EP4292117A1 - Dispositif d'alimentation électrique et système à plasma - Google Patents

Dispositif d'alimentation électrique et système à plasma

Info

Publication number
EP4292117A1
EP4292117A1 EP22708821.8A EP22708821A EP4292117A1 EP 4292117 A1 EP4292117 A1 EP 4292117A1 EP 22708821 A EP22708821 A EP 22708821A EP 4292117 A1 EP4292117 A1 EP 4292117A1
Authority
EP
European Patent Office
Prior art keywords
impedance
power supply
supply device
quality index
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22708821.8A
Other languages
German (de)
English (en)
Inventor
Florian Maier
Thomas SPRENGER-LORENZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Huettinger GmbH and Co KG
Original Assignee
Trumpf Huettinger GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Huettinger GmbH and Co KG filed Critical Trumpf Huettinger GmbH and Co KG
Publication of EP4292117A1 publication Critical patent/EP4292117A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Definitions

  • Power supply device for generating an electrical high-frequency power signal for a plasma and a plasma system with such.
  • the invention relates to a power supply device for generating an electrical HF power signal for a plasma, and to a method for operating a power supply device.
  • Impedance matching networks are used to match the impedance of a load to the impedance of a power generator.
  • Impedance matching networks are often used in RF-excited plasma processes. Frequencies are typically 1MHz or above. HF-excited plasma processes are used, for example, for coating (sputtering) and/or etching of substrates, in the production of architectural glass, semiconductors, photovoltaic elements, flat screens, displays, etc. the impe- dances in such processes often change very quickly, which is why the impedance matching should often be adjusted very quickly (within a few milliseconds or less).
  • the electrical power with which such processes are usually supplied is a few 100 W, for example 300 W and more, but not infrequently also a kilowatt or more, often 10 kW and more.
  • the voltage within the impedance matching arrangements is often several 100 V, for example 300 V and more, not infrequently 1000 V and more.
  • the currents in such circuits can be a few amperes, often 10 A and more, sometimes 100 A and more.
  • Implementing impedance matching networks with such voltages and currents has always been a major challenge.
  • the ability to quickly change reactances in such impedance matching networks represents an additional, very high challenge. Examples of such impedance matching networks are, for example, in DE 10 2015 220 847 A1 or in DE 20 2020 103 539 Ul discloses.
  • Impedance matching networks are commonly used to transform the load impedance to 50 ohms.
  • the amount of the mean reflected power is often determined and used as an indicator for the quality of the matching process.
  • the amount of mean reflected power serves as a stability criterion for the plasma.
  • transient and decay processes occur at the beginning and end of each pulse, which lead to reflected power despite a stable plasma process and the best possible adjustment.
  • a power supply device for generating an electrical HF power signal for a plasma, with a power generator and an im- impedance matching arrangement, wherein the power supply device is set up to determine an impedance variable, in particular at the input of the impedance matching arrangement or at the output of the power generator, to determine an impedance-based quality index in a predetermined period of time and, in particular, to issue it for further processing and/or use.
  • An impedance variable can be a complex impedance, a complex reflection factor, absolute value and phase of an impedance or values derived therefrom, for example an admittance or a normalized impedance.
  • the impedance variable at the output of the power generator is detected.
  • the impedance-based quality index is determined over a specified period of time.
  • the specified time period can be selected in such a way that transient and decay processes are not included in the determination of the impedance-based quality index.
  • a meaningful quality index for the fitting process can thus be determined.
  • the impedance-based quality index can be a dimensionless variable.
  • the power supply device can be set up to determine an impedance mean value, in particular a geometric mean value, a geometric center of gravity, arithmetic mean value or median of the measured impedance variables, as an impedance-based quality characteristic.
  • a geometric mean can be determined in a particularly simple manner.
  • the power supply device can be set up to generate a manipulated variable for the impedance matching arrangement in such a way that the quality index assumes a predetermined value.
  • the impedance matching arrangement can thus perform an impedance adjustment based on the quality score.
  • a changeable reactance of the impedance matching arrangement can be set via a manipulated variable in such a way that impedance matching takes place.
  • the impedance matching arrangement cannot be adjusted, it is conceivable to vary the power output by the power generator on the basis of the determined quality index in order to achieve a better quality index and thus better impedance matching. For example, the frequency of the HF power signal can be changed.
  • the power supply device can be set up to determine a weighted reflected power on the basis of the quality index.
  • a weighted reflected power is a quantity that a user can judge and classify because he is used to it.
  • the evaluated reflected power determined also referred to below as the (virtual) reflected power, does not correspond to the actual (measurable) reflected power.
  • the determined evaluated reflected power can also be understood as a quality index.
  • the impedance matching arrangement can have a measuring device that is set up to determine the quality index. This means that the quality index can be determined directly. Alternatively, it is conceivable that the impedance matching arrangement has a controller that is set up to determine the quality index. In particular, the detected impedance variable can be implicitly averaged over a period of time by an integration part of a controller. The controller is used to adjust or regulate the quality index as far as possible to a setpoint.
  • the quality index can be output to the power generator. It is thereby possible that the generator can determine the evaluated (virtual) reflected power with a detected forward power. Especially if a Not converted by the adjustment control algorithm, resulting in high reflected power. The reflected power is therefore usually used as a measure of whether the regulation or adaptation was successful. However, this is not true in the case of transient impedances, particularly at high pulse frequencies. Reflected power also occurs when the control algorithm has achieved the best possible adaptation.
  • the quality index in particular a geometric mean value of the impedance variable, is used according to the invention to calculate a weighted (virtual) reflected power. This can be displayed instead of or in addition to the actual reflected power and thus offers a familiar and known quantity for the user.
  • the quality index can be output as an analog signal, for example. However, it is particularly advantageous if a display device is provided for the output of the ascertained evaluated reflected power.
  • the power generator can be set up to measure a generated (forward) power. This measured generated power can be used to determine the weighted (virtual) reflected power.
  • the specified period of time can be determined in such a way that a maximum energy transfer takes place in the plasma without influencing the determined evaluated (virtual) reflected power.
  • the time period can be shorter than the pulse duration.
  • the time period can be chosen so that the beginning of the pulse is outside the time period.
  • the scope of the invention also includes a method for operating a power supply device for generating an electrical high-frequency (HF) power signal for a plasma, with an impedance variable, in particular at the input of an impedance matching arrangement or at the output of a power generator, an impedance-based quality index being determined is determined over a specified period of time and the impedance-based quality index is output.
  • the impedance-based quality index can be output for further use or processing.
  • the Impedance-based quality index can be output as a digital or analog signal.
  • An impedance mean value in particular a geometric mean value, a geometric center of gravity, an arithmetic mean value or median of the measured impedance variables can be determined as an impedance-based quality characteristic.
  • a manipulated variable for the impedance matching arrangement can be generated in such a way that the quality index assumes a predetermined value.
  • an evaluated (virtual) reflected power can be determined.
  • the evaluated (virtual) reflected power is a power calculated using the quality index in contrast to a measured actual reflected power.
  • the quality index can be determined directly in the measuring device or indirectly by a regulator of the impedance matching arrangement.
  • the quality index can be output to the power generator. Based on the quality index, the (virtual) reflected power can be determined in the power generator. The evaluated reflected power can be output on a display device.
  • the specified period of time can be determined in such a way that a maximum energy transfer into the plasma takes place without influencing the calculated (virtual) reflected power.
  • the scope of the invention also includes a plasma system with a power supply device as described above and a plasma process device, in particular an HF-excited plasma process device, ie a device for carrying out plasma processes.
  • the plasma device is preferably used for coating (sputtering) and/or etching of substrates. she is primarily suitable for use in the production of architectural glass, semiconductors, photovoltaic elements, flat screens or displays.
  • the high frequency of the high frequency power signal can be 1 MHz or higher.
  • the electrical power that is necessary to supply the plasma process and for the supply of which the power supply device is designed can be 300 W and more, in particular 1 kilowatt and more.
  • the plasma process device can be designed for the connection of additional power supplies, of which one or more of the following can be used, for example: HF power supply with the same or different high frequency.
  • additional power supplies of which one or more of the following can be used, for example: HF power supply with the same or different high frequency.
  • FIG. 1 shows a power supply device 1 with a power generator 2 for generating a (pulsed) electrical HF power signal, for example at 60 MHz.
  • the power generator 2 has an output 3 which is connected to an input 5 of an impedance matching arrangement 6 via an HF cable 4 .
  • the impedance matching arrangement 6 is connected to a load 7.
  • the power generator 2 and the impedance matching arrangement 6 are further connected to one another via a signal connection 8 .
  • the load 7 can be a plasma of a plasma process, in particular an HF-excited plasma process, for example for coating (sputtering) and/or etching of substrates, in the production of architectural glass, semiconductors, photovoltaic elements, flat screens, displays.
  • a plasma process in particular an HF-excited plasma process, for example for coating (sputtering) and/or etching of substrates, in the production of architectural glass, semiconductors, photovoltaic elements, flat screens, displays.
  • the impedance matching arrangement 6 is used to match the impedance of the load 7 to the impedance of the power generator 2 at the input 3 .
  • the power generator 2 can be set up to deliver the pulsed HF power to the load 7 . Since the impedance of the load 7, especially when it is a plasma, can change frequently and quickly, there are special requirements for the impedance matching arrangement 6 to match the impedance of the load 7 to the impedance of the power generator 2.
  • a measuring device 10 can be provided in the area of the input 5 of the impedance matching arrangement 6 in order to detect an impedance variable.
  • a measuring device 11 can be provided in the area of the output 3 of the power generator 2 in order to record an impedance variable.
  • the impedance quantity can be a complex impedance, complex reflection factor, magnitude and phase of the impedance, etc.
  • an impedance-based quality index can be determined within a specified period of time, which makes a statement about how good the impedance matching is. This is to be explained with reference to FIG.
  • FIG. 2a shows the trajectory 15 (the progression over time) of the impedance of the load 7 during a high-frequency pulse of the power generator 2. It can be seen that the impedance of the load 7 changes greatly during the pulse.
  • the first section 15a which corresponds to the start of the pulse, is not taken into account for the determination of the quality index, ie it is masked out, as it were. Only the second section 15b of the trajectory 15 is taken into account.
  • a controller 13 of the impedance matching arrangement 6 can be supplied with a manipulated variable in such a way that the quality index 17 is minimized and better matching thus takes place.
  • the quality index 17 can be used to calculate an evaluated (virtual) reflected power.
  • the quality index can be output to the power generator 2 via the signal connection 8, for example, so that an evaluated (virtual) reflected power can be determined there by the determination device 14.
  • FIG. 3 shows a flow chart of a method according to the invention.
  • impedance quantities are measured.
  • an impedance-based quality index is determined from the impedance variable measured over a predetermined period of time.
  • the impedance-based quality index is output so that it can be further processed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

L'invention concerne un dispositif d'alimentation électrique (1) pour générer un signal de puissance haute fréquence électrique pour un plasma, comprenant un générateur d'énergie (2) et un agencement de réglage d'impédance (6) connecté au générateur d'énergie (2), le dispositif d'alimentation électrique (1) étant configuré pour déterminer une grandeur d'impédance, en particulier à l'entrée (5) de l'agencement de réglage d'impédance (6) ou à la sortie (3) du générateur d'énergie (2), et pour déterminer et délivrer en sortie une variable de qualité basée sur l'impédance (17) dans une période prédéfinie.
EP22708821.8A 2021-02-12 2022-02-10 Dispositif d'alimentation électrique et système à plasma Pending EP4292117A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202021100710.9U DE202021100710U1 (de) 2021-02-12 2021-02-12 Leistungsversorgungseinrichtung und Plasmasystem
PCT/EP2022/053242 WO2022171738A1 (fr) 2021-02-12 2022-02-10 Dispositif d'alimentation électrique et système à plasma

Publications (1)

Publication Number Publication Date
EP4292117A1 true EP4292117A1 (fr) 2023-12-20

Family

ID=75268819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22708821.8A Pending EP4292117A1 (fr) 2021-02-12 2022-02-10 Dispositif d'alimentation électrique et système à plasma

Country Status (7)

Country Link
US (1) US20240006155A1 (fr)
EP (1) EP4292117A1 (fr)
JP (1) JP2024509736A (fr)
KR (1) KR20230142615A (fr)
CN (1) CN116848615A (fr)
DE (1) DE202021100710U1 (fr)
WO (1) WO2022171738A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021201937A1 (de) 2021-03-01 2022-09-01 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Impedanzanpassung, Impedanzanpassungsanordnung und Plasmasystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220847A1 (de) 2015-10-26 2017-04-27 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Impedanzanpassung einer Last an die Ausgangsimpedanz eines Leistungsgenerators und Impedanzanpassungsanordnung
DE102018116637A1 (de) * 2018-07-10 2020-01-16 TRUMPF Hüttinger GmbH + Co. KG Leistungsversorgungseinrichtung und Betriebsverfahren hierfür
DE202020103539U1 (de) 2020-06-19 2020-06-29 TRUMPF Hüttinger GmbH + Co. KG Schaltbare-Reaktanz-Einheit, veränderbare Reaktanz, Hochfrequenzgenerator und Impedanzanpassungsanordnung mit einer Schaltbare-Reaktanz- Einheit

Also Published As

Publication number Publication date
CN116848615A (zh) 2023-10-03
KR20230142615A (ko) 2023-10-11
DE202021100710U1 (de) 2021-02-19
JP2024509736A (ja) 2024-03-05
WO2022171738A1 (fr) 2022-08-18
US20240006155A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
EP2306918B1 (fr) Dispositif électro-chirurgical pour traiter un tissu biologique
DE60034321T2 (de) Plasmabearbeitungsverfahren und -reaktor mit regelung der rf-bias-leistung
DE69734706T2 (de) Vorrichtungen zur phasendifferenzsteuerung in einem plasmabehandlungssystem
DE69723649T2 (de) Verfahren und gerät zur steuerung der reaktiven impedanzen eines, zwischen einer rf quelle und einem rf plasmareaktor geschalteten anpassungsschaltkreises
WO2009012966A1 (fr) Procédé d'utilisation d'un dispositif d'alimentation en plasma et dispositif d'alimentation en plasma
DE102004024805A1 (de) Verfahren und Regelanordnung zur Regelung der Ausgangsleistung einer HF-Verstärkeranordnung
EP4292117A1 (fr) Dispositif d'alimentation électrique et système à plasma
DE19757720A1 (de) Verfahren zum Betrieb einer Hochfrequenz-Ablationsvorrichtung und Vorrichtung für die Hochfrequenz-Gewebe-Ablation
EP2372857A1 (fr) Détermination de la partie de courant de fuite d'un courant différentiel
DE102012024560B3 (de) Schaltungsanordnung und Verfahren zur Erzeugung einer Prüfspannung und Prüfgerät zur Ermittlung eines Verlustfaktors, welches die Schaltungsanordnung enthält
DE102011080035A1 (de) Verfahren und Vorrichtung zum Schutz von an einen Hochfrequenzgenerator angeschlossenen passiven Komponenten
EP1693679A1 (fr) Procédé pour la détermination d'un paramètre dans un réseau d'alimentation électrique
DE102007056468A1 (de) Messsignalverarbeitungseinrichtung und Verfahren zur Verarbeitung von zumindest zwei Messsignalen
EP2253944A1 (fr) Dispositif de mesure de force commandée et/ou réglée
DE102010029463A1 (de) Überwachungsverfahren zu einer Überwachung und/oder einem Schutz von Bauteilen, insbesondere einer Hochfrequenzantenne einer Magnetresonanzanlage, sowie einer Überwachungsvorrichtung und einer Magnetresonanzanlage mit einer Überwachungsvorrichtung hierzu
WO2022184713A1 (fr) Procédé d'adaptation d'impédance, agencement d'adaptation d'impédance et système à plasma
WO2020011668A1 (fr) Dispositif d'alimentation en puissance et procédé de fonctionnement associé
EP2202776B1 (fr) Procédé de mesure et dispositif de mesure pour un dispositif d'alimentation en plasma
WO2016041726A1 (fr) Dispositif et procédé permettant de surveiller une grandeur de processus d'un milieu
EP1613939B1 (fr) Systeme et procede pour determiner des temperatures
DE102014011397B4 (de) Verfahren zum Kalibrieren einer elektrochemischen Impedanzspektroskopie-Messvorrichtung und Impedanznormal
DE4200636A1 (de) Vorrichtung zur messung von plasmaparametern in hochfrequenzentladungen
DE102020213441B4 (de) Verfahren zum Testen einer elektronischen Schaltung
DE950565C (de) Verfahren zur Gewinnung der hinsichtlich seiner Ohmschen Komponente richtigen Anpassung eines Widerstandes
EP2104220A1 (fr) Procédé de fonctionnement d'un circuit convertisseur ainsi que dispositif destiné à l'exécution du procédé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)