EP4314386A1 - Coated flat steel product and method for the production thereof - Google Patents
Coated flat steel product and method for the production thereofInfo
- Publication number
- EP4314386A1 EP4314386A1 EP22713421.0A EP22713421A EP4314386A1 EP 4314386 A1 EP4314386 A1 EP 4314386A1 EP 22713421 A EP22713421 A EP 22713421A EP 4314386 A1 EP4314386 A1 EP 4314386A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- manganese
- flat
- steel
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 72
- 239000010959 steel Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000011701 zinc Substances 0.000 claims abstract description 43
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims description 48
- 239000011248 coating agent Substances 0.000 claims description 33
- 239000011572 manganese Substances 0.000 claims description 29
- 229910052748 manganese Inorganic materials 0.000 claims description 27
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 14
- 229910000914 Mn alloy Inorganic materials 0.000 claims description 9
- WJZHMLNIAZSFDO-UHFFFAOYSA-N manganese zinc Chemical compound [Mn].[Zn] WJZHMLNIAZSFDO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 238000005275 alloying Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000010960 cold rolled steel Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 24
- 239000010410 layer Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 14
- 230000009467 reduction Effects 0.000 description 14
- 238000005240 physical vapour deposition Methods 0.000 description 11
- 238000003466 welding Methods 0.000 description 11
- 238000011835 investigation Methods 0.000 description 10
- 238000009864 tensile test Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004210 cathodic protection Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000012888 cubic function Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/028—Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
Definitions
- the invention relates to a flat steel product with a tensile strength R m of at least 800 MPa, which is coated with a metal coating, and a method for its production.
- the alloying element silicon, chromium and molybdenum with increasing content in the steel sheet favors the LME, so that it is proposed here to carry out annealing to adjust the microstructure Q&P in an atmosphere in which a targeted te Dew point control adjusts the partial pressure of the oxygen in such a way that the aim is to diffuse oxygen into the steel sheet during the annealing phase, thereby binding silicon to form silicon dioxide in the area close to the surface of the steel sheet, and thereby reducing the elemental silicon content under the zinc coating in the steel sheet and thereby in turn, the resistance to LME can be increased.
- the invention is therefore based on the object of providing a flat steel product with a tensile strength R m of at least 800 MPa in conjunction with a metal coating and specifying a corresponding method for its production, with which an LME-induced cracking tendency during the WPS can be reduced without corresponding Having to take measures and/or adjustments in ongoing (standard) processes, as described in the prior art.
- this object is achieved by a flat steel product with the features of patent claim 1.
- a steel flat product with a tensile strength R m of at least 800 MPa which is coated with a metal coating, the metal coating consisting of a system with the elements zinc and manganese, which is (was) separated from the gas phase.
- the metal coating consists of a system with the elements zinc and manganese, whereby zinc contributes to cathodic corrosion protection and manganese has a positive influence on the LME cracking tendency of the steel (substrate), since the presence of manganese in the System of the metal coating, the melting temperature of the system he can be increased, which in turn can lead to a reduced and / or delayed melting of the system in the WPS. The susceptibility to brittle fracture can be reduced as a result. Furthermore, it has surprisingly been found that the metal coating deposited from the gas phase typically does not provide any hydrogen due to the process, which can arise due to the process in other coating processes, in particular in the case of an electrolytic coating, and can be stored in the metal grid. In the case of steels with tensile strengths of at least 800 MPa and higher, the stored hydrogen can lead to hydrogen-induced brittle fractures.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the flat steel product according to the invention has a tensile strength R m of at least 800 MPa, in particular at least 850 MPa, preferably at least 910 MPa, preferably at least 950 MPa.
- the tensile strength R m of the flat steel product according to the invention is a maximum of 1700 MPa, in particular a maximum of 1600 MPa, preferably a maximum of 1520 MPa, preferably a maximum of 1490 MPa.
- the tensile strength R m can be determined in a tensile test according to DIN EN ISO 6892-1:2017.
- the flat steel product according to the invention is used exclusively for cold forming applications and not for hot forming applications (including hardening), so that the corresponding properties are already present in the flat steel product before cold forming.
- the system has a layer made from a zinc-manganese alloy.
- the system is thus deposited from the gas phase in one step and a layer of a zinc-manganese alloy is produced on the flat steel product.
- the metal coating on the steel flat product thus consists of a single-layer alloy of zinc and manganese, deposited from the gas phase.
- the deposition is controlled in such a way that a zinc content of between 10 and 90% by weight and a manganese content of between 90 and 10% by weight are set in the zinc-manganese alloy.
- a manganese content of at least 10% by weight is required to ensure a reduced LME cracking tendency during the WPS, the content being in particular at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight.
- the manganese content in the alloy (layer) is limited to a maximum of 90% by weight, so that the metal coating tive the system can ensure adequate cathodic corrosion protection with at least 10% by weight, in particular at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight zinc, since the metal coating or the system consists of of the gas phase with a thickness of between 0.5 and a maximum of 20 ⁇ m, in particular a maximum of 15 ⁇ m, preferably a maximum of 10 ⁇ m, on the flat steel product.
- the system has a manganese layer and a zinc layer.
- the metal coating is therefore two-layered and consists of a zinc and a manganese layer, each deposited from the gas phase.
- the system is deposited in two steps by first depositing a manganese layer on the steel flat product and then a zinc layer on the manganese layer.
- the layer of manganese is arranged on the flat steel product and the layer of zinc is arranged on the layer of manganese.
- Both layers can each be deposited with a thickness between 0.5 and a maximum of 20 ⁇ m, in particular a maximum of 15 ⁇ m, preferably a maximum of 10 ⁇ m, preferably a maximum of 7 ⁇ m.
- the two-layer system Compared to the single-layer system, the two-layer system has the advantage that the zinc outer layer provides complete and full cathodic protection and the manganese inner layer provides a complete barrier during WPS.
- the disadvantage compared to the single-layer system is that two separate gas-phase stages have to be run through in order to deposit the layers successively.
- the flat steel product can either be hot-rolled or cold-rolled. It depends on the purpose of use.
- the hot-rolled flat steel product can have a thickness of between 1.5 and 10 mm.
- the cold-rolled flat steel product can have a thickness of between 0.5 and 4 mm.
- the process starting with the casting of a melt, in particular with a chemical composition which is listed below as preferred, into a preliminary product, and heating the preliminary product to a temperature so that it can be hot-rolled into a flat steel product, is current of the technique. If the required minimum tensile strengths are already set in the hot strip, a person skilled in the art is familiar with a corresponding procedure.
- a cold-rolled steel flat product with a minimum tensile strength of 800 MPa is to be produced from the hot strip, this is also state of the art, the hot strip in particular to be subjected to pickling before being cat-rolled into a cold-rolled strip.
- the desired properties are set in a subsequent annealing process.
- the essence of the invention is not the manufacture of the steel flat products with a tensile strength of at least 800 MPa, but rather a suitable coating concept which, in the case of steels in the specified tensile strength class of 800 MPa and higher, can counteract the special LME susceptibility of these tensile strength classes in WPS.
- the steel flat product contains at least two different phases in the microstructure.
- the microstructure thus contains at least two components of ferrite, pearlite, martensite, bainite, austenite, residual austenite and/or cementite, as well as microstructure components that are unavoidable during production.
- DP steels dual-phase steels
- CP steels Complex-phase steels
- CP steels mainly contain phases with a medium hardness, such as bainite and/or (tempered) martensite, optionally in connection with precipitation hardening.
- Quench&Partitioning QP steels mainly contain martensite (including tempered martensite) and retained austenite. Alternatively or additionally, precipitations can be present in the structure.
- the flat steel product contains, in addition to Fe and unavoidable production-related impurities in % by weight
- N up to 0.020%, optionally with one or more alloying elements from the group (Ti, Nb, V, Cr, Mo, W, Ca, B, Cu, Ni, Sn, As, Co, 0, H).
- V up to 0.20%
- Cr up to 2.0%
- the process for producing a metal-coated steel flat product with a tensile strength R m of at least 800 MPa comprises the steps:
- the metal coating consists of a system with the elements zinc and manganese and is deposited on the flat steel product from the gas phase.
- the strain was measured without contact using a laser.
- the heating rate was 1000 K/s.
- the liguidus phase of zinc between 500 and 900 °C in 100 °C steps was used as the temperature interval.
- Hot tensile tests were carried out for all samples a) to e). After mounting in the test fixture, the test chamber was closed and a pre-programmed script was executed as follows. The measurement frequency during the hot tensile tests was at least 5,000 Hz. The specimen was heated conductively and after the specimen had reached the test temperature in the aforementioned temperature window of between 500 and 900 °C, the specimen was stretched at the specified tensile rate until it failed. The quality of the measurement data collected was then checked using the Origin analysis software. The evaluation routine of the hot tensile tests was based on the standard for tensile tests [DIN EN ISO 6892-1:2017]. The raw data from successfully conducted hot tensile tests were converted into a cubic function with the aid of a computer. The necessary support points and the technical failure time of the samples were entered into an evaluation module by the system operator.
- samples b) with Z a strong reduction in the technical breaking point was determined for all test temperatures.
- the samples bl) with ZF showed no significant changes in the technical breaking point at the test temperatures of 500 and 600 °C. This reduction was very pronounced at the remaining test temperatures (700-900 °C).
- the samples c) with ZE showed comparable behavior to samples b).
- samples d) with Zn/Mn alloy PVD no significant elongation value of the technical breaking point was determined for all test temperatures, with the technical breaking point being approx. ⁇ 10% lower compared to samples a).
- the samples e) with Mn-Zn-PVD were the result in the order of magnitude of the samples d).
- samples b) to e) with a wide variety of metal coatings were examined for their "LME sensitivity".
- the uncoated samples a) served as a reference.
- other coatings not mentioned here as well as other steel concepts can also be examined without having to go through complex and quantitative WPS examinations.
- all LME-sensitive steel materials with a tensile strength R m of at least 800 MPa can be examined here.
- thermomechanical loads applied using the Gleeble method represent the mean effective thermomechanical loads of the WPS experiments.
- the validation is considered successful if the "LME sensitivity" in the Gleeble method is comparatively low and the WPS investigations show significantly reduced crack frequencies and lower crack depths (or no cracks at all).
- Experimental WPS investigations were carried out on samples a) to e).
- the parameters of the WPS investigations are listed in Table 1. The sample series for the WPS investigations were produced immediately after the current intensity required to achieve the target point diameter had been determined.
- the welding electrodes were then milled inside the welding machine using a mobile cap milling device and conditioned with three welds. Samples showing weld spatter were discarded. The welding results were judged to be easily comparable due to the uniform point diameters, current levels and process control parameters. Table 1
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electrochemistry (AREA)
- Coating With Molten Metal (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The invention relates to a flat steel product having a tensile strength Rm of at least 800 MPa, which is coated with a metal cover, the metal cover consisting of a system comprising the elements zinc and manganese, which has been deposited from the gas phase. The invention also relates to a method for the production thereof.
Description
Beschichtetes Stahlflachprodukt und Verfahren zu seiner Herstellung Coated flat steel product and method for its manufacture
Technisches Gebiet (Technical Field) Technical Field
Die Erfindung betrifft ein Stahlflachprodukt mit einer Zugfestigkeit Rm von mindestens 800 MPa, welches mit einem Metallüberzug beschichtet ist sowie ein Verfahren zu seiner Herstellung. The invention relates to a flat steel product with a tensile strength R m of at least 800 MPa, which is coated with a metal coating, and a method for its production.
Technischer Hintergrund Technical background
Aus dem Stand der Technik sind allgemein Stähle mit Metallüberzügen, die aus der Gasphase abgeschieden werden, bekannt, beispielsweise in der deutschen Offenlegungsschrift DE 1 621 376 A beschrieben. Vergleichbare aus der Gasphase abgeschiedene Metallüberzüge, welche für die Warmumformung bestimmt sind, bei welcher die Stähle respektive die mittels Warmum formung und (Press-)Härtung hergestellten Bauteile eine finale Zugfestigkeit von 1500 MPa und mehr aufweisen, sind aus den deutschen Offenlegungsschriften DE 10 2014 004 652 Al und DE 10 2018 128 131 Al bekannt. Steels with metal coatings that are deposited from the gas phase are generally known from the prior art, for example, they are described in German Offenlegungsschrift DE 1 621 376 A. Comparable metal coatings deposited from the gas phase, which are intended for hot forming, in which the steels or the components produced by means of hot forming and (press) hardening have a final tensile strength of 1500 MPa and more, are from German laid-open specifications DE 10 2014 004 652 A1 and DE 10 2018 128 131 A1.
Bei höherfesten Mehrphasenstählen, insbesondere bei sogenannten Quench and Partitioning - Stählen (Q&P), kommt es bei zinkhaltigen Metallüberzügen vermehrt zur Rissbildung durch Flüssigmetallversprödung, auch bekannt als liguid metal embrittlement (LME), beim Wider- standsjounktschweißen (WPS). Zur LME induzierten Rissbildung während des WPS existieren unzählige Veröffentlichungen, u. a. befassen sich auch die internationalen Offenlegungsschrif ten WO 2017/234839 Al und WO 2018/234938 Al mit der LME in Verbindung mit WPS, wel che höchstfeste Q&P-Stähle mit Zinküberzügen beschreiben. Aus diesen Veröffentlichungen ist ferner zu entnehmen, dass das Legierungselement Silizium, Chrom und Molybdän mit steigen dem Gehalt im Stahlblech die LME begünstigt, so dass hier vorgeschlagen wird, ein Glühen zur Einstellung des Gefüges Q&P in einer Atmosphäre durchzuführen, in welcher über eine geziel te Taupunktsteuerung der Partialdruck des Sauerstoffs derart eingestellt und eine Diffusion von Sauerstoff in das Stahlblech während der Glühphase bezweckt wird, sich dadurch im oberflä chennahen Bereich des Stahlblechs u. a. Silizium zu Siliziumdioxid abbindet, und dadurch der Gehalt des elementaren Siliziums unter dem Zinküberzug im Stahlblechs reduziert und dadurch wiederrum die Widerstandsfähigkeit gegen LME erhöht werden kann. Die Lehre dieser Veröf fentlichungen zielt auf eine definierte Einstellung der Legierungselemente Silizium, Chrom und Molybdän und damit der entsprechen Struktur im Bereich 0 bis 100 pm des Stahlblechs unter dem Zinküberzug, um einen hohen Widerstand gegen LME an dem mit Zink beschichteten Q&P- Stahl bereitstellen zu können. Nur am Rande ist erwähnt, dass gemäß einer Alternative der Zink überzug auch aus der Gasphase abscheidbar sei.
Aus dem Stand der Technik ist des Weiteren bekannt, dass die LME-Sensibilität bei Stählen mit zunehmenden Festigkeiten in Verbindung mit zinkbasierten Überzügen ansteigt und somit beim WPS Probleme infolge von Rissbildung bereiten, dadurch, dass sich während des WPS Zink im Überzug verflüssigt, in das Substrat eindringt und sich an den Korngrenzen des Stahls ablagern kann, wodurch es Sprödbruch anfälliger wird und bei Belastung in der späteren Anwendung zu einem frühzeitigen Versagen kommen kann. In the case of high-strength multi-phase steels, especially so-called quench and partitioning steels (Q&P), zinc-containing metal coatings increasingly crack formation due to liquid metal embrittlement, also known as liguid metal embrittlement (LME), during resistance joint welding (WPS). There are countless publications on LME-induced crack formation during the WPS, including the international disclosure documents WO 2017/234839 A1 and WO 2018/234938 A1 dealing with the LME in connection with WPS, which describe high-strength Q&P steels with zinc coatings. From these publications it can also be seen that the alloying element silicon, chromium and molybdenum with increasing content in the steel sheet favors the LME, so that it is proposed here to carry out annealing to adjust the microstructure Q&P in an atmosphere in which a targeted te Dew point control adjusts the partial pressure of the oxygen in such a way that the aim is to diffuse oxygen into the steel sheet during the annealing phase, thereby binding silicon to form silicon dioxide in the area close to the surface of the steel sheet, and thereby reducing the elemental silicon content under the zinc coating in the steel sheet and thereby in turn, the resistance to LME can be increased. The teaching of these publications is aimed at a defined setting of the alloying elements silicon, chromium and molybdenum and thus the corresponding structure in the range from 0 to 100 μm of the steel sheet under the zinc coating in order to provide a high resistance to LME on the zinc-coated Q&P steel be able. It is only mentioned in passing that, according to an alternative, the zinc coating can also be deposited from the gas phase. It is also known from the prior art that the LME sensitivity of steels increases with increasing strength in connection with zinc-based coatings and thus causes problems with the WPS as a result of cracking due to the fact that zinc in the coating liquefies during the WPS, into the Substrate penetrates and can deposit at the grain boundaries of the steel, making it more susceptible to brittle fracture and leading to premature failure when stressed in later use.
Weitere Ansätze sind bekannt, über eine Erhöhung der Kontaktflächen der Schweißelektrode respektive durch Modifikation der Material- und Blechdickenkombination das Problem der LME zu unterdrücken, vgl. Patentschrift US 9 333 588 B2. Other approaches are known for suppressing the LME problem by increasing the contact surfaces of the welding electrode or by modifying the combination of material and sheet metal thickness, see US Pat. No. 9,333,588 B2.
Zusammenfassung der Erfindung Summary of the Invention
Der Erfindung liegt somit die Aufgabe zu Grunde, ein Stahlflachprodukt mit einer Zugfestigkeit Rm von mindestens 800 MPa in Verbindung mit einem Metallüberzug bereitzustellen sowie ein entsprechendes Verfahren zu seiner Herstellung anzugeben, mit welchem eine LME induzierte Rissneigung während des WPS reduziert werden kann, ohne entsprechende Maßnahmen und/oder Anpassungen in laufenden (Standard-)Prozessen vornehmen zu müssen, wie sie im Stand der Technik beschrieben sind. The invention is therefore based on the object of providing a flat steel product with a tensile strength R m of at least 800 MPa in conjunction with a metal coating and specifying a corresponding method for its production, with which an LME-induced cracking tendency during the WPS can be reduced without corresponding Having to take measures and/or adjustments in ongoing (standard) processes, as described in the prior art.
Gelöst wird diese Aufgabe gemäß einem ersten Aspekt der Erfindung durch ein Stahlflachpro dukt mit den Merkmalen des Patentanspruchs 1. According to a first aspect of the invention, this object is achieved by a flat steel product with the features of patent claim 1.
Erfindungsgemäß ist ein Stahlflachprodukt mit einer Zugfestigkeit Rm von mindestens 800 MPa, welches mit einem Metallüberzug beschichtet ist, vorgesehen, wobei der Metallüberzug aus ei nem System mit den Elementen Zink und Mangan besteht, welches aus der Gasphase abge schieden (worden) ist. According to the invention, a steel flat product with a tensile strength R m of at least 800 MPa is provided, which is coated with a metal coating, the metal coating consisting of a system with the elements zinc and manganese, which is (was) separated from the gas phase.
Wesentlich für die Erfindung ist, dass der Metallüberzug aus einem System mit den Elementen Zink und Mangan besteht, wodurch Zink zum kathodischen Korrosionsschutz beiträgt und Man gan einen positiven Einfluss auf die LME Rissneigung des Stahls (Substrats) hat, da durch An wesenheit von Mangan im System des Metallüberzugs die Schmelztemperatur des Systems er höht werden kann, was wiederum zu einem reduzierten und/oder verzögertem Aufschmelzen des Systems beim WPS führen kann. Die Sprödbruchanfälligkeit kann dadurch gesenkt wer den.
Des Weiteren ist überraschend festgestellt worden, dass der aus der Gasphase abgeschiedene Metallüberzug verfahrensbedingt typischerweise keinen Wasserstoff bereitstellt, welcher bei an deren Beschichtungsverfahren, insbesondere bei einer elektrolytischen Beschichtung, prozess bedingt entstehen und sich im Metallgitter einlagern kann. Bei Stählen mit Zugfestigkeiten von mindestens 800 MPa und höher kann der eingelagerte Wasserstoff zu wasserstoffinduzierten Sprödbrüchen führen. It is essential for the invention that the metal coating consists of a system with the elements zinc and manganese, whereby zinc contributes to cathodic corrosion protection and manganese has a positive influence on the LME cracking tendency of the steel (substrate), since the presence of manganese in the System of the metal coating, the melting temperature of the system he can be increased, which in turn can lead to a reduced and / or delayed melting of the system in the WPS. The susceptibility to brittle fracture can be reduced as a result. Furthermore, it has surprisingly been found that the metal coating deposited from the gas phase typically does not provide any hydrogen due to the process, which can arise due to the process in other coating processes, in particular in the case of an electrolytic coating, and can be stored in the metal grid. In the case of steels with tensile strengths of at least 800 MPa and higher, the stored hydrogen can lead to hydrogen-induced brittle fractures.
Das Prinzip der Abscheidung aus der Gasphase, beispielsweise CVD- (Chemical vapor deposi- tion) oder PVD- (physical vapor deposition) Verfahren, ist Stand der Technik. Bevorzugt ist das PVD-Verfahren. Diese Technologie ist nicht zu verwechseln mit einer Applikation von Überzü gen mittels elektrolytischer Beschichtung und auch nicht mit einer Applikation von Überzügen mittels Schmelztauchbeschichtung. The principle of deposition from the gas phase, for example CVD (chemical vapor deposition) or PVD (physical vapor deposition) processes, is prior art. The PVD process is preferred. This technology is not to be confused with the application of coatings by electrolytic plating, nor with the application of coatings by hot dip coating.
Das erfindungsgemäße Stahlflachprodukt weist eine Zugfestigkeit Rmvon mindestens 800 MPa, insbesondere mindestens 850 MPa, vorzugsweise mindestens 910 MPa, bevorzugt mindestens 950 MPa auf. Die Zugfestigkeit Rm des erfindungsgemäßen Stahlflachprodukts beträgt maxi mal 1700 MPa, insbesondere maximal 1600 MPa, vorzugsweise maximal 1520 MPa, bevor zugt maximal 1490 MPa. Die Zugfestigkeit Rm ist im Zugversuch nach DIN EN ISO 6892-1:2017 ermittelbar. Das erfindungsgemäße Stahlflachprodukt kommt ausschließlich für Kaltumforman- wendung und nicht für Warmumformanwendungen (einschl. Härtung) zum Einsatz, so dass die entsprechenden Eigenschaften bereits vor dem Kaltumformen im Stahlflachprodukt vorhanden sind. The flat steel product according to the invention has a tensile strength R m of at least 800 MPa, in particular at least 850 MPa, preferably at least 910 MPa, preferably at least 950 MPa. The tensile strength R m of the flat steel product according to the invention is a maximum of 1700 MPa, in particular a maximum of 1600 MPa, preferably a maximum of 1520 MPa, preferably a maximum of 1490 MPa. The tensile strength R m can be determined in a tensile test according to DIN EN ISO 6892-1:2017. The flat steel product according to the invention is used exclusively for cold forming applications and not for hot forming applications (including hardening), so that the corresponding properties are already present in the flat steel product before cold forming.
Gemäß einer Ausgestaltung weist das System eine Schicht aus einer Zink-Mangan-Legierung auf. Aus der Gasphase wird somit das System in einem Schritt abgeschieden und eine Schicht aus einer Zink-Mangan-Legierung auf dem Stahlflachprodukt erzeugt. Der Metallüberzug auf dem Stahlflachprodukt besteht somit aus einer einschichtigen Legierung aus Zink und Mangan, abgeschieden aus der Gasphase. Insbesondere wird dabei das Abscheiden derart gesteuert, dass in der Zink-Mangan-Legierung ein Zink-Gehalt zwischen 10 und 90 Gew.- % und ein Man- gan-Gehalt zwischen 90 und 10 Gew.-% eingestellt wird. Ein Manganhalt von mindestens 10 Gew-% ist erforderlich um eine reduzierte LME Rissneigung während des WPS sicherzustellen, wobei der Gehalt insbesondere mindestens 20 Gew.-%, vorzugsweise mindestens 30 Gew.-%, bevorzugt mindestens 40 Gew.-% betragen kann. Im Umkehrschluss ist der Mangangehalt in der Legierung(sschicht) auf maximal 90 Gew.-% begrenzt, so dass der Metallüberzug respek-
tive das System einen ausreichenden kathodischen Korrosionsschutz mit mindestens 10 Gew.- %, insbesondere mindestens 20 Gew.-%, vorzugsweise mindestens 30 Gew.-%, bevorzugt mindestens 40 Gew.-% Zink gewährleisten kann, da der Metallüberzug bzw. das System aus der Gasphase mit einer Dicke zwischen 0,5 und maximal 20 pm, insbesondere maximal 15 gm, vorzugsweise maximal 10 pm auf dem Stahlflachprodukt appliziert wird. Je höher der Zinkge halt in dem System respektive in dem (relativ dünnen) Metallüberzug, umso höher ist der ka- thodische Korrosionsschutz. According to one configuration, the system has a layer made from a zinc-manganese alloy. The system is thus deposited from the gas phase in one step and a layer of a zinc-manganese alloy is produced on the flat steel product. The metal coating on the steel flat product thus consists of a single-layer alloy of zinc and manganese, deposited from the gas phase. In particular, the deposition is controlled in such a way that a zinc content of between 10 and 90% by weight and a manganese content of between 90 and 10% by weight are set in the zinc-manganese alloy. A manganese content of at least 10% by weight is required to ensure a reduced LME cracking tendency during the WPS, the content being in particular at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight. Conversely, the manganese content in the alloy (layer) is limited to a maximum of 90% by weight, so that the metal coating tive the system can ensure adequate cathodic corrosion protection with at least 10% by weight, in particular at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight zinc, since the metal coating or the system consists of of the gas phase with a thickness of between 0.5 and a maximum of 20 μm, in particular a maximum of 15 μm, preferably a maximum of 10 μm, on the flat steel product. The higher the zinc content in the system or in the (relatively thin) metal coating, the higher the cathodic protection against corrosion.
Gemäß einer alternativen Ausgestaltung weist das System eine Schicht aus Mangan und eine Schicht aus Zink auf. Der Metallüberzug ist somit zweischichtig und besteht aus einer Zink- und einer Mangan-Schicht, jeweils abgeschieden aus der Gasphase. Das System wird in zwei Schrit ten abgeschieden, indem nacheinander zuerst eine Schicht aus Mangan auf dem Stahlflach produkt und anschließend eine Schicht aus Zink auf der Schicht aus Mangan abgeschieden wird. Somit ist die Schicht aus Mangan auf dem Stahlflachprodukt und die Schicht aus Zink auf der Schicht aus Mangan angeordnet. Beide Schichten können jeweils mit einer Dicke zwischen 0,5 und maximal 20 pm, insbesondere maximal 15 pm, vorzugsweise maximal 10 pm, bevor zugt maximal 7 pm abgeschieden werden. According to an alternative embodiment, the system has a manganese layer and a zinc layer. The metal coating is therefore two-layered and consists of a zinc and a manganese layer, each deposited from the gas phase. The system is deposited in two steps by first depositing a manganese layer on the steel flat product and then a zinc layer on the manganese layer. Thus, the layer of manganese is arranged on the flat steel product and the layer of zinc is arranged on the layer of manganese. Both layers can each be deposited with a thickness between 0.5 and a maximum of 20 μm, in particular a maximum of 15 μm, preferably a maximum of 10 μm, preferably a maximum of 7 μm.
Im Vergleich zum einschichtigen System hat das zweischichtige System den Vorteil, dass die äußere Schicht aus Zink einen vollständigen und vollwertigen kathodischen Korrosionsschutz und die innere Schicht aus Mangan eine vollständige Barriere während des WPS bietet. Nach teilig gegenüber dem einschichtigen System ist, dass zwei voneinander getrennte Gasphasen- Stufen durchlaufen werden müssen, um die Schichten sukzessive abzuscheiden. Compared to the single-layer system, the two-layer system has the advantage that the zinc outer layer provides complete and full cathodic protection and the manganese inner layer provides a complete barrier during WPS. The disadvantage compared to the single-layer system is that two separate gas-phase stages have to be run through in order to deposit the layers successively.
Gemäß einer Ausgestaltung kann das Stahlflachprodukt entweder warmgewalzt oder kaltge walzt sein. Es hängt vom Verwendungszweck ab. Das warmgewalzte Stahlflachprodukt (Warm band) kann eine Dicke zwischen 1,5 und 10 mm aufweisen. Das kaltgewalzte Stahlflachprodukt (Kaltband) kann eine Dicke zwischen 0,5 und 4 mm aufweisen. Der Prozess ausgehend von dem Vergießen einer Schmelze, insbesondere mit einer chemischen Zusammensetzung, wel che als bevorzugt im Folgenden angeführt ist, zu einem Vorprodukt, und das Vorprodukt auf ei ne Temperatur zu erwärmen, so dass es sich zu einem Stahlflachprodukt Warmwalzen lässt, ist Stand der Technik. Sollten die geforderten Mindestzugfestigkeiten bereits in dem Warmband eingestellt werden, ist eine entsprechende Verfahrensweise dem Fachmann geläufig. Soll aus dem Warmband ein kaltgewalztes Stahlflachprodukt mit einer Mindestzugfestigkeit von 800 MPa eingestellt werden, so ist auch dies Stand der Technik, das Warmband insbesondere zu-
nächst einem Beizen zu unterziehen, bevor es zu einem Kaltband katgewalzt wird. In einem an schließend Glühprozess werden die gewünschten Eigenschaften eingestellt. Der Kern der Erfin dung ist nicht die Herstellung der Stahlflachprodukte mit einer Zugfestigkeit von mindestens 800 MPa, sondern ein geeignetes Überzugskonzept anzugeben, welches bei Stählen in der an gegebenen Zugfestigkeitsklasse 800 MPa und höher der besonderen LME-Anfälligkeit dieser Zugfestigkeitsklassen beim WPS entgegenwirken kann. According to one embodiment, the flat steel product can either be hot-rolled or cold-rolled. It depends on the purpose of use. The hot-rolled flat steel product (hot strip) can have a thickness of between 1.5 and 10 mm. The cold-rolled flat steel product (cold strip) can have a thickness of between 0.5 and 4 mm. The process, starting with the casting of a melt, in particular with a chemical composition which is listed below as preferred, into a preliminary product, and heating the preliminary product to a temperature so that it can be hot-rolled into a flat steel product, is current of the technique. If the required minimum tensile strengths are already set in the hot strip, a person skilled in the art is familiar with a corresponding procedure. If a cold-rolled steel flat product with a minimum tensile strength of 800 MPa is to be produced from the hot strip, this is also state of the art, the hot strip in particular to be subjected to pickling before being cat-rolled into a cold-rolled strip. The desired properties are set in a subsequent annealing process. The essence of the invention is not the manufacture of the steel flat products with a tensile strength of at least 800 MPa, but rather a suitable coating concept which, in the case of steels in the specified tensile strength class of 800 MPa and higher, can counteract the special LME susceptibility of these tensile strength classes in WPS.
Das Stahlflachprodukt enthält mindestens zwei unterschiedliche Phasen im Gefüge. Das Gefü ge enthält somit mindestens zwei Bestandteile aus Ferrit, Perlit, Martensit, Bainit, Austenit, Restaustenit und/oder Zementit sowie herstellungsbedingte unvermeidbare Gefügebestandtei le. Dazu zählen beispielsweise Dualphasenstähle (DP-Stähle), welche ein Gefüge aus einer Mi schung von harten, beispielsweise Martensit, und weichen, beispielsweise Ferrit, Phasen ha ben. Complexphasenstähle (CP-Stähle) enthalten überwiegend Phasen mit einer mittleren Här te, wie Bainit und/oder (angelassenem) Martensit, optional in Verbindung mit einer Ausschei dungshärtung. Quench&Partitioning (QP-Stähle) enthalten überwiegend Martensit (inkl. ange lassener Martensit) und Restaustenit. Es können alternativ oder zusätzlich Ausscheidungen im Gefüge vorhanden sein. The steel flat product contains at least two different phases in the microstructure. The microstructure thus contains at least two components of ferrite, pearlite, martensite, bainite, austenite, residual austenite and/or cementite, as well as microstructure components that are unavoidable during production. These include, for example, dual-phase steels (DP steels), which have a microstructure of a mixture of hard phases, such as martensite, and soft phases, such as ferrite. Complex-phase steels (CP steels) mainly contain phases with a medium hardness, such as bainite and/or (tempered) martensite, optionally in connection with precipitation hardening. Quench&Partitioning (QP steels) mainly contain martensite (including tempered martensite) and retained austenite. Alternatively or additionally, precipitations can be present in the structure.
Gemäß einer Ausgestaltung enthält das Stahlflachprodukt neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% According to one embodiment, the flat steel product contains, in addition to Fe and unavoidable production-related impurities in % by weight
C: 0,001 bis 0,50 %, C: 0.001 to 0.50%,
Mn: 0,10 bis 3,0 %, Mn: 0.10 to 3.0%,
Si: 0,01 bis 2,0 %, Si: 0.01 to 2.0%,
AI: 0,002 bis 1,5 %, AI: 0.002 to 1.5%,
P: bis 0,020 %, P: up to 0.020%,
S: bis 0,020 %, S: up to 0.020%,
N: bis 0,020 %, optional eines oder mehrere Legierungselemente aus der Gruppe (Ti, Nb, V, Cr, Mo, W, Ca, B, Cu, Ni, Sn, As, Co, 0, H) mit N: up to 0.020%, optionally with one or more alloying elements from the group (Ti, Nb, V, Cr, Mo, W, Ca, B, Cu, Ni, Sn, As, Co, 0, H).
Ti: bis 0,20 %, Ti: up to 0.20%,
Nb: bis 0,20 %, Nb: up to 0.20%,
V: bis 0,20 %,
Cr: bis 2,0 %, V: up to 0.20%, Cr: up to 2.0%,
Mo: bis 2,0 %, Mon: up to 2.0%,
W: bis 1,0 %, W: up to 1.0%,
Ca: bis 0,050 %, Approx: up to 0.050%,
B: bis 0,10 %, B: up to 0.10%,
Cu: bis 1,0 %, Cu: up to 1.0%,
Ni: bis 1,0 %, Ni: up to 1.0%,
Sn: bis 0,050 %, Sn: up to 0.050%,
As: bis 0,020 %, As: up to 0.020%,
Co: bis 0,50 %, Co: up to 0.50%,
0: bis 0,0050 %, 0: up to 0.0050%,
H: bis 0,0010 %. H: up to 0.0010%.
Gelöst wird die Aufgabe gemäß einem zweiten Aspekt der Erfindung durch ein Verfahren mit den Merkmalen des Patentanspruchs 8. According to a second aspect of the invention, the object is achieved by a method having the features of patent claim 8.
Das Verfahren zur Herstellung eines mit einem Metallüberzug beschichteten Stahlflachprodukts mit einer Zugfestigkeit Rm von mindestens 800 MPa umfasst die Schritte: The process for producing a metal-coated steel flat product with a tensile strength R m of at least 800 MPa comprises the steps:
- Bereitstellen eines warmgewalzten oder kaltgewalzten Stahlflachprodukts; - providing a hot-rolled or cold-rolled steel flat product;
- Beschichten des Stahlflachprodukts mit einem Metallüberzug. - Coating of the steel flat product with a metal coating.
Erfindungsgemäß besteht der Metallüberzug aus einem System mit den Elementen Zink und Mangan und wird aus der Gasphase auf dem Stahlflachprodukt abgeschieden. According to the invention, the metal coating consists of a system with the elements zinc and manganese and is deposited on the flat steel product from the gas phase.
Beschreibung der bevorzugten Ausführungsformen Description of the Preferred Embodiments
Eine Beurteilung, inwieweit die Risse schädlich für die Bauteilfunktion sind, kann bei der Be trachtung eines WPS-Fügepunktes nicht genau vorgenommen werden. Die Vermeidung oder zumindest eine deutliche Reduzierung der Risse beim WPS ist daher von großer Bedeutung für die Anwendung. An assessment of the extent to which the cracks are detrimental to the function of the component cannot be made precisely when considering a WPS joint point. The avoidance or at least a significant reduction in cracks in the WPS is therefore of great importance for the application.
Aus einer Schmelze bestehend neben Fe und herstellungsbedingt unvermeidbaren Verunreini gungen in Gew.-% aus C = 0,25 %, Si = 1,5 %, Mn = 2,2 %, AI = 0,03 %, Cr = 0,7 %, P = 0,005 % wurde ein Vorprodukt gegossen, welches zu einem Stahlflachprodukt zunächst warm- und
anschließend auf eine Dicke von 1,5 mm kaltgewalzt wurde. Das kaltgewalzte Stahlflachprodukt wurde einem Q&P-Prozess unterzogen, in welchem ein Gefüge im Wesentlichen aus Martensit (inkl. angelassenem Martensit) / Bainit und 9 % Restaustenit (RA) sowie herstellungsbedingt unvermeidbaren Gefügebestandteilen eingestellt wurde. Aus dem so erzeugten Stahlflachpro dukt wurden Proben entnommen, From a melt consisting of Fe and unavoidable production-related impurities in % by weight of C = 0.25%, Si = 1.5%, Mn = 2.2%, Al = 0.03%, Cr = 0.7 %, P = 0.005%, a preliminary product was cast, which was first hot and rolled into a steel flat product subsequently cold rolled to a thickness of 1.5 mm. The cold-rolled flat steel product was subjected to a Q&P process, in which a structure consisting essentially of martensite (including tempered martensite) / bainite and 9% retained austenite (RA) as well as structural components that were unavoidable due to production was set. Samples were taken from the flat steel product produced in this way,
- welche a) unbeschichtet belassen wurden, - which a) have been left uncoated,
- welche b) mit einer Zinkbeschichtung (Z) beidseitig mit jeweils 7 pm schmelztauchbe- schichtet wurden, wobei der RA auf 7 % sank, von denen ein Teil der Proben bl) einer zusätzlichen Wärmebehandlung (ZF) mit ca. 630 °C für ca. 15 s unterzogen wurden, und aufgrund der Wärmebehandlung/Diffusion der RA weiter auf 3 % sank, - which b) were hot-dip coated on both sides with a zinc coating (Z) with 7 μm each, whereby the RA dropped to 7%, of which some of the samples bl) an additional heat treatment (ZF) at approx. 630 °C for approx 15 s and due to heat treatment/diffusion the RA further decreased to 3%,
- welche c) mit einer Zinkbeschichtung (ZE) beidseitig mit 6 pm elektrolytisch beschichtet wurden, - which c) have been electrolytically coated on both sides with a zinc coating (ZE) with 6 μm,
- welche d) mit einer Zink-Mangan-Legierung (ZnMn-PVD) über die Gasphase gleichzeitig mit Zink und Mangan beidseitig mit 6 pm abgeschieden wurde, wobei die Abscheidung derart gesteuert wurde, dass sich ein einschichtiges System mit 60 Gew.-% Zink und 40 Gew.-% Mangan ergab, - which d) was deposited with a zinc-manganese alloy (ZnMn-PVD) via the gas phase simultaneously with zinc and manganese on both sides with 6 pm, the deposition being controlled in such a way that a single-layer system with 60% by weight zinc and 40% by weight manganese gave
- welche e) zunächst mit einer Schicht aus Mangan (Mn-PVD) über die Gasphase beidsei tig mit 2 pm abgeschieden wurde und anschließend auf der Schicht aus Mangan mit ei ner Schicht aus Zink (Zn-PVD) über die Gasphase beidseitig mit 4 pm abgeschieden wurde, woraus ein zweischichtiges System mit einer Mn-Zn-PVD-Beschichtung auf den Proben resultierte. - Which e) was first deposited with a layer of manganese (Mn-PVD) via the gas phase on both sides with 2 μm and then on the layer of manganese with a layer of zinc (Zn-PVD) via the gas phase on both sides with 4 μm was deposited, resulting in a two-layer system with a Mn-Zn PVD coating on the samples.
Eine weitere Probe wurde aus dem Stahlflachprodukt entnommen und der Zugprüfung nach DIN EN ISO 6892-1:2017 zugeführt. Es wurde eine Zugfestigkeit Rm von 1183 MPa ermittelt. Die Stahlflachprodukte respektive Proben wurden zwar im Labormaßstab aber mit den Para metern der Großserie mit dem jeweiligen beschriebenen Metallüberzüge b) bis e) beschichtet. Another sample was taken from the steel flat product and submitted to the tensile test according to DIN EN ISO 6892-1:2017. A tensile strength R m of 1183 MPa was determined. The steel flat products or samples were coated on a laboratory scale but with the parameters of the large series with the metal coatings b) to e) described in each case.
Bedingt durch die natürliche auftretende Streuung bei WPS-Untersuchungen zur LME induzier ten Rissbildung müssten in der Regel große Materialmengen in vielen Messreihen aufgewendet werden. Durch die schlechte Quantifizierbarkeit der LME assoziierten Messgrößen können in-
nerhalb von WPS-Untersuchungen lediglich gualitative Aussagen zur LME-Sensitivität von Stäh len ermittelt werden. Der hohe Materialbedarf würde die Prüfung nach bisherigem Stand für ei ne Anwendung im Labor disgualifizieren. Daher wurde ein im Labormaßstab geeignetes Prüf- und Optimierungskonzept in Form eines „LME-Gleeble-Warmzugversuchs“ entwickelt. Die Prü fung erfolgte an einer handelsüblichen Prüfvorrichtung Gleeble3500. Die verwendeten Prozess führungsgrößen entsprachen den beim WPS wirkenden thermomechanischen Belastungen im Bereich der Rissentstehung. Die verwendete Zuggeschwindigkeit betrug bei einer Messlänge von 10 mm einheitlich 3 mm/s. Um die realen Dehnwerte im Messbereich der Proben zu ermit teln, erfolgte die Dehnungsmessung kontaktlos durch einen Laser. Die Aufheizrate betrug 1000 K/s. Als Temperaturintervall wurde die Liguidusphase von Zink zwischen 500 und 900 °C in 100 °C Schritten verwendet. Due to the naturally occurring scattering in WPS investigations of LME-induced cracking, large amounts of material would normally have to be used in many series of measurements. Due to the poor quantification of the LME associated measurement variables, Within WPS investigations, only qualitative statements on the LME sensitivity of steels can be determined. The high material requirement would disqualify the current status of the test for use in the laboratory. Therefore, a laboratory-scale test and optimization concept was developed in the form of an "LME Gleeble hot tensile test". The test was carried out on a commercially available Gleeble3500 test device. The process control variables used corresponded to the thermomechanical loads acting on the WPS in the area of crack formation. The pulling speed used was 3 mm/s for a measuring length of 10 mm. In order to determine the real strain values in the measurement area of the samples, the strain was measured without contact using a laser. The heating rate was 1000 K/s. The liguidus phase of zinc between 500 and 900 °C in 100 °C steps was used as the temperature interval.
Es wurden für alle Proben a) bis e) Warmzugversuche durchgeführt. Nach dem Einspannen in der Prüfvorrichtung wurde die Prüfkammer geschlossen und ein im Vorfeld programmiertes Skript wie folgt ausgeführt. Die Messfreguenz während der Warmzugversuche betrug dabei mindestens 5.000 Hz. Die Probenerwärmung erfolgte konduktiv und nach Erreichen der Prüf temperatur der Probe in dem vorgenannten Temperaturfenster zwischen 500 und 900 °C er folgte eine Probenreckung bis zum Probenversagen mit der angegebenen Zuggeschwindigkeit. Die erhobenen Messdaten wurden anschließend mit der Analysesoftware Origin auf ihre Güte überprüft. Die Auswerteroutine der Warmzugversuche orientierte sich an der Norm des Zugver suchs [DIN EN ISO 6892-1:2017]. Die Rohdaten erfolgreich durchgeführter Warmzugversuche wurden computergestützt in eine kubische Funktion überführt. Die notwendigen Stützstellen und der technische Versagenszeitpunkt der Proben wurden vom Anlagenoperator in ein Auswerte modul eingetragen. Hot tensile tests were carried out for all samples a) to e). After mounting in the test fixture, the test chamber was closed and a pre-programmed script was executed as follows. The measurement frequency during the hot tensile tests was at least 5,000 Hz. The specimen was heated conductively and after the specimen had reached the test temperature in the aforementioned temperature window of between 500 and 900 °C, the specimen was stretched at the specified tensile rate until it failed. The quality of the measurement data collected was then checked using the Origin analysis software. The evaluation routine of the hot tensile tests was based on the standard for tensile tests [DIN EN ISO 6892-1:2017]. The raw data from successfully conducted hot tensile tests were converted into a cubic function with the aid of a computer. The necessary support points and the technical failure time of the samples were entered into an evaluation module by the system operator.
Aus den einzelnen Messdaten wurden die Änderungen der mechanischen Eigenschaften und des Bruchverhaltens temperaturabhängig erfasst. Zur besseren Vergleichbarkeit des Einflusses der unterschiedlichen Metallüberzüge wurden aus den absoluten Messwerten so genannte re lative Änderungskurven erzeugt. Die Bezugsgrößen der Änderungskurven waren dabei grund sätzlich die Messergebnisse der unbeschichteten Proben a). Die Größe der Änderungen durch die jeweiligen Metallüberzüge wurden temperaturabhängig bestimmt und als Maß für die Inten sität des LME-Effektes verwendet. From the individual measurement data, the changes in mechanical properties and fracture behavior were recorded as a function of temperature. For better comparability of the influence of the different metal coatings, so-called relative change curves were generated from the absolute measured values. The reference variables of the change curves were basically the measurement results of the uncoated samples a). The size of the changes caused by the respective metal coatings were determined as a function of temperature and used as a measure of the intensity of the LME effect.
Für die Proben b) mit Z wurde eine starke Reduktion des technischen Bruchpunktes für alle Prüf temperaturen ermittelt. Insbesondere wurde der Dehnwert des technischen Bruchpunkts im
Vergleich zu den Proben a) um > 85 % reduziert. Die Proben bl) mit ZF zeigten bei den Prüf temperaturen 500 und 600 °C keine wesentlichen Änderungen des technischen Bruchpunktes. Diese Reduktion war bei den restlichen Prüftemperaturen (700-900 °C) sehr ausgeprägt. Die Proben c) mit ZE wiesen ein vergleichbares Verhalten wie die Proben b) auf. Bei den Proben d) mit Zn/Mn-Legierung-PVD wurde kein signifikanter Dehnwert des technischen Bruchpunktes für alle Prüftemperaturen ermittelt, wobei der technische Bruchpunkt im Vergleich zu den Proben a) um ca. <10 % geringer war. Die Proben e) mit Mn-Zn-PVD lagen das Ergebnis in der Grö ßenordnung der Proben d). For samples b) with Z, a strong reduction in the technical breaking point was determined for all test temperatures. In particular, the elongation value of the technical breaking point in the Reduced by >85% compared to samples a). The samples bl) with ZF showed no significant changes in the technical breaking point at the test temperatures of 500 and 600 °C. This reduction was very pronounced at the remaining test temperatures (700-900 °C). The samples c) with ZE showed comparable behavior to samples b). For samples d) with Zn/Mn alloy PVD, no significant elongation value of the technical breaking point was determined for all test temperatures, with the technical breaking point being approx. <10% lower compared to samples a). The samples e) with Mn-Zn-PVD were the result in the order of magnitude of the samples d).
Die Änderung des plastischen Energieaufnahmevermögens zeigte ähnliche Ergebnisse, wie die Änderung des technischen Bruchpunktes. Die Ergebnisse bestätigten die negativen Einflüsse durch Z der Proben b). Analog zeigte ZF der Proben bl) bei den Prüftemperaturen 500 und 600 °C keine Einschränkungen des plastischen Energieaufnahmevermögens. Diese Reduktion war auch hier bei den restlichen Prüftemperaturen zwischen 700 und 900 °C sehr ausgeprägt. Die Proben c) zeigten ein vergleichbares Verhalten wie die Proben b). Bei den Proben d) war bei den Prüftemperaturen zwischen 600 und 800 °C eine leichte Reduktion des plastischen Ener gieaufnahmevermögens erkennbar. Die restlichen Prüftemperaturen zeigten kaum eine Beein flussung durch den Metallüberzug. Auch die Proben e) lagen in der Größenordnung der Proben d). The change in plastic energy absorption showed similar results as the change in technical breaking point. The results confirmed the negative influences of Z of samples b). Similarly, ZF of samples bl) at the test temperatures of 500 and 600° C. showed no limitations in the plastic energy absorption capacity. This reduction was also very pronounced here at the remaining test temperatures between 700 and 900 °C. The samples c) showed comparable behavior as the samples b). In the case of samples d), a slight reduction in the plastic energy absorption capacity was discernible at the test temperatures between 600 and 800 °C. The remaining test temperatures showed hardly any influence from the metal coating. Samples e) were also in the order of magnitude of samples d).
Die Änderung der Brucheinschnürung zeigte ebenfalls ähnliche Ergebnisse, wie die Änderung des technischen Bruchpunktes und des plastischen Energieaufnahmevermögens. Bei der Be trachtung der Brucheinschnürung ist anzumerken, dass es sich im Gegensatz zum technischen Probenversagen und des plastischen Energieaufnahmevermögens um eine lokale Messgröße handelt. The change in reduction of area at break also showed similar results, as did the change in technical breaking point and plastic energy absorption capacity. When considering the area of reduction in fracture, it should be noted that, in contrast to technical specimen failure and the plastic energy absorption capacity, it is a local measurement variable.
Die Ergebnisse bestätigen die negative Beeinflussung durch Z der Proben b) der Bruchein schnürung durch spröde Bruchflächen durchgehend für alle Prüftemperaturen. Bei ZF der Pro ben bl) traten bei den Prüftemperaturen 500 und 600 °C keine Einschränkungen der Bruchein schnürung auf. Ab einer Prüftemperatur von 700 °C wurde jedoch ein starkes Sprödbruchver- halten an der Bruchfläche nachgewiesen. Auch hier zeigten die Proben c) mit ZE ein ähnliches verhalten wie die Proben b). Bei den Proben d) mit Zn/Mn-PVD war bei einer Prüftemperatur von 800 °C eine leichte Reduktion der Brucheinschnürung erkennbar. Für die Prüftemperatu ren 600, 800 und 900 °C wurden Risse hinter der eigentlichen Bruchfläche nachgewiesen. Die Proben e) mit Mn-Zn-PVD zeigten vergleichbare Ergebnisse zu den Proben d) auf.
io The results confirm the negative influence of Z of the specimens b) on the reduction in area due to brittle fracture surfaces throughout for all test temperatures. In the ZF of samples bl) there were no reductions in reduction of area at the test temperatures of 500 and 600 °C. However, from a test temperature of 700 °C, strong brittle fracture behavior was detected at the fracture surface. Here, too, samples c) with ZE behaved similarly to samples b). In samples d) with Zn/Mn-PVD, a slight reduction in reduction of area at fracture was evident at a test temperature of 800 °C. For the test temperatures of 600, 800 and 900 °C, cracks were detected behind the actual fracture surface. Samples e) with Mn-Zn-PVD showed comparable results to samples d). ok
Die Untersuchung des Einflusses der unterschiedlichen Metallüberzüge des technischen Bruch punktes, des plastischen Energieaufnahmevermögens und der Brucheinschnürung zeigen, dass LME induzierte Rissbildung bei zinkhaltigen Metallüberzügen pauschal nicht ausgeschlos sen werden darf. The investigation of the influence of the different metal coatings on the technical breaking point, the plastic energy absorption capacity and the reduction in area of fracture show that LME-induced cracking in metal coatings containing zinc cannot be ruled out across the board.
In dem Warmzugversuch wurden die Proben b) bis e) mit den unterschiedlichsten Metallüber zügen auf ihre „LME-Empfindlichkeit“ untersucht. Als Referenz dienten die unbeschichteten Proben a). Losgelöst davon können auch weitere hier nicht genannte Beschichtungen wie auch andere Stahlkonzepte untersucht werden, ohne aufwendige und guantitative WPS-Untersu- chungen durchlaufen zu müssen. Insbesondere können hier alle LME sensiblen Stahlwerkstof fe mit Zugfestigkeit Rm von mindestens 800 MPa untersucht werden. In the hot tensile test, samples b) to e) with a wide variety of metal coatings were examined for their "LME sensitivity". The uncoated samples a) served as a reference. Apart from this, other coatings not mentioned here as well as other steel concepts can also be examined without having to go through complex and quantitative WPS examinations. In particular, all LME-sensitive steel materials with a tensile strength R m of at least 800 MPa can be examined here.
Eine Vermeidung oder Reduzierung der Risshäufigkeit, Risstiefe und Risslänge wird prognosti ziert, wenn die Änderung des technischen Bruchpunktes über den Temperaturbereich von 500 bis 900 °C gilt: f(x)=0,1375-x-58,75 oder wenn im Prüfbereich von 500 bis 900 °C bei der Verwendung einer einheitlichen Tempe raturschrittweite im Prüfintervall gilt: f(x)=7,25-Vx-155 oder wenn für die Summe aller Messwerte im Temperaturbereich von 500 bis 900 °C bei der Verwendung einer einheitlichen Temperaturschrittweite im Prüfintervall: An avoidance or reduction of crack frequency, crack depth and crack length is predicted if the change in the technical breaking point over the temperature range from 500 to 900 °C applies: f(x)=0.1375-x-58.75 or if in the test range from 500 to 900 °C when using a uniform temperature increment in the test interval, the following applies: f(x)=7.25-Vx-155 or if for the sum of all measured values in the temperature range from 500 to 900 °C when using a uniform temperature increment in Check interval:
S f(x)/n < 40. Sf(x)/n < 40.
In den experimentellen WPS-Untersuchungen werden u. a. Prozessparameter und Werkstoff- Dicken-Kombinationen verwendet, die bei der zinkbeschichteten Probe mit hoher Wahrschein lichkeit und guter Reproduzierbarkeit zu LME-Rissen führen. Die im Gleeble-Verfahren applizier ten thermomechanischen Belastungen bilden dabei die mittleren wirkenden thermomechani schen Belastungen der WPS-Experimente ab.
Die Validierung wird als erfolgreich angesehen, wenn die „LME-Empfindlichkeit“ im Gleeble- Verfahren vergleichsweise gering ist und in den WPS-Untersuchungen signifikant reduzierte Risshäufigkeiten und geringere Risstiefen (oder gar keine Risse) nachgewiesen werden. An den Proben a) bis e) wurden experimentelle WPS-Untersuchungen durchgeführt. Die Para meter der WPS-Untersuchungen sind in der Tabelle 1 aufgeführt. Die Fertigung der Probense rien für die WPS-Untersuchungen erfolgte unmittelbar nachdem die notwendige Stromstärke zur Erreichung des Soll-Punktdurchmessers ermittelt wurde. Die Schweißelektroden wurden an schließend mithilfe eines mobilen Kappenfräsgerätes innerhalb der Schweißmaschine gefräst und mit drei Schweißungen konditioniert. Proben bei denen Schweißspritzer aufgetreten sind, wurden verworfen. Die Schweißergebnisse wurden aufgrund der einheitlichen Punktdurchmes ser, Stromstärken und Prozessführungsgrößen als gut vergleichbar bewertet.
Tabelle 1 In the experimental WPS investigations, process parameters and material-thickness combinations are used, which lead to LME cracks with a high probability and good reproducibility in the zinc-coated sample. The thermomechanical loads applied using the Gleeble method represent the mean effective thermomechanical loads of the WPS experiments. The validation is considered successful if the "LME sensitivity" in the Gleeble method is comparatively low and the WPS investigations show significantly reduced crack frequencies and lower crack depths (or no cracks at all). Experimental WPS investigations were carried out on samples a) to e). The parameters of the WPS investigations are listed in Table 1. The sample series for the WPS investigations were produced immediately after the current intensity required to achieve the target point diameter had been determined. The welding electrodes were then milled inside the welding machine using a mobile cap milling device and conditioned with three welds. Samples showing weld spatter were discarded. The welding results were judged to be easily comparable due to the uniform point diameters, current levels and process control parameters. Table 1
Die Ergebnisse aus den WPS-Untersuchungen stimmten gut mit den Prognosen der Gleeble- Warmzugversuche überein, konnten aber aufgrund der WPS-prozessbedingten Streuung der Untersuchungsergebnisse nicht vollständig guantitativ korreliert werden. Zur Verbesserung der Genauigkeit der Rissprüfung wurden alle geschweißten Proben vor der Risscharakterisierung entschichtet. Die Risscharakterisierung erfolgte für alle Proben auf der Oberseite des LME-Prüf- lings unter Verwendung eines Makroskops. Dabei wurde die Risshäufigkeit einer Probenserie anhand der binären Klassifikation (Riss/kein Riss) ermittelt. Für die Analyse der Rissmorpholo gie erfolgte eine digitale Vermessung und Zählung der LME-Risse anhand von drei ausgewähl ten Proben pro Probenserie. Zur Ermittlung der Risstiefe wurden mindestens drei metallogra- phische Schliffe angefertigt. Die Schlifflage wurde auf der Probe markiert und führte mittig durch den längsten Riss auf der Fügepunktoberfläche. Des Weiteren war auch die Ermittlung der mitt leren Risstiefe notwendig, um einen erfolgreichen gualitativen Übertrag der Gleeble-Erkenntnis- se zu bestätigen. The results from the WPS investigations agreed well with the predictions of the Gleeble hot tensile tests, but could not be fully quantitatively correlated due to the WPS process-related scattering of the investigation results. To improve the accuracy of the crack detection, all welded specimens were decoated prior to crack characterization. Crack characterization was carried out for all specimens on the upper side of the LME specimen using a macroscope. The frequency of cracks in a sample series was determined using the binary classification (crack/no crack). To analyze the crack morphology, the LME cracks were digitally measured and counted using three selected samples per sample series. At least three metallographic sections were made to determine the depth of the crack. The cut position was marked on the sample and led through the center of the longest crack on the surface of the joint. Furthermore, it was also necessary to determine the mean crack depth in order to confirm a successful qualitative transfer of the Gleeble findings.
Die höchste Risshäufigkeit und die tiefsten und längsten Risse wurden für die mit Z beschichte ten Proben b) erwartet. Durch die hohen wirkenden Belastungen in den definierten Referenz schweißaufgaben wurde keine Besserung der Risshäufigkeit durch die mit ZF beschichteten Proben bl) prognostiziert, da die ermittelte kritische Temperatur von 700 °C während des Schweißprozesses an vielen Stellen der Fügepunktoberfläche überschritten werden kann. Die höchste Risshäufigkeit und die längsten Risse wurden bei den geschweißten Proben b) und bl) festgestellt, wobei bei bl) der Serie 2 die Risshäufigkeit am höchsten war, aber die mittlere Risslänge kleiner ausfiel als bei den Proben bl) der Serie 1 und den Proben b) der Serien 1 und 2. Diese Ergebnisse stimmten gut mit dem nachgewiesenen, starken LME-Effekt im Gleeble- Verfahren überein. Auch bei den Proben c) sah das Ergebnis ähnlich wie bei den Proben b) aus. In den Schweißergebnissen sowohl der Proben d) und e) wurden in der Serie 1 keine Risse nachgewiesen. In der Serie 2 wurden lediglich bei den Proben e) kleine Risse im Bereich des Elektrodeneindrucks festgestellt. Eine Erklärung dafür wäre, dass die eindringende Schweiß elektrode die Manganschicht in diesen Bereichen aufgebrochen und ein Eindringen des flüssi gen Zinks ermöglicht hat. Bei den Proben d), die im System des Metallüberzugs einen geringen Anteil an flüssigen Zinkphasen aufwies, traten auch in der Serie 2 keine Risse auf. Somit wur de basierend auf den Ergebnissen für Proben d) und e) eine signifikant reduzierte Risshäufig keit und -ausprägung in den WPS-Schweißversuchen prognostiziert. Die Ergebnisse aus den WPS-Versuchen stimmen gut mit den Prognosen der Gleeble-Versuche überein, können aber
aufgrund der WPS-prozessbedingten Streuung der Untersuchungsergebnisse nicht vollständig guantitativ korreliert werden. The highest crack frequency and the deepest and longest cracks were expected for the Z-coated samples b). Due to the high loads acting in the defined reference welding tasks, no improvement in crack frequency was predicted by the samples bl) coated with ZF, since the determined critical temperature of 700 °C can be exceeded during the welding process at many points on the surface of the joint. The highest frequency of cracks and the longest cracks were found in the welded samples b) and bl), with the frequency of cracks being highest in bl) of series 2, but the average crack length was smaller than in samples bl) of series 1 and the samples b) series 1 and 2. These results agreed well with the strong LME effect demonstrated in the Gleeble method. The result for samples c) was also similar to that for samples b). In the welding results of both samples d) and e), no cracks were detected in series 1. In series 2, small cracks in the area of the electrode indentation were only found in samples e). One explanation for this would be that the penetrating welding electrode broke up the manganese layer in these areas and allowed the liquid zinc to penetrate. In the case of samples d), which had a small proportion of liquid zinc phases in the system of the metal coating, no cracks occurred in series 2 either. Thus, based on the results for samples d) and e), a significantly reduced crack frequency and severity in the WPS welding tests was predicted. The results from the WPS trials agree well with the predictions from the Gleeble trials, but can due to the WPS process-related scattering of the test results cannot be completely quantitatively correlated.
Die WPS-Ergebnisse insbesondere der Proben e) der Serie 2 zeigten, dass LME-Rissbildung beim Schweißen eines LME-sensiblen Substratwerkstoffs mit einer zinkhaltigen Beschichtung nicht ausgeschlossen werden kann, jedoch die Anzahl und Ausprägung der Risse gegenüber Reinzinkschichten signifikant reduziert werden kann.
The WPS results, in particular of samples e) of series 2, showed that LME crack formation cannot be ruled out when welding an LME-sensitive substrate material with a zinc-containing coating, but the number and severity of cracks can be significantly reduced compared to pure zinc layers.
Claims
1. Stahlflachprodukt mit einer Zugfestigkeit Rm von mindestens 800 MPa, ermittelt nach DIN EN ISO 6892-1:2017, welches mit einem Metallüberzug beschichtet ist, wobei das Stahl flachprodukt mindestens zwei unterschiedliche Phasen im Gefüge enthält, dadurch gekennzeichnet, dass der Metallüberzug aus einem System mit den Elementen Zink und Mangan besteht, welches aus der Gasphase abgeschieden worden ist. 1. Flat steel product with a tensile strength R m of at least 800 MPa, determined according to DIN EN ISO 6892-1:2017, which is coated with a metal coating, the flat steel product containing at least two different phases in the structure, characterized in that the metal coating consists of a system with the elements zinc and manganese, which has been deposited from the gas phase.
2. Stahlflachprodukt nach Anspruch 1, wobei das System eine Schicht aus einer Zink-Man- gan-Legierung aufweist. 2. Steel flat product according to claim 1, wherein the system comprises a layer of a zinc-manganese alloy.
3. Stahlflachprodukt nach Anspruch 2, wobei die Zink-Mangan-Legierung einen Zink-Gehalt zwischen 10 und 90 Gew.- % und einen Mangan-Gehalt zwischen 90 und 10 Gew.-% be sitzt. 3. Flat steel product according to claim 2, wherein the zinc-manganese alloy has a zinc content of between 10 and 90% by weight and a manganese content of between 90 and 10% by weight.
4. Stahlflachprodukt nach Anspruch 1, wobei das System eine Schicht aus Mangan und ei ne Schicht aus Zink aufweist. 4. Flat steel product according to claim 1, wherein the system has a layer of manganese and a layer of zinc.
5. Stahlflachprodukt nach Anspruch 4, wobei die Schicht aus Mangan auf dem Stahlflach produkt und die Schicht aus Zink auf der Schicht aus Mangan angeordnet ist. 5. Steel flat product according to claim 4, wherein the layer of manganese is arranged on the steel flat product and the layer of zinc is arranged on the layer of manganese.
6. Stahlflachprodukt nach einem der vorgenannten Ansprüche, wobei das Stahlflachprodukt warmgewalzt oder kaltgewalzt ist. 6. Steel flat product according to one of the preceding claims, wherein the steel flat product is hot-rolled or cold-rolled.
7. Stahlflachprodukt nach einem der vorgenannten Ansprüche, wobei das Stahlflachprodukt neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus 7. Flat steel product according to one of the preceding claims, wherein the flat steel product consists of Fe and impurities in % by weight that are unavoidable due to production
C: 0,001 bis 0,50 %, C: 0.001 to 0.50%,
Mn: 0,10 bis 3,00 %, Mn: 0.10 to 3.00%,
Si: 0,01 bis 2,0 %, Si: 0.01 to 2.0%,
AI: 0,002 bis 1,5 %, AI: 0.002 to 1.5%,
P: bis 0,020 %, P: up to 0.020%,
S: bis 0,020 %, S: up to 0.020%,
N: bis 0,020 %,
optional eines oder mehrere Legierungselemente aus der Gruppe (Ti, Nb, V, Cr, Mo, W, Ca, B, Cu, Ni, Sn, As, Co, 0, H) mit N: up to 0.020%, optionally one or more alloying elements from the group (Ti, Nb, V, Cr, Mo, W, Ca, B, Cu, Ni, Sn, As, Co, 0, H) with
Ti: bis 0,20 %, Ti: up to 0.20%,
Nb: bis 0,20 %, Nb: up to 0.20%,
V: bis 0,20 %, V: up to 0.20%,
Cr: bis 2,0 %, Cr: up to 2.0%,
Mo: bis 2,0 %, Mon: up to 2.0%,
W: bis 1,0 %, W: up to 1.0%,
Ca: bis 0,050 %, Approx: up to 0.050%,
B: bis 0,10 %, B: up to 0.10%,
Cu: bis 1,0 %, Cu: up to 1.0%,
Ni: bis 1,0 %, Ni: up to 1.0%,
Sn: bis 0,050 %, Sn: up to 0.050%,
As: bis 0,020 %, As: up to 0.020%,
Co: bis 0,50 %, Co: up to 0.50%,
0: bis 0,0050 %, 0: up to 0.0050%,
H: bis 0,0010 % besteht. H: up to 0.0010%.
8. Verfahren zur Herstellung eines mit einem Metallüberzug beschichteten Stahlflachpro dukts mit einer Zugfestigkeit Rm von mindestens 800 MPa, ermittelt nach DIN EN ISO 6892-1:2017, wobei das Stahlflachprodukt mindestens zwei unterschiedliche Phasen im Gefüge enthält, umfassend die Schritte: 8. Process for the production of a flat steel product coated with a metal coating with a tensile strength R m of at least 800 MPa, determined according to DIN EN ISO 6892-1:2017, the flat steel product containing at least two different phases in the structure, comprising the steps:
- Bereitstellen eines warmgewalzten oder kaltgewalzten Stahlflachprodukts; - providing a hot-rolled or cold-rolled steel flat product;
- Beschichten des Stahlflachprodukts mit einem Metallüberzug; dadurch gekennzeichnet, dass der Metallüberzug aus einem System mit den Elemen ten Zink und Mangan besteht und aus der Gasphase auf dem Stahlflachprodukt abge schieden wird. - coating the steel flat product with a metal coating; characterized in that the metal coating consists of a system with the elements zinc and manganese and is deposited on the flat steel product from the gas phase.
9. Verfahren nach Anspruch 8, wobei das System in einem Schritt abgeschieden und eine Schicht aus einer Zink-Mangan-Legierung auf dem Stahlflachprodukt erzeugt wird.
9. The method according to claim 8, wherein the system is deposited in one step and a layer of a zinc-manganese alloy is produced on the steel flat product.
10. Verfahren nach Anspruch 9, wobei das Abscheiden derart gesteuert wird, dass in der Zink-Mangan-Legierung ein Zink-Gehalt zwischen 10 und 90 Gew.-% und ein Mangan- Gehalt zwischen 90 und 10 Gew.-% eingestellt wird. 10. The method according to claim 9, wherein the deposition is controlled in such a way that a zinc content of between 10 and 90% by weight and a manganese content of between 90 and 10% by weight are set in the zinc-manganese alloy.
11. Verfahren nach Anspruch 8, wobei das System in zwei Schritten abgeschieden wird, in dem nacheinander zuerst eine Schicht aus Mangan auf dem Stahlflachprodukt und an schließend eine Schicht aus Zink auf der Schicht aus Mangan abgeschieden wird.
11. The method according to claim 8, wherein the system is deposited in two steps, in which first a layer of manganese is sequentially deposited on the steel flat product and then a layer of zinc is deposited on the layer of manganese.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021107330.8A DE102021107330A1 (en) | 2021-03-24 | 2021-03-24 | Coated flat steel product and method for its manufacture |
PCT/EP2022/056503 WO2022200099A1 (en) | 2021-03-24 | 2022-03-14 | Coated flat steel product and method for the production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4314386A1 true EP4314386A1 (en) | 2024-02-07 |
Family
ID=80953371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22713421.0A Pending EP4314386A1 (en) | 2021-03-24 | 2022-03-14 | Coated flat steel product and method for the production thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240200199A1 (en) |
EP (1) | EP4314386A1 (en) |
JP (1) | JP2024516505A (en) |
CN (1) | CN117157429A (en) |
DE (1) | DE102021107330A1 (en) |
WO (1) | WO2022200099A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1187802A (en) | 1966-06-30 | 1970-04-15 | United States Steel Corp | Method of Applying a Protective Metal Coating to a Steel Base |
US9333588B2 (en) | 2011-01-28 | 2016-05-10 | GM Global Technology Operations LLC | Crack avoidance in resistance spot welded materials |
WO2015090621A1 (en) * | 2013-12-18 | 2015-06-25 | Tata Steel Nederland Technology B.V. | Steel substrate provided with corrosion resistant coating with high melting temperature |
DE102014004652A1 (en) | 2014-03-29 | 2015-10-01 | Daimler Ag | Component, in particular structural component for a motor vehicle, and method for producing such a component |
WO2017109540A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
WO2018234839A1 (en) | 2017-06-20 | 2018-12-27 | Arcelormittal | Zinc coated steel sheet with high resistance spot weldability |
DE102018128131A1 (en) | 2018-11-09 | 2020-05-14 | Thyssenkrupp Ag | Hardened component comprising a steel substrate and an anti-corrosion coating, corresponding component for the production of the hardened component as well as manufacturing method and use |
-
2021
- 2021-03-24 DE DE102021107330.8A patent/DE102021107330A1/en active Pending
-
2022
- 2022-03-14 EP EP22713421.0A patent/EP4314386A1/en active Pending
- 2022-03-14 JP JP2023558132A patent/JP2024516505A/en active Pending
- 2022-03-14 WO PCT/EP2022/056503 patent/WO2022200099A1/en active Application Filing
- 2022-03-14 US US18/279,437 patent/US20240200199A1/en active Pending
- 2022-03-14 CN CN202280023799.9A patent/CN117157429A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240200199A1 (en) | 2024-06-20 |
WO2022200099A1 (en) | 2022-09-29 |
CN117157429A (en) | 2023-12-01 |
DE102021107330A1 (en) | 2022-09-29 |
JP2024516505A (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2432910B2 (en) | Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product | |
DE19947393B4 (en) | Steel wire for high strength springs and process for its manufacture | |
EP2924141B1 (en) | Cold rolled steel flat product and method for its production | |
WO2005021822A1 (en) | Method for producing a hardened steel part | |
EP3645757B1 (en) | Method for producing a steel component provided with a coating, and steel component | |
EP2513346B1 (en) | Method for producing an easily deformable flat steel product | |
DE4233269A1 (en) | HIGH-STRENGTH SPRING STEEL | |
EP4208576A1 (en) | Steel component produced by hot-shaping a steel flat product, steel flat product and method for producing a steel component | |
EP2976442A2 (en) | Method for improving the weldability of high-manganese-containing steel strips and coated steel strip | |
WO2022180146A1 (en) | High-strength hot-rolled flat steel product having high local cold formability and a method of producing such a flat steel product | |
EP3775299B1 (en) | Method for producing from a steel flat a steel component provided with a coating | |
WO2022200099A1 (en) | Coated flat steel product and method for the production thereof | |
EP3433386B1 (en) | Method for temperature-treating a manganese steel intermediate product. | |
EP3894603B1 (en) | Method for producing a coated steel flat product, method for producing a steel component and coated steel flat product ii | |
EP4261309A1 (en) | Cold-rolled steel sheet product and method for producing a cold-rolled steel sheet product | |
WO2023020931A1 (en) | Steel having improved processing properties for working at elevated temperatures | |
EP3356572B1 (en) | Method for the production of a flat steel product having a zn-galvannealed protective coating | |
DE60120484T2 (en) | CHROMIUM STEEL FOR WELDED COMPONENTS | |
DE102020214293B4 (en) | Steel flat product with improved zinc coating | |
DE102021118765A1 (en) | Component with integrated nickel diffusion layer | |
DE102020203421A1 (en) | Flat steel product with a ZnCu layer system | |
WO2023202765A1 (en) | Flat steel product having an al coating, method for the production thereof, steel component, and method for production thereof | |
DE102021121343A1 (en) | Steel flat product with improved zinc coating | |
WO2024038037A1 (en) | Steel having improved processing properties for working at elevated temperatures | |
EP4388141A1 (en) | Steel having improved processing properties for working at elevated temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230825 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |