EP4288575A1 - Alloy, powder, method and component - Google Patents

Alloy, powder, method and component

Info

Publication number
EP4288575A1
EP4288575A1 EP22722464.9A EP22722464A EP4288575A1 EP 4288575 A1 EP4288575 A1 EP 4288575A1 EP 22722464 A EP22722464 A EP 22722464A EP 4288575 A1 EP4288575 A1 EP 4288575A1
Authority
EP
European Patent Office
Prior art keywords
nickel
weight
titanium
cobalt
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22722464.9A
Other languages
German (de)
French (fr)
Inventor
Timo DEPKA
Phillip DRAA
Birgit Grüger
Anna Kapustina
Oliver Lüsebrink
Kirtan PATEL
Raymond G. Snider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP4288575A1 publication Critical patent/EP4288575A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades

Definitions

  • the invention relates to an alloy, a powder, a method for production using the alloy or the powder, and a component made from them.
  • Nickel-based superalloys are known as materials for high-temperature applications such as heat shields in gas turbines in the combustion chamber or for turbine blades in the hot gas path. These super alloys must be resistant to oxidation at high temperatures and have high mechanical strength. In order to increase efficiency, it is advantageous that the weight is kept as low as possible, particularly in the case of rotating components such as turbine blades. It is the object of the invention to solve the above problem. The object is achieved by an alloy according to claim 1, a powder according to claim 2, a method according to claim 3 and a component according to claim 4.
  • the invention uses an improvement in the chemical composition of nickel-based superalloys in terms of improving the specific mechanical properties - by adapting suitable elements, while maintaining crack-free workability and productivity.
  • the invention is described below only by way of example.
  • the function of each element included in the high heat-resistant nickel-based alloy for carrying out the invention described above will now be described.
  • Carbon (C) is added, which, in addition to its function as a deoxidizing element, has other functions of combining with titanium (Ti), niobium (Nb), and tantalum (Ta) to form stable MC-type primary carbides to improve coarsening to suppress formation of austenitic grains during hot deformation and to improve hot lubricity.
  • the desired effect of the carbon (C) is obtained by adding an amount of at least 0.11%, but its addition of more than 0.13% forms the chain structure of the MC-type carbide and causes the generation of hot cracking emanating from this part, reducing tool life. Accordingly, carbon (C) is added in an amount of 0.11% to 0.13% by weight, preferably 0.12% by weight.
  • Chromium (Cr) forms an oxide layer with a highly tight adhesion to the surface during high temperature heating and improves oxidation resistance. In addition, chromium (Cr) can also improve hot workability.
  • the amount of chromium (Cr) ranges above 9.7% by weight but not more than 10.5% by weight, preferably up to 10.0% by weight.
  • Molybdenum (Mo) is an element of the same group as tungsten (W), and therefore replacing part of tungsten (W) with molybdenum (Mo) can provide the same function as that of tungsten (W).
  • molybdenum (Mo) is added in a range of 2.8 wt% to 3.2 wt%, particularly 3.0 wt%. %.
  • Aluminum (Al) is an additive element essential for forming a stable ⁇ ′-phase after an annealing treatment and may be added in an amount of at least 5.0% by weight target. However, adding it in excess of 6.0% by weight causes an increase in the ⁇ ′ phase and reduces the hot deformability. Accordingly, aluminum (Al) is in a range of 5.2% to 5.8% by weight, preferably 5.5% by weight.
  • Hafnium (Hf) reduces the susceptibility to hot cracking during casting and improves ductility, especially in DS materials with transverse columnar grains. In addition, hafnium (Hf) improves oxidation resistance. On the other hand, hafnium (Hf) lowers the melting temperature and, due to its high reactivity, can lead to reactions with the shell mold during casting. Hafnium (Hf) is therefore used with a maximum concentration of 1.5% by weight.
  • a part of titanium (Ti) is combined with carbon (C) to form a stable MC-type primary carbide and has a strength-enhancing function in non- ⁇ ′-hardened alloys.
  • titanium (Ti) The balance of titanium (Ti) is in the ⁇ ′ phase in the solid-solution state, thereby strengthening the ⁇ ′ phase, and serves to improve high-temperature strength. Accordingly, titanium (Ti) must be added in an amount of at least 3.6 wt%, but its excessive addition exceeding 4.0 wt% not only lowers the hot workability but also makes the ⁇ ′ phase unstable and causes decreases in strength after long-term use at high temperatures. Accordingly, titanium (Ti) is also preferably in the range of up to 3.8 wt%. Furthermore, aluminum (Al), tantalum (Ta) and titanium (Ti) also have an important function of improving the resistance to oxidation, especially in the combination of the elements they form stable oxide layer systems.
  • niobium (Nb) and tantalum (Ta) is bonded with carbon (C) to form stable MC-type primary carbides, and they have strengthened performance-enhancing function, especially for alloys that are not ⁇ ′-hardened.
  • Zirconium (Zr) and boron (B) are effective for improving high-temperature strength and ductility by their grain boundary active function, and at least one of them can be added in an appropriate amount to the alloy of the invention. Their effect is maintained with a small additional amount.
  • Nickel (Ni) forms a stable austenitic phase and becomes a matrix for both solid solution and ⁇ ′-phase precipitation. Further, since nickel (Ni) can form a solid solution with a large amount of tungsten (W), an austenitic matrix having high strength at high temperatures is obtained, and hence nickel is the balance of the alloy.
  • Co cobalt
  • Co cobalt
  • Co exists in the austenite of the matrix in the solid solution state, thereby achieving some solid solution strengthening, and also has an effect of improving the tight adhesion of the oxide film. Since cobalt (Co) is in the solid solution state in the Ni matrix and since cobalt (Co) hardly affects the precipitation of ⁇ ′ phase, cobalt (Co) is favorable. However, since cobalt (Co) is an expensive element, its addition in large amounts is not preferred. With these adjustments, the processability for a productive L-PBF process with improved mechanical Properties and increased oxidation resistance guaranteed.
  • the nickel-based alloy therefore has, in particular consisting of (in % by weight): carbon (C): 0.11% - 0.13%, in particular 0.12%, chromium (Cr): 9.7% - 10.5%, especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8%, very especially 11.4%, molybdenum (Mo): 2, 8% - 3.2%, especially 3.0%, titanium (Ti): 3.3% - 4.3%, especially 3.6% - 4.0%, very especially 3.8%, aluminum (Al ): 5.2% - 5.8%, especially 5.5%, Hafnium (Hf): 1.3% - 1.5%, especially 1.4%, Boron (B): 0.013% - 0.014%, Zircon (Zr): 0.015% - 0.03%, in particular 0.018% - 0.022%, in particular 0.02%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0.01%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a nickel-based alloy comprising carbon (C): 0.11% – 0.13% chromium (Cr): 9.7% – 10.5% cobalt (Co): 10.5% – 12.5% molybdenum (Mo): 2.8% – 3.2% titanium (Ti): 3.3% – 4.3% aluminum (Al): 5.2% - 5,.8%, Hafnium (Hf): 1.30% – 1.50%; boron (B): 013% - 014%; zirconium (Zr): 0.015% - 0.03%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0.01%, silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0.02% no rhenium (Re) and/or no ruthenium (Ru), nickel, remaining impurities up to 0.1%.

Description

Beschreibung Legierung, Pulver, Verfahren und Bauteil Die Erfindung betrifft eine Legierung, ein Pulver, ein Ver- fahren zur Herstellung mittels der Legierung oder des Pulvers sowie ein Bauteil daraus. Nickelbasierte Superlegierung sind bekannt als Werkstoffe für Hochtemperaturanwendungen wie bei Gasturbinen für Hitzeschil- de in Brennkammer oder auch für Turbinenschaufeln im Heißgas- pfad. Diese Superlegierungen müssen bei hohen Temperaturen oxidati- onsbeständig sein sowie eine hohe mechanische Festigkeit auf- weisen. Zur Steigerung der Effizienz ist es von Vorteil, dass insbe- sondere bei rotierenden Bauteilen wie Turbinenschaufeln das Gewicht möglichst geringgehalten wird. Es ist Aufgabe der Erfindung oben genanntes Problem zu lösen. Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1, ein Pulver gemäß Anspruch 2, ein Verfahren gemäß Anspruch 3 und ein Bauteil gemäß Anspruch 4. Die Erfindung nutzt eine Verbesserung der chemischen Zusam- mensetzung von nickelbasierten Superlegierungen im Sinne einer Verbesserung der spezifischen mechanischen Eigenschaf- ten durch Anpassung geeigneter Elemente, dabei wird die riss- freie Verarbeitbarkeit und Produktivität beibehalten. Die Erfindung wird im Folgenden nur exemplarisch beschrieben. Es wird nun die Funktion der einzelnen, in der hochhitzebe- ständigen Nickelbasislegierung enthaltenden Elemente zur Aus- führung der oben beschriebenen Erfindung beschrieben werden. Kohlenstoff (C) wird zugesetzt, der, zusätzlich zu seiner Funktion als desoxidierendes Element, weitere Funktionen zur Verbindung mit Titan (Ti), Niob (Nb) und Tantal (Ta) zwecks Bildung stabiler MC-Typ-Primärkarbide hat, um die Vergröbe- rung austenitischer Körner während einer Heißverformung zu unterdrücken und die Heißgleitfähigkeit zu verbessern. Die gewünschte Wirkung des Kohlenstoffs(C) wird erreicht, indem man eine Menge von wenigstens 0,11% zusetzt, doch bildet des- sen Zusatz von mehr als 0,13% das Kettengefüge des MC-Typ- Karbids und verursacht die Entstehung von Warmrissen, die von diesem Teil ausgehen, so dass die Werkzeugstandzeit verrin- gert wird. Demgemäß wird Kohlenstoff (C) in einer Menge von 0,11 Gew.-% bis 0,13 Gew.-%, vorzugsweise 0,12 Gew.-% zugesetzt. Chrom (Cr) bildet eine Oxidschicht mit einer hochgradig engen Haftung an der Oberfläche während einer Erhitzung auf hohe Temperaturen und verbessert die Oxidationsbeständigkeit. Zu- sätzlich kann Chrom (Cr) auch die Warmumformbarkeit verbes- sern. Diese Wirkung erfordert seinen Zusatz in einer Menge über 9,0 Gew.-%, doch dessen 11,0 Gew.-% überschreitender, übermäßiger Zusatz verursacht die Ausscheidung einer α-Phase, was von einer Verringerung der Duktilität begleitet wird. Demgemäß liegt die Menge an Chrom (Cr) in einem Bereich über 9,7 Gew.-%, jedoch nicht mehr als 10,5 Gew.-%, vorzugsweise bis 10,0 Gew.-%. Molybdän (Mo) ist ein Element der gleichen Gruppe wie Wolfram (W) und daher kann der Ersatz eines Teils von Wolfram (W) durch Molybdän (Mo) die gleiche Funktion wie die von Wolfram (W) vorsehen. Da jedoch seine Wirkung geringer ist als die von Wolfram (W), setzt man Molybdän (Mo) in einem Bereich von 2,8% Gew.-% bis 3,2 Gew.-% zu, insbesondere 3,0% Gew.-%. Aluminium (Al) ist ein Zusatzelement, das zur Bildung einer stabilen γ′-Phase nach einer Anlassbehandlung wesentlich ist und in einer Menge von wenigstens 5,0 Gew.-% zugesetzt werden soll. Dessen 6,0 Gew.-% übersteigender Zusatz verursacht je- doch eine Steigerung der γ′-Phase und senkt die Heißverform- barkeit. Demgemäß liegt Aluminium (Al) in einem Bereich von 5,2 Gew.-% bis 5,8 Gew.-%, vorzugsweise 5,5 Gew.-%. Hafnium (Hf) verringert die Heißrissanfälligkeit beim Gießen und verbessert die Duktilität, insbesondere bei DS Werkstof- fen mit Stängelkörnern in Querrichtung. Außerdem verbessert Hafnium (Hf) die Oxidationsbeständigkeit. Auf der anderen Seite erniedrigt Hafnium (Hf) die Anschmelztemperatur und kann aufgrund seiner hohen Reaktivität zu Reaktionen mit der Formschale beim Gießen führen. Hafnium (Hf) wird daher mit einer Konzentration bis max. 1,5 Gew.-% eingesetzt. Ein Teil des Titans (Ti) wird mit Kohlenstoff (C) zur Bildung eines stabilen MC-Typ-Primärkarbids verbunden und hat eine festigkeitserhöhende Funktion bei nicht γ′-gehärteten Legie- rungen. Der Rest von Titan (Ti) liegt in der γ′-Phase im Festlösungs- zustand vor, wodurch die γ′-Phase verfestigt wird, und dient zur Verbesserung der Hochtemperaturfestigkeit. Demgemäß muss Titan (Ti) in einer Menge von wenigstens 3,6 Gew.-% zugesetzt werden, doch dessen übermäßiger 4,0 Gew.-% übersteigender Zu- satz senkt nicht nur die Heißverformbarkeit, sondern macht auch die γ′-Phase instabil und verursacht Verringerungen der Festigkeit nach langzeitiger Verwendung bei hohen Temperatu- ren. Demgemäß liegt Titan (Ti) vorzugsweise auch im Bereich bis 3,8 Gew.-%. Weiter haben Aluminium (Al), Tantal (Ta) und Titan (Ti) auch eine wichtige Funktion der Verbesserung der Oxidationsbestän- digkeit, vor allem in der Kombination der Elemente bilden sie stabile Oxidschichtsysteme. Gleichartig wie Titan (Ti) wird ein Teil von sowohl Niob (Nb) als auch Tantal (Ta) mit Kohlenstoff (C) unter Bildung stabi- ler MC-Typ-Primärkarbide verbunden, und sie haben festig- keitssteigernde Funktion, vor allem für nicht γ′-gehärtete Legierungen. Zirkon (Zr) und Bor (B) sind zur Verbesserung der Hochtempe- raturfestigkeit und Duktilität durch ihre korngrenzenaktive Funktion wirksam, und wenigstens eines von ihnen kann der Legierung der Erfindung in einer passenden Menge zugesetzt werden. Ihre Wirkung wird bei einer geringen Zusatzmenge er- halten. Zirkon- (Zr) und Bor- (B)-Mengen von mehr als 0,03 Gew.-% bzw. 0,014 Gew.-% senken den Solidustemperatur beim Erhitzen, wodurch die Heißverformbarkeit verschlechtert wird. Demgemäß sind die oberen Grenzen von Zirkon (Zr) und Bor (B) 0,03 Gew.-% bzw. 0,014 Gew.-%. Nickel (Ni) bildet eine stabile austenitische Phase und wird eine Matrix für sowohl die feste Lösung als auch die Aus- scheidung der γ′-Phase. Weiter wird, da Nickel (Ni) eine fes- te Lösung mit einer großen Menge von Wolfram (W) bilden kann, eine austenitische Matrix mit einer hohen Festigkeit bei hohen Temperaturen erhalten, und daher ist Nickel der Rest der Legierung. Abgesehen von den oben beschriebenen Elementen können bis zu 12,5 Gew.-% Kobalt (Co) der Legierung der Erfindung zugesetzt werden. Kobalt (Co) existiert im Austenit der Matrix im Festlösungs- zustand, wodurch eine gewisse Mischkristallverfestigung er- reicht wird, und hat auch eine Wirkung zur Verbesserung der engen Haftung des Oxidfilms. Da Kobalt (Co) in der Ni-Matrix im Festlösungszustand vorliegt und da Kobalt (Co) die Aus- scheidung der γ′-Phase kaum beeinträchtigt, ist Kobalt (Co) günstig. Da Kobalt (Co) jedoch ein teures Element ist, wird dessen Zusatz in großen Mengen nicht bevorzugt. Mit diesen Anpassungen wird die Verarbeitbarkeit für einen produktiven L-PBF-Prozess mit verbesserten mechanischen Eigenschaften und gesteigerter Oxidationsbeständigkeit ge- währleistet. Die nickelbasierte Legierung weist daher erfindungsgemäß auf, insbesondere bestehend aus (in Gew.-%): Kohlenstoff (C): 0,11% – 0,13%, insbesondere 0,12%, Chrom (Cr): 9,7% – 10,5%, insbesondere 10,0%, Kobalt (Co): 10,5% - 12,5%, insbesondere 11,0% bis 11,8% ganz insbesondere 11,4%, Molybdän (Mo): 2,8% – 3,2%, insbesondere 3,0%, Titan (Ti): 3,3% – 4,3%, insbesondere 3,6% – 4,0%, ganz insbesondere 3,8%, Aluminium (Al): 5,2% – 5,8%, insbesondere 5,5%, Hafnium (Hf): 1,3% - 1,5%, insbesondere 1,4%, Bor (B): 0,013% – 0,014%, Zirkon (Zr): 0,015% – 0,03%, insbesondere 0,018% - 0,022% ganz insbesondere 0,02%, Tantal (Ta): bis zu 0,05%, Niob (Nb): bis zu 0,01%, Silizium (Si): bis zu 0,01%, Wolfram (W): bis zu 0,02%, Vanadium (V): bis 0,02%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel, insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. Das Bauteil ist vorzugsweise eine Komponente einer Turbine, insbesondere einer Gasturbine und dort insbesondere im „hei- ßen“ Bereich. Beispiele (EX1, EX2, EX3) für Nickelbasislegierung auf Grund- lage dieser Idee sind in folgender Tabelle aufgelistet. Description of alloy, powder, method and component The invention relates to an alloy, a powder, a method for production using the alloy or the powder, and a component made from them. Nickel-based superalloys are known as materials for high-temperature applications such as heat shields in gas turbines in the combustion chamber or for turbine blades in the hot gas path. These super alloys must be resistant to oxidation at high temperatures and have high mechanical strength. In order to increase efficiency, it is advantageous that the weight is kept as low as possible, particularly in the case of rotating components such as turbine blades. It is the object of the invention to solve the above problem. The object is achieved by an alloy according to claim 1, a powder according to claim 2, a method according to claim 3 and a component according to claim 4. The invention uses an improvement in the chemical composition of nickel-based superalloys in terms of improving the specific mechanical properties - by adapting suitable elements, while maintaining crack-free workability and productivity. The invention is described below only by way of example. The function of each element included in the high heat-resistant nickel-based alloy for carrying out the invention described above will now be described. Carbon (C) is added, which, in addition to its function as a deoxidizing element, has other functions of combining with titanium (Ti), niobium (Nb), and tantalum (Ta) to form stable MC-type primary carbides to improve coarsening to suppress formation of austenitic grains during hot deformation and to improve hot lubricity. The desired effect of the carbon (C) is obtained by adding an amount of at least 0.11%, but its addition of more than 0.13% forms the chain structure of the MC-type carbide and causes the generation of hot cracking emanating from this part, reducing tool life. Accordingly, carbon (C) is added in an amount of 0.11% to 0.13% by weight, preferably 0.12% by weight. Chromium (Cr) forms an oxide layer with a highly tight adhesion to the surface during high temperature heating and improves oxidation resistance. In addition, chromium (Cr) can also improve hot workability. This effect necessitates its addition in an amount exceeding 9.0 wt%, but its excessive addition exceeding 11.0 wt% causes precipitation of an α-phase accompanied by a reduction in ductility. Accordingly, the amount of chromium (Cr) ranges above 9.7% by weight but not more than 10.5% by weight, preferably up to 10.0% by weight. Molybdenum (Mo) is an element of the same group as tungsten (W), and therefore replacing part of tungsten (W) with molybdenum (Mo) can provide the same function as that of tungsten (W). However, since its effect is lower than that of tungsten (W), molybdenum (Mo) is added in a range of 2.8 wt% to 3.2 wt%, particularly 3.0 wt%. %. Aluminum (Al) is an additive element essential for forming a stable γ′-phase after an annealing treatment and may be added in an amount of at least 5.0% by weight target. However, adding it in excess of 6.0% by weight causes an increase in the γ′ phase and reduces the hot deformability. Accordingly, aluminum (Al) is in a range of 5.2% to 5.8% by weight, preferably 5.5% by weight. Hafnium (Hf) reduces the susceptibility to hot cracking during casting and improves ductility, especially in DS materials with transverse columnar grains. In addition, hafnium (Hf) improves oxidation resistance. On the other hand, hafnium (Hf) lowers the melting temperature and, due to its high reactivity, can lead to reactions with the shell mold during casting. Hafnium (Hf) is therefore used with a maximum concentration of 1.5% by weight. A part of titanium (Ti) is combined with carbon (C) to form a stable MC-type primary carbide and has a strength-enhancing function in non-γ′-hardened alloys. The balance of titanium (Ti) is in the γ′ phase in the solid-solution state, thereby strengthening the γ′ phase, and serves to improve high-temperature strength. Accordingly, titanium (Ti) must be added in an amount of at least 3.6 wt%, but its excessive addition exceeding 4.0 wt% not only lowers the hot workability but also makes the γ′ phase unstable and causes decreases in strength after long-term use at high temperatures. Accordingly, titanium (Ti) is also preferably in the range of up to 3.8 wt%. Furthermore, aluminum (Al), tantalum (Ta) and titanium (Ti) also have an important function of improving the resistance to oxidation, especially in the combination of the elements they form stable oxide layer systems. Similar to titanium (Ti), a part of both niobium (Nb) and tantalum (Ta) is bonded with carbon (C) to form stable MC-type primary carbides, and they have strengthened performance-enhancing function, especially for alloys that are not γ′-hardened. Zirconium (Zr) and boron (B) are effective for improving high-temperature strength and ductility by their grain boundary active function, and at least one of them can be added in an appropriate amount to the alloy of the invention. Their effect is maintained with a small additional amount. Amounts of zirconium (Zr) and boron (B) in excess of 0.03 wt% and 0.014 wt%, respectively, lower the solidus temperature upon heating, thereby deteriorating hot workability. Accordingly, the upper limits of zirconium (Zr) and boron (B) are 0.03 wt% and 0.014 wt%, respectively. Nickel (Ni) forms a stable austenitic phase and becomes a matrix for both solid solution and γ′-phase precipitation. Further, since nickel (Ni) can form a solid solution with a large amount of tungsten (W), an austenitic matrix having high strength at high temperatures is obtained, and hence nickel is the balance of the alloy. Apart from the elements described above, up to 12.5% by weight of cobalt (Co) can be added to the alloy of the invention. Cobalt (Co) exists in the austenite of the matrix in the solid solution state, thereby achieving some solid solution strengthening, and also has an effect of improving the tight adhesion of the oxide film. Since cobalt (Co) is in the solid solution state in the Ni matrix and since cobalt (Co) hardly affects the precipitation of γ′ phase, cobalt (Co) is favorable. However, since cobalt (Co) is an expensive element, its addition in large amounts is not preferred. With these adjustments, the processability for a productive L-PBF process with improved mechanical Properties and increased oxidation resistance guaranteed. According to the invention, the nickel-based alloy therefore has, in particular consisting of (in % by weight): carbon (C): 0.11% - 0.13%, in particular 0.12%, chromium (Cr): 9.7% - 10.5%, especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8%, very especially 11.4%, molybdenum (Mo): 2, 8% - 3.2%, especially 3.0%, titanium (Ti): 3.3% - 4.3%, especially 3.6% - 4.0%, very especially 3.8%, aluminum (Al ): 5.2% - 5.8%, especially 5.5%, Hafnium (Hf): 1.3% - 1.5%, especially 1.4%, Boron (B): 0.013% - 0.014%, Zircon (Zr): 0.015% - 0.03%, in particular 0.018% - 0.022%, in particular 0.02%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0.01%, Silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0.02%, no rhenium (Re) and/or no ruthenium (Ru), nickel , in particular remainder nickel (Ni) residual impurities up to 0.1%. The component is preferably a component of a turbine, in particular a gas turbine and there in particular in the “hot” area. Examples (EX1, EX2, EX3) of nickel-based alloys based on this idea are listed in the table below.

Claims

Patentansprüche 1. Nickelbasierte Legierung, aufweisend (in Gew.-%): Kohlenstoff (C): 0,11% – 0,13%, insbesondere 0,12%, Chrom (Cr): 9,7% – 10,5%, insbesondere 10,0%, Kobalt (Co): 10,5% - 12,5%, insbesondere 11,0% bis 11,8% ganz insbesondere 11,4%, Molybdän (Mo): 2,8% – 3,2%, insbesondere 3,0%, Titan (Ti): 3,3% – 4,3%, insbesondere 3,6% – 4,0%, ganz insbesondere 3,8%, Aluminium (Al): 5,2% – 5,8%, insbesondere 5,5%, Hafnium (Hf): 1,30% - 1,50%, insbesondere 1,40%, Bor (B): 0,013% – 0,014%, insbesondere 0,014%, Zirkon (Zr): 0,015% – 0,03%, insbesondere 0,018% - 0,022% ganz insbesondere 0,02%, Tantal (Ta): bis zu 0,05%, Niob (Nb): bis zu 0,01%, Silizium (Si): bis zu 0,01%, Wolfram (W): bis zu 0,02%, Vanadium (V): bis 0,02%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel, insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. Claims 1. Nickel-based alloy comprising (in % by weight): carbon (C): 0.11% - 0.13%, in particular 0.12%, chromium (Cr): 9.7% - 10.5% , especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8%, most especially 11.4%, molybdenum (Mo): 2.8% - 3 .2%, especially 3.0%, titanium (Ti): 3.3% - 4.3%, especially 3.6% - 4.0%, very especially 3.8%, aluminum (Al): 5, 2% - 5.8%, especially 5.5%, Hafnium (Hf): 1.30% - 1.50%, especially 1.40%, Boron (B): 0.013% - 0.014%, especially 0.014%, Zircon (Zr): 0.015% - 0.03%, in particular 0.018% - 0.022%, in particular 0.02%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0.01%, Silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0.02%, no rhenium (Re) and/or no ruthenium (Ru), nickel , in particular remainder nickel (Ni) residual impurities up to 0.1%.
2. Pulver, aufweisend eine nickelbasierte Legierung, welche enthält (in Gew.-%): Kohlenstoff (C): 0,11% – 0,13%, insbesondere 0,12%, Chrom (Cr): 9,7% – 10,5%, insbesondere 10,0%, Kobalt (Co): 10,5% - 12,5%, insbesondere 11,0% bis 11,8% ganz insbesondere 11,4%, Molybdän (Mo): 2,8% – 3,2%, insbesondere 3,0%, Titan (Ti): 3,3% – 4,3%, insbesondere 3,6% – 4,0%, ganz insbesondere 3,8%, Aluminium (Al): 5,2% – 5,8%, insbesondere 5,5%, Hafnium (Hf): 1,30% - 1,50%, insbesondere 1,4%, Bor (B): 0,013% – 0,014%, insbesondere 0,014%, Zirkon (Zr): 0,015% – 0,03%, insbesondere 0,018% - 0,022% ganz insbesondere 0,02%, Tantal (Ta): bis zu 0,05%, Niob (Nb): bis zu 0,01%, Silizium (Si): bis zu 0,01%, Wolfram (W): bis zu 0,02%, Vanadium (V): bis 0,02%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel, insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%, optional Binder oder Refraktärpartikel. 2. Powder comprising a nickel-based alloy containing (in % by weight): carbon (C): 0.11% - 0.13%, in particular 0.12%, chromium (Cr): 9.7% - 10.5%, especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8%, very especially 11.4%, molybdenum (Mo): 2, 8% - 3.2%, especially 3.0%, titanium (Ti): 3.3% - 4.3%, especially 3.6% - 4.0%, very especially 3.8%, aluminum (Al ): 5.2% - 5.8%, especially 5.5%, Hafnium (Hf): 1.30% - 1.50%, especially 1.4%, Boron (B): 0.013% - 0.014%, especially 0.014%, zircon (Zr): 0.015% - 0.03%, especially 0.018% - 0.022%, very especially 0.02%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0 .01%, silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0.02%, no rhenium (Re) and/or no ruthenium ( Ru), nickel, in particular remainder nickel (Ni) residual impurities up to 0.1%, optional binder or refractory particles.
3. Verfahren, bei dem eine Legierung auf Nickelbasis verwendet wird, insbesondere für ein Gußverfahren oder ein Pulverbettverfahren, die zusammengesetzt ist aus (in Gew.-%): Kohlenstoff (C): 0,11% – 0,13%, insbesondere 0,12%, Chrom (Cr): 9,7% – 10,5%, insbesondere 10,0%, Kobalt (Co): 10,5% - 12,5%, insbesondere 11,0% bis 11,8% ganz insbesondere 11,4%, Molybdän (Mo): 2,8% – 3,2%, insbesondere 3,0%, Titan (Ti): 3,3% – 4,3%, insbesondere 3,6% – 4,0%, ganz insbesondere 3,8%, Aluminium (Al): 5,2% – 5,8%, insbesondere 5,5%, Hafnium (Hf): 1,30% - 1,50%, insbesondere 1,4%, Bor (B): 0,013% – 0,014%, insbesondere 0,014%, Zirkon (Zr): 0,015% – 0,03%, insbesondere 0,018% - 0,022% ganz insbesondere 0,02%, Tantal (Ta): bis zu 0,05%, Niob (Nb): bis zu 0,01%, Silizium (Si): bis zu 0,01%, Wolfram (W): bis zu 0,02%, Vanadium (V): bis 0,02%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel, insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. 3. Process in which a nickel-based alloy is used, in particular for a casting process or a powder bed process, which is composed of (in % by weight): Carbon (C): 0.11% - 0.13%, in particular 0 .12%, chromium (Cr): 9.7% - 10.5%, especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8% most particularly 11.4%, molybdenum (Mo): 2.8% - 3.2%, particularly 3.0%, titanium (Ti): 3.3% - 4.3%, particularly 3.6% - 4 .0%, especially 3.8%, aluminum (Al): 5.2% - 5.8%, especially 5.5%, hafnium (Hf): 1.30% - 1.50%, especially 1, 4%, boron (B): 0.013% - 0.014%, especially 0.014%, zirconium (Zr): 0.015% - 0.03%, especially 0.018% - 0.022%, especially 0.02%, tantalum (Ta): bis to 0.05%, niobium (Nb): up to 0.01%, silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0, 02%, no rhenium (Re) and/or no ruthenium (Ru), nickel, in particular remainder nickel (Ni) residual impurities up to 0.1%.
4. Bauteil, insbesondere aufweisend ein Substrat, aufweisend eine nickelbasierte Legierung, die zusammengesetzt ist aus (in Gew.-%): Kohlenstoff (C): 0,11% – 0,13%, insbesondere 0,12%, Chrom (Cr): 9,7% – 10,5%, insbesondere 10,0%, Kobalt (Co): 10,5% - 12,5%, insbesondere 11,0% bis 11,8% ganz insbesondere 11,4%, Molybdän (Mo): 2,8% – 3,2%, insbesondere 3,0%, Titan (Ti): 3,3% – 4,3%, insbesondere 3,6% – 4,0%, ganz insbesondere 3,8%, Aluminium (Al): 5,2% – 5,8%, insbesondere 5,5%, Hafnium (Hf): 1,30% - 1,50%, insbesondere 1,4%, Bor (B): 0,013% – 0,014%, insbesondere 0,014%, Zirkon (Zr): 0,015% – 0,03%, insbesondere 0,018% - 0,022% ganz insbesondere 0,02%, Tantal (Ta): bis zu 0,05%, Niob (Nb): bis zu 0,01%, Silizium (Si): bis zu 0,01%, Wolfram (W): bis zu 0,02%, Vanadium (V): bis 0,02%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel, insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. 4. Component, in particular having a substrate, having a nickel-based alloy composed of (in % by weight): carbon (C): 0.11% - 0.13%, in particular 0.12%, chromium (Cr ): 9.7% - 10.5%, especially 10.0%, cobalt (Co): 10.5% - 12.5%, especially 11.0% to 11.8%, especially 11.4%, Molybdenum (Mo): 2.8% - 3.2%, especially 3.0%, Titanium (Ti): 3.3% - 4.3%, especially 3.6% - 4.0%, very especially 3 .8%, Aluminum (Al): 5.2% - 5.8%, especially 5.5%, Hafnium (Hf): 1.30% - 1.50%, especially 1.4%, Boron (B) : 0.013% - 0.014%, especially 0.014%, zirconium (Zr): 0.015% - 0.03%, especially 0.018% - 0.022%, especially 0.02%, tantalum (Ta): up to 0.05%, niobium (Nb): up to 0.01%, silicon (Si): up to 0.01%, tungsten (W): up to 0.02%, vanadium (V): up to 0.02%, no rhenium (Re ) and/or no ruthenium (Ru), nickel, in particular remainder nickel (Ni) residual impurities up to 0.1%.
EP22722464.9A 2021-05-11 2022-04-12 Alloy, powder, method and component Pending EP4288575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021204745.9A DE102021204745A1 (en) 2021-05-11 2021-05-11 Alloy, powder, process and component
PCT/EP2022/059721 WO2022238073A1 (en) 2021-05-11 2022-04-12 Alloy, powder, method and component

Publications (1)

Publication Number Publication Date
EP4288575A1 true EP4288575A1 (en) 2023-12-13

Family

ID=81598077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22722464.9A Pending EP4288575A1 (en) 2021-05-11 2022-04-12 Alloy, powder, method and component

Country Status (5)

Country Link
EP (1) EP4288575A1 (en)
KR (1) KR20240006628A (en)
CN (1) CN117321230A (en)
DE (1) DE102021204745A1 (en)
WO (1) WO2022238073A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153845A (en) * 1984-02-07 1985-08-29 Inco Alloys Products Limited Production of superalloy sheet
KR102443966B1 (en) * 2018-11-30 2022-09-19 미츠비시 파워 가부시키가이샤 Ni-based alloy softened powder and manufacturing method of the softened powder

Also Published As

Publication number Publication date
KR20240006628A (en) 2024-01-15
DE102021204745A1 (en) 2022-11-17
WO2022238073A1 (en) 2022-11-17
CN117321230A (en) 2023-12-29

Similar Documents

Publication Publication Date Title
DE602006000160T2 (en) Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
EP3175008B1 (en) Cobalt based alloy
DE102010037046A1 (en) Nickel base superalloys and articles
DE3023576A1 (en) HEAT-TREATED SINGLE-CRYSTAL SUPER ALLOY ITEM AND METHOD FOR PRODUCING THE SAME
DE2445462B2 (en) Use of a nickel alloy
DE3000913A1 (en) NICKEL-BASED HARD ALLOY
DE2817321A1 (en) CORROSION-RESISTANT NICKEL-BASED SUPER ALLOY, COMPOSITE BUCKET MADE FROM THEREFORE, AND METHOD FOR PROTECTING GAS TURBINE BLADE TIPS WITH SUCH ALLOY
EP3512974B1 (en) Superalloy without titanium, powder, method and component
EP2196550B1 (en) High temperature and oxidation resistant material on the basis of NiAl
DE2534786A1 (en) NICKEL-CHROME-TUNGSTEN ALLOYS
DE2420362C3 (en) Use of a solid solution hardened alloy
DE1922314A1 (en) Process for tempering alloys
DE2010055B2 (en) Process for producing a material with high creep rupture strength and toughness
DE69205092T2 (en) Cast alloy based on nickel.
WO2022167363A1 (en) Alloy, in particular for additive manufacturing, powder, method and product
EP3133178B1 (en) Optimized nickel based superalloy
WO2020156779A1 (en) Nickel-based alloy for high-temperature applications, and method
WO2019233692A1 (en) Y, y' hardened cobalt-nickel base alloy, powder, component, and method
EP4288575A1 (en) Alloy, powder, method and component
EP2788518B1 (en) Rhenium free or low rhenium nickel base superalloy
WO2022238072A1 (en) Alloy, powder, method and component
DE102021203258A1 (en) Alloy, powder, process and component
WO2019233693A1 (en) Y, y' hardened cobalt-nickel base alloy, powder, component, and method
EP4244399A1 (en) Alloy, powder, method and component
DE102021213329A1 (en) Cobalt-based alloy with a high aluminum content, powder, process and components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR