EP4303666A1 - Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage - Google Patents
Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage Download PDFInfo
- Publication number
- EP4303666A1 EP4303666A1 EP22183437.7A EP22183437A EP4303666A1 EP 4303666 A1 EP4303666 A1 EP 4303666A1 EP 22183437 A EP22183437 A EP 22183437A EP 4303666 A1 EP4303666 A1 EP 4303666A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- passivation layer
- component
- less
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 50
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 20
- 230000003763 resistance to breakage Effects 0.000 title 1
- 238000002161 passivation Methods 0.000 claims abstract description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000011214 refractory ceramic Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003754 machining Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical class N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 238000009499 grossing Methods 0.000 claims description 4
- 150000003376 silicon Chemical class 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 230000007547 defect Effects 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 235000019592 roughness Nutrition 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000708 deep reactive-ion etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- -1 oxynitrides Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009791 electrochemical migration reaction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 238000010330 laser marking Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B39/00—Watch crystals; Fastening or sealing of crystals; Clock glasses
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/004—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
Definitions
- the present invention relates to a watch component comprising a crystalline silicon substrate and having improved breaking strength, as well as a method of manufacturing said component.
- Crystalline silicon including monocrystalline silicon or polycrystalline silicon, is a material increasingly used in the manufacture of mechanical parts and in particular micromechanical parts. Compared to metals or alloys conventionally used to manufacture micromechanical parts, crystalline silicon has the advantage of having a density 3 to 4 times lower and therefore of having very reduced inertia, and of being insensitive to magnetic fields. . These advantages are particularly interesting in the watchmaking field, both with regard to isochronism and running time. Crystalline silicon also allows it to be micro-machined with great precision.
- crystalline silicon shows mechanical performance reduced by the presence of defects (scratches, microcracks, microporosities, inclusions, impurities, etc.). These defects are caused during the production of the silicon wafer and during the shaping of the crystalline silicon component. These defects are generally the cause of slow crack growth.
- the slow propagation of cracks can be compared to stress corrosion linked to the presence of OH- ions in ambient humidity and which accelerates the propagation of cracks which are the microscopic origin of the rupture of fragile materials.
- the miniaturization of the component makes it possible to reduce the probability of the existence of millimeter defects (scratches, microcracks) given that a smaller component will statistically have fewer defects.
- the use of crystalline silicon is therefore more interesting for the manufacture of small components, for example components of millimeter or sub-centimeter size, as is the case in the case of micromechanical and watchmaking components.
- passivation layers have been developed for electronic devices in monocrystalline materials commonly used in opto-electronic applications (in particular: silicon, GaAs, etc.) whose main technical characteristic is the perfection of the essential monocrystalline network. to ensure optimal operation of the device.
- the current performance of the devices is limited by the presence of defects (generally atomic) on the surface or at the interfaces.
- the various passivation solutions developed in the electronic and PV sector based on monocrystalline silicon consist of coating the surface of the active volume with a thin layer, most often amorphous, composed of amorphous silicon (a-Si:H), oxide silicon (SiO2), silicon carbide (SiC), silicon nitride (Si3N4) or a composition resulting from their mixture (e.g.: oxynitrides, silicon oxycarbide) or their stacking sequence
- the silicon component can be covered with a layer of thermal silicon oxide.
- This type of coating is also suitable for the tribological stresses to which the surface of the component must respond in micromechanical and watchmaking applications.
- An aim of the invention is the application of an electronic quality passivation layer for improving the mechanical performance of crystalline silicon in components on the millimeter to sub-centimeter scale.
- Another aim of the invention is to improve the mechanical performance, such as the breaking strength of crystalline silicon, for its use in microcomponents of millimeter to submillimeter size, for example of the watchmaking component type.
- a passivation layer on the surface of a component so as to reduce the surface density of point defects (non-coordinated or sub-coordinated connections type) and isolate the component. of its atmospheric environment which is at the origin of the acceleration of the propagation of cracks leading to rupture.
- the invention relates to a watch component with improved breaking strength comprising a crystalline silicon substrate having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or less.
- the substrate is coated with a passivation layer, directly in contact with the surface of the substrate and having a thickness of less than 1000 nm, preferably less than 600 nm or preferably less than 400 nm.
- the passivation layer comprises a refractory ceramic comprising at least 1 atomic% of hydrogen.
- the low thickness of the passivation layer makes it possible to obtain high dimensional precision of the component. This is particularly advantageous in micromechanical and watchmaking applications.
- FIG. 1 shows, schematically, a watch component 10 comprising a crystalline silicon substrate 20 having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or less.
- the substrate 20 is coated with a passivation layer 30, directly in contact with the surface 25 of the substrate 20.
- Crystalline silicon may include monocrystalline silicon or polycrystalline silicon.
- the passivation layer 30 has a thickness of less than 1000 nm, preferably less than 600 nm or preferably less than 400 nm.
- the passivation layer 30 comprises a refractory ceramic comprising at least 1 atomic% of hydrogen.
- the passivation layer 30 makes it possible to reduce the density of surface defects of the substrate 20, improving, among other things, impact resistance.
- the passivation layer also makes it possible to isolate the substrate 20 (and therefore the component 10) from the ambient atmosphere, and therefore from the chemical compounds which are at the origin of the acceleration of the propagation of the cracks leading to rupture.
- the choice of one or other of the chemical compositions of the passivation layer 30, as well as its thickness may also depend on the characteristics required for the coating, for example the ability to transport charge, transparency, conformity , deposition temperature, hardness, chemical barrier to ionic migration, tribological behavior, chemical compatibility with lubricants, etc.
- the refractory ceramic comprises one of the following elements: a hydrogenated silicon oxynitride (SiON:H), hydrogenated silicon oxycarbide (SiOxCy:H), hydrogenated silicon carbide (SiC:H), nitride hydrogenated silicon (Si3N4:H), or a combination of these ceramics.
- the passivation layer 30 of refractory ceramic comprising a SiON:H, SiOxCy:H, SiC:H or Si3N4:H ceramic, or a combination of these ceramics make it possible, for example, to modify the visual appearance of the component (aesthetic), to provide a hermetic barrier to the transport of ions, in particular OH- ions, towards the substrate 20.
- a hydrogen content of the order of a few atomic percent makes it possible to saturate the defects constituted by unsaturated atomic bonds on the surface 25 of the substrate 20.
- hydrogen allows to reduce the density of dangling bonds.
- the passivation layer 30 comprising a refractory ceramic comprising at least 1 atomic % of hydrogen makes it possible to improve the breaking resistance of the component 10.
- the resistance to rupture is inversely proportional to the density of defects potentially causing a microcrack whose propagation will lead to the failure of the component 10.
- the passivation layer comprising a refractory ceramic comprising at least 1 atomic % of hydrogen makes it possible to reduce the surface density of defects on the surface 25 of the substrate 20. A reduction in the surface density of defects increases the mechanical resistance, and in particular the breaking strength, of component 10.
- a thickness less than 1000 nm, less than 600 nm, or less than 400 nm, allows the passivation layer 30 to play a role as a barrier to the penetration of impurities catalyzing or accelerating the propagation of microcracks.
- the performance of the passivation layer 30, in particular the reduction in the density of surface defects of the substrate 20 and the insulation of the substrate 20 of the ambient atmosphere, depend on the surface condition 25 of the substrate 20.
- the surface 25 of the substrate 20 must not be affected by machining. We will therefore seek to eliminate, or at least minimize, defects such as scratches and microcracks on the surface 25 of the substrate 20.
- the surface 25 of the substrate 20 on which the passivation layer 30 is formed is smoothed, or polished, so as to obtain a roughness Ra of less than 100 nm.
- FIG 2 shows a schematic and sectional view of the surface 25.
- the surface 25 is leveled so that the surface 25 of the substrate 20 has a surface topology comprising asperities 27 or rounded dimples having a radius of curvature greater than 500 nm, preferably greater than 4 ⁇ m.
- the surface 25 is leveled and does not have any facets or acute angles which could result in a possible concentration of stresses during mechanical stress.
- the surface 25 of the substrate 20 must also be clean, that is to say, having a controlled chemical state of the surface.
- a controlled chemical state of the surface can mean that the surface 25 of the substrate 20 does not contain substantially no contamination by particles, native oxides (due to humidity and oxygen in the air), materials organic matter, layer residue, inorganic bases or acids or other metallic contamination.
- the chemical composition on the surface 25 is as close as possible to the mass chemical composition of the substrate 20.
- the study of the conformity of the growth of the passivation layer 30 shows that all the surfaces of a component 10 bringing together characteristic watchmaking elements such as that escapement teeth, holes (diameter 3 mm to 0.2 mm), slender beam, tongue, tip and re-entrant element), are coated to satisfaction by the passivation layer 30.
- the substrate 20 may be coated with the passivation layer 30 on one, several or all of its surfaces 25.
- the passivation layer 30 may be formed on all surfaces 25 of the substrate 20.
- the three-dimensional component 10 has a passivation layer 30 of substantially uniform thickness on all its surfaces 25.
- the watch component may comprise a component of a display or covering device.
- the formation of the passivation layer 30 can be carried out by a chemical vapor deposition process.
- the formation of the passivation layer 30 can be carried out by a plasma-assisted chemical vapor deposition (PECVD) process dedicated to the uniform three-dimensional coating of the component 10.
- PECVD plasma-assisted chemical vapor deposition
- the passivation layer 30 can be produced in a reactor comprising rotation/mixing/turning means which facilitate uniform deposition of the passivation layer 30 on one or a plurality of three-dimensional components 10, as described in the Swiss patent application CH715599 .
- gentle and low temperature covering processes are favored, such as thermal growth or layer deposition by PECVD. .
- the method may further comprise a step of chemical dissolution in the vapor or liquid phase of the surface 25 of the substrate 20, prior to the step of forming the passivation layer 30.
- the step of machining the substrate 20 may include selectively chemically dissolving the substrate 20 and releasing the machined component 10.
- the machining step may comprise one of the following processes: deep reactive-ion etching (DRIE), or very short pulse laser marking (femto to pico seconds).
- DRIE deep reactive-ion etching
- Femto to pico seconds very short pulse laser marking
- the machining step can optionally be followed by selective chemical dissolution of the marked volume (or selective laser engraving).
- the method comprises a step of smoothing and/or leveling the surface 25 of the substrate 20 so as to obtain roughnesses or rounded dimples with a radius of curvature greater than 500 nm, preferably greater than 4 ⁇ m.
- the smoothing and/or leveling step may also include polishing the surface 25 receiving the passivation layer 30.
- the polishing is carried out with an optical quality resulting in a roughness Ra of less than 1 nm.
- the step of smoothing and/or leveling the surface 25 is carried out before the formation of the passivation layer 30.
- the method comprises a step of cleaning the surface, carried out before the formation of the passivation layer 30 in order to obtain a controlled chemical state of the surface, that is to say that the surface 25 contains substantially no particulate contamination, native oxides (due to moisture and oxygen in the air), organic matter, layer residue, inorganic bases or acids or other metal contamination.
- the surface cleaning step is carried out before the formation of the passivation layer 30.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Formation Of Insulating Films (AREA)
Abstract
La présente invention concerne un composant (10) horloger avec une résistance à la rupture améliorée, comprenant un substrat (20) en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure. Le substrat (20) est revêtu d'une couche de passivation (30), directement en contact avec la surface (25) du substrat (20) et ayant une épaisseur inférieure à 1000 nm. La couche de passivation (30) comprend une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène. La présente invention concerne également un procédé de fabrication dudit composant.The present invention relates to a watch component (10) with improved breaking strength, comprising a crystalline silicon substrate (20) having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or lower. The substrate (20) is coated with a passivation layer (30), directly in contact with the surface (25) of the substrate (20) and having a thickness less than 1000 nm. The passivation layer (30) comprises a refractory ceramic comprising at least 1 atomic % hydrogen. The present invention also relates to a method of manufacturing said component.
Description
La présente invention concerne un composant horloger comprenant un substrat en silicium cristallin et ayant une résistance à la rupture améliorée, ainsi qu'un procédé de fabrication dudit composant.The present invention relates to a watch component comprising a crystalline silicon substrate and having improved breaking strength, as well as a method of manufacturing said component.
Le silicium cristallin, comprenant le silicium monocristallin ou le silicium polycristallin, est un matériau de plus en plus utilisé dans la fabrication de pièces mécaniques et notamment de pièces de micromécanique. Par rapport aux métaux ou alliages classiquement utilisés pour fabriquer des pièces de micromécaniques, le silicium cristallin présente l'avantage d'avoir une densité 3 à 4 fois plus faible et donc de présenter une inertie très réduite, et d'être insensible aux champs magnétiques. Ces avantages sont particulièrement intéressants dans le domaine horloger, tant en ce qui concerne l'isochronisme que la durée de marche. Le silicium cristallin permet également d'être micro-usiné avec une grande précision.Crystalline silicon, including monocrystalline silicon or polycrystalline silicon, is a material increasingly used in the manufacture of mechanical parts and in particular micromechanical parts. Compared to metals or alloys conventionally used to manufacture micromechanical parts, crystalline silicon has the advantage of having a density 3 to 4 times lower and therefore of having very reduced inertia, and of being insensitive to magnetic fields. . These advantages are particularly interesting in the watchmaking field, both with regard to isochronism and running time. Crystalline silicon also allows it to be micro-machined with great precision.
Cependant, le silicium cristallin montre des performances mécaniques réduites par la présence de défauts (rayures, microfissures, microporosités, inclusions, impuretés, etc..). Ces défauts sont causés au cours de l'élaboration de la galette de silicium et lors de la mise en forme du composant en silicium cristallin. Ces défauts sont généralement à l'origine de la propagation lente des fissures (slow crack growth). La propagation lente des fissures peut être assimilée à une corrosion sous contrainte liée à la présence de ions OH- de l'humidité ambiante et qui accélère la propagation des fissures à l'origine microscopique de la rupture des matériaux fragiles. La miniaturisation du composant permet de réduire la probabilité d'existence de défauts millimétriques (rayures, microfissures) étant donné qu'un petit composant aura statistiquement moins de défauts. L'utilisation du silicium cristallin est donc plus intéressante pour la fabrication de petits composants, par exemple des composants de taille millimétrique ou sub-centimétrique, comme c'est le cas dans le cas de composants micromécaniques et horlogers.However, crystalline silicon shows mechanical performance reduced by the presence of defects (scratches, microcracks, microporosities, inclusions, impurities, etc.). These defects are caused during the production of the silicon wafer and during the shaping of the crystalline silicon component. These defects are generally the cause of slow crack growth. The slow propagation of cracks can be compared to stress corrosion linked to the presence of OH- ions in ambient humidity and which accelerates the propagation of cracks which are the microscopic origin of the rupture of fragile materials. The miniaturization of the component makes it possible to reduce the probability of the existence of millimeter defects (scratches, microcracks) given that a smaller component will statistically have fewer defects. The use of crystalline silicon is therefore more interesting for the manufacture of small components, for example components of millimeter or sub-centimeter size, as is the case in the case of micromechanical and watchmaking components.
Malgré le potentiel bénéfique de la réduction de la taille du composant mécanique pour exploiter les performances du silicium cristallin, l'augmentation inévitable du rapport surface-volume et l'effet de la propagation lente des fissures rendent nécessaire la mise en oeuvre d'une solution apte à réduire la densité surfacique de défauts atomiques et à empêcher (ou du moins ralentir) la propagation de fissure dans le composant.Despite the beneficial potential of reducing the size of the mechanical component to exploit the performance of crystalline silicon, the inevitable increase in the surface-to-volume ratio and the effect of slow crack propagation make it necessary to implement a solution able to reduce the surface density of atomic defects and to prevent (or at least slow down) crack propagation in the component.
Par ailleurs, des couches de passivation ont été développées pour les dispositifs électroniques dans les matériaux monocristallin couramment utilisés dans les applications opto-électroniques (en particulier : silicium, GaAs, etc..) dont la caractéristique technique principale est la perfection du réseau monocristallin indispensable pour assurer un fonctionnement optimal du dispositif. Dans ces domaines d'applications, la performance actuelle des dispositifs est limitée par la présence des défauts (en général atomiques) en surface ou aux interfaces.Furthermore, passivation layers have been developed for electronic devices in monocrystalline materials commonly used in opto-electronic applications (in particular: silicon, GaAs, etc.) whose main technical characteristic is the perfection of the essential monocrystalline network. to ensure optimal operation of the device. In these fields of application, the current performance of the devices is limited by the presence of defects (generally atomic) on the surface or at the interfaces.
Dans le secteur des composants électroniques (transistors) et des dispositifs photovoltaïques (PV) à base de silicium monocristallin, il est bien connu que les défauts atomiques sur les surfaces et/ou aux interfaces cristallines sont les facteurs déterminant les performances soit lorsque la taille des composants diminue, ou, comme dans les applications PV, lorsque la densité de défauts volumiques du matériau est insignifiante.In the sector of electronic components (transistors) and photovoltaic (PV) devices based on monocrystalline silicon, it is well known that atomic defects on surfaces and/or at crystalline interfaces are the factors determining performance either when the size of the components decreases, or, as in PV applications, when the volumetric defect density of the material is insignificant.
Les diverses solutions de passivation développées dans le secteur électronique et PV à base de silicium monocristallin consistent à revêtir la surface du volume actif avec une couche mince, le plus souvent amorphe, composée de silicium amorphe (a-Si :H), d'oxide de silicium (SiO2), de carbure de silicium (SiC), de nitrure de silicium (Si3N4) ou d'une composition résultant de leur mélange (p.ex : oxynitrures, oxycarbure de silicium) ou de leur séquence d'empilementThe various passivation solutions developed in the electronic and PV sector based on monocrystalline silicon consist of coating the surface of the active volume with a thin layer, most often amorphous, composed of amorphous silicon (a-Si:H), oxide silicon (SiO2), silicon carbide (SiC), silicon nitride (Si3N4) or a composition resulting from their mixture (e.g.: oxynitrides, silicon oxycarbide) or their stacking sequence
Afin de limiter l'entrée d'humidité ambiante et de garantir sa stabilité dimensionnelle, le composant en silicium peut être recouvert d'une couche d'oxyde de silicium thermique. Ce type de revêtement est également adapté aux sollicitations tribologiques auxquelles la surface du composant doit répondre dans des applications micromécaniques et horlogères.In order to limit the entry of ambient humidity and guarantee its dimensional stability, the silicon component can be covered with a layer of thermal silicon oxide. This type of coating is also suitable for the tribological stresses to which the surface of the component must respond in micromechanical and watchmaking applications.
Un but de l'invention est l'application d'une couche de passivation de qualité électronique pour l'amélioration des performances mécaniques du silicium cristallin dans des composants à l'échelle millimétrique à sub-centimétrique.An aim of the invention is the application of an electronic quality passivation layer for improving the mechanical performance of crystalline silicon in components on the millimeter to sub-centimeter scale.
Un autre but de l'invention est l'amélioration des performances mécaniques, telle que la résistance à la rupture du silicium cristallin, pour son usage dans des microcomposants de taille millimétrique à submillimétriques, par exemple de type composants horlogers.Another aim of the invention is to improve the mechanical performance, such as the breaking strength of crystalline silicon, for its use in microcomponents of millimeter to submillimeter size, for example of the watchmaking component type.
Selon l'invention, ces buts sont atteints notamment au moyen d'une couche de passivation à la surface d'un composant de manière à diminuer la densité surfacique de défauts ponctuels (type liaisons non-coordonnées ou sous-coordonnées) et isoler le composant de son environnement atmosphérique qui est à l'origine de l'accélération de la propagation des fissures menant à la rupture.According to the invention, these goals are achieved in particular by means of a passivation layer on the surface of a component so as to reduce the surface density of point defects (non-coordinated or sub-coordinated connections type) and isolate the component. of its atmospheric environment which is at the origin of the acceleration of the propagation of cracks leading to rupture.
Plus particulièrement, l'invention de rapporte à un composant horloger avec une résistance à la rupture améliorée comprenant un substrat en silicium cristallin ayant une dimension latérale de l'ordre de quelques centimètres ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure. Le substrat est revêtu d'une couche de passivation, directement en contact avec la surface du substrat et ayant une épaisseur inférieure à 1000 nm, préférablement inférieure à 600 nm ou préférablement inférieure à 400 nm. La couche de passivation comprend une céramique réfractaire comprenant au moins 1% atomique d'hydrogène.More particularly, the invention relates to a watch component with improved breaking strength comprising a crystalline silicon substrate having a lateral dimension of the order of a few centimeters or less and a thickness of the order of a millimeter or less. The substrate is coated with a passivation layer, directly in contact with the surface of the substrate and having a thickness of less than 1000 nm, preferably less than 600 nm or preferably less than 400 nm. The passivation layer comprises a refractory ceramic comprising at least 1 atomic% of hydrogen.
La faible épaisseur de la couche de passivation permet d'obtenir une haute précision dimensionnelle du composant. Cela est particulièrement avantageux dans les applications micromécaniques et horlogères.The low thickness of the passivation layer makes it possible to obtain high dimensional precision of the component. This is particularly advantageous in micromechanical and watchmaking applications.
Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
- la
figure 1 illustre de manière schématique un composant micromécanique comprenant un substrat comportant une couche de passivation, selon un mode de réalisation; et - la
figure 2 montre une vue schématique et en section de la surface du substrat, selon un mode de réalisation.
- there
figure 1 schematically illustrates a micromechanical component comprising a substrate comprising a passivation layer, according to one embodiment; And - there
figure 2 shows a schematic and sectional view of the surface of the substrate, according to one embodiment.
La
Le silicium cristallin peut comprendre le silicium monocristallin ou le silicium polycristallin.Crystalline silicon may include monocrystalline silicon or polycrystalline silicon.
Selon un mode de réalisation, la couche de passivation 30 a une épaisseur inférieure à 1000 nm, préférablement inférieure à 600 nm ou préférablement inférieure à 400 nm.According to one embodiment, the
La couche de passivation 30 comprend une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.The
La couche de passivation 30 permet de réduire la densité de défauts surfaciques du substrat 20 améliorant entre autres la résistance aux chocs. La couche de passivation permet également d'isoler le substrat 20 (et donc le composant 10) de l'atmosphère ambiante, et donc des composés chimiques qui sont à l'origine de l'accélération de la propagation des fissures menant à la rupture.The
Le choix de l'une ou l'autre des compositions chimiques de la couche de passivation 30, ainsi que de son épaisseur peut également dépendre des caractéristiques requises pour le revêtement, par exemple l'aptitude au transport de charge, la transparence, la conformité, la température de déposition, la dureté, la barrière chimique à la migration ionique, le comportement tribologique, la compatibilité chimique avec des lubrifiants, etc.The choice of one or other of the chemical compositions of the
Selon une forme d'exécution, la céramique réfractaire comprend l'un des éléments suivants : un oxynitrure de silicium hydrogéné (SiON:H), oxycarbure de silicium hydrogéné (SiOxCy:H), carbure de silicium hydrogéné (SiC:H), nitrure de silicium hydrogéné (Si3N4:H), ou une combinaison de ces céramiques.According to one embodiment, the refractory ceramic comprises one of the following elements: a hydrogenated silicon oxynitride (SiON:H), hydrogenated silicon oxycarbide (SiOxCy:H), hydrogenated silicon carbide (SiC:H), nitride hydrogenated silicon (Si3N4:H), or a combination of these ceramics.
La couche de passivation 30 en céramique réfractaire comprenant une céramique SiON:H, SiOxCy:H, SiC:H ou Si3N4:H, ou une combinaison de ces céramiques permet par exemple de modifier l'aspect visuel du composant (esthétique), d'assurer une barrière hermétique au transport des ions, en particulier des ions OH-, vers le substrat 20.The
Une teneur en hydrogène de l'ordre de quelques pourcents atomiques permet de saturer les défauts constitués par des liaisons atomiques insaturées à la surface 25 du substrat 20. Par exemple, sur une surface 25 d'un substrat en silicium monocristallin, l'hydrogène permet de réduire la densité de liaisons pendantes. L'importance et les effets de la passivation hydrogène sont exploités dans l'industrie de l'électronique des semiconducteurs et dans les applications photovoltaïques. Dans la présente invention, la couche de passivation 30 comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène permet d'améliorer la résistance à la rupture du composant 10.A hydrogen content of the order of a few atomic percent makes it possible to saturate the defects constituted by unsaturated atomic bonds on the
Dans le cas d'un matériau fragile, tel que le silicium cristallin constituant le substrat 20, la résistance à la rupture est inversement proportionnelle à la densité de défauts potentiellement à l'origine d'une microfissure dont la propagation va conduire à la défaillance du composant 10.In the case of a fragile material, such as the crystalline silicon constituting the
La couche de passivation comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène permet de réduire la densité surfacique de défauts à la surface 25 du substrat 20. Une réduction de la densité surfacique de défauts augmente la résistance mécanique, et en particulier la résistance à la rupture, du composant 10.The passivation layer comprising a refractory ceramic comprising at least 1 atomic % of hydrogen makes it possible to reduce the surface density of defects on the
Une épaisseur inférieure à 1000 nm, inférieure à 600 nm, ou inférieure à 400 nm, permet à la couche de passivation 30 de jouer un rôle de barrière à la pénétration d'impuretés catalysant ou accélérant la propagation des microfissures.A thickness less than 1000 nm, less than 600 nm, or less than 400 nm, allows the
Les performances de la couche de passivation 30, en particulier la réduction de la densité de défauts surfaciques du substrat 20 et l'isolation du substrat 20 de l'atmosphère ambiante, dépendent de l'état de surface 25 du substrat 20. Par exemple, la surface 25 du substrat 20 ne doit pas être affectée par l'usinage. On cherchera donc à éliminer, du moins minimiser, de la surface 25 du substrat 20 les défauts tels que rayures et microfissures.The performance of the
Selon une forme d'exécution, la surface 25 du substrat 20 sur laquelle est formée la couche de passivation 30 est lissée, ou polie, de manière à obtenir une rugosité Ra inférieure à 100 nm. La
De manière préférée, la surface 25 du substrat 20 doit également être propre, c'est-à-dire, ayant un état chimique de la surface maîtrisé. Un tel état chimique de la surface maîtrisé peut signifier que la surface 25 du substrat 20 ne contient sensiblement pas de contamination par des particules, d'oxydes natifs (dus à l'humidité et à l'oxygène de l'air), de matières organiques, de résidus de couches, de bases ou d'acides inorganiques ou d'autres contaminations métalliques. Autrement dit, la composition chimique à la surface 25 est aussi proche que possible de la composition chimique massique du substrat 20.Preferably, the
L'étude de la conformité de la croissance de la couche de passivation 30 (recouvrement d'une épaisseur de couche identique sur les éléments saillants ou rentrants dans le composant) montre que toutes les surfaces d'un composant 10 rassemblant des éléments caractéristiques horlogers tels que dents d'échappement, trous (diamètre 3 mm à 0.2 mm), poutre élancée, languette, pointe et élément rentrant), sont revêtues à satisfaction par la couche de passivation 30.The study of the conformity of the growth of the passivation layer 30 (covering of an identical layer thickness on the protruding or retracting elements in the component) shows that all the surfaces of a
Le substrat 20 peut être revêtu de la couche de passivation 30 sur l'une, plusieurs ou toutes ses surfaces 25. Préférablement, la couche de passivation 30 peut être formée sur toutes les surfaces 25 du substrat 20. Encore préférablement, le composant 10 tridimensionnel possède une couche de passivation 30 d'épaisseur sensiblement uniforme sur toutes ses surfaces 25.The
Dans un mode de réalisation, le composant horloger peut comprendre un composant d'un dispositif d'affichage ou d'habillage.In one embodiment, the watch component may comprise a component of a display or covering device.
Selon un mode de réalisation, un procédé de fabrication d'un composant 10 horloger comprend les étapes:
- d'usiner le silicium cristallin de manière à
former un substrat 20 ayant une dimension latérale de l'ordre du centimètre ou inférieure et une épaisseur de l'ordre du millimètre ou inférieure; et - de former une couche de passivation 30 à la
surface 25 du substrat 20, la couche de passivation 30 ayant une épaisseur inférieure à 1000 nm et comprenant une céramique réfractaire comprenant au moins 1 % atomique d'hydrogène.
- to machine the crystalline silicon so as to form a
substrate 20 having a lateral dimension of the order of a centimeter or less and a thickness of the order of a millimeter or less; And - to form a
passivation layer 30 on thesurface 25 of thesubstrate 20, thepassivation layer 30 having a thickness less than 1000 nm and comprising a refractory ceramic comprising at least 1 atomic % of hydrogen.
La formation de la couche de passivation 30 peut être réalisée par un procédé de dépôt chimique en phase vapeur. En particulier, la formation de la couche de passivation 30 peut être réalisée par un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) dédié au revêtement uniforme tridimensionnel du composant 10. Par exemple, la couche de passivation 30 peut être réalisée dans un réacteur comprenant des moyens de rotation/mélange/retournement qui facilitent un dépôt uniforme de la couche de passivation 30 sur un ou une pluralité de composants 10 tridimensionnels, tel que décrit dans la demande de brevet suisse
Selon une forme d'exécution, le procédé peut comprendre en outre une étape de dissolution chimique en phase vapeur ou liquide de la surface 25 du substrat 20, préalable à l'étape de formation de la couche de passivation 30.According to one embodiment, the method may further comprise a step of chemical dissolution in the vapor or liquid phase of the
L'étape d'usiner le substrat 20 peut comprendre la dissolution chimique sélective du substrat 20 et la libération du composant 10 usiné.The step of machining the
Selon une forme d'exécution, l'étape d'usiner peut comprendre l'un des procédés suivants: gravure ionique réactive profonde (deep reactive-ion etching, DRIE), ou marquage laser à très courtes impulsions (femto à pico secondes). L'étape d'usiner peut être suivie de manière optionnelle par la dissolution chimique sélective du volume marqué (ou gravure laser sélective).According to one embodiment, the machining step may comprise one of the following processes: deep reactive-ion etching (DRIE), or very short pulse laser marking (femto to pico seconds). The machining step can optionally be followed by selective chemical dissolution of the marked volume (or selective laser engraving).
Selon une forme d'exécution, le procédé comprend une étape de lisser et/ou niveler la surface 25 du substrat 20 de manière à obtenir des aspérités ou des fossettes arrondies avec un rayon de courbure supérieur à 500nm, préférablement supérieur à 4 µm. L'étape de lisser et/ou niveler peut également comprendre le polissage de la surface 25 recevant la couche de passivation 30. De préférence, le polissage est réalisé avec une qualité optique résultant dans une rugosité Ra inférieure à 1 nm. L'étape de lisser et/ou niveler la surface 25 est réalisée avant la formation de la couche de passivation 30.According to one embodiment, the method comprises a step of smoothing and/or leveling the
Selon une forme d'exécution, le procédé comprend une étape de nettoyage de la surface, réalisée avant la formation de la couche de passivation 30 afin d'obtenir un état chimique de la surface maîtrisé, c'est-à-dire que la surface 25 ne contient sensiblement pas de contamination par des particules, d'oxydes natifs (dus à l'humidité et à l'oxygène de l'air), de matières organiques, de résidus de couches, de bases ou d'acides inorganiques ou d'autres contaminations métalliques. L'étape de nettoyage de la surface est réalisée avant la formation de la couche de passivation 30.According to one embodiment, the method comprises a step of cleaning the surface, carried out before the formation of the
- 1010
- composantcomponent
- 2020
- substratsubstrate
- 2525
- surfacesurface
- 2727
- aspéritéroughness
- 3030
- couche de passivationpassivation layer
Claims (14)
dans lequel la couche de passivation (30) a une épaisseur inférieure à 600 nm et préférablement inférieure à 400 nm.The component according to claim 1,
in which the passivation layer (30) has a thickness less than 600 nm and preferably less than 400 nm.
dans lequel la céramique réfractaire comprend un oxynitrure de silicium hydrogéné (SiON:H), oxycarbure de silicium hydrogéné (SiOxCy:H), carbure de silicium hydrogéné (SiC:H), nitrure de silicium hydrogéné (Si3N4:H), ou une combinaison de ces céramiques ainsi que leur empilement.The component according to claim 1 or 2,
in which the refractory ceramic comprises hydrogenated silicon oxynitride (SiON:H), hydrogenated silicon oxycarbide (SiO x C y :H), hydrogenated silicon carbide (SiC:H), hydrogenated silicon nitride (Si 3 N 4 : H), or a combination of these ceramics as well as their stacking.
dans lequel la surface (25) du substrat (20) a une rugosité Ra inférieure à 100 nm.The component, according to one of claims 1 to 3,
in which the surface (25) of the substrate (20) has a roughness Ra less than 100 nm.
dans lequel la surface (25) du substrat (20) comporte des aspérités ayant un rayon de courbure supérieur à 500nm, préférablement supérieur à 4 µm.The component according to claim 4,
in which the surface (25) of the substrate (20) comprises asperities having a radius of curvature greater than 500 nm, preferably greater than 4 µm.
dans lequel le silicium cristallin comprend le silicium monocristallin ou le silicium polycristallin.The component according to one of claims 1 to 5,
wherein the crystalline silicon comprises monocrystalline silicon or polycrystalline silicon.
dans lequel la formation de la couche de passivation (30) est réalisée par un procédé de dépôt chimique en phase vapeur.The method according to claim 9,
wherein the formation of the passivation layer (30) is carried out by a chemical vapor deposition process.
dans lequel la formation de la couche de passivation (30) est réalisée par un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD).The method according to claim 10,
wherein the formation of the passivation layer (30) is carried out by a plasma-assisted chemical vapor deposition (PECVD) process.
comprenant une étape de lissage et/ou nivellement de la surface (25) du substrat (20), de manière à obtenir une topologie de surface comportant des aspérités (27) ayant un rayon de courbure supérieur à 500 nm, préférablement supérieur à 4 µm.The method according to one of claims 9 to 11,
comprising a step of smoothing and/or leveling the surface (25) of the substrate (20), so as to obtain a surface topology comprising asperities (27) having a radius of curvature greater than 500 nm, preferably greater than 4 µm .
dans lequel l'étape d'usiner le substrat (20) comprend la dissolution chimique du substrat (20) et la libération du composant (10) usiné.The method according to one of claims 9 to 13,
wherein the step of machining the substrate (20) comprises chemically dissolving the substrate (20) and releasing the machined component (10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22183437.7A EP4303666A1 (en) | 2022-07-06 | 2022-07-06 | Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22183437.7A EP4303666A1 (en) | 2022-07-06 | 2022-07-06 | Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4303666A1 true EP4303666A1 (en) | 2024-01-10 |
Family
ID=82399232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22183437.7A Pending EP4303666A1 (en) | 2022-07-06 | 2022-07-06 | Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP4303666A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2945025A1 (en) * | 2014-05-16 | 2015-11-18 | Nivarox-FAR S.A. | Clockwork mechanism with lubricant-free contact torque |
EP3141519A1 (en) * | 2015-09-08 | 2017-03-15 | Nivarox-FAR S.A. | Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part |
CH715599A2 (en) | 2018-11-28 | 2020-05-29 | Coat X Sa | Multilayer deposition reactor. |
EP3783445A1 (en) * | 2019-08-22 | 2021-02-24 | ETA SA Manufacture Horlogère Suisse | Timepiece regulator mechanism with high quality factor and with minimum lubrication |
-
2022
- 2022-07-06 EP EP22183437.7A patent/EP4303666A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2945025A1 (en) * | 2014-05-16 | 2015-11-18 | Nivarox-FAR S.A. | Clockwork mechanism with lubricant-free contact torque |
EP3141519A1 (en) * | 2015-09-08 | 2017-03-15 | Nivarox-FAR S.A. | Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part |
CH715599A2 (en) | 2018-11-28 | 2020-05-29 | Coat X Sa | Multilayer deposition reactor. |
EP3783445A1 (en) * | 2019-08-22 | 2021-02-24 | ETA SA Manufacture Horlogère Suisse | Timepiece regulator mechanism with high quality factor and with minimum lubrication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3958066B1 (en) | Method of manufacturing of a thermocompensated hairspring | |
FR2736205A1 (en) | SEMICONDUCTOR SENSOR DEVICE AND ITS FORMING METHOD | |
CH701499B1 (en) | A method of manufacturing a micromechanical part reinforced silicon. | |
FR2842650A1 (en) | Fabrication of substrates for optics, electronics, or optoelectronics, by implanting atomic species beneath front face of ingot to create zone of weakness, bonding support, and directly detaching portion of top layer bonded to support | |
EP2771910B1 (en) | Method for the direct bonding of a silicon oxide layer | |
FR2963982A1 (en) | LOW TEMPERATURE BONDING PROCESS | |
EP3004007B1 (en) | Process of treatment a surface and aparatus for that process | |
EP3320403B1 (en) | Method for fixing by anodic bonding | |
EP4303666A1 (en) | Timepiece component comprising a crystalline silicon substrate and having an improved resistance to breakage | |
CH702431B1 (en) | A method of manufacturing a micromechanical part. | |
WO2017006219A1 (en) | Attachment method using anodic bonding | |
EP4303665A1 (en) | Timepiece component comprising a glass substrate transparent to visible light and with improved resistance to breakage | |
FR2911598A1 (en) | SURFACE RUGOSIFICATION METHOD | |
WO2024009209A1 (en) | Timepiece component comprising a substrate made of glass that is transparent to visible light and having improved tensile strength | |
CH702576B1 (en) | micro-mechanical part coated. | |
CH719868A2 (en) | Watch component comprising a glass substrate transparent to visible light. | |
EP3141966A1 (en) | Method for forming a decorative surface on a micromechanical timepiece part and said micromechanical timepiece part | |
EP2978871B1 (en) | Method for a diamond vapor deposition | |
EP3285124A1 (en) | Mechanical resonator for timepiece and method for manufacturing such a resonator | |
CH708998B1 (en) | Clock component and method for reducing the coefficient of friction of a watch component. | |
EP3141519B1 (en) | Method for manufacturing a micromechanical timepiece part | |
CH709609A2 (en) | watch escapement mechanism without lubrication. | |
EP3474335A1 (en) | Method for manufacturing a photovoltaic cell | |
FR3048425A1 (en) | STRUCTURE FOR DEVICE WITH INTEGRATED ELECTROMECHANICAL MICROSYSTEMS | |
FR3074959A1 (en) | METHOD OF DIRECT ADHESION BONDING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |