WO2013092362A2 - Eolienne à pales montée sur une plateforme rotative - Google Patents

Eolienne à pales montée sur une plateforme rotative Download PDF

Info

Publication number
WO2013092362A2
WO2013092362A2 PCT/EP2012/075334 EP2012075334W WO2013092362A2 WO 2013092362 A2 WO2013092362 A2 WO 2013092362A2 EP 2012075334 W EP2012075334 W EP 2012075334W WO 2013092362 A2 WO2013092362 A2 WO 2013092362A2
Authority
WO
WIPO (PCT)
Prior art keywords
platform
installation according
blades
masts
wind
Prior art date
Application number
PCT/EP2012/075334
Other languages
English (en)
Other versions
WO2013092362A3 (fr
Inventor
Alain DELSUPEXHE
Original Assignee
Asah Lm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asah Lm filed Critical Asah Lm
Publication of WO2013092362A2 publication Critical patent/WO2013092362A2/fr
Publication of WO2013092362A3 publication Critical patent/WO2013092362A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/421Storage of energy in the form of rotational kinetic energy, e.g. in flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates generally to installations for transforming the mechanical energy of the wind into electrical energy and more particularly relates to floating wind turbines.
  • Wind power is, to date, the second largest source of renewable energy behind hydroelectric power. Currently, wind power worldwide exceeds 200 GigaWatts (GW), which represents 2% of global electricity production. The annual increase in wind capacity is of the order of 40 GW per year, but this increase tends to be slower for onshore installations. This slowdown is mainly due to the environmental and visual constraints related to these installations.
  • GW GigaWatts
  • HAWT wind turbines Horizontal Axis Wind
  • Turbine in English
  • These wind turbines are generally three-blade fans mounted on a floating structure.
  • the choice of this solution is due to the great experience gained with the exploitation of HAWT type wind turbines, which makes them credible, especially with the financing banks.
  • HAWT-type wind turbines have not been designed to operate in a marine environment involving significant and disruptive mechanical soils such as swell, chop and other marine phenomena such that Floating wind turbine structures require increased stability and robustness.
  • the semi-submersible floats consist of three floats connected together by rigid pipes ensuring the robustness of the whole. This structure allows a smaller gite under the effect of the wind that the platforms realized according to Espar technology but undergoes, much more sensitive, the oscillations of the surface some water. In addition, its cost price remains higher than that of other technologies.
  • the TLP floats are based on the use of tendons arranged between the seabed and a floating structure on which the water is fixed in order to partially immerse it.
  • the tension generated by the tendons provides maximum stability to the float / wind turbine assembly but does not offer any flexibility, especially with respect to the effects of swell and tides.
  • This type of platform was originally designed for the oil industry in order to avoid drilling platform drills and platform scrapping of equipment attached to the seabed.
  • the TLP floats are unsuitable for supporting the horizontal solvations of the wind which create a cottage of the wind which can generate a relaxation of the tendons in leeward and a surge of the tendon most in the wind.
  • VAWT Vertical Axis Wind Turbine
  • VAWT wind turbines have four main advantages over HAWT wind turbines.
  • the lower position of the generator of a VAWT type wind turbine compared to that of a HAWT wind turbine reduces the costs and facilitates the maintenance of a VAWT wind turbine.
  • the generally curved shape of the blades allows a VAWT type wind turbine to oscillate with less loss of aerodynamic efficiency than a wind turbine type HAWT.
  • VAWT wind turbines however, have certain disadvantages. Their main weakness concerns the lack of robustness of the blades, called Darrieus, generally used. Indeed, all attempts to install wind turbines of several MW of VAWT type power led to self destruction of the turbine under the effect of centrifugal force. In addition, such machines have a relatively low starting torque so that they require a starting aid.
  • This wind turbine however has a number of major disadvantages relating to the fact that the blades are prone to waves and the wear induced by them.
  • mounting the blades relative to the platform significantly increases maintenance costs and reduces the life of the wind turbine.
  • the object of the invention is therefore to overcome the disadvantages of wind turbines according to the state of the art and, in particular, floating wind turbines type VAWT.
  • the subject of the invention is an installation for converting the mechanical energy of the wind into electrical energy, comprising a platform, a set of blades with a vertical axis connected to the platform so as to drive the platform in rotation under the effect of the wind. , and one or more electric power generators comprising at least less a rotor connected to the rotating platform and at least one stator linked to a fixed structure.
  • This installation comprises a set of masts erected from a peripheral zone of the platform, on which the blades are respectively fixed.
  • the blades of floating eo liennes type VAWT are no longer subject to the impacts of waves, which allows to overcome the aforementioned drawbacks.
  • the masts also enhance the blades and expose them to stronger and more regular winds, and increase the area swept by the blades.
  • wind turbine blades of the installation according to the invention are each associated with an angle of attack adjustment device.
  • the poles are inclined outwardly of the platform and are retained at the rotating platform by a set of holding arms.
  • the masts are inclined towards the inside of the platform in a crossed arrangement, said masts crossing in the vicinity of the vertical axis of rotation of the platform, a device such as a ring or a polygon supporting the masts between them and with a hub at the point of their crossing.
  • a device such as a ring or a polygon supporting the masts between them and with a hub at the point of their crossing.
  • the platform is a floating platform on the water, for example on the sea or on a lake, and is associated with an anchoring system acting on the fixed structure.
  • the platform is advantageously made in the form of a planar structure whose horizontal dimensions are greater than its vertical dimension.
  • the platform has a toroidal shape and has in cross section a generally V-shaped lower portion.
  • the lower part of the floating platform is provided with an annular anti-roll bow.
  • the blades are blades of wind turbines type HAWT thus allowing to benefit from the technical maturity and low cost of wind turbine blades type HAWT and, where appropriate, their angle of attack adjustment systems.
  • the fixed structure in which said stator is arranged can be mounted on an anchoring device, the system anchoring device comprising, for example, an assembly of at least one rigid or flexible link, a ballast or buoyancy device acting on the links and a set of chains extending from the weighting or flotation device and provided with end anchors.
  • the system anchoring device comprising, for example, an assembly of at least one rigid or flexible link, a ballast or buoyancy device acting on the links and a set of chains extending from the weighting or flotation device and provided with end anchors.
  • the fixed structure supporting the stator can be submerged and have an adjustable flotation on command.
  • the installation according to the invention may comprise means for storing the kinetic energy generated during the rotation of the platform.
  • the energy storage means may comprise a set of weights displaceable along the arms, in particular the holding arms, and may be connected to one or more counterweights by one or more pulleys.
  • ballast boxes for example inside the float, intended to be filled with water during the rotation of the platform under the effect of centrifugal force or a pumping system.
  • the installation may comprise a so-called drag drag (of the Savonius type, for example) and / or a motor placed on the platform and intended to cooperate with the blades mounted on the masts to provide a complementary torque at start-up or at low speed.
  • drag drag of the Savonius type, for example
  • FIGS. 1 and 2 illustrate examples of an installation for transforming the mechanical energy of the wind into electrical energy in accordance with the invention, respectively in profile and in perspective;
  • FIG. 3 is a section illustrating the shape of the floating platform of the installation of Figure 2;
  • FIGS. 4 and 5 illustrate exemplary embodiments of an installation for transforming mechanical energy from wind into electrical energy according to another embodiment;
  • Figure 6 is a diagram illustrating the structure of the electric power generator
  • FIG. 7 illustrates various embodiments of a processing plant according to the invention.
  • FIG. 8 illustrates an alternative mounting of the blades on the masts.
  • a first embodiment of a plant for transforming the mechanical energy of the wind into electrical energy will firstly be described with reference to FIGS. 1 and 2.
  • This installation is based on the use of a VAWT type wind turbine, that is to say comprising a set of blades, such as P, mounted on a platform.
  • the blades P are mounted on the platform 2 via a set of respective masts, such as 3 extending, in the embodiment shown in FIGS. 1 and 2, radially externally from the platform so as to raise the area of attachment of the blades P on the masts 3 above the level of the water so as to avoid that these attachment zones are subjected to the impact of the waves.
  • FIGS. 1 and 2 also show that wind turbine is here a floating wind turbine and is particularly intended to be imp atant at sea and more particularly in areas for which the depths are greater than 50 m. However, it is not beyond the scope of the invention when the installation 1 is intended to be imp lantée on lakes, streams or water reserves, or even on ice.
  • the platform 2 is in the form of a flat float, of generally toroidal shape, whose horizontal dimensions are greater than the vertical dimensions.
  • the platform 2 has a diameter much greater than its height by a coefficient that can reach and exceed 10 so as to provide good stability to the installation.
  • the platform 2 advantageously has in the lower part an annular anti-roll bow E contributing to the stability of the platform.
  • the blades P are raised from the platform 2 and are connected thereto so that the rotation of the blades generates a consecutive rotation of the platform and this, with relatively small losses, the installation using the water as that lubricant.
  • the masts 3 are held relative to a hub 8 by means of a first set of arms 4 fixed at the mutually opposite, upper and lower ends of the masts 3 in order to ensure their radial retention and to transmit the rotation to the platform and hub.
  • a second set of holding arms 5 extending between the platform 2 and the upper end zone of the masts 3 ensures the maintenance of the latter and transmits the rotational movement.
  • Another set of holding arms such as 6, are arranged so as to connect in pairs the upper ends of the masts and thus secure them together and stiffen the structure.
  • the assembly constituted by the platform 2 and the blades P linked to the platform via the respective masts 3 constitutes a rotating assembly under the effect of the wind force.
  • the installation also comprises one or more electric power generators 7 each comprising a rotor connected to the hub 8 from which extends the first set of holding arms 4 so as to be connected in rotation with the platform 2 and a fixed stator (not visible in FIGS. 1 and 2) linked to a fixed structure 9 via a shaft 10, itself associated with an anchoring system comprising a set of chains, such as 1 1, provided with each of a weighting or flotation device 12 and provided with an end anchor 13, for example of the suction type.
  • stator linked to the mooring system comprising the shaft 10, the fixed structure 9 and the anchoring system is maintained in a fixed position relative to the terrestrial reference, independently of the movements of the swell, while the platform carrying the blades is rotated relative to the stator under the effect of the wind.
  • the horizontal dimensions of the platform 2 significantly greater than its vertical dimension and thanks to its embodiment in a toric form having a vertical axial symmetry corresponding to the axis of rotation of the blades P, we obtain a solid and solid emerging set.
  • the diameter of the platform can typically reach 40 to 60m, while being able to reach or even exceed 100m, so as to obtain a much greater stability than the Espars technologies, semi-submersible floats and TLP technologies.
  • the platform 2 advantageously has a toroidal shape, the vertical section of which has a generally V-shaped bottom portion 14 for minimizing friction with the water, or even with the ice, when the platform is intended to be implanted on ice, and an upper portion inclined outwardly to decrease wave grip.
  • the platform 2 may further advantageously form in the lower part a bow antiroulis E ( Figure 1).
  • the height of the platform can typically reach 4 to 8m, while being able to exceed 10m. These dimensions make it possible to obtain a low draft.
  • each blade P may be constituted by conventional blades used in particular for HAWT type three-bladed winders.
  • a variable pitch angle adjusting device 16 it will be provided to mount each blade P on a mast 3 by means of a variable pitch angle adjusting device 16 in order to ensure at all times the maintenance of an optimum angle of attack for each blade relative to its apparent wind.
  • the installation 1 comprises, for example, in one embodiment, a float having a diameter of the order of 40 to 60 m, and a height of the order of 4 to 8 m, blades having a height of 1 m. order of 75m, and masts with a height of the order of 20m.
  • the blades P are substantially inclined outwards, in particular because of the inclination of the masts 3.
  • the masts 3 are also inclined tangentially to the perimeter of the platform 2 so that the angle between the masts and the float is reduced and thus allows a smaller arm to lever between the masts and the platform 2.
  • the inclination of the masts modulates the wake effect of the blades relative to each other.
  • the masts 3 extend in a "cantilever" configuration, being radially inclined outwards.
  • the masts 3 are arranged in a crossed configuration and intersect in the vicinity of the vertical axis of rotation of the platform.
  • the floating platform 2 of toroidal shape there is the floating platform 2 of toroidal shape, the masts 3 erected from a peripheral zone of the platform 2 and the blades P fixed on the masts 3, as well as the generator or generators.
  • electrical energy 7 each comprising a rotor connected to a hub 8 connected in rotation to the masts 3 and a stator associated with the anchoring system comprising the shaft 1 0, the structure 9 and the docking system comprising the chains 1 1, the weights or floats 12 and end anchors 1 3.
  • the masts 3 are interleaved with each other and at the hub by a device such as a ring or a holding polygon 17 and extend upwards so that the trajectory of their vertices forms a radius radius may exceed that of the platform 2.
  • a device such as a ring or a holding polygon 17 and extend upwards so that the trajectory of their vertices forms a radius radius may exceed that of the platform 2.
  • the blades P can be connected to the mast 3 by means of an angle of attack adjustment device 16.
  • the blades can be inclined tangentially to the perimeter of the platform 2 to modulate the wake effect of the blades relative to each other.
  • the blades can be inclined at an angle of about 15 ° to the rear, for example, considering the direction of the wind, and about 8 ° to the outside.
  • the fixed structure 9 to which the stator is connected constitutes an immersed assembly. However, it is not beyond the scope of the invention when this fixed structure 9 has emerged.
  • Figure 6 corresponds to an installation with masts arranged in a cantilever configuration.
  • the description of the generator (s) also applies to the embodiment of FIGS. 4 and 5. This description also applies to embodiments in which this (these) generator (s) is (are) emerged (s), be immersed (s). Similarly, the description of the generator or generators applies to embodiments in which the fixed structure 9 is either emerged or immersed.
  • the generator or generators 7 each comprise at least one rotor R, and at least one stator S incorporating a set of coils B.
  • the rotor R incorporates a set of magnets A regularly arranged around the set of coils B.
  • the set of coils B is, for its part, placed at the end of the shaft 10, which is associated with two stabilizing bearings 25 and 26 guided by ball or roller bearings 27 and 28.
  • VAWT type wind turbine lined in rotation to a floating platform and equipped with blades traditionally used in HAWT type wind turbines having a dimension of the order of 75 m.
  • This installation is capable of producing electrical energy of the order of 5 MW or more.
  • the embodiment in which the fixed structure is immersed under water, at a depth of less than 20m is advantageous to the extent that, otherwise, the links used to connect the fixed structure the weighting or flotation device are likely to hit the platform ..
  • the installation can also be provided with means to provide a complementary torque helping start the installation. It will be possible, for example, to place on the rotary cylinder 8 a "Savonius" type wind turbine and / or a motor.
  • sails can also be installed between the platform 2 and the top of the masts 3.
  • the installation can be provided with means for storing the kinetic energy generated during the rotation of the platform under the effect of the blades P of the wind turbine.
  • weighting devices such as 32 depulables along the radial arms and associated with one or more counterweights 33.
  • the weighting devices are sol ilicités by the centrifugal force and tend to move away from the vertical axis of rotation.
  • these weights are returned to the central axis by the counterweight (s) and release the corresponding kinetic energy.
  • the weighting devices are advantageously displaceable along the holding arms 4.
  • a set of compartments such as 3 1, within the platform 2, these compartments 3 1 being intended to be filled with water during the rotation of the platform 2 in a natural way because of centrifugal force or artificially by means of pumps, to modify the moment of rotation of the platform.
  • the energy energy is by nature intermittent, it is possible to store the kinetic energy. by filling the tanks with water and thus increasing the float 's moment of rotation, in the event of a wind drop, to reduce the moment of rotation of the float by removing the water contained in the floats.
  • Compartments 3 1 may also be filled for the purpose of ballasting, and thus stabilize the structure or even totally immerse to protect it in the anticipation of a cyclone or typhoon.
  • An auxiliary float connected to the stator and sufficiently bulky to provide dynamic floatation when the wind is fully immersed and a communication and control device for controlling the water immersed from the surface may be provided.
  • the compartments diametrically opposed to each blade may be weighted to compensate for the preponderance of aerodynamic forces during the upwelling of the blades facing the wind and avoid oscillations of the platform during its rotation.
  • the blades can be inclined tangentially to the perimeter of the platform.
  • FIG. 8 shows such an exemplary embodiment.
  • the blades are here mounted at the end of the masts in a direction substantially tangential to the perimeter of the platform.
  • Such an embodiment is advantageous in aerodynamic terms by making it possible to reduce the effects of drag caused by a blade in the wind on the blades under the wind.
  • such an embodiment is moreover identical to the embodiments described above and also comprises, in particular, an angle of attack adjustment device placed at the end of the arms 3 not subject to the impact of the waves and guaranteeing the operation of the blades in lift.

Abstract

Cette installation de transformation de l ' énergie mécanique du vent en énergie électrique comprend une plateforme (2), un ensemble de pales (P) à axe vertical liées à la plateforme de manière à entraîner la plateforme en rotation sous l ' effet du vent, et au moins un générateur d' énergie électrique (7) comprenant au moins un rotor lié à la plateforme en rotation et au mo ins un stator lié à une structure fixe. Elle comporte un ensemble de mâts (3) dressés à partir d 'une zone périphérique de la plateforme, sur lesquels sont respectivement fixées les pales, lesdites pales étant chacune associées à un dispositif (16) de réglage d' angle d' attaque.

Description

Eolienne à pales montée sur une plateforme rotative
L'invention concerne, de manière générale, les installations de transformation de l'énergie mécanique du vent en énergie électrique et se rapporte plus particulièrement aux éoliennes flottantes.
L'éolien constitue, à ce jour, la deuxième source d'énergie renouvelable derrière l'énergie hydroélectrique. Actuellement, la puissance électrique d'origine éolienne dépasse, dans le monde, 200 GigaWatts (GW), ce qui représente 2% de la production mondiale d'électricité. L'augmentation annuelle de la capacité éolienne est de l'ordre de 40 GW par an, mais cette augmentation tend à s'infléchir pour les installations terrestres. Ce ralentissement est essentiellement dû aux contraintes environnementales et visuelles liées à ces installations.
De ce fait, la construction de parcs éoliens s'est récemment étendue en mer et dans les lacs et les océans afin de permettre l'accès à de nouveaux espaces pour l'implantation de turbines de capacité plus importante. La plupart des éoliennes en mer (offshore) reposent à ce jour sur des fondations posées sur le sol marin. Ces installations sont cependant onéreuses, difficiles à démanteler et limitées en profondeur par leur technique. On estime à 50m la profondeur limite au delà de laquelle il n'est plus rentable de construire une éolienne offshore. Cette limite contraint ainsi le marché de l'éolien offshore à se restreindre à une petite partie des océans et des mers, voire des lacs.
Il a été constaté, en ce qui concerne l'Europe, que 73% des ressources éoliennes exploitables de manière économique se situent à des profondeurs supérieures à 50m. Ces profondeurs sont inaccessibles économiquement et même techniquement aux éoliennes sur fondations. En revanche, elles le sont pour des éoliennes flottantes.
La plupart des projets d'éoliennes flottantes en développement est conçue pour des éoliennes à axe horizontal, également connues sous le terme d'éoliennes de type HAWT (« Horizontal Axis Wind Turbine », en anglais). Ces éo liennes sont généralement des éo liennes à trois pales montées sur une structure flottante . Le choix de cette so lution est dû à la grande expérience acquise en ce qui concerne l ' exploitation des éo liennes de type HAWT, ce qui les rend crédibles en particulier auprès des banques de financement.
Il a cependant été constaté que les éo liennes de type HAWT n' ont pas été conçues pour fonctionner dans un environnement marin impliquant des so llicitations mécaniques importantes et perturbatrices telles que les mouvements de la houle, du clapot et autres phénomènes marins de sorte que les structures d' éoliennes flottantes nécessitent une stabilité et une robustesse accrues .
Un certain nombre de documents de l' état de la technique décrivent l 'utilisation d' éo liennes flottantes de type HAWT . On pourra à cet égard se référer aux documents US 7, 8 19,073 , US 7,296,971 et US 2001 /0037264.
Les éo liennes flottantes décrites dans ces documents utilisent un ensemble de pales montées sur une plateforme flottante et s ' appuient sur trois technologies de flotteur, à savoir la technologie connue sous l ' appellation Espar, la technologique semi-submersible et la technologie TLP (« Tension Leg Platforms ») , en anglais .
La technologie Espar est fondée sur l 'utilisation d'un flotteur s ' étendant longitudinalement et verticalement et dont la partie immergée de la structure est plus longue que la partie émergée, afin que le centre de gravité de l ' ensemble soit situé au dessous du centre de flottaison afin d' assurer un équilibre stable et d' empêcher son retournement. Par conséquent, cette techno logie nécessite un important tirant d' eau et n' est envisageable que pour des profondeurs supérieures à 150m. Toute profondeur inférieure est incompatible avec cette technologie Espar.
Les flotteurs semi-submersibles se composent de trois flotteurs reliés entre eux par des tubulures rigides assurant la robustesse de l ' ensemble. Cette structure permet une moindre gite sous l ' effet du vent que les plateformes réalisées selon la technologie Espar mais subit, de manière beaucoup plus sensible, les oscillations de la surface de l ' eau. De plus, son prix de revient reste plus élevé que celui des autres technologies .
Enfin, les flotteurs TLP sont fondés sur l 'utilisation de tendons disposés entre le fond marin et une structure flottante sur laquelle est fixée l ' éo lienne afin de l ' immerger partiellement. La tension engendrée par les tendons apporte un maximum de stabilité à l ' ensemble flotteur/éolienne mais n'o ffre aucune souplesse, notamment vis-à-vis des effets de la houle et des marées . Ce type de plateforme a à l ' origine été conçu pour l ' industrie pétrolière dans le but d' éviter le tossage des plateformes de forage et l ' arrachement par les plateformes des équipements fixés sur le fond marin. En revanche, les flotteurs TLP sont inadaptés pour supporter les so llicitations horizontales du vent qui créent une gite de l ' éo lienne pouvant engendrer une détente des tendons sous le vent et une surtension du tendon le plus au vent.
Par ailleurs, des études ont montré qu' il existe des interférences entre les oscillations dues à la houle et la fréquence de rotation des pales d'une éo lienne de type HAWT tripale classique. De ce fait, des prototypes mettant en œuvre une éo lienne de type HAWT sur un flotteur ont montré des performances de production inférieures à celles constatées sur terre avec les mêmes machines à régime de vent égal. Des résultats ont montré qu'une telle installation ne délivre que 8 1 % de la production prévue en raison des interférences entre les mouvements de la mer et ceux des pales .
Au vu de ce qui précède, les éo liennes à axe vertical, également connues sous l ' appellation d' éo liennes de type VAWT (« Vertical Axis Wind Turbine », en anglais) constituent une alternative intéressante aux éo liennes de type HAWT pour la réalisation d' éoliennes flottantes .
Les éo liennes de type VAWT bénéficient en effet de quatre avantages principaux par rapport aux éoliennes de type HAWT .
En premier lieu, leur rotation selon un axe vertical les rend insensibles à la direction du vent et à sa variation de direction. En second lieu, le barycentre des forces exercées par le vent sur l'éolienne se situe plus bas sur une éolienne de type VAWT que sur une éolienne de type HAWT de même puissance avec l'avantage de réduire le bras de levier exercé sur le flotteur.
En troisième lieu, la position plus basse de la génératrice d'une éolienne de type VAWT par rapport à celle d'une éolienne de type HAWT réduit les coûts et facilite la maintenance d'une éolienne de type VAWT.
Enfin, la forme généralement courbée des pales permet à une éolienne de type VAWT d'osciller avec une moindre perte d'efficacité aérodynamique qu'une éolienne de type HAWT.
Les éoliennes de type VAWT présentent toutefois certains inconvénients. Leur principale faiblesse concerne le manque de robustesse des pales, dites de Darrieus, généralement utilisées. En effet, toutes les tentatives d'installation d'éoliennes de plusieurs MW de puissance de type VAWT ont conduit à l'autodestruction de la turbine sous l'effet de la force centrifuge. En outre, de telles machines présentent un couple au démarrage relativement faible de sorte qu'elles nécessitent une aide au démarrage.
On pourra se référer au document US 7,397,144 qui décrit une éolienne flottante de type VAWT.
Cette éolienne présente cependant un certain nombre d'inconvénients majeurs relatifs au fait que les pales sont sujettes aux vagues et à l'usure induite par celles-ci. En outre, le montage des pales par rapport à la plateforme augmente notablement les frais de maintenance et réduit la durée de vie de l'éolienne.
Le but de l'invention est donc de palier les inconvénients des éoliennes selon l'état de la technique et, notamment, des éoliennes flottantes de type VAWT.
L'invention a pour objet une installation de transformation de l'énergie mécanique du vent en énergie électrique, comprenant une plateforme, un ensemble de pales à axe vertical reliées à la plateforme de manière à entraîner la plateforme en rotation sous l'effet du vent, et un ou plusieurs générateurs d'énergie électrique comprenant au moins un rotor lié à la plateforme en rotation et au moins un stator lié à une structure fixe.
Cette installation comporte un ensemble de mâts dressés à partir d'une zone périphérique de la plateforme, sur lesquels sont respectivement fixées les pales .
Grâce au montage des pales sur les mâts dressés à partir de la plateforme, les pales des éo liennes flottantes de type VAWT ne sont plus soumises aux impacts des vagues, ce qui permet de palier les inconvénients précités . Les mâts permettent également de rehausser les pales et de les exposer à des vents plus forts et plus réguliers, et d' augmenter la surface balayée par les pales .
Il est ainsi possible d' associer les pales à un dispositif de réglage d' angle d' attaque, ce qui ne serait généralement pas possible si un tel dispositif était soumis à l ' impact des vagues .
En effet, les pales d' éolienne de l' installation selon l' invention sont associées chacune à un dispositif de réglage d' angle d' attaque .
Il a été constaté que le montage des pales sur une plateforme entraînée en rotation so lidairement avec les pales, elles-mêmes montées sur des mâts dressés à partir d'une zone périphérique de la plateforme par l ' intermédiaire de dispositifs de réglage d' angle d' attaque permet un fonctionnement en portance permanente des pales, quelle que soit l' orientation de la pale par rapport au vent réel. Un tel fonctionnement est beaucoup plus efficace qu'un fonctionnement essentiellement en traînée pour des pales non équipées de pas variable.
Un tel montage permet un démarrage sans besoin d'une force d' appoint pour lancer l' installation, ce qui n' était généralement pas le cas des éoliennes de type Darrieus .
Il permet encore un contrôle de la vitesse de rotation des pales et de limiter ainsi les risques de centrifugation et de détérioration des pales par grands vents .
Il est enfin possible d' arrêter la machine dans des conditions météorologiques défavorables en mettant, par exemple, deux pales à la cape et une troisième en drapeau. Dans un mode de réalisation, les mâts sont inclinés vers l ' extérieur de la plateforme et sont retenus à la plateforme en rotation par un ensemble de bras de maintien.
Dans ce cas, il est avantageux d' incliner les mâts tangentiellement par rapport au périmètre de la plateforme afin que l ' angle entre les mâts et la plateforme soit réduit et permette ainsi un moindre bras de levier entre ces éléments de la structure. De plus, les effets de sillage des pales au vent sur les pales sous le vent se trouvent modulés par le fait que les pales sont inclinées et que leurs sillages ne se croisent que progressivement.
Selon un autre mode de réalisation, les mâts sont inclinés vers l' intérieur de la plateforme selon une disposition croisée, lesdits mâts se croisant au voisinage de l ' axe vertical de rotation de la plateforme, un dispositif tel qu 'un anneau ou un polygone de soutien so lidarisant les mâts entre eux et avec un moyeu à l ' endroit de leur croisement. Selon une telle configuration « croisée », la structure est simplifiée, allégée et solidifiée.
Dans un mode de réalisation, la plateforme est une plateforme flottante sur l ' eau, par exemple sur la mer ou sur un lac, et est associée à un système d' ancrage agissant sur la structure fixe.
Dans ce cas, la plateforme est avantageusement réalisée sous la forme d' une structure plane dont les dimensions horizontales sont supérieures à sa dimension verticale.
Par exemple, la plateforme a une forme torique et présente en coupe transversale une partie inférieure globalement en forme de V.
On prévoira avantageusement en partie inférieure de la plateforme flottante une étrave annulaire antiroulis.
Selon encore une autre caractéristique de l ' installation selon l' invention, les pales sont des pales d' éoliennes tripales de type HAWT permettant ainsi de bénéficier de la maturité technique et des prix de revient bas des pales d' éoliennes de type HAWT et, le cas échéant, de leurs systèmes de réglage d' angle d' attaque.
On notera que la structure fixe dans laquelle est disposé ledit stator peut être montée sur un dispo sitif d' ancrage, le système d' ancrage comprenant, par exemple, un ensemble d' au moins un lien rigide ou souple, un dispositif de lestage ou de flottaison agissant sur les liens et un ensemble de chaînes s ' étendant à partir du dispositif de lestage ou de flottaison et doté d' ancres d' extrémité .
La structure fixe soutenant le stator peut être immergée et disposer d'une flottaison ajustable sur commande.
L 'installation selon l' invention peut comporter des moyens de stockage de l ' énergie cinétique engendrée lors de la rotation de la plateforme.
Les moyens de stockage de l ' énergie peuvent comprendre un ensemble de lests déplaçables le long des bras, notamment les bras de maintien et être reliés à un ou plusieurs contrepoids par une ou plusieurs poulies.
On pourra également prévoir un ensemble de caissons de lestage, par exemple à l' intérieur du flotteur, destinés à être emplis d' eau lors de la rotation de la plateforme sous l ' effet de la force centrifuge ou d'un système de pompage.
Selon une caractéristique de l' invention, l' installation pourra comporter une éo lienne dite de traînée (de type Savonius, par exemple) et/ou un moteur placé sur la plateforme et destiné à coopérer avec les pales montées sur les mâts pour fournir un couple complémentaire au démarrage ou à petite vitesse.
On pourra prévoir un aileron stabilisateur placé sur la structure fixe et/ou une dérive stabilisatrice placée sous l ' eau, so lidaire de la structure fixe.
On pourra encore prévoir des voilures entre la plateforme et le sommet des mâts et au moins un flotteur auxiliaire relié au moyeu permettant de maintenir la flottaison et la verticalité de l' installation en cas d' immersion complète.
D ' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : les figures 1 et 2 illustrent des exemples d'une installation de transformation de l ' énergie mécanique du vent en énergie électrique conforme à l 'invention, respectivement de profil et en perspective ;
la figure 3 est une coupe illustrant la forme de la plateforme flottante de l ' installation de la figure 2 ; les figures 4 et 5 illustrent des exemples de réalisation d'une installation de transformation d' énergie mécanique du vent en énergie électrique selon un autre mode de réalisation ;
la figure 6 est un schéma illustrant la structure du générateur d' énergie électrique ;
la figure 7 illustre divers mo des de réalisation d' une installation de transformation conforme à l 'invention ; et
la figure 8 illustre une variante de montage des pales sur les mâts.
On va tout d' abord décrire en référence aux figures 1 et 2 un premier mode de réalisation d'une installation de transformation de l ' énergie mécanique du vent en énergie électrique, désigné par la référence numérique générale 1 . Cette installation est fondée sur l 'utilisation d'une éo lienne de type VAWT, c ' est-à-dire comprenant un ensemble de pales, telles que P, montées sur une plateforme.
Les pales P sont montées sur la plateforme 2 par l' intermédiaire d'un ensemble de mâts respectifs, tels que 3 s ' étendant, dans l ' exemple de réalisation représenté sur les figures 1 et 2, de manière radialement externe à partir de la plateforme de manière à élever la zone de fixation des pales P sur les mâts 3 au- dessus du niveau de l ' eau de manière à éviter que ces zones de fixation soient soumises à l 'impact des vagues .
L ' éo lienne est ici dotée de trois pales P . On notera cependant que l'on ne sort pas du cadre de l' invention lorsque l'on utilise un nombre différent de pales . On voit par ailleurs sur les figures 1 et 2 que l ' éo lienne est ici une éo lienne flottante et est notamment destinée à être imp lantée en mer et plus particulièrement dans des zones pour lesquelles les profondeurs sont supérieures à 50m. Toutefois, on ne sort pas davantage du cadre de l' invention lorsque l' installation 1 est destinée à être imp lantée sur des lacs, des cours d' eau ou des réserves d' eau, voire sur de la glace.
La p lateforme 2 est réalisée sous la forme d'un flotteur plat, de forme générale torique, dont les dimensions horizontales sont supérieures aux dimensions verticales. Ainsi, la plateforme 2 a un diamètre très supérieur à sa hauteur d 'un coefficient pouvant atteindre et dépasser 10 de manière à procurer une bonne stabilité à l' installation. La plateforme 2 présente avantageusement en partie inférieure une étrave annulaire antiroulis E contribuant à la stabilité de la plateforme.
Les pales P sont dressées à partir de la plateforme 2 et sont liées à celle-ci de sorte que la rotation des pales engendrent une rotation consécutive de la plateforme et ce, avec des pertes relativement faibles, l' installation utilisant l ' eau en tant que lubrifiant.
Les mâts 3 sont maintenus par rapport à un moyeu 8 par l' intermédiaire d'un premier ensemble de bras 4 fixés aux deux extrémités mutuellement opposées, supérieure et inférieure des mâts 3 afin d' assurer leur maintien radial et de transmettre la rotation à la plateforme et au moyeu. Un deuxième ensemble de bras de maintien 5 s ' étendant entre la plateforme 2 et la zone d' extrémité supérieure des mâts 3 assure le maintien de ces derniers et transmet le mouvement de rotation.
Enfin, un autre ensemble de bras de maintien, tels que 6, sont disposés de manière à relier deux à deux les extrémités supérieures des mâts et ainsi les solidariser entre eux et de rigidifier la structure.
Comme indiqué précédemment, l ' ensemble constitué par la plateforme 2 et les pales P liées à la plateforme par l ' intermédiaire des mâts 3 respectifs constitue un ensemble tournant sous l ' effet de la force du vent. L 'installation comporte par ailleurs un ou plusieurs générateurs d' énergie électrique 7 comprenant chacun un rotor relié au moyeu 8 à partir duquel s ' étend le premier ensemble de bras de maintien 4 de manière à être lié en rotation avec la plateforme 2 et un stator fixe (non visible sur les figures 1 et 2) lié à une structure fixe 9 par l' intermédiaire d'un arbre 10, elle-même associée à un système d' ancrage comprenant un ensemble de chaînes, telles que 1 1 , dotées chacune d'un dispositif de lestage ou de flottaison 12 et pourvues d'une ancre 13 d' extrémité, par exemple de type à succion.
Grâce à cet agencement, le stator, lié au système d' amarrage comprenant l ' arbre 10, la structure fixe 9 et le système d' ancrage est maintenu dans une position fixe relativement au référentiel terrestre, indépendamment des mouvements de la houle, tandis que la plateforme portant les pales est entraînée en rotation par rapport au stator sous l ' effet du vent.
Grâce aux dimensions horizontales de la plateforme 2 , significativement supérieures à sa dimension verticale et grâce à sa réalisation sous une forme torique présentant une symétrie axiale verticale correspondant à l ' axe de rotation des pales P, on obtient un ensemble émergé so lidaire et robuste. On notera que le diamètre de la plateforme peut atteindre typiquement 40 à 60m, tout en pouvant atteindre voire dépasser 100m, de manière à obtenir une stabilité bien supérieure aux technologies Espars, des flotteurs semi-submersibles et des technologiques TLP .
Comme visible sur la figure 3 , la plateforme 2 présente avantageusement une forme torique dont la coupe verticale présente une partie inférieure 14 globalement en forme de V pour minimiser la friction avec l ' eau, voire avec la glace, lorsque la plateforme est destinée à être implantée sur glace, et une partie supérieure 1 5 inclinée vers l ' extérieur afin de diminuer la prise aux vagues. La plateforme 2 peut en outre former avantageusement en partie inférieure une étrave antiroulis E (figure 1 ) . La hauteur de la plateforme peut atteindre typiquement 4 à 8m, tout en pouvant dépasser 10m. Ces dimensions permettent d' obtenir un faible tirant d' eau.
En ce qui concerne les pales, on notera que celles-ci, grâce à leur montage sur la plateforme par l' intermédiaire des mâts 3 , peuvent être constituées par des pales conventionnelles utilisées notamment pour des éo liennes tripales de type HAWT . On prévoira avantageusement de monter chaque pale P sur un mât 3 par l' intermédiaire d'un dispositif 16 de réglage d' angle d' attaque à pas variables afin d' assurer à tout moment le maintien d'un angle d' attaque optimal pour chaque pale par rapport à son vent apparent.
On notera que les pales peuvent atteindre voire dépasser des dimensions de l ' ordre de 75m. Ainsi, l' installation 1 comporte, par exemple, dans un mode de réalisation, un flotteur ayant un diamètre de l ' ordre de 40 à 60m, et une hauteur de l ' ordre de 4 à 8m, des pales ayant une hauteur de l ' ordre de 75m, et des mâts ayant une hauteur de l ' ordre de 20m.
Comme on le voit sur les figures 1 et 2, les pales P sont sensiblement inclinées vers l ' extérieur, en raison notamment de l' inclinaison des mâts 3.
Dans le mode de réalisation illustré aux figures 1 et 2, on notera par ailleurs que les mâts 3 sont également inclinés tangentiellement au périmètre de la plateforme 2 afin que l ' angle entre les mâts et le flotteur soit réduit et permette ainsi un moindre bras de levier entre les mâts et la plateforme 2. De plus, l ' inclinaison des mâts module l ' effet de sillage des pales les unes par rapport aux autres .
Dans le mode de réalisation illustré aux figures 1 et 2, les mâts 3 s ' étendent selon une configuration en « porte-à-faux », en étant radialement inclinés vers l ' extérieur.
Dans le mo de de réalisation illustré aux figures 4 et 5 , sur lesquels des éléments identiques à ceux des figures 1 à 3 sont désignés par les mêmes références numériques, les mâts 3 sont disposés selon une configuration croisée et se croisent au voisinage de l' axe vertical de rotation de la plateforme. On retrouve, dans ce mode de réalisation, la plateforme flottante 2 de forme torique, les mâts 3 dressés à partir d'une zone périphérique de la plateforme 2 et les pales P fixées sur les mâts 3 , ainsi que le ou les générateurs d' énergie électrique 7 comprenant chacun un rotor relié à un moyeu 8 lié en rotation aux mâts 3 et un stator associé au système d' ancrage comprenant l ' arbre 1 0, la structure 9 et le système d' amarrage comprenant les chaînes 1 1 , les lests ou les flotteurs 12 et les ancres d' extrémité 1 3.
Selon cette configuration croisée, les mâts 3 sont so lidarisés entre eux et au moyeu par un dispositif tel qu'un anneau ou un polygone de maintien 1 7 et se prolongent, vers le haut, de sorte que la traj ectoire de leurs sommets forme un cercle de rayon pouvant dépasser celui de la plateforme 2. S elon cette configuration, dont le fonctionnement est identique à celui mentionné précédemment, l' installation présente une structure simp lifiée, allégée et une so lidité accrue.
On notera toutefois que dans les modes de réalisation décrits précédemment en référence aux figures 1 à 5 , les pales P peuvent être liées au mât 3 par l' intermédiaire d'un dispositif de réglage d' angle d' attaque 16. De même, les pales peuvent être inclinées tangentiellement au périmètre de la plateforme 2 afin de moduler l ' effet de sillage des pales les unes par rapport aux autres .
Sinon, on pourra, par exemple, incliner les pales d'un angle d' environ 15 ° vers l ' arrière, en considérant la direction du vent, et d' environ 8° vers l ' extérieur.
On notera que dans les modes de réalisation décrits précédemment en référence aux figures 1 à 5 , la structure fixe 9 à laquelle est lié le stator constitue un ensemble immergé . Toutefois, on ne sort pas du cadre de l 'invention lorsque cette structure fixe 9 est émergée.
On va maintenant décrire en référence à la figure 6, la structure du générateur 7 de l ' installation 1 .
On notera que la figure 6 correspond à une installation dotée de mâts disposés selon une configuration porte-à-faux. On notera toutefois que la description du ou des générateurs s ' applique également au mode de réalisation des figures 4 et 5. Cette description s ' applique également à des modes de réalisation dans lesquels ce (ces) générateurs est (sont) soit émergé(s), soit immergé(s). De même, la description du ou des générateurs s ' applique à des modes de réalisation dans lesquels la structure fixe 9 est soit émergée, soit immergée.
Comme on le voit sur la figure 6, le ou les générateurs 7 comprennent chacun au moins un rotor R, et au moins un stator S intégrant un ensemble de bobines B .
Le rotor R incorpore un ensemble d' aimants A régulièrement disposés autour de l ' ensemble de bobines B .
L ' ensemble de bobines B est, quant à lui, placé à l ' extrémité de l ' arbre 10, lequel est associé à deux paliers stabilisateurs 25 et 26 guidés par des roulements à billes ou à rouleaux 27 et 28.
Ainsi, lors de la rotation du rotor par rapport au stator, et en particulier lors de la rotation des aimants A par rapport aux bobinages, un courant électrique est engendré. On prévoira avantageusement un câble conducteur C disposé dans l ' arbre 10, raccordé à l ' ensemble de bobines B et traversant la structure fixe 9 pour évacuer l ' énergie électrique produite lors de la rotation de la plateforme.
On notera que l 'invention qui vient d' être décrite utilise une éo lienne de type VAWT so lidarisée en rotation à une plateforme flottante et dotée de pales utilisées traditionnellement dans des éo liennes de type HAWT ayant une dimension de l'ordre de 75m. Cette installation est capable de produire une énergie électrique de l ' ordre de 5 MW, voire plus .
On notera par ailleurs que le mode de réalisation dans lequel la structure fixe est immergée sous l ' eau, à une profondeur de l ' ordre de moins de 20m, est avantageux dans la mesure où, sinon, les liens utilisés pour raccorder la structure fixe au dispositif de lestage ou de flottaison sont susceptibles de venir heurter la plateforme..
On notera toutefois que l ' invention n' est pas limitée aux modes de réalisation qui ont été décrits . En se référant à la figure 7, sur laquelle les diverses variantes peuvent s ' appliquer tant à la structure en « porte-à-faux » qu' à la structure « croisée », on voit qu' il est possible de prévoir un aileron stabilisateur 30 au sommet du générateur 7 et lié par exemple à l ' arbre 10 de manière à éviter la rotation par rapport au référentiel terrestre de la partie fixe de l 'installation. Cet aileron pourra être secondé ou remplacé par une dérive sous l ' eau (non représentée) .
On notera par ailleurs que l' installation peut être également dotée de moyens permettant de fournir un couple complémentaire aidant au démarrage de l' installation. On pourra, par exemple, placer sur le cylindre rotatif 8 une éo lienne de type « Savonius » et/ou un moteur. En outre, des voilures peuvent également être installées entre la plateforme 2 et le sommet des mâts 3.
On notera par ailleurs que l' installation peut être dotée de moyens pour stocker l ' énergie cinétique engendrée lors de la rotation de la plateforme sous l ' effet des pales P de l ' éolienne .
Selon un premier exemple, on pourra prévoir des dispositifs de lestage, tels que 32 dép laçables le long des bras radiaux et associés à un ou plusieurs contrepoids 33. Ainsi, lors de la rotation de la plateforme, les dispositifs de lestage sont so llicités par la force centrifuge et tendent à s ' éloigner de l ' axe vertical de rotation. A l' inverse, lors du ralentissement ou de l ' arrêt de l' installation, ces lests sont rappelés vers l ' axe central par le (ou les) contrepoids et libèrent l ' énergie cinétique correspondante.
Comme le montre la figure 7, dans la configuration en « porte- à-faux », les dispositifs de lestage, sont avantageusement déplaçables le long des bras de maintien 4.
Selon un second exemple, on pourra prévoir un ensemble de compartiments, tel que 3 1 , au sein de la plateforme 2, ces compartiments 3 1 étant destinés à être emplis d' eau lors de la rotation de la plateforme 2 de manière naturelle du fait de la force centrifuge ou de manière artificielle au moyen de pompes, pour modifier le moment de rotation de la plateforme. Ainsi, l ' énergie éo lienne étant par nature intermittente, il est possible de stocker l ' énergie cinétique en remplissant les réservoirs d' eau et augmenter de la sorte le moment de rotation du flotteur pour, en cas de baisse de vent, diminuer le moment de rotation du flotteur en retirant l ' eau contenue dans les flotteurs .
Les compartiments 3 1 pourront également être remplies dans le but de lester, et ainsi stabiliser, la structure voire de l' immerger totalement pour la protéger dans l ' anticipation d'un cyclone ou d'un typhon. On pourra prévoir un flotteur auxiliaire relié au stator et suffisamment volumineux pour offrir une flottaison dynamique lorsque l ' éo lienne est intégralement immergée et un dispositif de communication et de commande permettant de contrôler l ' éo lienne immergée depuis la surface.
En cas de l 'usage d'un nombre impair de pales, les compartiments diamétralement opposés à chaque pale pourront être lestés pour compenser la prépondérance des forces aérodynamiques lors de la remontée des pales faces au vent et éviter des oscillations de la plateforme lors de sa rotation.
On notera enfin que, comme indiqué précédemment, les pales peuvent être inclinées tangentiellement au périmètre de la plateforme.
On a représenté sur la figure 8 un tel exemple de réalisation.
Comme on le voit sur cette figure, les pales sont ici montées à l ' extrémité des mâts selon une direction essentiellement tangente au périmètre de la plateforme. Un tel mode de réalisation est avantageux en terme aérodynamique en permettant de réduire les effets de traînée engendrés par une pale au vent sur les pales sous le vent.
Bien entendu, un tel mode de réalisation est par ailleurs identique aux modes de réalisation décrits précédemment et comporte également, en particulier, un dispositif de réglage d' angle d' attaque placé à l ' extrémité des bras 3 non soumis à l ' impact des vagues et garantissant le fonctionnement des pales en portance.

Claims

REVENDICATIONS
1 . Installation de transformation de l ' énergie mécanique du vent en énergie électrique, comprenant une plateforme (2), un ensemble de pales (P) à axe vertical liées à la plateforme de manière à entraîner la plateforme en rotation sous l ' effet du vent, et au moins un générateur d' énergie électrique (7) comprenant au moins un rotor (R) lié à la plateforme en rotation et au moins un stator (S) lié à une structure fixe (9), caractérisée en ce qu' elle comporte un ensemble de mâts (3) dressés à partir d 'une zone périphérique de la plateforme, sur lesquels sont respectivement fixées les pales (P), lesdites pales étant chacune associées à un dispositif ( 16) de réglage d' angle d ' attaque.
2. Installation selon la revendication 1 , caractérisée en ce que les mâts (3) sont inclinés vers l ' extérieur de la plateforme (2) et sont retenus à la plateforme en rotation par un ensemble de bras de maintien.
3. Installation selon la revendication 1 , caractérisée en ce que les mâts sont inclinés vers l ' intérieur de la plateforme selon une disposition croisée, lesdits mâts se croisant au voisinage de l ' axe vertical de rotation de la plateforme (2), un dispositif de soutien ( 1 7) so lidarisant les mâts (3) et un moyeu (8) à l ' endroit de leur point de croisement.
4. Installation selon l'une quelconque des revendications 1 à 2 , caractérisée en ce que les mâts (3) à partir desquels les pales s ' étendent, sont inclinés tangentiellement par rapport au périmètre de la plateforme.
5. Installation selon l'une quelconque des revendications 1 à 4 , caractérisée en ce que la plateforme est une plateforme flottante sur l ' eau et est associée à un système d' ancrage ( 1 1 , 12, 13 ) agissant sur la structure fixe.
6. Installation selon la revendication 5 , caractérisée en ce que la plateforme est réalisée sous la forme d'une structure plane dont les dimensions horizontales sont supérieures à sa dimension verticale.
7. Installation selon l'une quelconque des revendications 1 à 6 , caractérisée en ce que la plateforme a une forme torique et présente en coupe transversale une partie inférieure globalement en forme de V.
8. Installation selon la revendication 7, caractérisée en ce que la partie inférieure de la plateforme comporte une étrave annulaire antiroulis (E) .
9. Installation selon l'une quelconque des revendications 1 à 8 , caractérisée en ce que les pales sont des pales d' éoliennes tripales à axe horizontal.
10. Installation selon l'une quelconque des revendications 5 à
9, caractérisée en ce que la structure fixe (9) sur laquelle est disposé ledit stator est montée sur un dispositif d' ancrage comprenant une structure fixe immergée ou émergée, un ensemble de liens rigides ou souples, un dispositif de lestage ou de flottaison agissant sur les liens et un ensemble de chaînes s ' étendant à partir du dispositif de lestage ou de flottaison et dotées d' ancres d' extrémité.
1 1 . Installation selon la revendication 1 0, caractérisée en ce que la structure fixe soutenant le stator est immergée et dispose d 'une flottaison ajustable sur commande.
12. Installation selon l'une quelconque des revendications 1 à
1 1 , caractérisée en ce qu' elle comporte des moyens de stockage de l ' énergie cinétique engendrée lors de la rotation de la plateforme (2) .
13. Installation selon la revendication 12, caractérisée en ce que les moyens de stockage de l ' énergie comportent un ensemble de lests (32) déplaçables le long des bras et reliés à un ou plusieurs contrepoids (33) .
14. Installation selon la revendication 12, caractérisée en ce que la plateforme comporte un ensemble de caissons de lestage destinés à être emplis d' eau lors de la rotation de la plateforme.
15. Installation selon l'une quelconque des revendications 1 à
14, caractérisée en ce qu' elle comporte une éo lienne dite de traînée et/ou un moteur relié à la structure fixe.
16. Installation selon l'une quelconque des revendications 1 à 15 , caractérisée en ce qu' elle comporte un aileron stabilisateur (30) placé sur la structure fixe.
17. Installation selon l'une quelconque des revendications 1 à 16, caractérisée en ce qu ' elle comporte une dérive stabilisatrice placée sous l ' eau, solidaire de la structure fixe.
1 8. Installation selon l'une quelconque des revendications 1 à
17, caractérisée en ce qu' elle comporte des voilures entre la plateforme (2) et le sommet des mâts .
19. Installation selon l'une quelconque des revendications 1 à
1 8 , caractérisée en ce qu' elle comporte au moins un flotteur auxiliaire relié au moyeu (8) .
PCT/EP2012/075334 2011-12-20 2012-12-13 Eolienne à pales montée sur une plateforme rotative WO2013092362A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162023 2011-12-20
FR1162023A FR2984420A1 (fr) 2011-12-20 2011-12-20 Eolienne a pales montee sur une plateforme rotative

Publications (2)

Publication Number Publication Date
WO2013092362A2 true WO2013092362A2 (fr) 2013-06-27
WO2013092362A3 WO2013092362A3 (fr) 2013-10-24

Family

ID=47356052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075334 WO2013092362A2 (fr) 2011-12-20 2012-12-13 Eolienne à pales montée sur une plateforme rotative

Country Status (3)

Country Link
FR (1) FR2984420A1 (fr)
TW (1) TW201326543A (fr)
WO (1) WO2013092362A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095821A1 (fr) * 2014-12-19 2016-06-23 香港科技大学 Génératrice de puissance éolienne à axe vertical
WO2017003355A1 (fr) * 2015-07-02 2017-01-05 Seatwirl Ab Appareil flottant de récolte d'énergie éolienne à maintenance améliorée

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616589B (zh) * 2014-09-04 2018-03-01 Cheng Ting Mobile offshore wind turbine
GB201421296D0 (en) * 2014-12-01 2015-01-14 Mahfoud Gaby Floating wind powered structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010037264A1 (en) 2000-04-26 2001-11-01 Dirk Husemann Payment for network-based commercial transactions using a mobile phone
US7296971B2 (en) 2003-04-28 2007-11-20 Sway As Wind power station
US7397144B1 (en) 2005-06-15 2008-07-08 Florida Turbine Technologies, Inc. Bearing-less floating wind turbine
US7819073B2 (en) 2005-06-06 2010-10-26 Norsk Hydro Asa Floating wind turbine installation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784978A (en) * 1996-02-05 1998-07-28 Saiz; Manuel Munoz Wind energy catchment device
GB0120273D0 (en) * 2001-08-21 2001-10-10 Imp College Innovations Ltd Floating verticle-axis turbine
FR2907517A1 (fr) * 2006-10-20 2008-04-25 Nenuphar Sarl Eolienne a axe de rotation vertical.
NL1035026C2 (nl) * 2008-02-15 2009-08-18 Jan Renger Sytstra Verticale-as-windturbine voor het opwekken van elektrische energie.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010037264A1 (en) 2000-04-26 2001-11-01 Dirk Husemann Payment for network-based commercial transactions using a mobile phone
US7296971B2 (en) 2003-04-28 2007-11-20 Sway As Wind power station
US7819073B2 (en) 2005-06-06 2010-10-26 Norsk Hydro Asa Floating wind turbine installation
US7397144B1 (en) 2005-06-15 2008-07-08 Florida Turbine Technologies, Inc. Bearing-less floating wind turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095821A1 (fr) * 2014-12-19 2016-06-23 香港科技大学 Génératrice de puissance éolienne à axe vertical
WO2017003355A1 (fr) * 2015-07-02 2017-01-05 Seatwirl Ab Appareil flottant de récolte d'énergie éolienne à maintenance améliorée
US10233909B2 (en) 2015-07-02 2019-03-19 Seatwirl Ab Floating wind energy harvesting apparatus with improved maintenance

Also Published As

Publication number Publication date
TW201326543A (zh) 2013-07-01
FR2984420A1 (fr) 2013-06-21
WO2013092362A3 (fr) 2013-10-24

Similar Documents

Publication Publication Date Title
EP1718863B1 (fr) Turbomachine hydraulique
US7397144B1 (en) Bearing-less floating wind turbine
EP1509696B1 (fr) Eolienne placee en eaux profondes
US8120196B1 (en) Wave-powered water wheel type generator
US7893556B1 (en) Vertical axis wind turbine with direct drive generator
EP2986848B1 (fr) Structure d'eolienne flottante
EP2242924B1 (fr) Dispositif pour utiliser l'energie de la houle
US7728453B2 (en) Ocean wave energy converter (OWEC)
US8421263B2 (en) Floating vertical axis wind turbine
JP6955771B2 (ja) フライホイールエネルギー保存装置およびその使用方法
WO2003016714A1 (fr) Turbine flottante a axe vertical
EP3853118B1 (fr) Eolienne flottante à position en lacet pilotable
JP5347048B1 (ja) 水流エネルギーを利用した発電装置
JP2014218958A (ja) 洋上風力発電用浮体構造物
WO2013092362A2 (fr) Eolienne à pales montée sur une plateforme rotative
WO2019201703A1 (fr) Eolienne flottante a turbines jumelles et a axe vertical
WO2019190387A1 (fr) Éolienne flottante à axe vertical dotée d'ensembles périphériques de turbine hydraulique et son procédé de fonctionnement
WO2020109674A1 (fr) Ensemble de production d'energie electrique multi-generatrices pour eoliennes flottantes de grande puissance
KR102326397B1 (ko) 경사형 회전체를 포함하는 조류발전장치 및 이의 설치 방법
JP4482647B2 (ja) 浮体型水力発電装置
WO2023229467A1 (fr) Éolienne et centrale éolienne
GB2618784A (en) Asymmetric floating wind turbine installation
WO2019201705A1 (fr) Eolienne flottante a turbines jumelles a axe vertical et a couplage mecanique
FR3119871A1 (fr) Eolienne marine auto-orientable a deux alternateurs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799572

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12799572

Country of ref document: EP

Kind code of ref document: A2