EP4283043A1 - Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung - Google Patents

Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung Download PDF

Info

Publication number
EP4283043A1
EP4283043A1 EP22175359.3A EP22175359A EP4283043A1 EP 4283043 A1 EP4283043 A1 EP 4283043A1 EP 22175359 A EP22175359 A EP 22175359A EP 4283043 A1 EP4283043 A1 EP 4283043A1
Authority
EP
European Patent Office
Prior art keywords
screed
insulating
insulating device
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22175359.3A
Other languages
English (en)
French (fr)
Inventor
Johannes PONTIUS
Bernhard Erdtmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP22175359.3A priority Critical patent/EP4283043A1/de
Priority to JP2023082151A priority patent/JP2023174569A/ja
Priority to BR102023009996-3A priority patent/BR102023009996A2/pt
Priority to CN202321269332.0U priority patent/CN220364830U/zh
Priority to CN202310590296.6A priority patent/CN117127464A/zh
Priority to US18/201,840 priority patent/US20230383482A1/en
Publication of EP4283043A1 publication Critical patent/EP4283043A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/42Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/10Heated screeds

Definitions

  • the present invention relates to an insulating device for connection to a screed for a paver according to claim 1 and a combination of a screed and an insulating device according to claim 11.
  • Installation screeds are well known from the prior art. These can be connected to a road paver and fed with material to be spread for the road surface via a goods bunker. The screed can further heat the material and distribute and press it onto the road to be manufactured according to the working width of the screed.
  • the screed In order to be able to start operating a screed, it usually first has to be preheated in order to be brought to the necessary working temperature in order to deliver the material to be spread onto the road reliably and at the correct temperature.
  • the screed has a large surface area, so that due to heat-conducting material as part of the screed, heat can flow from the screed and in particular the heating device of the screed into the environment, which results in delayed or at least energetically inefficient heating of the screed can lead to the working temperature.
  • the technical problem to be solved is to enable a more energetically efficient and/or less time-consuming heating of a paving screed for a paver.
  • the insulating device according to the invention for use with a paving screed for a paver comprises at least one insulating element and a connecting element for releasably connecting to a paving screed, the insulating element being designed to provide a reduced release of heat from a paving screed through the insulating device in the state of the insulating device connected to a paving screed To effect insulating element through.
  • the connected state of the insulating device with the screed is to be understood here as a state in which the insulating device is releasably connected to the screed by means of the connecting element, so that at least the insulating element fulfills its intended function, namely the release of heat from the screed through the To reduce the insulation element can be carried out.
  • This can also be understood as the “correct” positioning of the insulation device or at least the insulation element relative to the screed.
  • the insulating elements are preferably attached to the screed from the outside by means of a releasable connection, so that they can at least partially cover the outer surface of the screed.
  • a releasable connection is to be understood as a connection that can be made and released without destroying material.
  • the connecting element is preferably designed as a connecting element which can establish a releasable connection with a corresponding connecting element of a screed by producing a frictional connection or force connection.
  • the connecting element can be designed as a plug or clip that can be brought into engagement with a corresponding element of a screed.
  • the insulating element is arranged relative to the screed in the connected state of the insulating device and the screed in such a way that the amount of heat given off by the screed can be reduced by the insulating element, at least when the screed is warmed up to an operating temperature or working temperature.
  • the insulation device can be detached from the screed in order to start operating the screed.
  • the insulating device remains connected to the screed, for example to reduce the release of heat to the environment even during operation.
  • the insulating device and/or at least one insulating element which can be positioned on or in the area of the underside or standing side of the screed, has a high coefficient of static friction and/or a high coefficient of sliding friction.
  • the coefficient of static friction and/or coefficient of sliding friction of the insulating element can preferably be greater than the corresponding coefficient of the screed.
  • the insulating element can consist of a material with such a coefficient of static friction and/or coefficient of sliding friction or can comprise an outer coating made of such a material on a surface facing away from the screed in the state connected to the screed. In addition to the improved warm-up, this allows a secure positioning of the screed to be achieved in a structurally simple manner. In particular, this anti-slip property of the insulating element or the insulating device can be used advantageously, for example, to safely position the screed during transport by truck.
  • the insulating element optionally comprises an insulating material on a surface that points in the direction of the installation screed or faces away from the installation screed when the insulating device is connected to the installation screed.
  • the insulating material can either be integrated into the insulating element itself or can be arranged on the surface pointing in the direction of the screed or away from it, so that the heat conduction through the insulating element is reduced compared to the heat conduction in the environment without the insulating element.
  • the insulating element can be designed as a "blanket” or "mat”, which preferably has a surface facing the screed when the insulating device is connected and a surface facing away from it, which together accounts for at least 80% or at least 90% of the total surface of the insulating element turn off. Due to the large surface parallel to the surface of the screed, the amount of heat emitted by the screed into the environment can be efficiently reduced.
  • the insulating material can include or consist of one of rubber, polyurethane, composite foam. These materials have a low thermal conductivity coefficient, so that the insulation of the screed is as efficient as possible.
  • the embodiments described here are not to be understood as limiting. Any material or combination of materials can be used for the insulating material that has a thermal conductivity coefficient that is as reduced as possible compared to the material of the screed.
  • the insulation device comprises an active heating element for heating a screed in the state of the insulation device connected to the screed.
  • An active heating element is to be understood as an element that, when energy (e.g. electricity) is supplied, essentially (preferably at least 90%) converts this energy into heat and can release this heat.
  • the insulation device can also contribute to heating the screed, which can achieve the desired working temperature more quickly. Although energy is required for this, the time required to reach the working temperature is reduced, so that the operation of the screed can be made more efficient.
  • the active heating element is integrated into the insulation element or is arranged on a side of the insulation element that faces the installation screed when the insulation device is connected to an installation screed.
  • the active heating element comprises an electrical heating element and the insulation device comprises an accumulator which is connected or can be connected to the active heating element in order to apply current to the active heating element.
  • the insulation device requires little maintenance and can be used in a variety of ways, which makes it easy to use, even by individual construction workers.
  • the insulating element can reduce the release of heat from a screed through the insulating element by at least 25% or at least 50% or at least 75%. This reduction is relative to the release of heat Installation screed into the environment without any insulation element. At least in the area of the insulating element, this effectively reduces heat loss during heating of the screed.
  • the connecting element is designed as part of a safety system for enabling a heating process of the screed only when the screed is connected to the insulation device.
  • the connecting element can, for example, perform a dual function in that, on the one hand, it serves to correctly position and/or connect the insulating device to the screed and, on the other hand, it establishes, for example, an electrical contact, which can, for example, send a signal to a control unit of the screed that the connection is made was produced.
  • the control unit can then enable heating of the screed.
  • the commissioning of the screed and in particular the start of the heating process can only take place if the insulation device is correctly connected to the screed. This makes it possible to avoid unintentional heating of the screed without the insulation device and thus energy-inefficient heating of the screed.
  • the insulating device comprises at least two insulating elements.
  • the insulating elements can basically be designed the same (e.g. in terms of shape and/or size and/or weight), but can also differ in terms of their shape and/or size and/or weight. Providing several insulation elements can be advantageous in order to simplify handling of the insulation device, even by individual operators.
  • each insulation element can weigh less than 20kg, preferably less than 10kg.
  • a combination of a screed and an insulating device according to one of the preceding embodiments is further provided, wherein the insulating element is arranged at least on a part of a surface of the screed and wherein the screed comprises a heating device for heating the screed.
  • the screed includes a safety system that only enables the heating device to be activated when the connecting element of the insulation device is connected to the safety system of the screed. Starting up or heating the screed using the heating device without a (correctly positioned) insulation device is prevented with this embodiment, which avoids inefficient heating of the screed.
  • the insulating device comprises at least two insulating elements and the insulating elements together cover at least 50% of the surface of the screed. This allows the heat loss when heating the screed to be efficiently reduced. Particularly preferably, the largest individual surface elements of the screed can be covered by insulating elements of the insulating device so that no heat can escape through them.
  • Fig. 1 shows a schematic view of a screed 110 of a paver 120 and an insulating device 100 arranged relative to the screed 110 according to one embodiment.
  • a screed 110 for producing a road surface can usually comprise a heating device 112 and a screed plate 111, which is heated by the heating device 110 and can heat and press a road surface applied below the screed plate.
  • the screed 110 can be connected to the towing vehicle 120 or the “paver” via connecting elements 113. If the connecting elements 113 are designed as leveling cylinders, any unevenness in the floor can be compensated for by appropriate control and actuation of these leveling cylinders, for example by means of a control device 180.
  • the leveling cylinders can also be designed passively and so at least partially follow the course of the subsoil when producing the road surface, while ensuring the necessary contact pressure of the road surface.
  • heating device 112 instead of a single heating device 112, several heating elements can also form the heating device, which are then distributed at different positions in the screed 110 in order to heat the screed sheet.
  • the heating device 112 can generate heat using electric current and deliver it to the screed plate 111 in order to heat it.
  • the screed 110 must first go through a warm-up phase in which the screed plate 111 (and possibly the entire screed 110) is heated to a necessary operating temperature. Only when this operating temperature has been reached can the screed be used to create a road surface. During this warm-up phase, the heating device 112 of the screed is used to heat the screed plate 111. Once the operating temperature has been reached, the heating device 112 can continue to emit heat in order to keep the temperature of the screed plate constant.
  • the screed is usually made of or includes materials with good thermal conductivity (e.g. steel), there is a not insignificant heat flow from the screed into the environment, so that part of the heat flow from the heating device The heat given off is ultimately not available for heating the screed plate 111 or the screed, but is dissipated into the environment.
  • materials with good thermal conductivity e.g. steel
  • an insulating device 100 which can be detachably connected to the screed 110 is therefore provided, which comprises at least one insulating element 101, which, insofar as the insulating device is in a state connected to the screed, releases heat from the screed to the environment at least in the area of Insulating element can reduce.
  • the insulating element 101 of the insulating device 100 can be positioned, for example, below the screed 110 (i.e. between the screed and the ground), so that the screed sheet to be heated by the heating device 112 or another part of the screed radiates heat at least partially in the direction of the screed Insulating element releases.
  • the transfer of heat to the environment through the insulating element is prevented or at least partially prevented prevented, so that this heat is not dissipated into the environment, but is instead available for heating the screed.
  • the insulating device 100 can also include more than one insulating element 101 and in particular the insulating elements can also be arranged on other surfaces of the screed 112, so that, in the connected state of the insulating device and the screed, a heat flow from the screed through the insulating elements into the environment is reduced or avoided completely.
  • the insulating device 100 preferably has a connecting element 102 for releasably connecting the insulating device or at least one insulating element 101 of the insulating device with the screed 110.
  • the connecting element 102 can be realized as a click connection or a screw connection or a clamp or another releasable connecting element, so that the connecting element 102 can be connected, for example, to a corresponding connecting element 103 of the screed 110 in order to produce the releasable connection.
  • this detachable connection can be realized via a frictional connection and/or a positive connection.
  • the connecting elements 102 and 103 can preferably be designed in such a way that establishing the connection between the connecting elements 102 and 103 is only possible in a position of the insulating device and/or the insulating element 101 in which the insulating element is correctly positioned relative to the screed 112. This ensures that when the screed is put into operation and in particular when the warm-up process is carried out, the insulating elements or the insulating element 101 realize the intended function and the release of heat through them is reduced.
  • the connecting element 102 of the insulating device 100 forms part of a safety system 131, which only allows the heating process of the screed 110 to be released (i.e. in particular activating the heating element 112) if the connection between the connecting element 102 of the insulating device 100 and the corresponding connecting element 103 of the screed 110 was produced.
  • an electrical or electronic contact can be provided, which is closed when the connecting elements 102 and 103 are connected, so that, for example, the control unit 180 receives a corresponding signal and then enables the heating element 112 to be put into operation.
  • Figs. 2A-2D show different embodiments of an insulating element Figure 1 as can be provided as part of the insulation device according to the invention.
  • the insulating device 100 can, as already mentioned, comprise a large number of insulating elements, which can also be positioned at different positions relative to the screed in order to prevent or reduce heat emission through them.
  • the insulation elements can preferably be designed so that they can be handled by a single operator or worker, for example the operator of a paver 120 to which the screed 110 is connected.
  • each insulating element has a mass of less than 20 kg, preferably less than 10 kg. Especially in the design with a mass of less than 10 kg, handling by a single person is comparatively easy.
  • the heat emission reduced by each insulating element through the installation screed at least in the area of this insulating element compared to the heat emission that would occur through the installation screed in this area to the environment without the insulating element is at least 25%, preferably at least 50% or at least 75%.
  • FIG. 2A A first embodiment of an insulating element 201 is now shown, which consists of two layers 211 and 212.
  • the top of the layer 211 which faces away from the lower layer 212, points in the direction of the installation screed or touches it when the insulation device is connected to the screed, i.e. the underside of the screed, which is not shown in this figure
  • Layer 212 as the outer surface of the insulating element points away from the screed in the connected state of the insulating device with the screed.
  • the upper layer 212 or at least the surface pointing in the direction of the screed may comprise an insulating material or the lower layer 212 may comprise an insulating material (or the surface of the layer 212 pointing away from the screed).
  • the layer 211 or the layer 212 or their surface can also consist entirely of the insulating material.
  • the insulating material can preferably be, for example, rubber, polyurethane or a composite foam act. Materials whose thermal conductivity is less than 0.5 W/(mK), preferably less than 0.3 W/(mK), are preferably used for the insulating material.
  • the insulating element 201 is made up of two layers, one or both of which can comprise the relevant insulating material, it can also be provided that one of the two layers consists entirely of the insulating material.
  • layer 211 can be viewed as the “surface” of layer 212 and consists of the insulating material.
  • layer 212 may be viewed as consisting of the insulating material and forming the surface of layer 211.
  • the other layer which does not include the insulating material, can act as a support layer to stabilize the insulating element and, for example, have increased rigidity compared to the insulating material. This can make handling easier.
  • shape of the insulation element is not mandatory.
  • the shape of the insulating elements or the insulating element of the insulating device can in principle be arbitrary. However, shapes that are easy to handle, such as rectangles or squares, are preferred, as these can be placed next to each other without gaps in order to achieve the most complete and continuous insulation of the screed.
  • Fig. 2B is one for Fig. 2A alternative embodiment shown, wherein the insulating material 222 in this embodiment is arranged between two layers 223 and 221, which can consist of other material, and these three layers together form the insulating element 202.
  • the layers 221 and 223 can take on functions that are not significant for the heat conduction from the screed through the insulating element 202 and can, for example, serve as support layers for the insulating material 222. It can also be provided that on the side of the insulating material 220 facing away from the installation screed in the connected state of the insulation device with the installation screed, layer 221 consists of a material that reflects infrared radiation or comprises a corresponding surface (for example made of an aluminum foil).
  • a single layer of the insulating material can be provided as an insulating element.
  • This layer can preferably comprise a material that reflects infrared radiation on the surface facing away from the screed in order to prevent heat from being given off by infrared radiation.
  • the Fig. 2C shows a further embodiment of an insulating element 203, in which the insulating element comprises an active heating element 233, which in the embodiment shown here can be designed, for example, as a series of heating coils. Other embodiments are also conceivable here.
  • the active heating element 233 is preferably arranged in the insulating element 203 in such a way that, when the insulating devices and the screed are connected, it is arranged on a side of the insulating element facing the screed, which can be understood here as the “top side”.
  • a particularly suitable material layer 231 which can be arranged on a further material layer 232 of the insulating element 203, which, for example, comprises or consists of a material with low thermal conductivity.
  • the material layer 231 can be a particularly good thermal conductor in order to transfer heat from the active heating element 233 to the screed.
  • the material layer 232 may then consist of or include an insulating material as described above to prevent or reduce heat conduction away from the screed.
  • a surface coating that reflects infrared radiation can also be provided in or on the layer 232 in order to reflect the heat radiation emitted by the active heating element 233 in a direction away from the screed in the connected state of the insulation device and the screed in the direction of the screed, so that the heat radiation emitted by the active heating element 233 to use the heat given off as completely as possible to heat the screed.
  • the active heating element is assigned an accumulator 234, which is or can be connected to the active heating element in order to apply current to the active heating element.
  • This accumulator 234 can be designed, for example, as a battery or rechargeable battery or fuel cell and can be connected to the active heating element 233 via corresponding current-carrying lines.
  • a connection to a (publicly available) power grid or to an internal combustion engine, for example the internal combustion engine of the paver can also be provided.
  • FIG. 2D Another embodiment is shown in which the active heating element 243 is embedded in the material layer 241 and not, as in Fig. 2C shown on the surface of this Material layer 231 of the insulating element 203 is arranged.
  • a material layer 241 which preferably conducts well thermally (in particular conducts thermally better than the insulating material)
  • a uniform heat distribution of the heat emitted by the active heating element 243 in the direction of the screed can be achieved, and on the other hand, protection of the active Heating element 243 can be realized from environmental influences (for example moisture).
  • a corresponding accumulator 244 can also be provided here.
  • the layer 242 of the insulating element 204 in the Fig. 2D can be designed analogously to layer 232.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

Dämmeinrichtung zur Verwendung mit einer Einbaubohle für einen Straßenfertiger, die Dämmeinrichtung umfassend wenigstens ein Dämmelement sowie ein Verbindungselement zum lösbaren Verbinden mit einer Einbaubohle, wobei das Dämmelement ausgestaltet ist, im mit einer Einbaubohle verbundenen Zustand der Dämmeinrichtung eine reduzierte Abgabe von Wärme von einer Einbaubohle durch das Dämmelement hindurch zu bewirken.

Description

  • Die vorliegende Erfindung betrifft eine Dämmeinrichtung zur Verbindung mit einer Einbaubohle für einen Straßenfertiger gemäß Anspruch 1 sowie eine Kombination aus einer Einbaubohle und einer Dämmeinrichtung gemäß Anspruch 11.
  • Stand der Technik
  • Einbaubohlen sind aus dem Stand der Technik hinreichend bekannt. Diese können mit einem Straßenfertiger in Verbindung gebracht werden und über einen Gutbunker mit auszubringendem Material für den Straßenbelag beschickt werden. Die Einbaubohle kann das Material weiter erwärmen und auf der zu fertigenden Straße entsprechend der Arbeitsbreite der Einbaubohle verteilen und anpressen.
  • Um den Betrieb einer Einbaubohle aufnehmen zu können, muss diese üblicherweise zunächst vorgeheizt werden, um auf die notwendige Arbeitstemperatur gebracht zu werden, um das auf die Straße auszubringende Material zuverlässig und mit der richtigen Temperatur auszubringen. Die Einbaubohle hat jedoch eine große Oberfläche, so dass es aufgrund von wärmeleitendem Material als Bestandteil der Einbaubohle zu einem Wärmefluss von der Einbaubohle und insbesondere der Heizeinrichtung der Einbaubohle in die Umgebung kommen kann, was zu einer nur verzögerten oder energetisch zumindest ineffizienten Erwärmung der Einbaubohle bis auf die Arbeitstemperatur führen kann.
  • Aufgabe
  • Ausgehend vom bekannten Stand der Technik besteht die zu lösende technische Aufgabe darin, ein energetisch effizienteres und/oder weniger zeitintensives Erwärmen einer Einbaubohle für einen Straßenfertiger zu ermöglichen.
  • Lösung
  • Diese Aufgabe wird erfindungsgemäß durch die Dämmeinrichtung zur Verwendung mit einer Einbaubohle für einen Straßenfertiger gemäß unabhängigem Anspruch 1 sowie die Kombination aus einer Einbaubohle und einer Dämmeinrichtung entsprechend unabhängigem Anspruch 11 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen erfasst.
  • Die erfindungsgemäße Dämmeinrichtung zur Verwendung mit einer Einbaubohle für einen Straßenfertiger, umfasst wenigstens ein Dämmelement sowie ein Verbindungselement zum lösbaren Verbinden mit einer Einbaubohle, wobei das Dämmelement ausgestaltet ist, im mit einer Einbaubohle verbundenen Zustand der Dämmeinrichtung eine reduzierte Abgabe von Wärme von einer Einbaubohle durch das Dämmelement hindurch zu bewirken.
  • Der verbundene Zustand der Dämmeinrichtung mit der Einbaubohle ist hier als ein Zustand zu verstehen, bei dem die Dämmeinrichtung mittels des Verbindungselements lösbar mit der Einbaubohle verbunden ist, so dass zumindest das Dämmelement die ihm zugedachte Funktion, nämlich die Abgabe von Wärme von der Einbaubohle durch das Dämmelement hindurch zu reduzieren, ausführen kann. Dies kann auch als "korrekte" Positionierung der Dämmeinrichtung bzw. zumindest des Dämmelements relativ zur Einbaubohle verstanden werden.
  • Die Dämmelemente werden dabei bevorzugt von außen an die Einbaubohle mittels einer lösbaren Verbindung befestigt, sodass sie die äußere Oberfläche der Einbaubohle zumindest teilweise bedecken können.
  • Eine lösbare Verbindung ist im Sinne dieser Offenbarung als eine Verbindung zu verstehen, die ohne Zerstörung von Material hergestellt und gelöst werden kann. So ist das Verbindungselement bevorzugt als ein Verbindungselement ausgebildet, das mit einem korrespondierenden Verbindungselement einer Einbaubohle durch Herstellen eines Reibschlusses oder Kraftschlusses eine lösbare Verbindung herstellen kann. Beispielsweise kann das Verbindungselement als Stecker oder Klammer ausgebildet sein, die mit einem korrespondierenden Element einer Einbaubohle in Eingriff gebracht werden kann.
  • Erfindungsgemäß ist ein physischer Kontakt zwischen dem Dämmelement und der Einbaubohle auch in verbundenem Zustand der Dämmeinrichtung mit der Einbaubohle nicht zwingend erforderlich, kann jedoch vorgesehen sein. Erforderlich ist lediglich, dass das Dämmelement relativ zur Einbaubohle im verbundenen Zustand der Dämmeinrichtung und der Einbaubohle so angeordnet ist, dass die von der Einbaubohle zumindest bei einem Aufwärmvorgang der Einbaubohle auf eine Betriebstemperatur oder Arbeitstemperatur abgegebene Wärmemenge durch das Dämmelement reduziert werden kann.
  • Hierdurch wird die Abgabe von Wärme zumindest beim Erwärmen der Einbaubohle an die Umgebung reduziert, was ein schnelleres Erwärmen und/oder ein Erwärmen mit geringerem Energieaufwand ermöglicht. Das Erwärmen einer Einbaubohle kann so mit Hinblick auf ökologische, aber auch ökonomische Gesichtspunkte günstiger ausgestaltet werden, da weniger Energie für das Erreichen der notwendigen Betriebstemperatur aufgewendet werden muss.
  • Nach Beenden des Aufwärmens der Einbaubohle kann die Dämmeinrichtung von der Einbaubohle gelöst werden, um den Betrieb der Einbaubohle aufzunehmen. Alternativ kann auch vorgesehen sein, dass die Dämmeinrichtung mit der Einbaubohle verbunden bleibt, um beispielsweise die Abgabe von Wärme an die Umgebung auch während des Betriebs zu reduzieren.
  • Es kann insbesondere vorgesehen sein, dass die Dämmeinrichtung und/oder zumindest ein Dämmelement, das an oder im Bereich der Unterseite oder Standseite der Einbaubohle positioniert werden kann, einen hohen Haftreibungskoeffizienten und/oder einen hohen Gleitreibungskoeffizienten aufweist. Insbesondere kann der Haftreibungskoeffizient und/oder Gleitreibungskoeffizient des Dämmelements bevorzugt größer als der entsprechende Koeffizient der Einbaubohle sein. Dazu kann das Dämmelement auf einem Material mit einem solchen Haftreibungskoeffizienten und/oder Gleitreibungskoeffizienten bestehen oder eine äußere Beschichtung auf einer von der Einbaubohle im mit der Einbaubohle verbundenen Zustand wegweisenden Oberfläche aus einem solchen Material umfassen. Hiermit kann zusätzlich zu dem verbesserten Aufwärmen auf konstruktiv einfache Weise eine sichere Positionierung der Einbaubohle bewirkt werden. Insbesondere kann diese Antirutscheigenschaft des Dämmelements bzw. der Dämmeinrichtung vorteilhaft genutzt werden, um beispielsweise die Einbaubohle während des Transports mit einem LKW sicher zu positionieren.
  • Es kann ferner vorgesehen sein, dass das Dämmelement, optional auf einer im mit der Einbaubohle verbundenen Zustand der Dämmeinrichtung in Richtung der Einbaubohle weisenden oder von der Einbaubohle wegweisenden Oberfläche, ein Dämmmaterial umfasst.
  • Das Dämmmaterial kann entweder in das Dämmelement selbst integriert sein oder auf der in Richtung der Einbaubohle weisenden oder von dieser weg weisenden Oberfläche angeordnet sein, so dass die Wärmeleitung durch das Dämmelement hindurch verglichen mit der Wärmeleitung in Umgebung ohne Dämmelement reduziert ist. Das Dämmelement kann als "Decke" oder "Matte" ausgestaltet sein, die bevorzugt eine im verbundenen Zustand der Dämmeinrichtung mit der Einbaubohle weisende Oberfläche und eine von dieser weg weisende Oberfläche aufweist, die zusammengenommen wenigstens 80% oder wenigstens 90% der gesamten Oberfläche des Dämmelements ausmachen. Durch die große Oberfläche parallel zur Oberfläche der Einbaubohle kann die Reduzierung der von der Einbaubohle abgegebenen Wärmemenge in die Umgebung effizient erfolgen.
  • Vorteilhat kann das Dämmmaterial eines von Gummi, Polyurethan, Verbundschaum umfassen oder daraus bestehen. Diese Materialien weisen einen niedrigen Wärmeleitkoeffizienten auf, so dass die Isolierung der Einbaubohle möglichst effizient ist. Grundsätzlich sind die hier beschriebenen Ausführungsformen nicht beschränkend zu verstehen. Es kann jedes Material oder jede Kombination von Material für das Dämmmaterial verwendet werden, das einen möglichst gegenüber dem Material der Einbaubohle reduzierten Wärmeleitkoeffizienten aufweist.
  • In einer Ausführungsform umfasst die Dämmeinrichtung ein aktives Heizelement zum Heizen einer Einbaubohle im mit der Einbaubohle verbundenen Zustand der Dämmeinrichtung. Unter einem aktiven Heizelement ist ein Element zu verstehen, das bei Zufuhr von Energie (beispielsweise Strom) diese Energie im Wesentlichen (bevorzugt wenigstens 90%) in Wärme umwandelt und diese Wärme abgeben kann. Mit dieser Ausgestaltung kann die Dämmeinrichtung zusätzlich zum Erwärmen der Einbaubohle beitragen, was ein Erreichen der angestrebten Arbeitstemperatur schneller bewirken kann. Zwar ist hierfür Energie erforderlich, jedoch wird hiermit die notwendige Zeit zum Erreichen der Arbeitstemperatur reduziert, so dass der Betrieb der Einbaubohle effizienter gestaltet werden kann.
  • Insbesondere kann vorgesehen sein, dass das aktive Heizelement in das Dämmelement integriert oder auf einer im mit einer Einbaubohle verbundenen Zustand der Dämmeinrichtung zur Einbaubohle weisenden Seite des Dämmelements angeordnet ist. Mit dieser Ausführungsform kann gleichzeitig ein Reduzieren der Abgabe von Wärme von der Einbaubohle an die Umgebung durch das Dämmelement bewirkt werden und zusätzlich ein effizientes Heizen mittels des aktiven Heizelements der Dämmeinrichtung erfolgen, was zumindest die Zeit für das Erreichen der Betriebstemperatur der Einbaubohle reduziert.
  • Es kann auch vorgesehen sein, dass das aktive Heizelement ein elektrisches Heizelement umfasst und die Dämmeinrichtung einen Akkumulator umfasst, der mit dem aktiven Heizelement zum Beaufschlagen des aktiven Heizelements mit Strom verbunden oder verbindbar ist.
  • Die Dämmeinrichtung ist mit dieser Ausführungsform wenig wartungsintensiv und vielseitig einsetzbar, was insbesondere ihre Verwendung auch durch einzelne Bauarbeiter einfach realisierbar macht.
  • In einer Ausführungsform ist vorgesehen, dass Dämmelement die Abgabe von Wärme von einer Einbaubohle durch das Dämmelement hindurch um wenigstens 25% oder wenigstens 50% oder wenigstens 75% reduzieren kann. Diese Reduzierung ist relativ zu der Abgabe von Wärme der Einbaubohle in die Umgebung ohne Dämmelement zu verstehen. Zumindest im Bereich des Dämmelements wird damit effektiv der Wärmeverlust während des Erwärmens der Einbaubohle reduziert.
  • Weiterhin kann vorgesehen sein, dass das Verbindungselement als Teil eines Sicherheitssystems zum Freigeben eines Heizvorgangs der Einbaubohle nur in verbundenem Zustand der Einbaubohle mit der Dämmeinrichtung ausgestaltet ist.
  • Das Verbindungselement kann so beispielsweise eine Doppelfunktion ausführen, indem es zum einen der korrekten Positionierung und/oder Verbindung der Dämmeinrichtung mit der Einbaubohle dient und zum anderen beispielsweise einen elektrischen Kontakt herstellt, der etwa ein Signal an eine Steuereinheit der Einbaubohle abgeben kann, dass die Verbindung hergestellt wurde. Die Steuereinheit kann dann das Erwärmen der Einbaubohle freigeben. Die Inbetriebnahme der Einbaubohle und insbesondere das Beginnen des Heizvorgangs kann so nur erfolgen, wenn die Dämmeinrichtung mit der Einbaubohle korrekt verbunden ist. Dadurch kann ein unbeabsichtigtes Erwärmen der Einbaubohle ohne die Dämmeinrichtung und damit ein energetisch ineffizienteres Erwärmen der Einbaubohle vermieden werden.
  • In einer Ausführungsform umfasst die Dämmeinrichtung wenigstens zwei Dämmelemente. Die Dämmelemente können grundsätzlich gleich (etwa hinsichtlich Form und/oder Größe und/oder Gewicht) ausgestaltet sein, sich aber auch hinsichtlich ihrer Form und/oder Größe und/oder ihres Gewichts unterscheiden. Das Vorsehen mehrerer Dämmelemente kann vorteilhaft sein, um eine Handhabung der Dämmeinrichtung auch durch einzelne Bediener zu vereinfachen.
  • Insbesondere kann jedes Dämmelement weniger als 20kg, bevorzugt weniger als 10kg wiegen. Durch Ausgestaltung der Dämmelemente mit diesen maximalen Gewichten kann eine manuelle Handhabung durch einen einzelnen Arbeiter oder den Bediener einer Einbaubohle bzw. eines Straßenfertigers realisiert werden, was die Einsetzbarkeit der Dämmeinrichtung erhöht.
  • Erfindungsgemäß ist weiterhin eine Kombination aus einer Einbaubohle und einer Dämmeinrichtung gemäß einer der vorangegangenen Ausführungsformen vorgesehen, wobei das Dämmelement zumindest an einem Teil einer Oberfläche der Einbaubohle angeordnet ist und wobei die Einbaubohle eine Heizeinrichtung zum Heizen der Einbaubohle umfasst.
  • Mit dieser Kombination kann ein effizientes Erwärmen der Einbaubohle realisiert werden.
  • Es kann auch vorgesehen sein, dass die Einbaubohle ein Sicherheitssystem umfasst, das ein Aktivieren der Heizeinrichtung nur dann freigibt, wenn das Verbindungselement der Dämmeinrichtung mit dem Sicherheitssystem der Einbaubohle verbunden ist. Eine Inbetriebnahme oder ein Erwärmen der Einbaubohle mittels der Heizeinrichtung ohne (korrekt positionierte) Dämmeinrichtung wird mit dieser Ausführungsform verhindert, was ein ineffizientes Aufheizen der Einbaubohle vermeidet.
  • In einer Ausführungsform umfasst die Dämmeinrichtung wenigstens zwei Dämmelemente und die Dämmelemente bedecken zusammen wenigstens 50% der Oberfläche der Einbaubohle. Hierdurch kann der Wärmeverlust beim Erwärmen der Einbaubohle effizient reduziert werden. Besonders bevorzugt können die größten einzelnen Flächenelemente der Einbaubohle durch Dämmelemente der Dämmeinrichtung abgedeckt werden, so dass durch diese keine Wärme entweichen kann.
  • Kurze Beschreibung der Figuren
  • Fig. 1
    zeigt schematisch eine Einbaubohle eines Straßenfertigers und eine mit dieser in Verbindung gebrachte Dämmeinrichtung gemäß einer Ausführungsform
    Fig. 2A-2D
    zeigen unterschiedliche Ausführungsformen eines Dämmelements und der Dämmeinrichtung
    Ausführliche Beschreibung
  • Fig. 1 zeigt eine schematische Ansicht einer Einbaubohle 110 eines Straßenfertigers 120 und eine relativ zur Einbaubohle 110 angeordnete Dämmeinrichtung 100 gemäß einer Ausführungsform.
  • Wie aus dem Stand der Technik bekannt, kann eine Einbaubohle 110 zum Herstellen eines Straßenbelags üblicherweise eine Heizeinrichtung 112 sowie ein Glättblech 111 umfassen, das durch die Heizeinrichtung 110 aufgeheizt wird und einen unterhalb des Glättblechs ausgebrachten Straßenbelag erwärmt und andrücken kann. Die Einbaubohle 110 kann über Verbindungselemente 113 mit dem Zugfahrzeug 120 bzw. dem "Straßenfertiger" verbunden sein. Sind die Verbindungselemente 113 als Nivellierzylinder ausgebildet, so können durch entsprechende Ansteuerung und Betätigung dieser Nivellierzylinder beispielsweise mittels einer Steuereinrichtung 180 eventuelle Bodenunebenheiten ausgeglichen werden. Die Nivellierzylinder können auch passiv ausgestaltet sein und so dem Verlauf des Untergrunds beim Fertigen des Straßenbelags zumindest teilweise folgen, während sie einen notwendigen Anpressdruck des Straßenbelags gewährleisten.
  • Anstelle einer einzelnen Heizeinrichtung 112 können auch mehrere Heizelemente die Heizeinrichtung bilden, die dann an unterschiedlichen Positionen in der Einbaubohle 110 verteilt sind, um ein Erwärmen des Glättblechs zu bewirken. Grundsätzlich kann die Heizeinrichtung 112 etwa mittels elektrischem Strom Wärme erzeugen und an das Glättblech 111 abgeben, um dieses zu erwärmen.
  • Aus dem Stand der Technik ist es ebenfalls bekannt, dass die Einbaubohle 110 zunächst eine Aufwärmphase durchlaufen muss, in der das Glättblech 111 (und ggf. die gesamte Einbaubohle 110) auf eine notwendige Betriebstemperatur erwärmt wird. Erst wenn diese Betriebstemperatur erreicht ist, kann die Einbaubohle zum Fertigen eines Straßenbelags eingesetzt werden. Während dieser Aufwärmphase wird die Heizeinrichtung 112 der Einbaubohle verwendet, um das Erwärmen des Glättblechs 111 zu bewirken. Ist die Betriebstemperatur erreicht, kann die Heizeinrichtung 112 weiterhin Wärme abgeben, um die Temperatur des Glättblechs konstant zu halten.
  • Während der Aufwärmphase ist vergleichsweise viel Energie erforderlich und es kommt, da die Einbaubohle üblicherweise aus thermisch gut leitenden Materialien (beispielsweise Stahl) gebildet ist oder diese umfasst, zu einem nicht unerheblichen Wärmefluss von der Einbaubohle in die Umgebung, sodass ein Teil der von der Heizeinrichtung abgegebenen Wärme letztlich nicht zum Erwärmen des Glättblechs 111 oder der Einbaubohle zur Verfügung steht, sondern in die Umgebung dissipiert.
  • Erfindungsgemäß ist daher eine mit der Einbaubohle 110 lösbar verbindbare Dämmeinrichtung 100 vorgesehen, die wenigstens ein Dämmelement 101 umfasst, das, insofern die Dämmeinrichtung sich in einem mit der Einbaubohle verbundenen Zustand befindet, eine Abgabe von Wärme von der Einbaubohle an die Umgebung zumindest im Bereich des Dämmelements reduzieren kann. Dazu kann, wie hier dargestellt, das Dämmelement 101 der Dämmeinrichtung 100 beispielsweise unterhalb der Einbaubohle 110 (also zwischen Einbaubohle und Boden) positioniert werden, so dass das durch die Heizeinrichtung 112 zu erwärmende Glättblech oder ein anderer Teil der Einbaubohle Wärme zumindest teilweise in Richtung des Dämmelements abgibt.
  • Aufgrund der wärmedämmenden Eigenschaften des Dämmelements wird eine Weitergabe der Wärme an die Umgebung durch das Dämmelement hindurch verhindert oder zumindest teilweise verhindert, sodass diese Wärme nicht in die Umgebung dissipiert wird, sondern für das Erwärmen der Einbaubohle zur Verfügung steht.
  • Die Ausgestaltung der Dämmeinrichtung mit nur einem Dämmelement ist nicht zwingend. Die Dämmeinrichtung 100 kann auch mehr als ein Dämmelement 101 umfassen und insbesondere können die Dämmelemente auch an anderen Oberflächen der Einbaubohle 112 angeordnet werden, so dass, im verbundenen Zustand von Dämmeinrichtung und Einbaubohle, ein Wärmefluss von der Einbaubohle durch die Dämmelemente hindurch in die Umgebung reduziert oder vollständig vermieden wird.
  • Die Dämmeinrichtung 100 verfügt bevorzugt über ein Verbindungselement 102 zum lösbaren Verbinden der Dämmeinrichtung oder zumindest eines Dämmelements 101 der Dämmeinrichtung mit der Einbaubohle 110. Beispielsweise kann das Verbindungselement 102 als eine Klickverbindung oder eine Schraubverbindung oder eine Klammer oder ein sonstiges lösbares Verbindungselement realisiert werden, so dass das Verbindungselement 102 beispielsweise mit einem korrespondierenden Verbindungselement 103 der Einbaubohle 110 in Verbindung gebracht werden kann, um die lösbare Verbindung herzustellen. Allgemein kann diese lösbare Verbindung über einen Kraftschluss und/oder einen Formschluss realisiert werden. Bevorzugt können die Verbindungselemente 102 und 103 so ausgestaltet sein, dass ein Herstellen der Verbindung zwischen den Verbindungselementen 102 und 103 nur in einer Position der Dämmeinrichtung und/oder des Dämmelements 101 möglich ist, in der das Dämmelement korrekt relativ zur Einbaubohle 112 positioniert ist. Hiermit wird sichergestellt, dass beim Inbetriebnehmen der Einbaubohle und insbesondere beim Durchführen des Aufwärmvorgangs die Dämmelemente oder das Dämmelement 101 die vorgesehene Funktion realisieren und die Abgabe von Wärme durch sie hindurch reduziert wird.
  • Es kann auch vorgesehen sein, dass das Verbindungselement 102 der Dämmeinrichtung 100 einen Teil eines Sicherheitssystems 131 bildet, das ein Freigeben des Heizvorgangs der Einbaubohle 110 (also insbesondere ein Aktivieren des Heizelements 112) nur dann erlaubt, wenn die Verbindung zwischen dem Verbindungselement 102 der Dämmeinrichtung 100 und dem korrespondierenden Verbindungselement 103 der Einbaubohle 110 hergestellt wurde. Hierzu kann beispielsweise ein elektrischer oder elektronischer Kontakt vorgesehen sein, der bei in Verbindung bringen der Verbindungselemente 102 und 103 geschlossen wird, so dass beispielsweise die Steuereinheit 180 ein entsprechendes Signal empfängt und anschließend die Inbetriebnahme des Heizelements 112 freigibt.
  • Die Fig. 2A-2D zeigen verschiedene Ausführungsformen eines Dämmelements der Figur 1, wie es als Teil der erfindungsgemäßen Dämmeinrichtung vorgesehen werden kann.
  • Während sowohl in Fig. 1 als auch in den Fig. 2A-2D jeweils nur ein Dämmelement gezeigt wird, kann die Dämmeinrichtung 100, wie bereits erwähnt, eine Vielzahl von Dämmelementen umfassen, die auch an unterschiedlichen Positionen relativ zu der Einbaubohle positioniert werden können, um eine Wärmeabgabe durch sie hindurch zu verhindern oder zu reduzieren. Dabei können die Dämmelemente bevorzugt so ausgestaltet sein, dass sie von einem einzelnen Bediener oder Arbeiter, beispielsweise dem Bediener eines Straßenfertigers 120, mit dem die Einbaubohle 110 verbunden ist, gehandhabt werden können. Insbesondere kann vorgesehen sein, dass jedes Dämmelement eine Masse von weniger als 20 kg, bevorzugt weniger als 10 kg besitzt. Insbesondere bei der Ausgestaltung mit einer Masse von weniger als 10 kg ist die Handhabung durch einen einzelnen Menschen vergleichsweise einfach möglich.
  • Grundsätzlich und unabhängig von den in Bezug auf die Fig. 2A-2D im Detail beschriebenen Ausführungsformen ist es auch vorteilhaft, wenn die durch jedes Dämmelement reduzierte Wärmeabgabe durch die Einbaubohle zumindest im Bereich dieses Dämmelements verglichen mit der Wärmeabgabe, die durch die Einbaubohle in diesem Bereich an die Umgebung ohne Dämmelement erfolgen würde, wenigstens 25%, bevorzugt wenigstens 50% oder wenigstens 75% beträgt.
  • In der Fig. 2A ist nun eine erste Ausführungsform eines Dämmelements 201 dargestellt, das aus zwei Schichten 211 und 212 besteht. Dabei soll zum besseren Verständnis davon ausgegangen werden, dass die Oberseite der Schicht 211, die von der unteren Schicht 212 wegweist, im mit der Einbaubohle verbundenen Zustand der Dämmeinrichtung in Richtung der Einbaubohle weist oder diese berührt, die in dieser Abbildung also nicht dargestellte Unterseite der Schicht 212 als äußere Oberfläche des Dämmelements von der Einbaubohle im verbundenen Zustand der Dämmeinrichtung mit der Einbaubohle wegweist.
  • Entsprechend der in Fig. 2A dargestellten Ausführungsform kann die obere Schicht 212 oder zumindest die in Richtung der Einbaubohle weisende Oberfläche ein Dämmmaterial umfassen oder die untere Schicht 212 kann ein Dämmmaterial umfassen (respektive die von der Einbaubohle wegweisende Oberfläche der Schicht 212). Die Schicht 211 oder die Schicht 212 oder deren Oberfläche können auch vollständig aus dem Dämmmaterial bestehen. Bevorzugt kann es sich bei dem Dämmmaterial um beispielsweise Gummi, Polyurethan oder einen Verbundschaum handeln. Bevorzugt werden für das Dämmmaterial Materialien verwendet, deren Wärmeleitfähigkeit kleiner als 0,5 W/(mK), bevorzugt kleiner als 0,3 W/(mK) ist.
  • Während in der Fig. 2A das Dämmelement 201 aus zwei Schichten aufgebaut ist, wobei eine von diesen oder auch beide das betreffende Dämmmaterial umfassen können, kann auch vorgesehen sein, dass eine der beiden Schichten vollständig aus dem Dämmmaterial besteht. So kann beispielsweise die Schicht 211 als "Oberfläche" der Schicht 212 angesehen werden und aus dem Dämmmaterial bestehen. Alternativ kann die Schicht 212 als aus dem Dämmmaterial bestehend und die Oberfläche der Schicht 211 bildend angesehen werden.
  • Die jeweils andere Schicht, die das Dämmmaterial nicht umfasst, kann als Stützschicht fungieren, um das Dämmelement zu stabilisieren und beispielsweise eine erhöhte Steifigkeit verglichen mit dem Dämmmaterial besitzen. Dies kann die Handhabung erleichtern.
  • Die in Fig. 2A, aber auch in den übrigen Fig. 2B-2D, gezeigte Form des Dämmelements ist so nicht zwingend. Die Form der Dämmelemente oder des Dämmelements der Dämmeinrichtung kann grundsätzlich beliebig sein. Bevorzugt sind jedoch einfach handhabbare Formen, wie beispielsweise Rechtecke oder Quadrate, da diese ohne Lücken aneinandergelegt werden können, um eine möglichst vollständige und durchgängige Isolierung der Einbaubohle zu erreichen.
  • In der Fig. 2B ist eine zur Fig. 2A alternative Ausführungsform dargestellt, wobei das Dämmmaterial 222 in dieser Ausführungsform zwischen zwei Schichten 223 und 221, die aus anderem Material bestehen können, angeordnet ist und diese drei Schichten zusammen das Dämmelement 202 bilden. Die Schichten 221 und 223 können dabei eine für die Wärmeleitung von der Einbaubohle durch das Dämmelement 202 nicht maßgebliche Funktionen übernehmen und können beispielsweise als Stützschichten für das Dämmmaterial 222 dienen. Es kann auch vorgesehen sein, dass auf der von der Einbaubohle im verbundenen Zustand der Dämmeinrichtung mit der Einbaubohle wegweisenden Seite des Dämmmaterials 220 angeordnete Schicht 221 aus einem Infrarotstrahlung reflektierenden Material besteht oder eine entsprechende Oberfläche umfasst (beispielsweise aus einer Aluminiumfolie). Diese kann auf der in Richtung des Dämmmaterials 222 weisenden Oberfläche der Schicht 222 angeordnet sein, so dass, soweit hier ein Wärmetransport durch Infrarotstrahlung erfolgt, diese reflektiert wird und das Dämmelement 202 nicht in Richtung der Umgebung verlässt.
  • Während die Ausführungsformen der Figuren 2A und 2B als Mehrschichtsystem beschrieben wurden, ist auch eine Realisierung mit nur einer Materialschicht möglich. So kann beispielsweise eine einzelne Schicht aus dem Dämmmaterial als Dämmelement vorgesehen sein. Diese Schicht kann bevorzugt auf der von der Einbaubohle wegweisenden Oberfläche ein Infrarotstrahlung reflektierendes Material umfassen, um eine Abgabe von Wärme durch Infrarotstrahlung zu verhindern.
  • Die Fig. 2C zeigt eine weitere Ausführungsform eines Dämmelements 203, bei der das Dämmelement ein aktives Heizelement 233 umfasst, das in der hier dargestellten Ausführungsform beispielsweise als eine Reihe von Heizspiralen umfassend ausgebildet sein kann. Auch andere Ausführungsformen sind hier denkbar. Bevorzugt ist das aktive Heizelement 233 in dem Dämmelement 203 derart angeordnet, dass es in einem verbundenen Zustand von Dämmeinrichtungen und Einbaubohle auf einer zur Einbaubohle weisenden Seite des Dämmelements angeordnet ist, was hier als die "Oberseite" verstanden werden kann. Dabei kann es auf der Oberfläche einer dafür besonders geeigneten Materialschicht 231 angeordnet sein, die auf einer weiteren Materialschicht 232 des Dämmelements 203 angeordnet sein kann, die beispielsweise ein Material mit geringer Wärmeleitfähigkeit umfasst oder daraus besteht. Die Materialschicht 231 kann thermisch besonders gut leitend sein, um eine Übertragung der Wärme von dem aktiven Heizelement 233 an die Einbaubohle zu bewirken. Die Materialschicht 232 kann dann aus einem Dämmmaterial wie oben beschrieben bestehen oder dieses umfassen, um eine Wärmeleitung in Richtung weg von der Einbaubohle zu verhindern oder zu reduzieren. Alternativ oder zusätzlich kann analog zur Fig. 2B auch eine für Infrarotstrahlung reflektierende Oberflächenbeschichtung in oder auf der Schicht 232 vorgesehen sein, um die von dem aktiven Heizelement 233 in einer Richtung weg von der Einbaubohle im verbundenen Zustand der Dämmeinrichtung und der Einbaubohle abgegebene Wärmestrahlung in Richtung der Einbaubohle zu reflektieren, sodass die von dem aktiven Heizelement 233 abgegebene Wärme möglichst vollständig für die Erwärmung der Einbaubohle zu nutzen.
  • Es kann auch vorgesehen sein, dass dem aktiven Heizelement ein Akkumulator 234 zugeordnet ist, der mit dem aktiven Heizelement zum Beaufschlagen des aktiven Heizelements mit Strom verbunden ist oder verbunden werden kann. Dieser Akkumulator 234 kann beispielsweise als Batterie oder wiederaufladbare Batterie oder Brennstoffzelle ausgestaltet sein und mit dem aktiven Heizelement 233 über entsprechende stromführende Leitungen verbunden sein. Alternativ kann anstelle eines Akkumulators auch eine Verbindung zu einem (öffentlich verfügbaren) Stromnetz oder zu einem Verbrennungsmotor, beispielsweise dem Verbrennungsmotor des Straßenfertigers, vorgesehen sein.
  • In Fig. 2D ist eine weitere Ausführungsform dargestellt, in der das aktive Heizelement 243 in die Materialschicht 241 eingebettet ist und nicht, wie in Fig. 2C dargestellt, auf der Oberfläche dieser Materialschicht 231 des Dämmelements 203 angeordnet ist. Durch die Einbettung in eine Materialschicht 241, die bevorzugt thermisch gut leitet (insbesondere thermisch besser leitet als das Dämmmaterial) kann zum einen eine gleichmäßige Wärmeverteilung der von dem aktiven Heizelement 243 abgegebenen Wärme in Richtung der Einbaubohle bewirkt werden, und zum anderen ein Schutz des aktiven Heizelements 243 vor Umwelteinflüssen (beispielsweise Feuchtigkeit) realisiert werden. Analog zur Fig. 2C kann auch hier ein entsprechender Akkumulator 244 vorgesehen sein.
  • Die Schicht 242 des Dämmelements 204 in der Fig. 2D kann analog zur Schicht 232 ausgebildet sein.

Claims (13)

  1. Dämmeinrichtung (100) zur Verwendung mit einer Einbaubohle (110) für einen Straßenfertiger (120), die Dämmeinrichtung (100) umfassend wenigstens ein Dämmelement (101) sowie ein Verbindungselement (102) zum lösbaren Verbinden mit einer Einbaubohle (110), wobei das Dämmelement (101) ausgestaltet ist, im mit einer Einbaubohle (110) verbundenen Zustand der Dämmeinrichtung (100) eine reduzierte Abgabe von Wärme von einer Einbaubohle (110) durch das Dämmelement (101) hindurch zu bewirken.
  2. Dämmeinrichtung (100) nach Anspruch 1, wobei das Dämmelement (101), optional auf einer im mit der Einbaubohle (110) verbundenen Zustand der Dämmeinrichtung (100) in Richtung der Einbaubohle weisenden oder von der Einbaubohle wegweisenden Oberfläche, ein Dämmmaterial (211, 212) umfasst.
  3. Dämmeinrichtung (100) nach Anspruch 2, wobei das Dämmmaterial (211, 212) eines von Gummi, Polyurethan, Verbundschaum umfasst.
  4. Dämmeinrichtung (100) nach einem der Ansprüche 1 bis 3, wobei die Dämmeinrichtung (100) ein aktives Heizelement (233) zum Heizen einer Einbaubohle (110) im mit der Einbaubohle verbundenen Zustand der Dämmeinrichtung (100) umfasst.
  5. Dämmeinrichtung (100) nach Anspruch 4, wobei das aktive Heizelement (233) in das Dämmelement (204) integriert oder auf einer im mit einer Einbaubohle verbundenen Zustand der Dämmeinrichtung (100) zur Einbaubohle (110) weisenden Seite des Dämmelements (203) angeordnet ist.
  6. Dämmeinrichtung (100) nach Anspruch 4 oder 5, wobei das aktive Heizelement (233) ein elektrisches Heizelement umfasst und die Dämmeinrichtung einen Akkumulator (234, 244) umfasst, der mit dem aktiven Heizelement (233) zum Beaufschlagen des aktiven Heizelements mit Strom verbunden oder verbindbar ist.
  7. Dämmeinrichtung (100) nach einem der Ansprüche 1 bis 6, das Dämmelement (211, 212) die Abgabe von Wärme von einer Einbaubohle (110) durch das Dämmelement (211, 212) hindurch um wenigstens 25% oder wenigstens 50% oder wenigstens 75% reduzieren kann.
  8. Dämmeinrichtung (100) nach einem der Ansprüche 1 bis 7, wobei das Verbindungselement (102) als Teil eines Sicherheitssystems (131) zum Freigeben eines Heizvorgangs der Einbaubohle (110) nur in verbundenem Zustand der Einbaubohle (110) mit der Dämmeinrichtung (100) ausgestaltet ist.
  9. Dämmeinrichtung (100) nach einem der Ansprüche 1 bis 8, wobei die Dämmeinrichtung (100) wenigstens zwei Dämmelemente (101) umfasst.
  10. Dämmeinrichtung (101) nach einem der Ansprüche 1 bis 9, wobei jedes Dämmelement (101) weniger als 20 kg, bevorzugt weniger als 10 kg wiegt.
  11. Kombination aus einer Einbaubohle (110) und einer Dämmeinrichtung (100) gemäß einem der Ansprüche 1 bis 10, wobei das Dämmelement (101) zumindest an einem Teil einer Oberfläche der Einbaubohle (110) angeordnet ist und wobei die Einbaubohle eine Heizeinrichtung (112) zum Heizen der Einbaubohle (110) umfasst.
  12. Kombination nach Anspruch 11, wobei die Einbaubohle (110) ein Sicherheitssystem (131) umfasst, das ein Aktivieren der Heizeinrichtung (112) nur dann freigibt, wenn das Verbindungselement (102) der Dämmeinrichtung mit dem Sicherheitssystem (131) der Einbaubohle (110) verbunden ist.
  13. Kombination nach Anspruch 11 oder 12, wobei die Dämmeinrichtung (100) wenigstens zwei Dämmelemente (101) umfasst und die Dämmelemente (101) zusammen wenigstens 50% der Oberfläche der Einbaubohle (110) bedecken.
EP22175359.3A 2022-05-25 2022-05-25 Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung Pending EP4283043A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22175359.3A EP4283043A1 (de) 2022-05-25 2022-05-25 Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung
JP2023082151A JP2023174569A (ja) 2022-05-25 2023-05-18 断熱手段およびスクリードと断熱手段との組み合わせ
BR102023009996-3A BR102023009996A2 (pt) 2022-05-25 2023-05-23 Meio de isolamento e combinação de uma mesa e um meio de isolamento
CN202321269332.0U CN220364830U (zh) 2022-05-25 2023-05-24 隔绝装置和包括该隔绝装置与熨平板的设备
CN202310590296.6A CN117127464A (zh) 2022-05-25 2023-05-24 隔绝装置和包括该隔绝装置与熨平板的设备
US18/201,840 US20230383482A1 (en) 2022-05-25 2023-05-25 Insulating means and combination of a screed and an insulating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22175359.3A EP4283043A1 (de) 2022-05-25 2022-05-25 Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung

Publications (1)

Publication Number Publication Date
EP4283043A1 true EP4283043A1 (de) 2023-11-29

Family

ID=81850121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22175359.3A Pending EP4283043A1 (de) 2022-05-25 2022-05-25 Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung

Country Status (5)

Country Link
US (1) US20230383482A1 (de)
EP (1) EP4283043A1 (de)
JP (1) JP2023174569A (de)
CN (2) CN117127464A (de)
BR (1) BR102023009996A2 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397199A (en) * 1993-08-06 1995-03-14 Caterpillar Paving Products Inc. Screed assembly for an asphalt paving machine
US20130142571A1 (en) * 2011-12-06 2013-06-06 Caterpillar Inc. Screed plate arrangement and method of attaching a screed plate
CN209836751U (zh) * 2019-04-04 2019-12-24 北京天顺长城液压科技有限公司 一种熨平底板装置及包含其的摊铺机
US20210148063A1 (en) * 2019-11-19 2021-05-20 Caterpillar Paving Products Inc. Systems and methods for activating machine components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397199A (en) * 1993-08-06 1995-03-14 Caterpillar Paving Products Inc. Screed assembly for an asphalt paving machine
US20130142571A1 (en) * 2011-12-06 2013-06-06 Caterpillar Inc. Screed plate arrangement and method of attaching a screed plate
CN209836751U (zh) * 2019-04-04 2019-12-24 北京天顺长城液压科技有限公司 一种熨平底板装置及包含其的摊铺机
US20210148063A1 (en) * 2019-11-19 2021-05-20 Caterpillar Paving Products Inc. Systems and methods for activating machine components

Also Published As

Publication number Publication date
US20230383482A1 (en) 2023-11-30
CN117127464A (zh) 2023-11-28
JP2023174569A (ja) 2023-12-07
BR102023009996A2 (pt) 2023-11-28
CN220364830U (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
EP2116778B1 (de) Beheizbares Belagsystem
EP0231913B1 (de) Belag für Wand-, Decken- oder Fussbodenbekleidungen
DE3028101C2 (de) Fußbodenheizung
DE102012101380A1 (de) Gerät zum Verkleben oder Verschweißen einer Dachbahn
DE102011007335A1 (de) Wärmespeichermodul und Wärmespeicher
DE102004042422A1 (de) Beheizbares Formwerkzeug für die Herstellung von Bauteilen aus Faserverbundstoffen
DE2751808A1 (de) Ofendecke fuer einen elektrolichtbogenofen
EP2731773A1 (de) Bauform mit kupfervlies
DE19534390C2 (de) Fußbodenheizung
EP0038922B1 (de) Anordnung zur Beheizung grossflächiger Laminatformkörper
EP4283043A1 (de) Dämmeinrichtung und kombination aus einer einbaubohle und einer dämmeinrichtung
DE69914060T2 (de) Bodenheizanlage mit selbstregulierendem kabel
AT14858U1 (de) Modulares Bodenbelagselement und Bodenheizungssystem, dass aus mehreren solcher Elemente gebildet ist
EP0859200B1 (de) Heizpaneel
DE102010035322A1 (de) Verfahren zum Temperieren von metallenen Platinen und Wärmetauschervorrichtung für metallene Platinen
DE2733361C3 (de) Einbauelement für Flüssigkeits-Flächenheizungen
DE3211970C2 (de) Abdeckplatte für Heizelemente aufweisende Flächenheizungen und Verfahren zu deren Herstellung
DE202009007118U1 (de) Vorrichtung zum Tempern von Reperaturstellen und anderen lokalen Bereichen von Verbundwerkstoffen
EP1547442A2 (de) Heizleiter und verwendung des heizleiters
EP1574635A2 (de) Wärme- und Trittschalldämmplatte für eine in Gussasphalt eingebettete Fussbodenheizung
DE3643901A1 (de) Beheiztes buegelelement, insbesondere mulde fuer eine muldenmangel
DE102011007616B4 (de) Solarflachkollektor, Verfahren zum Herstellen eines Solarflachkollektors und solarthermische Anlage
DE202008003623U1 (de) Fußbodenheizung
DE3615869A1 (de) Verfahren und vorrichtung zum anschmelzen von bitumenbahnen mit waermedaemm-material
EP0976886A2 (de) Bau-Element zur Dacheindeckung und/oder Fassadenverkleidung sowie Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240308

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR