EP4303666A1 - Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée - Google Patents

Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée Download PDF

Info

Publication number
EP4303666A1
EP4303666A1 EP22183437.7A EP22183437A EP4303666A1 EP 4303666 A1 EP4303666 A1 EP 4303666A1 EP 22183437 A EP22183437 A EP 22183437A EP 4303666 A1 EP4303666 A1 EP 4303666A1
Authority
EP
European Patent Office
Prior art keywords
substrate
passivation layer
component
less
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22183437.7A
Other languages
German (de)
English (en)
Inventor
Evelyne Vallat
Andreas Hogg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Original Assignee
ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE filed Critical ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Priority to EP22183437.7A priority Critical patent/EP4303666A1/fr
Publication of EP4303666A1 publication Critical patent/EP4303666A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B39/00Watch crystals; Fastening or sealing of crystals; Clock glasses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/004Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used

Definitions

  • the present invention relates to a watch component comprising a crystalline silicon substrate and having improved breaking strength, as well as a method of manufacturing said component.
  • Crystalline silicon including monocrystalline silicon or polycrystalline silicon, is a material increasingly used in the manufacture of mechanical parts and in particular micromechanical parts. Compared to metals or alloys conventionally used to manufacture micromechanical parts, crystalline silicon has the advantage of having a density 3 to 4 times lower and therefore of having very reduced inertia, and of being insensitive to magnetic fields. . These advantages are particularly interesting in the watchmaking field, both with regard to isochronism and running time. Crystalline silicon also allows it to be micro-machined with great precision.
  • crystalline silicon shows mechanical performance reduced by the presence of defects (scratches, microcracks, microporosities, inclusions, impurities, etc.). These defects are caused during the production of the silicon wafer and during the shaping of the crystalline silicon component. These defects are generally the cause of slow crack growth.
  • the slow propagation of cracks can be compared to stress corrosion linked to the presence of OH- ions in ambient humidity and which accelerates the propagation of cracks which are the microscopic origin of the rupture of fragile materials.
  • the miniaturization of the component makes it possible to reduce the probability of the existence of millimeter defects (scratches, microcracks) given that a smaller component will statistically have fewer defects.
  • the use of crystalline silicon is therefore more interesting for the manufacture of small components, for example components of millimeter or sub-centimeter size, as is the case in the case of micromechanical and watchmaking components.
  • passivation layers have been developed for electronic devices in monocrystalline materials commonly used in opto-electronic applications (in particular: silicon, GaAs, etc.) whose main technical characteristic is the perfection of the essential monocrystalline network. to ensure optimal operation of the device.
  • the current performance of the devices is limited by the presence of defects (generally atomic) on the surface or at the interfaces.
  • the various passivation solutions developed in the electronic and PV sector based on monocrystalline silicon consist of coating the surface of the active volume with a thin layer, most often amorphous, composed of amorphous silicon (a-Si:H), oxide silicon (SiO2), silicon carbide (SiC), silicon nitride (Si3N4) or a composition resulting from their mixture (e.g.: oxynitrides, silicon oxycarbide) or their stacking sequence
  • the silicon component can be covered with a layer of thermal silicon oxide.
  • This type of coating is also suitable for the tribological stresses to which the surface of the component must respond in micromechanical and watchmaking applications.
  • An aim of the invention is the application of an electronic quality passivation layer for improving the mechanical performance of crystalline silicon in components on the millimeter to sub-centimeter scale.
  • Another aim of the invention is to improve the mechanical performance, such as the breaking strength of crystalline silicon, for its use in microcomponents of millimeter to submillimeter size, for example of the watchmaking component type.
  • a passivation layer on the surface of a component so as to reduce the surface density of point defects (non-coordinated or sub-coordinated connections type) and isolate the component. of its atmospheric environment which is at the origin of the acceleration of the propagation of cracks leading to rupture.
  • the invention relates to a watch component with improved breaking strength comprising a crystalline silicon substrate having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or less.
  • the substrate is coated with a passivation layer, directly in contact with the surface of the substrate and having a thickness of less than 1000 nm, preferably less than 600 nm or preferably less than 400 nm.
  • the passivation layer comprises a refractory ceramic comprising at least 1 atomic% of hydrogen.
  • the low thickness of the passivation layer makes it possible to obtain high dimensional precision of the component. This is particularly advantageous in micromechanical and watchmaking applications.
  • FIG. 1 shows, schematically, a watch component 10 comprising a crystalline silicon substrate 20 having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or less.
  • the substrate 20 is coated with a passivation layer 30, directly in contact with the surface 25 of the substrate 20.
  • Crystalline silicon may include monocrystalline silicon or polycrystalline silicon.
  • the passivation layer 30 has a thickness of less than 1000 nm, preferably less than 600 nm or preferably less than 400 nm.
  • the passivation layer 30 comprises a refractory ceramic comprising at least 1 atomic% of hydrogen.
  • the passivation layer 30 makes it possible to reduce the density of surface defects of the substrate 20, improving, among other things, impact resistance.
  • the passivation layer also makes it possible to isolate the substrate 20 (and therefore the component 10) from the ambient atmosphere, and therefore from the chemical compounds which are at the origin of the acceleration of the propagation of the cracks leading to rupture.
  • the choice of one or other of the chemical compositions of the passivation layer 30, as well as its thickness may also depend on the characteristics required for the coating, for example the ability to transport charge, transparency, conformity , deposition temperature, hardness, chemical barrier to ionic migration, tribological behavior, chemical compatibility with lubricants, etc.
  • the refractory ceramic comprises one of the following elements: a hydrogenated silicon oxynitride (SiON:H), hydrogenated silicon oxycarbide (SiOxCy:H), hydrogenated silicon carbide (SiC:H), nitride hydrogenated silicon (Si3N4:H), or a combination of these ceramics.
  • the passivation layer 30 of refractory ceramic comprising a SiON:H, SiOxCy:H, SiC:H or Si3N4:H ceramic, or a combination of these ceramics make it possible, for example, to modify the visual appearance of the component (aesthetic), to provide a hermetic barrier to the transport of ions, in particular OH- ions, towards the substrate 20.
  • a hydrogen content of the order of a few atomic percent makes it possible to saturate the defects constituted by unsaturated atomic bonds on the surface 25 of the substrate 20.
  • hydrogen allows to reduce the density of dangling bonds.
  • the passivation layer 30 comprising a refractory ceramic comprising at least 1 atomic % of hydrogen makes it possible to improve the breaking resistance of the component 10.
  • the resistance to rupture is inversely proportional to the density of defects potentially causing a microcrack whose propagation will lead to the failure of the component 10.
  • the passivation layer comprising a refractory ceramic comprising at least 1 atomic % of hydrogen makes it possible to reduce the surface density of defects on the surface 25 of the substrate 20. A reduction in the surface density of defects increases the mechanical resistance, and in particular the breaking strength, of component 10.
  • a thickness less than 1000 nm, less than 600 nm, or less than 400 nm, allows the passivation layer 30 to play a role as a barrier to the penetration of impurities catalyzing or accelerating the propagation of microcracks.
  • the performance of the passivation layer 30, in particular the reduction in the density of surface defects of the substrate 20 and the insulation of the substrate 20 of the ambient atmosphere, depend on the surface condition 25 of the substrate 20.
  • the surface 25 of the substrate 20 must not be affected by machining. We will therefore seek to eliminate, or at least minimize, defects such as scratches and microcracks on the surface 25 of the substrate 20.
  • the surface 25 of the substrate 20 on which the passivation layer 30 is formed is smoothed, or polished, so as to obtain a roughness Ra of less than 100 nm.
  • FIG 2 shows a schematic and sectional view of the surface 25.
  • the surface 25 is leveled so that the surface 25 of the substrate 20 has a surface topology comprising asperities 27 or rounded dimples having a radius of curvature greater than 500 nm, preferably greater than 4 ⁇ m.
  • the surface 25 is leveled and does not have any facets or acute angles which could result in a possible concentration of stresses during mechanical stress.
  • the surface 25 of the substrate 20 must also be clean, that is to say, having a controlled chemical state of the surface.
  • a controlled chemical state of the surface can mean that the surface 25 of the substrate 20 does not contain substantially no contamination by particles, native oxides (due to humidity and oxygen in the air), materials organic matter, layer residue, inorganic bases or acids or other metallic contamination.
  • the chemical composition on the surface 25 is as close as possible to the mass chemical composition of the substrate 20.
  • the study of the conformity of the growth of the passivation layer 30 shows that all the surfaces of a component 10 bringing together characteristic watchmaking elements such as that escapement teeth, holes (diameter 3 mm to 0.2 mm), slender beam, tongue, tip and re-entrant element), are coated to satisfaction by the passivation layer 30.
  • the substrate 20 may be coated with the passivation layer 30 on one, several or all of its surfaces 25.
  • the passivation layer 30 may be formed on all surfaces 25 of the substrate 20.
  • the three-dimensional component 10 has a passivation layer 30 of substantially uniform thickness on all its surfaces 25.
  • the watch component may comprise a component of a display or covering device.
  • the formation of the passivation layer 30 can be carried out by a chemical vapor deposition process.
  • the formation of the passivation layer 30 can be carried out by a plasma-assisted chemical vapor deposition (PECVD) process dedicated to the uniform three-dimensional coating of the component 10.
  • PECVD plasma-assisted chemical vapor deposition
  • the passivation layer 30 can be produced in a reactor comprising rotation/mixing/turning means which facilitate uniform deposition of the passivation layer 30 on one or a plurality of three-dimensional components 10, as described in the Swiss patent application CH715599 .
  • gentle and low temperature covering processes are favored, such as thermal growth or layer deposition by PECVD. .
  • the method may further comprise a step of chemical dissolution in the vapor or liquid phase of the surface 25 of the substrate 20, prior to the step of forming the passivation layer 30.
  • the step of machining the substrate 20 may include selectively chemically dissolving the substrate 20 and releasing the machined component 10.
  • the machining step may comprise one of the following processes: deep reactive-ion etching (DRIE), or very short pulse laser marking (femto to pico seconds).
  • DRIE deep reactive-ion etching
  • Femto to pico seconds very short pulse laser marking
  • the machining step can optionally be followed by selective chemical dissolution of the marked volume (or selective laser engraving).
  • the method comprises a step of smoothing and/or leveling the surface 25 of the substrate 20 so as to obtain roughnesses or rounded dimples with a radius of curvature greater than 500 nm, preferably greater than 4 ⁇ m.
  • the smoothing and/or leveling step may also include polishing the surface 25 receiving the passivation layer 30.
  • the polishing is carried out with an optical quality resulting in a roughness Ra of less than 1 nm.
  • the step of smoothing and/or leveling the surface 25 is carried out before the formation of the passivation layer 30.
  • the method comprises a step of cleaning the surface, carried out before the formation of the passivation layer 30 in order to obtain a controlled chemical state of the surface, that is to say that the surface 25 contains substantially no particulate contamination, native oxides (due to moisture and oxygen in the air), organic matter, layer residue, inorganic bases or acids or other metal contamination.
  • the surface cleaning step is carried out before the formation of the passivation layer 30.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

La présente invention concerne un composant (10) horloger avec une résistance à la rupture améliorée, comprenant un substrat (20) en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure. Le substrat (20) est revêtu d'une couche de passivation (30), directement en contact avec la surface (25) du substrat (20) et ayant une épaisseur inférieure à 1000 nm. La couche de passivation (30) comprend une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène. La présente invention concerne également un procédé de fabrication dudit composant.

Description

    Domaine technique
  • La présente invention concerne un composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée, ainsi qu'un procédé de fabrication dudit composant.
  • Etat de la technique
  • Le silicium cristallin, comprenant le silicium monocristallin ou le silicium polycristallin, est un matériau de plus en plus utilisé dans la fabrication de pièces mécaniques et notamment de pièces de micromécanique. Par rapport aux métaux ou alliages classiquement utilisés pour fabriquer des pièces de micromécaniques, le silicium cristallin présente l'avantage d'avoir une densité 3 à 4 fois plus faible et donc de présenter une inertie très réduite, et d'être insensible aux champs magnétiques. Ces avantages sont particulièrement intéressants dans le domaine horloger, tant en ce qui concerne l'isochronisme que la durée de marche. Le silicium cristallin permet également d'être micro-usiné avec une grande précision.
  • Cependant, le silicium cristallin montre des performances mécaniques réduites par la présence de défauts (rayures, microfissures, microporosités, inclusions, impuretés, etc..). Ces défauts sont causés au cours de l'élaboration de la galette de silicium et lors de la mise en forme du composant en silicium cristallin. Ces défauts sont généralement à l'origine de la propagation lente des fissures (slow crack growth). La propagation lente des fissures peut être assimilée à une corrosion sous contrainte liée à la présence de ions OH- de l'humidité ambiante et qui accélère la propagation des fissures à l'origine microscopique de la rupture des matériaux fragiles. La miniaturisation du composant permet de réduire la probabilité d'existence de défauts millimétriques (rayures, microfissures) étant donné qu'un petit composant aura statistiquement moins de défauts. L'utilisation du silicium cristallin est donc plus intéressante pour la fabrication de petits composants, par exemple des composants de taille millimétrique ou sub-centimétrique, comme c'est le cas dans le cas de composants micromécaniques et horlogers.
  • Malgré le potentiel bénéfique de la réduction de la taille du composant mécanique pour exploiter les performances du silicium cristallin, l'augmentation inévitable du rapport surface-volume et l'effet de la propagation lente des fissures rendent nécessaire la mise en oeuvre d'une solution apte à réduire la densité surfacique de défauts atomiques et à empêcher (ou du moins ralentir) la propagation de fissure dans le composant.
  • Par ailleurs, des couches de passivation ont été développées pour les dispositifs électroniques dans les matériaux monocristallin couramment utilisés dans les applications opto-électroniques (en particulier : silicium, GaAs, etc..) dont la caractéristique technique principale est la perfection du réseau monocristallin indispensable pour assurer un fonctionnement optimal du dispositif. Dans ces domaines d'applications, la performance actuelle des dispositifs est limitée par la présence des défauts (en général atomiques) en surface ou aux interfaces.
  • Dans le secteur des composants électroniques (transistors) et des dispositifs photovoltaïques (PV) à base de silicium monocristallin, il est bien connu que les défauts atomiques sur les surfaces et/ou aux interfaces cristallines sont les facteurs déterminant les performances soit lorsque la taille des composants diminue, ou, comme dans les applications PV, lorsque la densité de défauts volumiques du matériau est insignifiante.
  • Les diverses solutions de passivation développées dans le secteur électronique et PV à base de silicium monocristallin consistent à revêtir la surface du volume actif avec une couche mince, le plus souvent amorphe, composée de silicium amorphe (a-Si :H), d'oxide de silicium (SiO2), de carbure de silicium (SiC), de nitrure de silicium (Si3N4) ou d'une composition résultant de leur mélange (p.ex : oxynitrures, oxycarbure de silicium) ou de leur séquence d'empilement
  • Afin de limiter l'entrée d'humidité ambiante et de garantir sa stabilité dimensionnelle, le composant en silicium peut être recouvert d'une couche d'oxyde de silicium thermique. Ce type de revêtement est également adapté aux sollicitations tribologiques auxquelles la surface du composant doit répondre dans des applications micromécaniques et horlogères.
  • Bref résumé de l'invention
  • Un but de l'invention est l'application d'une couche de passivation de qualité électronique pour l'amélioration des performances mécaniques du silicium cristallin dans des composants à l'échelle millimétrique à sub-centimétrique.
  • Un autre but de l'invention est l'amélioration des performances mécaniques, telle que la résistance à la rupture du silicium cristallin, pour son usage dans des microcomposants de taille millimétrique à submillimétriques, par exemple de type composants horlogers.
  • Selon l'invention, ces buts sont atteints notamment au moyen d'une couche de passivation à la surface d'un composant de manière à diminuer la densité surfacique de défauts ponctuels (type liaisons non-coordonnées ou sous-coordonnées) et isoler le composant de son environnement atmosphérique qui est à l'origine de l'accélération de la propagation des fissures menant à la rupture.
  • Plus particulièrement, l'invention de rapporte à un composant horloger avec une résistance à la rupture améliorée comprenant un substrat en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure. Le substrat est revêtu d'une couche de passivation, directement en contact avec la surface du substrat et ayant une épaisseur inférieure à 1000 nm, préférablement inférieure à 600 nm ou préférablement inférieure à 400 nm. La couche de passivation comprend une céramique réfractaire comprenant au moins 1% atomique d'hydrogène.
  • La faible épaisseur de la couche de passivation permet d'obtenir une haute précision dimensionnelle du composant. Cela est particulièrement avantageux dans les applications micromécaniques et horlogères.
  • Brève description des figures
  • Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
    • la figure 1 illustre de manière schématique un composant micromécanique comprenant un substrat comportant une couche de passivation, selon un mode de réalisation; et
    • la figure 2 montre une vue schématique et en section de la surface du substrat, selon un mode de réalisation.
    Exemple(s) de mode de réalisation
  • La figure 1 montre, de manière schématique, un composant 10 horloger comprenant un substrat 20 en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure. Le substrat 20 est revêtu d'une couche de passivation 30, directement en contact avec la surface 25 du substrat 20.
  • Le silicium cristallin peut comprendre le silicium monocristallin ou le silicium polycristallin.
  • Selon un mode de réalisation, la couche de passivation 30 a une épaisseur inférieure à 1000 nm, préférablement inférieure à 600 nm ou préférablement inférieure à 400 nm.
  • La couche de passivation 30 comprend une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.
  • La couche de passivation 30 permet de réduire la densité de défauts surfaciques du substrat 20 améliorant entre autres la résistance aux chocs. La couche de passivation permet également d'isoler le substrat 20 (et donc le composant 10) de l'atmosphère ambiante, et donc des composés chimiques qui sont à l'origine de l'accélération de la propagation des fissures menant à la rupture.
  • Le choix de l'une ou l'autre des compositions chimiques de la couche de passivation 30, ainsi que de son épaisseur peut également dépendre des caractéristiques requises pour le revêtement, par exemple l'aptitude au transport de charge, la transparence, la conformité, la température de déposition, la dureté, la barrière chimique à la migration ionique, le comportement tribologique, la compatibilité chimique avec des lubrifiants, etc.
  • Selon une forme d'exécution, la céramique réfractaire comprend l'un des éléments suivants : un oxynitrure de silicium hydrogéné (SiON:H), oxycarbure de silicium hydrogéné (SiOxCy:H), carbure de silicium hydrogéné (SiC:H), nitrure de silicium hydrogéné (Si3N4:H), ou une combinaison de ces céramiques.
  • La couche de passivation 30 en céramique réfractaire comprenant une céramique SiON:H, SiOxCy:H, SiC:H ou Si3N4:H, ou une combinaison de ces céramiques permet par exemple de modifier l'aspect visuel du composant (esthétique), d'assurer une barrière hermétique au transport des ions, en particulier des ions OH-, vers le substrat 20.
  • Une teneur en hydrogène de l'ordre de quelques pourcents atomiques permet de saturer les défauts constitués par des liaisons atomiques insaturées à la surface 25 du substrat 20. Par exemple, sur une surface 25 d'un substrat en silicium monocristallin, l'hydrogène permet de réduire la densité de liaisons pendantes. L'importance et les effets de la passivation hydrogène sont exploités dans l'industrie de l'électronique des semiconducteurs et dans les applications photovoltaïques. Dans la présente invention, la couche de passivation 30 comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène permet d'améliorer la résistance à la rupture du composant 10.
  • Dans le cas d'un matériau fragile, tel que le silicium cristallin constituant le substrat 20, la résistance à la rupture est inversement proportionnelle à la densité de défauts potentiellement à l'origine d'une microfissure dont la propagation va conduire à la défaillance du composant 10.
  • La couche de passivation comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène permet de réduire la densité surfacique de défauts à la surface 25 du substrat 20. Une réduction de la densité surfacique de défauts augmente la résistance mécanique, et en particulier la résistance à la rupture, du composant 10.
  • Une épaisseur inférieure à 1000 nm, inférieure à 600 nm, ou inférieure à 400 nm, permet à la couche de passivation 30 de jouer un rôle de barrière à la pénétration d'impuretés catalysant ou accélérant la propagation des microfissures.
  • Les performances de la couche de passivation 30, en particulier la réduction de la densité de défauts surfaciques du substrat 20 et l'isolation du substrat 20 de l'atmosphère ambiante, dépendent de l'état de surface 25 du substrat 20. Par exemple, la surface 25 du substrat 20 ne doit pas être affectée par l'usinage. On cherchera donc à éliminer, du moins minimiser, de la surface 25 du substrat 20 les défauts tels que rayures et microfissures.
  • Selon une forme d'exécution, la surface 25 du substrat 20 sur laquelle est formée la couche de passivation 30 est lissée, ou polie, de manière à obtenir une rugosité Ra inférieure à 100 nm. La figure 2 montre une vue schématique et en section de la surface 25. De manière préférée, la surface 25 est nivelée de manière que la surface 25 du substrat 20 présente une topologie de surface comportant des aspérités 27 ou des fossettes arrondies ayant un rayon de courbure supérieur à 500 nm, préférablement supérieur à 4 µm. La surface 25 est nivelée ne comporte pas de facettes ou d'angles aigus qui pourraient résulter dans une possible concentration des contraintes lors d'une sollicitation mécanique.
  • De manière préférée, la surface 25 du substrat 20 doit également être propre, c'est-à-dire, ayant un état chimique de la surface maîtrisé. Un tel état chimique de la surface maîtrisé peut signifier que la surface 25 du substrat 20 ne contient sensiblement pas de contamination par des particules, d'oxydes natifs (dus à l'humidité et à l'oxygène de l'air), de matières organiques, de résidus de couches, de bases ou d'acides inorganiques ou d'autres contaminations métalliques. Autrement dit, la composition chimique à la surface 25 est aussi proche que possible de la composition chimique massique du substrat 20.
  • L'étude de la conformité de la croissance de la couche de passivation 30 (recouvrement d'une épaisseur de couche identique sur les éléments saillants ou rentrants dans le composant) montre que toutes les surfaces d'un composant 10 rassemblant des éléments caractéristiques horlogers tels que dents d'échappement, trous (diamètre 3 mm à 0.2 mm), poutre élancée, languette, pointe et élément rentrant), sont revêtues à satisfaction par la couche de passivation 30.
  • Le substrat 20 peut être revêtu de la couche de passivation 30 sur l'une, plusieurs ou toutes ses surfaces 25. Préférablement, la couche de passivation 30 peut être formée sur toutes les surfaces 25 du substrat 20. Encore préférablement, le composant 10 tridimensionnel possède une couche de passivation 30 d'épaisseur sensiblement uniforme sur toutes ses surfaces 25.
  • Dans un mode de réalisation, le composant horloger peut comprendre un composant d'un dispositif d'affichage ou d'habillage.
  • Selon un mode de réalisation, un procédé de fabrication d'un composant 10 horloger comprend les étapes:
    • d'usiner le silicium cristallin de manière à former un substrat 20 ayant une dimension latérale de l'ordre du centimètre ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure; et
    • de former une couche de passivation 30 à la surface 25 du substrat 20, la couche de passivation 30 ayant une épaisseur inférieure à 1000 nm et comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.
  • La formation de la couche de passivation 30 peut être réalisée par un procédé de dépôt chimique en phase vapeur. En particulier, la formation de la couche de passivation 30 peut être réalisée par un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) dédié au revêtement uniforme tridimensionnel du composant 10. Par exemple, la couche de passivation 30 peut être réalisée dans un réacteur comprenant des moyens de rotation/mélange/retournement qui facilitent un dépôt uniforme de la couche de passivation 30 sur un ou une pluralité de composants 10 tridimensionnels, tel que décrit dans la demande de brevet suisse CH715599 . Afin de garantir que le dépôt de la couche de passivation 30 ne soit pas à l'origine de défauts supplémentaires sur la surface 25, on privilégie des procédés de recouvrement doux et à basses températures, comme la croissance thermique ou le dépôt de couche par PECVD.
  • Selon une forme d'exécution, le procédé peut comprendre en outre une étape de dissolution chimique en phase vapeur ou liquide de la surface 25 du substrat 20, préalable à l'étape de formation de la couche de passivation 30.
  • L'étape d'usiner le substrat 20 peut comprendre la dissolution chimique sélective du substrat 20 et la libération du composant 10 usiné.
  • Selon une forme d'exécution, l'étape d'usiner peut comprendre l'un des procédés suivants: gravure ionique réactive profonde (deep reactive-ion etching, DRIE), ou marquage laser à très courtes impulsions (femto à pico secondes). L'étape d'usiner peut être suivie de manière optionnelle par la dissolution chimique sélective du volume marqué (ou gravure laser sélective).
  • Selon une forme d'exécution, le procédé comprend une étape de lisser et/ou niveler la surface 25 du substrat 20 de manière à obtenir des aspérités ou des fossettes arrondies avec un rayon de courbure supérieur à 500nm, préférablement supérieur à 4 µm. L'étape de lisser et/ou niveler peut également comprendre le polissage de la surface 25 recevant la couche de passivation 30. De préférence, le polissage est réalisé avec une qualité optique résultant dans une rugosité Ra inférieure à 1 nm. L'étape de lisser et/ou niveler la surface 25 est réalisée avant la formation de la couche de passivation 30.
  • Selon une forme d'exécution, le procédé comprend une étape de nettoyage de la surface, réalisée avant la formation de la couche de passivation 30 afin d'obtenir un état chimique de la surface maîtrisé, c'est-à-dire que la surface 25 ne contient sensiblement pas de contamination par des particules, d'oxydes natifs (dus à l'humidité et à l'oxygène de l'air), de matières organiques, de résidus de couches, de bases ou d'acides inorganiques ou d'autres contaminations métalliques. L'étape de nettoyage de la surface est réalisée avant la formation de la couche de passivation 30.
  • Numéros de référence employés sur les figures
  • 10
    composant
    20
    substrat
    25
    surface
    27
    aspérité
    30
    couche de passivation

Claims (14)

  1. Composant (10) horloger avec une résistance à la rupture améliorée, comprenant
    un substrat (20) en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de ordre du millimètre ou inférieure;
    le substrat (20) étant revêtu d'une couche de passivation (30), directement en contact avec la surface (25) du substrat (20) et ayant une épaisseur inférieure à 1000 nm, la couche de passivation (30) comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.
  2. Le composant selon la revendication 1,
    dans lequel la couche de passivation (30) a une épaisseur inférieure à 600 nm et préférablement inférieure à 400 nm.
  3. Le composant selon la revendication 1 ou 2,
    dans lequel la céramique réfractaire comprend un oxynitrure de silicium hydrogéné (SiON:H), oxycarbure de silicium hydrogéné (SiOxCy:H), carbure de silicium hydrogéné (SiC:H), nitrure de silicium hydrogéné (Si3N4:H), ou une combinaison de ces céramiques ainsi que leur empilement.
  4. Le composant, selon l'une des revendications 1 à 3,
    dans lequel la surface (25) du substrat (20) a une rugosité Ra inférieure à 100 nm.
  5. Le composant selon la revendication 4,
    dans lequel la surface (25) du substrat (20) comporte des aspérités ayant un rayon de courbure supérieur à 500nm, préférablement supérieur à 4 µm.
  6. Le composant selon l'une des revendication 1 à 5,
    dans lequel le silicium cristallin comprend le silicium monocristallin ou le silicium polycristallin.
  7. Le composant selon l'une des revendication 1 à 6, comprenant un composant étant sollicité mécaniquement.
  8. Le composant selon l'une des revendication 1 à 7, comprenant un composant d'un dispositif d'affichage ou d'habillage.
  9. Procédé de fabrication d'un composant micromécanique selon l'une des revendications 1 à 8, le procédé comprenant les étapes:
    d'usiner le silicium cristallin de manière à former le substrat (20) ayant une dimension latérale de l'ordre du centimètre ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure;
    de former la couche de passivation (30) sur la surface du substrat (20), la couche de passivation (30) ayant une épaisseur inférieure à 1000 nm et comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.
  10. Le procédé selon la revendication 9,
    dans lequel la formation de la couche de passivation (30) est réalisée par un procédé de dépôt chimique en phase vapeur.
  11. Le procédé selon la revendication 10,
    dans lequel la formation de la couche de passivation (30) est réalisée par un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD).
  12. Le procédé selon l'une des revendications 9 à 11,
    comprenant une étape de lissage et/ou nivellement de la surface (25) du substrat (20), de manière à obtenir une topologie de surface comportant des aspérités (27) ayant un rayon de courbure supérieur à 500 nm, préférablement supérieur à 4 µm.
  13. Le procédé selon l'une des revendications 9 à 12, comprenant en outre une étape de dissolution chimique en phase vapeur ou liquide de la surface du substrat (20), préalable à l'étape de formation de la couche de passivation (30).
  14. Le procédé selon l'une des revendications 9 à 13,
    dans lequel l'étape d'usiner le substrat (20) comprend la dissolution chimique du substrat (20) et la libération du composant (10) usiné.
EP22183437.7A 2022-07-06 2022-07-06 Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée Pending EP4303666A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22183437.7A EP4303666A1 (fr) 2022-07-06 2022-07-06 Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22183437.7A EP4303666A1 (fr) 2022-07-06 2022-07-06 Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée

Publications (1)

Publication Number Publication Date
EP4303666A1 true EP4303666A1 (fr) 2024-01-10

Family

ID=82399232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22183437.7A Pending EP4303666A1 (fr) 2022-07-06 2022-07-06 Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée

Country Status (1)

Country Link
EP (1) EP4303666A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945025A1 (fr) * 2014-05-16 2015-11-18 Nivarox-FAR S.A. Mécanisme d'horlogerie à couple de contact sans lubrification
EP3141519A1 (fr) * 2015-09-08 2017-03-15 Nivarox-FAR S.A. Procédé de fabrication d'une pièce micromécanique horlogère et ladite pièce micromécanique horlogère
CH715599A2 (fr) 2018-11-28 2020-05-29 Coat X Sa Réacteur de dépôt multicouche.
EP3783445A1 (fr) * 2019-08-22 2021-02-24 ETA SA Manufacture Horlogère Suisse Mecanisme regulateur d'horlogerie a haut facteur de qualite et a lubrification minimale

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945025A1 (fr) * 2014-05-16 2015-11-18 Nivarox-FAR S.A. Mécanisme d'horlogerie à couple de contact sans lubrification
EP3141519A1 (fr) * 2015-09-08 2017-03-15 Nivarox-FAR S.A. Procédé de fabrication d'une pièce micromécanique horlogère et ladite pièce micromécanique horlogère
CH715599A2 (fr) 2018-11-28 2020-05-29 Coat X Sa Réacteur de dépôt multicouche.
EP3783445A1 (fr) * 2019-08-22 2021-02-24 ETA SA Manufacture Horlogère Suisse Mecanisme regulateur d'horlogerie a haut facteur de qualite et a lubrification minimale

Similar Documents

Publication Publication Date Title
WO2015113973A1 (fr) Ressort spiral thermocompensé en céramique comprenant l' élément silicium dans sa composition et son procédé de réglage
FR2736205A1 (fr) Dispositif detecteur a semiconducteur et son procede de formation
CH701499B1 (fr) Procède de fabrication d'une pièce micromécanique en silicium renforcé.
FR2842650A1 (fr) Procede de fabrication de substrats notamment pour l'optique, l'electronique ou l'opto-electronique
EP2771910B1 (fr) Procede de collage direct d'une couche d'oxyde de silicium
FR2963982A1 (fr) Procede de collage a basse temperature
EP3320403B1 (fr) Procédé de fixation par assemblage anodique
EP4303666A1 (fr) Composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée
CH702431B1 (fr) Procédé de fabrication d'une pièce micromécanique.
WO2017006219A1 (fr) Procédé de fixation par assemblage anodique
EP4303665A1 (fr) Composant horloger comprenant un substrat en verre transparent à la lumière visible et ayant une résistance à la rupture améliorée
FR2911598A1 (fr) Procede de rugosification de surface.
WO2024009209A1 (fr) Composant horloger comprenant un substrat en verre transparent à la lumière visible et ayant une résistance à la rupture améliorée
CH702576B1 (fr) Pièce de micro-mécanique revêtue.
CH719868A2 (fr) Composant horloger comprenant un substrat en verre transparent à la lumière visible.
EP3141966A1 (fr) Procede de formation d'une surface decorative sur une piece micromecanique horlogere et ladite piece micromecanique horlogere
EP2978871B1 (fr) Procédé de dépôt de diamant en phase vapeur
EP3285124A1 (fr) Résonateur mécanique pour pièce d'horlogerie ainsi que procédé de réalisation d'un tel résonateur
CH708998B1 (fr) Composant horloger et procédé pour réduire le coefficient de frottement d'un composant horloger.
FR3072827B1 (fr) Procede de fabrication d’une cellule photovoltaique
EP3141519B1 (fr) Procédé de fabrication d'une pièce micromécanique horlogère
FR3074959A1 (fr) Procede de collage par adhesion directe
EP2747140B1 (fr) Procédé d'obtention d'au moins un nanoélément à base de silicium dans une couche d'oxyde de silicium, et procédé de fabrication d'un dispositif éléctronique muni d'au moins un tel nanoélément.
FR3093860A1 (fr) Procédé de transfert d’une couche utile sur un substrat support
CH707800A2 (fr) Procédé de dépôt de diamant en phase vapeur et équipement pour réaliser ce procédé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR