EP4295038A1 - Eolienne marine auto-orientable à deux alternateurs - Google Patents

Eolienne marine auto-orientable à deux alternateurs

Info

Publication number
EP4295038A1
EP4295038A1 EP22705546.4A EP22705546A EP4295038A1 EP 4295038 A1 EP4295038 A1 EP 4295038A1 EP 22705546 A EP22705546 A EP 22705546A EP 4295038 A1 EP4295038 A1 EP 4295038A1
Authority
EP
European Patent Office
Prior art keywords
wind turbine
alternators
hub
alternator
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22705546.4A
Other languages
German (de)
English (en)
Inventor
Jean-Luc LEPERS
Daniel Laloy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeumont Electric SAS
Original Assignee
Jeumont Electric SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeumont Electric SAS filed Critical Jeumont Electric SAS
Publication of EP4295038A1 publication Critical patent/EP4295038A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2209/00Energy supply or activating means
    • B63B2209/20Energy supply or activating means wind energy
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/31Locking rotor in position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • TITLE SELF-ORIENTING MARINE WIND TURBINE FOR TWO
  • the technical field of the invention is that of offshore wind turbines or marine wind turbines and in particular those which are self-orienting.
  • Marine wind turbines are installed at sea or in an aquatic environment and must withstand marine conditions which are sometimes difficult.
  • the invention offers a solution to the problems mentioned above, by making it possible to produce a high-power marine wind turbine but with a nacelle of reasonable dimensions and weight, similar to existing wind turbines.
  • the invention relates to a self-orienting marine wind turbine comprising a floating platform, at least one mast on which is fixed a nacelle comprising a hub of horizontal X axis and connected to blades, it is characterized in that the hub cooperates with a rotor of two alternators and that the hub consists of a hollow axle or a hollow axial cylinder suitable for maintenance by a standing man.
  • This feature not only allows a complete redesign of the nacelle structure with the possibility of increasing the overall power of the wind turbine, but also easier access to the devices and space to house the power electronics converters.
  • the alternators thus have a more easily achievable size with a stiffness of the structures which makes it possible to respect the dimensions of the air gap.
  • the alternators are arranged on either side of the hub. By arranging the alternators on either side of the hub, the balance of the nacelle is not disturbed.
  • the wind turbine comprises at least three converging masts. The nacelle with its blades is located between the masts and the alternators on each side, the assembly is thus better balanced.
  • the two alternators are symmetrical with respect to a plane perpendicular to the axis of the hub. Since the alternators are identical by symmetry, the load balancing of the assembly is respected.
  • the alternators are independent of each other and each is connected to a converter.
  • the wind turbine is thus still operational in degraded mode, if one of the two alternators or its converter fails. If the wind is weak, it is also possible to operate only one alternator, thus at low load of the wind turbine, the load of an alternator will be doubled and the efficiency will be all the better, with respect to the wind turbine. an alternator with twice the nominal power.
  • At least one alternator comprises two independent windings each connected to a converter. This makes it possible to adapt the power of the alternator to the power of the wind. This adaptation is even finer since the two alternators are independent of each other. Thus, if the electric chain of a stator winding fails, the electric chains of the other windings will be operational and will allow the operation of the wind turbine until the fault is repaired.
  • one of the alternators includes a parking brake connecting the rotor to the stator. This brake makes it possible to slow down or stop the blades if the wind is too strong.
  • one of the alternators comprises an asynchronous generator.
  • This asynchronous generator is an auxiliary device which makes it possible to supply electricity to the rotating part of the wind turbine without passing through a sliding contact (rings and brushes), therefore without wear .
  • the wind turbine comprises a wireless communication system controlling the alternators.
  • the communication system is thus easier to set up.
  • each alternator has a power of between 4 and 10 MW. We thus arrive, for example, at power of the multi-megawatt or deca-megawatt class. [0019]
  • at least one alternator can be disconnected. It is thus possible to disconnect one of the two alternators if necessary.
  • the axial cylinder is hollow and comprises three gratings placed on the side opposite each of the blades and it connects the ends of the axial cylinder.
  • the gratings connecting the ends of the axial cylinder allow a man to pass from one side to the other and thus to access each alternator when the wind turbine is stopped, the balance of the three blades makes it there is always a grating in a horizontal position.
  • a converter is placed in the hollow axle or in a nacelle located at one end of the hollow axial cylinder.
  • the converter is thus located close to the alternators, which avoids overvoltages.
  • the converter is connected to the windings of an alternator stator by a cable of length I, the blades are of length L and I ⁇ L. Since the converter is no longer located at the foot of the wind turbine, but near the stator, there are no more overvoltages in the alternator windings due to the capacitive effect of the cables.
  • the length I could ideally be less than 50m.
  • FIG. 1 is a state-of-the-art wind turbine with a single mast
  • FIG. 2 is a state-of-the-art wind turbine with three masts
  • FIG. 3 is a perspective view of a nacelle according to the invention.
  • FIG. 4 is a section of the nacelle in figure 3 with its blades and masts,
  • FIG. 5 is a front view of the nacelle of figure 4,
  • FIG. 6 is a section of a nacelle variant according to the invention.
  • front will refer to the side facing the wind and "rear” to the opposite side.
  • the wind turbine 1 of the state of the art, illustrated in Figure 1, is an onshore wind turbine or an offshore wind turbine fixed to the seabed, it comprises a mast 2, three blades 3 connected to a nacelle 4 by a hub 40 and a foot 20 placed on the ground. The blades 3 are placed facing the wind V, the nacelle 4 and the mast behind the blades 3. An alternator 5 is placed in the nacelle 4.
  • the second wind turbine 1 of the state of the art of Figure 2 is a floating wind turbine, it comprises floats 22 interconnected by beams 220, constituting a floating platform and secured to the ground by cables 23. It has three or four masts 21 each connected to a float 22.
  • the nacelle 4 is fixed to the masts 21.
  • An alternator 5 is arranged in the nacelle 4 at the rear thereof.
  • the blades 3 can be arranged between the masts 21 without these shade and disrupt the path of the wind V and generate significant vibrations in the wind turbine.
  • the wind turbine 1 As the wind turbine 1 is connected to the seabed by cables 23, it can orient itself according to the orientation of the wind V.
  • the nacelle 4 of Figure 3 comprises an alternator 5 on each side and a hub 40 of axis X.
  • This consists of a fixed axle 401 and a cage 402 movable in rotation around the axle 401 .
  • the cage 402 has three openings 400 to place the blades 3 therein which will rotate said cage 402.
  • the axle is made up of two half-axles each having a flange 403 allowing them to be bolted together in the central part, which facilitates assembly.
  • Each alternator 5 comprises a rotor 50 and a stator 51, the rotor 50 being connected to the cage 402.
  • the stator 51 is integral with the nacelle 4 and the axle 401.
  • the alternators 5 are identical and arranged in a mirror on each side of the plane of the blades perpendicular to the axis X.
  • the axle 401 is hollow, thus constituting a service shaft where a standing man can circulate to carry out maintenance, to be able, for example, to place converters closer to the alternators and thus to connect each converter to an alternator thanks to cables 54 of shorter length than the dimension of the blades 3. It also houses the converter(s) 52 and the cables 53 for evacuating electrical energy.
  • One can, for example, provide one converter per independent stator winding, so one for each alternator if it has only one winding per alternator, or two or three per alternator if it has two or three windings per alternator , or n if there are n windings. It is thus possible to adjust the power of the alternators according to the power of the wind, by the exploitation or not of each alternator winding.
  • a parking brake 30 is provided in one of the two alternators 5 between the rotor 50 and the stator 51 . It makes it possible to block the rotation of the blades 3 in the event of violent wind or maintenance.
  • axle 401 is replaced by two half-nacelles 41.
  • Each half-nacelle 41 is connected to a float 22 by at least two masts 21, i.e. a total of at least 4 mats for the wind turbine.
  • the blades 3 are fixed to the periphery of an axial cylinder 42 which is connected to the two half-nacelles 41 by bearings 410 which ensure rigid cohesion of the two half-nacelles.
  • the rotors 50 are fixed to each end of the axial cylinder 42.
  • Each stator 51 is integral with a half-nacelle 41 .
  • An asynchronous generator 6 is placed in one of the alternators 5, it makes it possible to supply electricity to the rotating part of the wind turbine without passing through a sliding contact (rings and brushes), therefore without wear.
  • the axial cylinder 42 is hollow and comprises three gratings 420 placed on the side opposite each of the blades 3 and connecting the ends of the axial cylinder 42, it is thus possible to access the interior for maintenance when the wind turbine is stopped. There is always one of the 420 gratings horizontal when stationary since at that time one of the blades is vertical and the other two are below for good balance.
  • An orientation system 31 of the blades 3 is placed inside the axial cylinder 42 for “feathering” the blades when the wind is too strong or when carrying out a repair or for maintenance.
  • the orientation system 31 of the blades 3 comprises a first toothed wheel 310 cooperating with a second toothed wheel 32 placed on the periphery of the base of the blade 3.
  • the blade 3 is connected to the axial cylinder by a bearing 33.
  • This variant has the advantage of allowing a more conventional connection of the blade orientation system through a set of rings (power without an asynchronous generator and control signals). It also allows the use of conventional nacelles, hence a lower cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne une éolienne (1) marine auto-orientable comprenant une plateforme flottante, au moins un mât (21) sur lequel est fixée une nacelle (4) comprenant un moyeu (40) d'axe horizontal X et relié à des pales (3), elle est caractérisée en ce que le moyeu (40) coopère avec un rotor (50) de deux alternateurs (5) et que le moyeu est constitué d'un essieu (401) creux ou d'un cylindre axial (42) creux adapté pour la maintenance par un homme debout. Cette caractéristique permet une refonte complète de la structure de la nacelle avec la possibilité d'augmenter la puissance globale du rotor. On peut ainsi obtenir la même puissance avec des alternateurs de taille plus faible. De cette façon, pour une puissance totale de l'éolienne de 6MW, chaque alternateur ne fera que 3MW chacun, le diamètre passera ainsi de 7m jusqu'à moins de 5 m.

Description

DESCRIPTION
TITRE : EOLIENNE MARINE AUTO-ORIENTABLE A DEUX
ALTERNATEURS
DOMAINE TECHNIQUE DE L’INVENTION
[0001] Le domaine technique de l’invention est celui des éoliennes offshore ou éoliennes marines et en particulier celles qui sont auto-orientables.
ARRIERE-PLAN TECHNOLOGIQUE DE L’INVENTION
[0002] Les éoliennes marines sont installées en mer ou dans un milieu aquatique et doit résister aux conditions marines qui sont parfois difficiles.
[0003] Si les premiers prototypes d’éoliennes offshore étaient des copies des éoliennes terrestres comprenant des pales reliées à un moyeu rotatif d’axe horizontal, elles sont maintenant adaptées à la mer. Avec les développements technologiques actuels, on cherche à augmenter la taille et la puissance. On arrive ainsi aujourd’hui à des envergures jusqu’à 126m et des puissances de 5MW (méga Watt).
[0004] Il existe deux types d’éoliennes en mer : les éoliennes fixes qui sont généralement implantées à des profondeurs n’excédant pas 50 m, et les éoliennes flottantes qui sont implantées dans des profondeurs au-delà de 50 m. L’éolienne flottante est montée sur une plateforme flottante reliée au plancher marin par des câbles. De par sa construction, l’éolienne flottante est auto-orientable ou à orientation passive, c’est-à-dire qu’elle s’oriente seule en fonction du sens du vent.
[0005] D’autre part, les éoliennes sont toujours montées dans une configuration avec le rotor en avant, face au vent, afin de minimiser l’effet d'ombre de la tour, celui- ci est assez important dans les structures traditionnelles. C'est pourquoi, des solutions offshores ayant une plate-forme flottante avec 3 ou 4 mâts au lieu d'une structure fixe mono tour ont été développées. L'ensemble de la structure s'oriente passivement avec le vent ce qui permet de supprimer le système d’orientation en tête de mât sur la nacelle.
[0006] La tendance actuelle est d’augmenter encore l’envergure jusqu’à 160m et même jusqu’à 200m avec une puissance de 8MW jusqu’à 12-15MW. L’International Energy Agency prédit la nécessité de multiplier la production d'énergie éolienne par au moins 7 d’ici 2050. Pour réduire son coût, des parcs éoliens offshores avec des machines de 10-20 MW sont envisagés. Cependant dans ces gammes de puissance, le poids est une contrainte forte.
[0007] Mais ces envergures et ces puissances impliquent une augmentation du poids de la structure, du coût de fabrication et du temps de montage ainsi que de la difficulté d’installation. D’autre part, la réalisation d’alternateurs d’aussi grande puissance entraîne des complications à cause de la taille du rotor et du stator à réaliser.
RESUME DE L’INVENTION
[0008] L’invention offre une solution aux problèmes évoqués précédemment, en permettant de réaliser une éolienne marine de forte puissance mais avec une nacelle de dimensions et de poids raisonnables, similaires aux éoliennes existantes.
[0009] L’invention concerne une éolienne marine auto-orientable comprenant une plateforme flottante, au moins un mât sur lequel est fixée une nacelle comprenant un moyeu d’axe X horizontal et relié à des pales, elle est caractérisée en ce que le moyeu coopère avec un rotor de deux alternateurs et que le moyeu est constitué d’un essieu creux ou d’un cylindre axial creux adapté pour la maintenance par un homme debout. Cette caractéristique permet non seulement une refonte complète de la structure de la nacelle avec la possibilité d’augmenter la puissance globale de l’éolienne, mais aussi un accès plus aisé aux appareils et de la place pour loger les convertisseurs d’électronique de puissance. Les alternateurs ont ainsi une taille plus facilement réalisable avec une raideur des structures qui permet de respecter les dimensions de l’entrefer. On peut ainsi obtenir la même puissance avec des alternateurs de taille plus faible. De cette façon, pour une puissance totale de l’éolienne de 6MW, chaque alternateur ne fera que 3MW chacun, le diamètre passera ainsi de 7m jusqu’à moins de 5 m. D’autre part, cela présente l’avantage de pouvoir loger les convertisseurs proche des alternateurs, car les pales devenant très grandes, si le convertisseur est sur la base de l’éolienne, la longueur de câble peut provoquer des surtensions dans les bobinages de l’alternateur (dû à l’effet capacitif des câbles), ce risque que n’existe pas si la liaison est courte.
[0010] Avantageusement, les alternateurs sont disposés de part et d’autre du moyeu. En disposant les alternateurs de part et d’autre du moyeu, l’équilibre de la nacelle n’est pas perturbé. [0011] Avantageusement, l’éolienne comprend au moins trois mâts convergents. La nacelle avec ses pales est située entre les mâts et les alternateurs de chaque côté, l’ensemble est ainsi mieux équilibré.
[0012] Avantageusement, les deux alternateurs sont symétriques par rapport à un plan perpendiculaire à l’axe du moyeu. Les alternateurs étant identiques par symétrie, l’équilibrage des charges de l’ensemble est respecté.
[0013] Avantageusement, les alternateurs sont indépendants l’un de l’autre et chacun est relié à un convertisseur. L’éolienne est ainsi encore opérationnelle en mode dégradé, si un des deux alternateurs ou son convertisseur tombe en panne. Si le vent est faible, on peut aussi ne faire fonctionner qu’un seul alternateur, ainsi à faible charge de l’éolienne, la charge d’un alternateur sera doublée et le rendement sera d’autant meilleur, vis-à-vis d’un alternateur du double de puissance nominale.
[0014] Avantageusement, au moins un alternateur comprend deux bobinages indépendants reliés chacun à un convertisseur. Cela permet d’adapter, la puissance de l’alternateur à la puissance du vent. Cette adaptation est encore plus fine puisque les deux alternateurs sont indépendants l’un de l’autre. Ainsi, si la chaîne électrique d’un bobinage statorique se met en défaut, les chaînes électriques des autres bobinages seront opérationnelles et permettront l’exploitation de l’éolienne jusqu’à la réparation du défaut.
[0015] Avantageusement, un des alternateurs comprend un frein de parking reliant le rotor au stator. Ce frein permet de freiner ou arrêter les pales si le vent est trop fort.
[0016] Avantageusement, un des alternateurs comporte une génératrice asynchrone.. Cette génératrice asynchrone est un dispositif auxiliaire qui permet d’alimenter en électricité la partie tournante de la turbine éolienne sans passer par un contact glissant (bagues et balais), donc sans usure.
[0017] Avantageusement, l’éolienne comprend un système de communication sans fil commandant les alternateurs. Le système de communication est ainsi plus simple à mettre en place.
[0018] Avantageusement, chaque alternateur a une puissance comprise entre 4 et 10MW. On arrive ainsi, par exemple à de puissance de classe multi-mégawatt ou déca- mégawatt. [0019] Avantageusement, au moins un alternateur est déconnectable. Il est ainsi possible de déconnecter un des deux alternateurs si besoin.
[0020] Avantageusement, le cylindre axial est creux et comprend trois caillebotis placés du côté opposé à chacune des pales et il relient les extrémités du cylindre axial. Les caillebotis reliant les extrémités du cylindre axial permettent à un homme de passer d’un coté à l’autre et ainsi d’accéder à chaque alternateur quand l’éolienne est à l’arrêt, l’équilibre des trois pales fait qu’il y a toujours un caillebotis en position horizontale.
[0021] Avantageusement, un convertisseur est placé dans l’essieu creux ou dans une nacelle située à une extrémité du cylindre axial creux. Le convertisseur est ainsi situé proche des alternateurs, ce qui évite les surtensions.
[0022] Avantageusement, le convertisseur est relié aux bobinage d’un stator d’alternateur par un câble de longueur I, les pales sont de longueur L et I < L. Le convertisseur n’étant plus situé au pied de l’éolienne, mais à proximité du stator, il n’y plus de surtensions dans les bobinages de l’alternateur dû à l’effet capacitif des câbles. La longueur I pourra idéalement être inférieure à 50m.
[0023] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent.
BREVE DESCRIPTION DES FIGURES
[0024] Les figures sont présentées à titre indicatif et nullement limitatif de l’invention.
[0025] [Fig. 1 ] est une éolienne de l’état de la technique avec un mât unique,
[0026] [Fig. 2] est une éolienne de l’état de la technique avec trois mâts
[0027] [Fig. 3] est une vue en perspective d’une nacelle selon l’invention,
[0028] [Fig. 4] est une coupe de la nacelle de la figure 3 avec ses pales et des mâts,
[0029] [Fig. 5] est une vue de face de la nacelle de la figure 4,
[0030] [Fig. 6] est une coupe d’une variante de nacelle selon l’invention. DESCRIPTION DETAILLEE
[0031] Les figures sont présentées à titre indicatif et nullement limitatif de l’invention.
[0032] Dans la suite de la description on appellera « avant », le côté face au vent et « arrière », le côté opposé.
[0033] Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique.
[0034] L’éolienne 1 de l’état de la technique, illustrée figure 1 , est une éolienne terrestre ou une éolienne marine fixée au fond marin, elle comprend un mât 2, trois pales 3 raccordées à une nacelle 4 par un moyeu 40 et un pied 20 posé sur le sol. Les pales 3 sont placées face au vent V, la nacelle 4 et le mât derrière les pales 3. Un alternateur 5 est placé dans la nacelle 4.
[0035] La deuxième éolienne 1 de l’état de la technique de la figure 2, est une éolienne flottante, elle comprend des flotteurs 22 reliés entre eux par des poutres 220, constituant une plateforme flottante et arrimées au sol par des câbles 23. Elle a trois ou quatre mâts 21 reliés chacun à un flotteur 22. La nacelle 4 est fixée aux mâts 21. Un alternateur 5 est disposé dans la nacelle 4 à l’arrière de celle-ci. Comme les mâts 21 sont plus fins que le mât unique de la figure 1 et que ces mâts 21 ne sont pas dans une orientation radiale au moyeu 40 comme les pales 3, on peut disposer les pales 3 entre les mâts 21 sans que ceux-ci fassent de l’ombre et perturbe le trajet du vent V et ne génère des vibrations importantes dans l’éolienne.
[0036] Comme l’éolienne 1 est relié au fond marin par des câbles 23, elle peut s’orienter seule en fonction de l’orientation du vent V.
[0037] La nacelle 4 de la figure 3 comprend un alternateur 5 de chaque côté et un moyeu 40 d’axe X. Celui-ci est constitué d’un essieu 401 fixe et d’une cage 402 mobile en rotation autour de l’essieu 401 . La cage 402 présente trois ouvertures 400 pour y placer les pales 3 qui entraîneront en rotation ladite cage 402. Ici, l’essieu est composé de deux demi-essieux présentant chacun une bride 403 permettant de les boulonner entre eux dans la partie centrale, ce qui facilite le montage.
[0038] Chaque alternateur 5 comprend un rotor 50 et un stator 51 , le rotor 50 étant relié à la cage 402. Le stator 51 est solidaire de la nacelle 4 et de l’essieu 401. Les alternateurs 5 sont identiques et disposés en miroir de chaque côté du plan des pales perpendiculaire à l’axe X.
[0039] L’essieu 401 est creux constituant ainsi une gaine de service où un homme debout peut circuler pour assurer la maintenance, de pouvoir, par exemple, placer des convertisseurs plus proche des alternateurs et ainsi de relier chaque convertisseur à un alternateur grâce à des câbles 54 de plus faible longueur que la dimension des pales 3. Il abrite également le ou les convertisseur(s) 52 et les câbles 53 d’évacuation d’énergie électriques. On peut, par exemple, prévoir un convertisseur par bobinage indépendant de stator, donc un pour chaque alternateur s’il n’a qu’un seul bobinage par alternateur, ou deux ou trois par alternateur s’il a deux ou trois bobinages par alternateur, ou n s’il y a n bobinages. On peut ainsi régler la puissance des alternateurs en fonction de la puissance du vent, par l’exploitation ou pas de chaque bobinage d’alternateur.
[0040] Un frein de parking 30 est prévu dans un des deux alternateurs 5 entre le rotor 50 et la stator 51 . Il permet de bloquer la rotation des pales 3 en cas de vent violent ou de maintenance.
[0041] Dans la variante de la figure 6, l’essieu 401 est remplacé par deux demi- nacelles 41. Chaque demi-nacelle 41 est reliée à un flotteur 22 par au moins deux mats 21 , soit au total au moins 4 mats pour l’éolienne.
[0042] Les pales 3 sont fixées à la périphérie d’un cylindre axial 42 qui est relié aux deux demi-nacelles 41 par des roulements 410 qui assurent une cohésion rigide des deux demi-nacelles. Les rotors 50 sont fixés à chaque extrémité du cylindre axial 42. Chaque stator 51 est solidaire d’une demi-nacelle 41 .
[0043] Une génératrice asynchrone 6 est placée dans un des alternateurs 5, elle permet d’alimenter en électricité la partie tournante de la turbine éolienne sans passer par un contact glissant (bagues et balais), donc sans usure.
[0044] Le cylindre axial 42 est creux et comprend trois caillebotis 420 placés du côté opposé à chacune des pales 3 et reliant les extrémités du cylindre axial 42, il est ainsi possible d’accéder à l’intérieur pour la maintenance quand l’éolienne est arrêtée. Il y a toujours un des caillebotis 420 horizontal à l’arrêt puisqu’à ce moment-là une des pales est à la verticale et les deux autres sont en dessous pour un bon équilibre. [0045] Un système d’orientation 31 des pales 3 est placé à l’intérieur du cylindre axial 42 pour la mise en « drapeau » des pales quand le vent est trop fort ou quand on réalise une réparation ou pour de la maintenance. Le système d’orientation 31 des pales 3 comprend une première roue dentée 310 coopérant avec une deuxième roue dentée 32 placée sur la périphérie de la base de la pale 3. La pale 3 est reliée au cylindre axial par un roulement 33.
[0046] Cette variante a l’avantage de permettre un raccordement plus conventionnel du système d’orientation des pales au travers d’un jeu de bagues (puissance sans génératrice asynchrone et signaux de contrôle). Elle permet également l’utilisation de nacelles classiques, d’où un coût moins important.

Claims

REVENDICATIONS
[Revendication 1] Eolienne (1 ) marine auto-orientable comprenant une plateforme flottante, au moins un mât (2, 21 ) sur lequel est fixée une nacelle (4) comprenant un moyeu (40) d’axe X horizontal et relié à des pales (3), caractérisée en ce que le moyeu (40) coopère avec un rotor (50) de deux alternateurs (5) et que le moyeu est constitué d’un essieu (401 ) creux ou d’un cylindre axial (42) creux adapté pour la maintenance par un homme debout.
[Revendication 2] Eolienne (1 ) selon la revendication 1 caractérisée en ce que les alternateurs (5) sont disposés de part et d’autre du moyeu (40).
[Revendication s] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce que qu’elle comprend au moins trois mâts (21 ) convergents.
[Revendication 4] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce que les deux alternateurs (5) sont symétriques par rapport à un plan perpendiculaire à l’axe X du moyeu (40).
[Revendication s] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce que les alternateurs
(5) sont indépendants l’un de l’autre et chacun est relié à un convertisseur (52).
[Revendication 6] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce qu’au moins un alternateur (5) comprend deux bobinages indépendants reliés chacun à un convertisseur (52).
[Revendication 7] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce qu’un des alternateurs (5) comprend un frein de parking (30) reliant le rotor (50) au stator (51 ).
[Revendication s] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce qu’elle comprend un système de communication sans fil commandant les alternateurs (5).
[Revendication 9] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce que chaque alternateur (5) a une puissance comprise entre 4 et 10MW.
[Revendication 10] Eolienne (1 ) selon une des revendications précédentes caractérisée en ce qu’au moins un alternateur (5) est déconnectable.
[Revendication 11] Eolienne (1) selon une des revendications précédentes caractérisée en ce qu’un des alternateurs comporte une génératrice asynchrone (6).
[Revendication 12] Eolienne (1) selon une des revendications précédentes caractérisée en ce que le cylindre axial (42) est creux et comprend trois caillebotis (420) placés du côté opposé à chacune des pales (3) et qu’ils relient les extrémités du cylindre axial (42).
[Revendication 13] Eolienne (1) selon une des revendications précédentes, caractérisée en ce qu’un convertisseur (52) est placé dans l’essieu (410) creux ou dans une nacelle située à une extrémité du cylindre axial (42) creux. [Revendication 14] Eolienne (1 ) selon la revendication précédente, caractérisée en ce que le convertisseur (52) est relié aux bobinages d’un stator (51) d’alternateur (5) par un câble de longueur I, que les pales (3) sont de longueur L et que I < L.
EP22705546.4A 2021-02-17 2022-02-16 Eolienne marine auto-orientable à deux alternateurs Pending EP4295038A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101521A FR3119871A1 (fr) 2021-02-17 2021-02-17 Eolienne marine auto-orientable a deux alternateurs
PCT/EP2022/053837 WO2022175339A1 (fr) 2021-02-17 2022-02-16 Eolienne marine auto-orientable à deux alternateurs

Publications (1)

Publication Number Publication Date
EP4295038A1 true EP4295038A1 (fr) 2023-12-27

Family

ID=74860315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22705546.4A Pending EP4295038A1 (fr) 2021-02-17 2022-02-16 Eolienne marine auto-orientable à deux alternateurs

Country Status (3)

Country Link
EP (1) EP4295038A1 (fr)
FR (1) FR3119871A1 (fr)
WO (1) WO2022175339A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
WO2012150623A1 (fr) * 2011-05-02 2012-11-08 E&E株式会社 Dispositif de production d'énergie éolienne à axe horizontal
KR101287519B1 (ko) * 2013-05-31 2013-07-19 태광메카텍(주) 부유식 해상 풍력 발전 구조물
EP3226384A1 (fr) * 2016-03-30 2017-10-04 Siemens Aktiengesellschaft Commande de mouvement de rotation d'un générateur électrique au moyen d'un dispositif tournant
EP3547505A1 (fr) * 2018-03-27 2019-10-02 Siemens Aktiengesellschaft Combinaison d'une machine électrique triphasée avec une unité convertisseur et éolienne
FR3086351A1 (fr) * 2018-09-20 2020-03-27 Eolink Eolienne flottante a dynamique en lacet stable
WO2020109674A1 (fr) * 2018-11-30 2020-06-04 Asah Lm Ensemble de production d'energie electrique multi-generatrices pour eoliennes flottantes de grande puissance

Also Published As

Publication number Publication date
FR3119871A1 (fr) 2022-08-19
WO2022175339A9 (fr) 2022-10-20
WO2022175339A1 (fr) 2022-08-25

Similar Documents

Publication Publication Date Title
CA2280935C (fr) Eolienne a attaque directe basse vitesse
CA2413234C (fr) Dispositif de production de courant electrique a partir d&#39;energie eolienne
CA2344221C (fr) Eolienne avec rotors contrarotatives
US8464990B2 (en) Pole mounted rotation platform and wind power generator
KR101357121B1 (ko) 발전기 또는 모터가 중공 프로파일로 구성되는 풍차,수력발전소 또는 베셀을 위한 직접구동형 발전기 또는 모터및 이러한 풍차 또는 수력발전소를 조립하는 방법
US20100143131A1 (en) Folding blade turbine
CA3015708C (fr) Eolienne flottante a turbines jumelles a axe vertical a rendement ameliore
EP1718863B1 (fr) Turbomachine hydraulique
EP1766231A1 (fr) Eolienne a axe vertical
EP2986848A1 (fr) Structure d&#39;eolienne flottante
WO2022175339A1 (fr) Eolienne marine auto-orientable à deux alternateurs
EP1819926A1 (fr) EOLlENNE A AXE VERTICAL
CN101603509A (zh) 加强型风力发电机
WO2013092362A2 (fr) Eolienne à pales montée sur une plateforme rotative
FR3028895A1 (fr) Dispositif de production d&#39;energie de type eolienne.
BE1017920A3 (fr) Machine hydroelectrique flottante.
WO2020109674A1 (fr) Ensemble de production d&#39;energie electrique multi-generatrices pour eoliennes flottantes de grande puissance
FR2962498A1 (fr) Aerogenerateur a axe horizontal, comprenant un automate pour piloter un effacement progressif de la nacelle en fonction de la vitesse du vent.
FR3137137A1 (fr) Eolienne à axe vertical et Centrale d’énergie
EP4295033A1 (fr) Eolienne à flux transverse à pales jumelles, et à axes de rotation inclinés
WO2019219702A1 (fr) Eolienne rabattable a axe vertical
FR2738300A1 (fr) Aerogenerateur birotor de grande puissance
FR3033600A1 (fr) Eolienne a axe vertical
FR3072733A1 (fr) Aerogenerateur
FR3016255A1 (fr) Dispositif autonome producteur d&#39;energie electrique a grande roue generatrice

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)