 The case is shown in which the heat exchanger 10 charged with the refrigerant is located geodetically above the heat exchanger 11 in the closed space 5.
  • the pump ensures that the liquid level 10a of the secondary fluid in the heat exchanger 10 charged with refrigerant is above the liquid level 11a of the heat exchanger 11 in the closed space 5.
  • a conveying device 12 In the cases shown, in which a pump is used to support the flow of the secondary fluid, it is not possible according to the invention to introduce a conveying device 12 into the line through which only the vapor phase of the secondary fluid flows.
  • the design of the component that supports the vapor phase of the secondary fluid in its natural flow direction corresponds in principle to the design of the pump 8, which in Figs. 7 - 11 shown, except that the Conveying device 12 can be optimized for the flow of vaporous fluids, for example by the conveying element having a geometry that is particularly suitable for conveying vapors.
  • the conveying device 12 conveys the vaporous phase 11b from the heat exchanger 11 in the closed space 5 in the direction of the heat exchanger 10, where the secondary fluid then displaces the liquid phase 10a in vaporous form 10b, and thus for the Figure 12 shown geodetic height difference between the fluid in the heat exchanger 10 and in the heat exchanger 11.
  • the application of the illustrated conveying device 12, which in Fig. 12 shown corresponds to the one in Fig.7 case, but is based on the Fig. 9-11
  • the illustrated applications can be fully transferred by replacing the pump 8 with the delivery unit 12, and then supporting the circulation of the secondary fluid in the direction shown.
  • Fig. 13 shows a schematic arrangement of the heat exchanger for coupling the secondary circuit with the primary heat pump circuit.
  • the channel for the primary working fluid coming from the expansion element 3 and marked 14a enters the heat exchanger, and the channel for the primary heat pump fluid exiting the heat exchanger 7 is marked 14b, this channel being connected to the compressor 1.
  • the first part 15a of the line arrangement is shown as it enters the heat exchanger 7, and the second part of the line arrangement 15b is also shown, which enters the heat exchanger 7.
  • the zone of action is indicated in which the thermal transfer from the primary heat pump circuit to the secondary circuit takes place.
  • the two circuits are thermally coupled but fluidically decoupled so that a highly efficient natural coolant, such as hydrocarbons, can be used in the primary heat pump circuit, while a secondary fluid is used within the space boundary 20 which does not present any flammability risk.
  • the arrangement of the heat exchanger 7 can also be designed to be "embedded" in the room boundary 20, so that the supply or discharge line to the area of effect 22, which is already arranged within the outer boundary of the heat exchanger 7, functions as a line arrangement that passes through the room boundary.
  • Fig. 13 indicated by the dashed line 20a or 20b, which is arranged within the outer boundary of the heat exchanger 7 and which is penetrated by the line arrangement 15a and 15b within the heat exchanger 7.
  • Fig. 14 shows a preferred embodiment of the device for temperature control, in particular with regard to a special implementation of the heat exchanger.
  • the heat exchanger 7 which can be designed as a plate heat exchanger or braze plate heat exchanger, is designed by a common element, which is shown at 10 and combines the functionality of the heat exchanger and the condenser 2 or the evaporator 4.
  • Heat exchangers 10 can be connected upstream of the evaporator or condenser, i.e. implemented by two separate elements. Alternatively, the order of the two elements heat exchanger 10 and evaporator/condenser 4 or 2 can be reversed, so that the output liquid of the evaporator is fed into the heat exchanger.
  • Fig. 14 The primary working fluid flows through the channels 40 shown, which are fed by an expander 41 and which are reunited by a collector 42 into the line 14b, and the secondary fluid flows through the connections 15a and 15b.
  • the heat exchanger functions as an evaporator 4
  • warm steam is fed into the heat exchanger 10 via the line 15b from the room to be tempered.
  • the secondary steam fed in from the connection 15b condenses on the outside of the channels 40 through the evaporator and drips into the area with the variable liquid level.
  • cooled liquid is then fed into the tempering element of Fig. 15 to cool the room to be tempered.
  • the exchanger acts as a condenser for the primary working fluid.
  • vaporous and compressed warm primary working fluid flows over element 42, which now acts as an expander. acts, into the channels 40, which are as far as possible in cool liquid secondary fluid.
  • the primary working fluid condenses on the inside of the channels 40 and leaves the heat exchanger 10 as a liquid via the element 41, which now acts as a collector.
  • the secondary liquid evaporates in the heat exchanger 10 and steam passes through the connection 15b into the temperature control element 11, 14 to heat the room there.
  • the secondary fluid liquefies in the temperature control element and returns as a liquid due to the siphon principle or through a pump back into the heat exchanger to be evaporated again there.
  • Fig. 14 The heat exchanger 10 is drawn in such a way that it has a variable liquid level, which at the Fig. 14 shown embodiment covers part of the effective heat exchanger volume and leaves another part free. This would be the case of Fig.4 , Fig.5 , Fig.7 , Fig.9 , Fig. 10, Fig. 11, Fig. 12 in which the heat exchanger 10 is not completely flooded.
  • the heat exchanger is designed such that, separated from the liquid level, the lower region 10a is full of secondary liquid, while the upper region 10b is a vapor space in which vaporous secondary fluid is arranged.
  • the first part 15a of the line arrangement is the liquid-carrying part, while the second part 15b of the line arrangement is the vapor-carrying part. It is therefore preferred that the diameter of the second line arrangement 15b is significantly larger than the diameter of the first part so that the vapor can flow as well as possible and has sufficient space.
  • the heat exchanger 10 is drawn as a volumetric microchannel heat exchanger, in which the expansion element or collection element 41 couples the line 14a with the individual channels of the microchannel heat exchanger, while on the output side there is a collection element or expansion element 42 which collects or distributes the liquid (in the case of two separate elements) or vaporous (in the case of the integrated element and cooling operation) primary working fluid, and only supplies it to the evaporator or condenser in the case of the separate implementation.
  • fins may be arranged between the microchannels to provide better heat transfer, which are preferably perforated to allow bubbles to rise in the element 10 or drops to fall from top to bottom in the element 10.
  • the evaporator (4) or the condenser (2) of the primary heat pump circuit is integrated in the heat exchanger (10)
  • the heat exchanger 10 comprises, for example, with reference to Fig. 14 a first connection section, eg the collector or expander 41 for the primary working fluid, a second connection section, eg the collector or expander 42 for the primary working fluid; a third connection section 15a for the secondary fluid; a fourth connection section 15b for the secondary fluid, and a channel section 40 which extends between the first connection section 41 for the primary working fluid and the second connection section 42 for the primary working fluid.
  • an interaction region 43 is provided which extends between the third connection section 15a for the secondary fluid and the fourth connection section 15b for the secondary fluid.
  • the channel section 40 is arranged in this, wherein the channel section 40 is thermally coupled to the interaction region 43 and fluidically decoupled from the interaction region 43.
  • the liquefaction and evaporation of the primary circuit takes place in the channel section within the interaction space. Furthermore, due to the liquefaction or evaporation in the primary circuit in the interaction area, evaporation or liquefaction of the primary fluid takes place outside the channel section.
  • the interaction area is preferably the volume with the variable liquid level delimited by a wall.
  • Fig. 15 shows a preferred implementation of the temperature control element, which is designed as a secondary fluid-air heat exchanger, wherein this heat exchanger is again designed as a schematic microchannel heat exchanger. Again, channels for the secondary fluid are shown, which are connected by fins. Furthermore, a fan 35 is shown above the temperature control element, which is arranged in the room and blows air present in the room through the temperature control element 14. Furthermore, in Fig. 15 the optionally used inclined arrangement is shown, namely with an angle ⁇ to the horizontal, as used in thermosyphon applications and pump applications of the Fig.
  • Fig. 14 shows the functionality of the heat exchanger and the evaporator or condenser in an integrated element as a preferred embodiment, so that within the evaporator the function of heat transfer from the primary working fluid to the secondary fluid also takes place, and at the same time the functionality of evaporation or condensation takes place in the primary heat pump circuit.
  • Fig. 16a shows an implementation of the device for temperature control according to the present invention for cooling with a plate heat exchanger as an integrated element and a vertically arranged air register. Furthermore, a pump 8 is provided which pumps cooled secondary liquid into the temperature control element 11 in which the air register is arranged vertically.
  • the temperature control element does not have to be arranged at an angle or completely vertically. It can have any arrangement and configuration, as long as evaporation of the secondary liquid can take place due to the heat in the space to be tempered and the evaporated secondary fluid can reach the vapor space of the heat exchanger 10 via the connection 15b.
  • Fig. 16b shows an implementation of the device for temperature control according to the present invention for heating with an integrated element and a temperature control element arranged vertically at a similar height and a pump.
  • a pump 8 is arranged which reaches different liquid levels in the elements 10 and 11. Without pump 8 or when pump 8 is stopped, the two levels would be at the same height due to the siphon principle.
  • the pump 8 pumps liquid into the heat exchanger 10 and the primary circuit is operated in such a way that the integrated heat exchanger simultaneously works as a condenser 2 in the primary circuit, secondary fluid in the heat exchanger is evaporated in the warm channel area of the condenser and pressed into the temperature control element. There, the warm vaporous secondary fluid gives off its heat to the room to be tempered, whereby it condenses in the air register and is brought back to the exchanger 10 by the pump.
  • Fig. 16c shows an implementation of the device for tempering according to the present invention for cooling with an integrated element and a tempering element arranged vertically at a similar height and a pump.
  • a Pump 8 is arranged, which reaches different liquid levels in elements 10 and 11. Without pump 8 or if pump 8 were stopped, the two levels would be at the same height due to the principle of communicating tubes.
  • pump 8 pumps liquid out of heat exchanger 10 and the primary circuit is operated in such a way that the integrated heat exchanger simultaneously works as evaporator 2 in the primary circuit, evaporated secondary fluid in the heat exchanger is condensed in the cold channel area of the evaporator and pressed as cooled liquid through the pump into the temperature control element. There, the cold liquid secondary fluid absorbs heat from the room to be temperature controlled by evaporating in the temperature control element. This vapor returns to element 10 to condense there again.
  • Fig. 17a shows an implementation of the device for temperature control according to the present invention for cooling with a plate heat exchanger as an integrated element and a vertically arranged alternatively designed air register.
  • the pump 8 only supports the fluid circulation, since the elements 10, 11 are at the same pressure with regard to the secondary fluid.
  • Fig. 17b shows an implementation of the integrated element, which is designed as a plate heat exchanger. This comprises the four connection sections 41, 42, 15a 15b for the primary working fluid and the secondary fluid, which run through the cover plate and are separated by the sealing plates.
  • the channel area 40 for the primary fluid and the interaction area 43 are realized by the channel plates.
  • the primary fluid is thus fluidically separated from the secondary fluid, but thermally coupled to it.
  • Fig. 17c shows an implementation of the device for tempering according to the present invention for cooling with the plate heat exchanger as an integrated element of Fig. 17b and a vertically arranged alternative air register.
  • the pump reaches the different liquid levels in the plate heat exchanger and in the air register. If the pump were stopped, the liquid levels would be the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (20)

  1. Dispositif de régulation de la température d'un espace (5) dont la température doit être régulée avec une délimitation de l'espace (20) qui sépare l'espace dont la température doit être régulée d'un environnement (21), aux caractéristiques suivantes:
    un circuit primaire de pompe à chaleur avec un évaporateur (4), un condenseur (2), un compresseur (1) et un organe de détente (3), où le circuit primaire de pompe à chaleur présente un fluide de travail primaire naturel, où l'évaporateur (4), le condenseur (2), le compresseur (1) et l'organe de détente (3) sont adaptés pour être disposés à l'extérieur de l'espace dont la température doit être régulée;
    un circuit secondaire qui est couplé de manière thermique à et est découplé de manière fluidique de l'évaporateur (4) ou au/du condenseur (2) par l'intermédiaire d'un échangeur de chaleur (7, 10) et comporte un élément de régulation de température (11, 14) qui est conçu pour être disposé dans l'espace dont la température doit être régulée (5) et qui est connecté à l'échangeur de chaleur (7, 10) par un aménagement de conduite (15a, 15b) qui présente un fluide secondaire qui diffère du fluide de travail primaire, où l'aménagement de conduite (15a, 15b) convient pour pénétrer à travers la délimitation de l'espace (20), où le circuit secondaire est conçu comme un circuit à thermosiphon, et où est disposée, dans le circuit secondaire, une pompe pouvant être commandée (8) qui est conçue pour invertir, en réponse à un signal de commande (32), une direction de refoulement dans le circuit secondaire;
    dans lequel le dispositif est conçu pour refroidir l'espace (5) dans un mode de refroidissement par l'élément de régulation de température (11, 14); et
    un moyen de commande (30) qui est configuré pour provoquer, en réponse à un signal de commande (31, 32), une inversion du circuit de pompe à chaleur dans le circuit de pompe à chaleur primaire, de sorte que, dans le mode refroidissement, de l'énergie soit dissipée de l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur et que, dans un mode de dégivrage, de l'énergie soit alimentée vers l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur pour dégivrer l'élément de régulation de température (11, 14), et que la direction de refoulement dans le circuit secondaire soit inversée par la pompe pouvant être commandée (8).
  2. Dispositif selon la revendication 1, dans lequel le moyen de commande (30) est conçu pour provoquer, par le signal de commande (31), l'inversion du circuit de pompe à chaleur du circuit primaire de pompe à chaleur, de sorte que l'élément (2, 4) du circuit primaire de pompe à chaleur qui est couplé à l'échangeur de chaleur (7,10) change sa fonction d'évaporation à liquéfaction, ou inversement.
  3. Dispositif selon l'une des revendications précédentes, dans lequel le signal de commande provient d'un capteur sur l'élément de régulation de température (11, 14), d'un capteur dans l'espace dont la température doit être régulée (5) ou d'un cadenceur, pour que le dispositif soit amené à des moments réguliers ou irréguliers en mode de dégivrage.
  4. Dispositif selon l'une des revendications précédentes, dans lequel l'évaporateur (4) ou le condenseur (2) du circuit primaire de pompe à chaleur est conçu comme intégré dans l'échangeur de chaleur (10).
  5. Dispositif selon l'une des revendications précédentes, dans lequel l'échangeur de chaleur (7, 10) et l'élément de régulation de température (11, 14) sont disposés à une distance dans l'espace de tout au plus 50 mètres l'un de l'autre, et dans lequel est disposée, dans l'aménagement de conduite (15a, 15b), la pompe pouvant être commandée (8) qui présente un stator se trouvant à l'intérieur ou un stator se trouvant à l'extérieur.
  6. Dispositif selon l'une des revendications précédentes, dans lequel l'échangeur de chaleur (7, 10) présente un échangeur de chaleur à micro-canaux, un échangeur de chaleur à plaques ou un échangeur de chaleur à disques.
  7. Dispositif selon l'une des revendications précédentes, dans lequel l'élément de régulation de température (11, 14) présente un échangeur de chaleur à micro-canaux, un échangeur de chaleur à plaques ou un échangeur de chaleur à disques.
  8. Dispositif selon l'une des revendications précédentes, dans lequel l'échangeur de chaleur (7, 10) présente un espace à liquide d'échangeur de chaleur (10a) et un espace à vapeur d'échangeur de chaleur (10b) et l'élément de régulation de température présente un espace à vapeur de régulation de température (11b) et un espace à liquide de régulation de température (11a), dans lequel l'échangeur de chaleur (7, 10) et l'élément de régulation de température (11, 14) sont disposés l'un par rapport à l'autre de sorte que dans une première zone (15b) de l'aménagement de conduite puisse circuler, entre l'espace à vapeur d'échangeur de chaleur (10b) et l'espace à vapeur de régulation de température (11b), le fluide secondaire en forme de vapeur et que dans une deuxième zone (15) de l'aménagement de conduite puisse circuler, entre l'espace à liquide d'échangeur de chaleur (10a) et l'espace à liquide de régulation de température (11a), le fluide secondaire liquide.
  9. Dispositif selon la revendication 1 ou 8, dans lequel l'élément de régulation de température (11, 14) est disposé par rapport à l'échangeur de chaleur (7, 10) de sorte qu'il soit inondé par le fluide secondaire, dans lequel la régulation de température dans le mode de refroidissement est un refroidissement et l'échangeur de chaleur (7, 10) est couplé à l'évaporateur (4) du circuit primaire de pompe à chaleur.
  10. Dispositif selon l'une des revendications 1 à 9, dans lequel l'élément de régulation de température (11, 14) est allongé et présente, par rapport à une horizontale, une orientation oblique, dans lequel le fluide secondaire circule à l'état liquide, du fait de la gravité ou d'une force de pompage ou du fait d'un échangeur de chaleur (7, 10) disposé de manière correspondante dans l'élément de régulation de température (11, 14), de bas en haut.
  11. Dispositif selon l'une des revendications précédentes, dans lequel l'échangeur de chaleur (10) présente les caractéristiques suivantes:
    un premier segment de raccordement (41) pour le fluide de travail primaire;
    un deuxième segment de raccordement (42) pour le fluide de travail primaire;
    un troisième segment de raccordement (15a) pour le fluide secondaire;
    un quatrième segment de raccordement (15b) pour le fluide secondaire;
    un segment de canal (40) qui s'étend entre le premier segment de raccordement (41) pour le fluide de travail primaire et le deuxième segment de raccordement (42) pour le fluide de travail primaire; et
    une zone d'interaction (43) qui s'étend entre le troisième segment de raccordement (15a) pour le fluide secondaire et le quatrième segment de raccordement (15b) pour le fluide secondaire et dans laquelle est disposé le segment de canal (40), où le segment de canal (40) est couplé de manière thermique à la zone d'interaction (43) et est découplé de manière fluidique de la zone d'interaction (43).
  12. Dispositif selon l'une des revendications précédentes, dans lequel le compresseur (1) dans le circuit primaire de pompe à chaleur est conçu de manière à pouvoir être commandé pour être inversé dans sa direction de refoulement par le signal de commande (31, 32) pour provoquer l'inversion du circuit de pompe à chaleur,
  13. Dispositif selon la revendication 12, dans lequel le compresseur (1) comporte une roue de refoulement, dans lequel le compresseur est conçu pour inverser, en réponse au signal de commande (31, 32) pour inverser la direction de refoulement, une direction de rotation de la roue de refoulement, ou
    dans lequel le compresseur présente une soupape à quatre voies, dans lequel le compresseur est conçu pour découpler de manière fluidique, en réponse au signal de commande (31, 32), en partant du mode refroidissement pour inverser la direction de refoulement, un côté d'aspiration du compresseur de l'évaporateur (4) et le connecter de manière fluidique au condenseur (2) ou pour découpler de manière fluidique un côté de pression du compresseur du condenseur (2) et le connecter de manière fluidique à l'évaporateur (4), ou
    dans lequel le compresseur présente une soupape à quatre voies, dans lequel le compresseur est conçu pour découpler de manière fluidique, en réponse au signal de commande (31, 32), en partant du mode dégivrage pour inverser la direction de refoulement, un côté d'aspiration du compresseur du condenseur (2) et le connecter de manière fluidique à l'évaporateur (4) ou pour découpler de manière fluidique un côté de pression du compresseur de l'évaporateur (4) et le connecter de manière fluidique au condenseur (2).
  14. Dispositif selon l'une des revendications précédentes, qui présente par ailleurs les caractéristiques suivantes:
    un ventilateur (35) qui est disposé dans l'espace dont la température doit être régulée à l'intérieur de la délimitation de l'espace (20) pour faire passer de l'air devant l'élément de régulation de température (11, 14), ou
    un ventilateur qui est disposé à l'extérieur de la délimitation de l'espace (20) pour faire passer de l'air devant le condenseur du circuit primaire de pompe à chaleur.
  15. Dispositif selon l'une des revendications précédentes, dans lequel l'échangeur de chaleur (7, 10) présente l'évaporateur (4) du circuit primaire de pompe à chaleur ou le condenseur (2) du circuit primaire de pompe à chaleur et l'échangeur de chaleur (10) destiné à coupler de manière thermique le circuit primaire de pompe à chaleur et le circuit secondaire de pompe à chaleur qui sont séparés l'un de l'autre par une conduite ou qui sont disposés dans un seul et même espace.
  16. Espace dont la température doit être régulée (5), aux caractéristiques suivantes:
    une délimitation de l'espace (20) qui sépare l'espace (5) d'un environnement (21) de l'espace (5); et
    un dispositif selon l'une des revendications 1 à 15.
  17. Espace dont la température doit être régulée selon la revendication 16, qui est conçu comme un conteneur de transport mobile ou comme un espace dans un véhicule pour un transport sur l'eau, sur la route, sur le rail, dans l'air ou dans l'espace.
  18. Espace dont la température doit être régulée selon la revendication 16 ou 17, qui est conçu comme un espace dans un bâtiment stationnaire ou comme un espace stationnaire indépendant.
  19. Procédé de régulation de la température d'un espace dont la température doit être régulée (5) avec une délimitation de l'espace (20) qui sépare l'espace dont la température doit être régulée d'un environnement (21), avec un circuit primaire de pompe à chaleur avec un évaporateur (4), un condenseur (2), un compresseur (1) et un organe de détente (3), dans lequel l'évaporateur (4), le condenseur (2), le compresseur (1) et l'organe de détente (3) sont disposés à l'extérieur de l'espace dont la température doit être régulée; et un circuit secondaire qui est couplé de manière thermique à et est découplé de manière fluidique de l'évaporateur (4) ou du condenseur (2) par l'intermédiaire d'un échangeur de chaleur (7, 10) et présente un élément de régulation de température (11, 14) qui est disposé dans l'espace dont la température doit être régulée (5) et qui est connecté à l'échangeur de chaleur (7, 10) par un aménagement de conduite (15a, 15b) qui présente un fluide secondaire qui diffère du fluide de travail primaire, dans lequel l'aménagement de conduite (15a, 15b) pénètre à travers la délimitation de l'espace (20), dans lequel le circuit secondaire est conçu comme un circuit à thermosiphon, et dans lequel est disposée, dans le circuit secondaire, une pompe pouvant être commandée (8) qui est conçue pour inverser, en réponse à un signal de commande (32), une direction de refoulement dans le circuit secondaire, aux étapes suivantes consistant à:
    utiliser, dans le circuit primaire de pompe à chaleur, un fluide de travail primaire naturel;
    utiliser, dans l'aménagement de conduite (15a, 15b) du circuit secondaire, un fluide secondaire qui diffère du fluide de travail primaire,
    dans lequel la régulation de température présente, dans un mode de refroidissement, un refroidissement de l'espace (5) par l'élément de régulation de température (11, 14); et
    en réponse au signal de commande (31, 32), provoquer une inversion du circuit de pompe à chaleur dans le circuit primaire de pompe à chaleur de sorte que, dans le mode de refroidissement, de l'énergie soit dissipée de l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur et que, dans un mode de dégivrage, de l'énergie soit alimentée vers l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur pour dégivrer l'élément de régulation de température (11, 14), et que la direction de refoulement dans le circuit secondaire soit inversée par la pompe pouvant être commandée (8).
  20. Procédé de fabrication d'un dispositif de régulation de la température d'un espace dont la température doit être régulée (5) avec une délimitation de l'espace (20) qui sépare l'espace dont la température doit être régulée d'un environnement (21), aux caractéristiques suivantes: un circuit primaire de pompe à chaleur avec un évaporateur (4), un condenseur (2), un compresseur (1) et un organe de détente (3), dans lequel le circuit primaire de pompe à chaleur présente un fluide de travail primaire naturel, dans lequel l'évaporateur (4), le condenseur (2), le compresseur (1) et l'organe de détente (3) sont disposés à l'extérieur de l'espace dont la température doit être régulée; un circuit secondaire qui est couplé de manière thermique à et est découplé de manière fluidique de l'évaporateur (4) ou du condenseur (2) par l'intermédiaire d'un échangeur de chaleur (7, 10) et présente un élément de régulation de température (11, 14) qui est disposé dans l'espace dont la température doit être régulée (5) et qui est connecté à l'échangeur de chaleur (7, 10) par un aménagement de conduite (15a, 15b) qui présente un fluide secondaire qui diffère du fluide de travail primaire, dans lequel l'aménagement de conduite (15a, 15b) pénètre à travers la délimitation de l'espace (20), dans lequel le circuit secondaire est conçu comme un circuit à thermosiphon, et dans lequel est disposée, dans le circuit secondaire, une pompe pouvant être commandée (8) qui est conçue pour inverser, en réponse à un signal de commande (32), une direction de refoulement dans le circuit secondaire, dans lequel le dispositif est conçu pour refroidir, dans un mode de refroidissement, l'espace (5) par l'élément de régulation de température (11, 14), aux étapes suivantes consistant à:
    introduire un fluide de travail primaire naturel dans le circuit primaire de pompe à chaleur;
    fabriquer un aménagement de conduite (15a, 15b) qui pénètre à travers la délimitation de l'espace (20);
    introduire un fluide secondaire, qui diffère du fluide de travail primaire, dans l'aménagement de conduite (15a, 15b); et
    fabriquer un moyen de commande (30) qui est conçu pour provoquer, en réponse au signal de commande (31, 32) dans le circuit primaire de pompe à chaleur, une inversion du circuit de pompe à chaleur, de sorte que, dans le mode de refroidissement, de l'énergie soit dissipée de l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur et que, dans un mode de dégivrage, de l'énergie soit alimentée vers l'échangeur de chaleur (7, 10) à travers le circuit primaire de pompe à chaleur pour dégivrer l'élément de régulation de température (11, 14), et que soit inversée, par la pompe pouvant être commandée (8), une direction de refoulement dans le circuit secondaire.
EP22782732.6A 2021-09-30 2022-09-22 Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée Active EP4314671B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021211049 2021-09-30
DE102022201790.0A DE102022201790A1 (de) 2021-09-30 2022-02-21 Verfahren und Vorrichtung zum Temperieren eines zu temperierenden Raums
PCT/EP2022/076419 WO2023052244A1 (fr) 2021-09-30 2022-09-22 Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée

Publications (2)

Publication Number Publication Date
EP4314671A1 EP4314671A1 (fr) 2024-02-07
EP4314671B1 true EP4314671B1 (fr) 2024-05-29

Family

ID=83507560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22782732.6A Active EP4314671B1 (fr) 2021-09-30 2022-09-22 Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée

Country Status (3)

Country Link
EP (1) EP4314671B1 (fr)
AU (1) AU2022357257A1 (fr)
WO (1) WO2023052244A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112962A (ja) * 1985-11-12 1987-05-23 株式会社東芝 空気調和装置
JP3523381B2 (ja) * 1995-07-26 2004-04-26 株式会社日立製作所 冷蔵庫
JP4945712B2 (ja) * 2006-10-16 2012-06-06 ホシザキ電機株式会社 サーモサイフォン
DE102007039195B4 (de) 2007-08-20 2015-03-26 Ingersoll-Rand Klimasysteme Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
JP5275929B2 (ja) * 2008-08-26 2013-08-28 ホシザキ電機株式会社 冷却装置
DE102021201712A1 (de) 2021-02-23 2022-08-25 Glen Dimplex Deutschland Gmbh Wärmepumpenanlage sowie Verfahren zum Betreiben einer Wärmepumpenanlage

Also Published As

Publication number Publication date
WO2023052244A1 (fr) 2023-04-06
AU2022357257A1 (en) 2024-04-11
EP4314671A1 (fr) 2024-02-07

Similar Documents

Publication Publication Date Title
EP0701096B1 (fr) Procédé de fonctionnement d'une installation productrice de froid pour la climatisation de véhicules et installation productrice de froid pour sa mise en oeuvre
EP3444542B1 (fr) Système de circulation pour un véhicule et procédé associé
DE102015122721B4 (de) Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
DE112013006239T5 (de) Wärmetauscher
DE102010048015A1 (de) Anlage mit einem Wärmeübertrager
DE102004019668A1 (de) Wärmetauscher und diesen verwendendes kombiniertes Kreislaufsystem
DE112007002526T5 (de) Temperatursteuersystem mit Wärmetauschermodulen mit indirekter Expansionskühlung und innenliegender elektrischer Beheizung
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
EP2199706A1 (fr) Appareil de climatisation
DE102019132689A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen
DE102018114762B4 (de) Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
DE102014212019A1 (de) Kühl- und Energierückgewinnungsystem
EP3491303B1 (fr) Système de pompe à chaleur comprenant des ensembles pompe à chaleur couplés côté entrée et côté sortie
DE102022201790A1 (de) Verfahren und Vorrichtung zum Temperieren eines zu temperierenden Raums
DE102020213544B4 (de) Gaskältemaschine, Verfahren zum Betreiben einer Gaskältemaschine und Verfahren zum Herstellen einer Gaskältemaschine mit einem Rekuperator um den Ansaugbereich
EP1112191B1 (fr) Dispositif dissipateur de chaleur pour vehicule
EP4314671B1 (fr) Procédé et dispositif de régulation de la température d'un espace dont la température doit être régulée
DE102013106831A1 (de) Fahrzeugklimaanlage eines Hybrid- oder Elektrofahrzeugs
WO1980002869A1 (fr) Pompe de circulation pour milieu liquide et/ou gazeux
DE102008043807B4 (de) Kälteanlage
DE102012212227A1 (de) Kälteanlage und Kraftfahrzeug mit einer Kälteanlage
DE102019120229A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug, Verfahren zum Wärmemanagement eines Kraftfahrzeugs und Kraftfahrzeug mit einem Wärmemanagementsystem
EP3320279B1 (fr) Procédé et dispositif de régulation de la température d'un milieu
WO2014131606A1 (fr) Machine frigorifique et procédé de fonctionnement d'une machine frigorifique
EP3491302A1 (fr) Système de pompe à chaleur utilisant du co2 comme premier fluide de pompe à chaleur et de l'eau comme deuxième fluide de pompe à chaleur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20240326

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240415

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000973

Country of ref document: DE