EP4281592A1 - Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component - Google Patents

Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component

Info

Publication number
EP4281592A1
EP4281592A1 EP22701227.5A EP22701227A EP4281592A1 EP 4281592 A1 EP4281592 A1 EP 4281592A1 EP 22701227 A EP22701227 A EP 22701227A EP 4281592 A1 EP4281592 A1 EP 4281592A1
Authority
EP
European Patent Office
Prior art keywords
component
blank
room temperature
prepared
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22701227.5A
Other languages
German (de)
French (fr)
Inventor
Peter PALZER
Zacharias Georgeou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP4281592A1 publication Critical patent/EP4281592A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a localised treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0494Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a localised treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the invention relates to a method for producing a component from a steel plate with a TRIP effect at room temperature.
  • the invention also relates to the use of such a component.
  • the steel is a medium manganese containing 4 to 12% by weight Mn, preferably greater than 5 to less than 10% by weight Mn.
  • the invention also relates to the use of a component produced in this way, as well as a corresponding circuit board and a corresponding component itself.
  • a component is understood to mean a component produced from a steel blank by forming using a forming tool at room temperature.
  • the steel blanks can be uncoated or provided with a metallic and/or organic anti-corrosion coating.
  • Such components are mainly used in body construction, but there are also possible uses in the household appliance industry, in mechanical engineering or construction.
  • the raw material suppliers try to meet the necessary material requirements by providing high-strength and ultra-high-strength steels, which allows the wall thicknesses to be reduced while at the same time improving component behavior during production and operation.
  • a sheet metal blank is usually first cut to size from hot or cold strip at room temperature.
  • Mechanical cutting methods such as shearing or punching, shear cutting or trimming, are mostly used as cutting methods, but thermal cutting methods, such as laser cutting, are used more rarely.
  • the blank After cutting, the blank is placed in a forming tool and the finished component, such as a chassis beam, is produced in one or more forming steps.
  • the finished component such as a chassis beam
  • edges or separating surfaces produced by mechanical separating processes are summarized below as separating edges.
  • the separating edges are particularly stressed, especially when they are raised or raised, e.g. during collar operations in perforated blanks.
  • the TRIP effect that occurs predominantly during forming at RT causes the transformation of austenite into martensite, which hardens the material and the forming forces are correspondingly high.
  • hardening occurs due to the microstructural transformation from austenite to martensite.
  • the proportion of martensite reduces the remaining formability and the resistance to delayed cracking due to hydrogen due to the low hydrogen solubility in martensite compared to austenite.
  • the cutting and punching of medium-manganese steels at room temperature leads to mechanical stress on the cutting edge, which initiates local stress-induced and/or deformation-induced martensite formation and small cracks in the strip edge.
  • the TRIP martensite newly formed as a result of the mechanical stress on the separating edge reduces the formability of the edges, as a result of which a poorer hole expansion capacity and lower edge formability are generally achieved during subsequent forming.
  • hydrogen is present, increased hydrogen-induced delayed cracking or hydrogen embrittlement can occur.
  • the previously mentioned damage to the separating edges can lead to premature failure during subsequent forming operations or during the operation of the component.
  • the testing of the forming behavior of cut sheet edges with regard to their sensitivity to edge cracking is carried out with a hole expansion test carried out according to ISO 16630.
  • a circular hole is made in the sheet metal by shear cutting, which is then widened by a conical punch.
  • the measurand is the change in the hole diameter related to the initial diameter at which the first crack through the sheet occurs at the edge of the hole.
  • the flat steel product essentially has the following chemical composition (in % by weight): C: 0.0005 to 0.9, Mn: 4 to 12, the remainder being iron, including unavoidable elements that accompany the steel.
  • the present invention is based on the object of creating a cost-effective method for producing a component from a steel plate with TRIP effect at room temperature, a use for this and a corresponding plate and a corresponding component, which is characterized by cost-effective production, a improved formability with reduced cracking of the formed separating edges while reducing the forming forces.
  • a component is produced from a blank made of a medium manganese steel with 4 to 12% by weight Mn and with the TRIP effect at room temperature by a method for producing a component in which (i) the blank is mechanically separated to form a prepared blank with the desired dimensions , (ii) separating edges are produced on the prepared board by the mechanical separation and (iii) the prepared board with the separating edges to the component at room temperature TR or at a temperature above room temperature TR and below 60°C (TR ⁇ T ⁇ 60 °C) is cold formed, the formability of the parting or cut edges is significantly increased during cold forming at room temperature between 5 °C and 30 °C and the formation of cracks on the parting edges is significantly reduced by using a preheating temperature Tv in the range of 60°C ⁇ Tv ⁇ 250°C is mechanically separated.
  • the medium-manganese steel in question is a steel that, in addition to the TRIP effect, also has a temperature-dependent TWIP effect (in short: TRIP/TWIP steel).
  • the preheating temperature Tv in this medium-manganese steel is then limited to a temperature range, namely 60° C. ⁇ Tv ⁇ 250° C., in which a TWIP effect caused by the mechanical separation occurs at the separating edge.
  • a reduction in the forming forces during cold forming is also achieved as a result, and the overall forming capacity of the blank is increased as a result.
  • the formability of the separating edges of the steel blank can also be significantly improved by adjusting the process temperature.
  • the preheating temperature is less than 250° C., since up to this temperature a TWIP effect is achieved at the cutting edges during mechanical cutting. Above this temperature, the TWIP effect no longer sets in, but martensite formation (TRIP effect), which impairs the formability of the separating edges, is still avoided. From 400 °C upwards, the material becomes brittle due to blue brittleness and an optional zinc coating liquefies. Both are accompanied by significantly worsened properties of the material.
  • room temperature TR is defined as being in the range between 5 and 30°C.
  • the cold forming of the prepared blank into the component takes place in particular at room temperature.
  • the cold forming at room temperature TR to form the component can advantageously take place in one or more steps.
  • the steel is a medium-manganese steel with more than 5 to less than 10% by weight Mn.
  • Such a steel containing medium manganese is particularly suitable for the method for producing a component.
  • the blank is heated locally to the preheating temperature only in areas of the separating edges to be produced by the mechanical separation (said separating or cutting areas).
  • This warming is therefore not a large-scale, but a targeted local warming and takes place in particular inductively, i.e. is inductive heating.
  • the preheating temperature Tv is 100 to 200°C.
  • the separating edges are heated to the preheating temperature in a heating device arranged in the cutting or stamping tool.
  • the separating edges are heated to the preheating temperature in a separate heating device.
  • the heating of the separating edges to the preheating temperature can advantageously take place inductively, conductively or via radiant heat.
  • the component made of TRIP (TRansformation Induced Plasticity) and/or TWIP (TWinning Induced Plasticity) steel produced from such a steel blank by cold forming has excellent cold and warm formability, increased resistance to hydrogen-induced delayed cracking (delayed fracture), to hydrogen embrittlement ( hydrogen embrittlement) after forming and against liquid metal embrittlement (LME) during welding.
  • the invention further relates to a prepared blank for producing a component by cold forming the prepared blank at room temperature, with at least one separating edge of a mechanical separation from an original blank made of a medium-manganese steel with 4 to 12% by weight Mn and with the TRIP effect Room temperature, the at least one separating edge determining or at least co-determining the dimensions of the prepared circuit board. It is intended that deformation twins induced by the TWIP effect are present in the structure at the parting edge, which improve the deformability of the edge for forming at room temperature.
  • the presence of deformation twins induced by the TWIP effect can be detected at the parting edge with the aid of microscopy (for example by means of light microscopy and/or scanning electron microscopy).
  • This TWIP effect The induced deformation twins are also a sure indication that the formability of the separating edge during subsequent cold forming at room temperature TR between 5 °C and 30 °C is significantly increased and the formation of cracks at the separating edge is significantly reduced.
  • the invention also relates to a component made from a blank made from a steel with a TRIP effect at room temperature.
  • the circuit board is intended to be a prepared circuit board mentioned above.
  • the component is then a component produced from this blank by forming at room temperature TR or at a temperature above room temperature TR and below 60° C. (TR ⁇ T ⁇ 60° C.).
  • the component is in particular a component produced by means of the aforementioned method.
  • the component is preferably a component for at least one of the following applications: motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, mining, aerospace engineering and household appliance technology.
  • a TRIP/TWIP steel in % by weight with 0.14 C, 6 Mn, 0.15 Si and 1.2 Al was selected for the investigations, which exhibits a TRIP effect at room temperature between 5 and 30 °C .
  • Holes were produced in a steel sheet by punching at different preheating temperatures and widened at different temperatures in the course of the hole expansion test according to ISO 16630.
  • Sample A1 (light grey) was punched at room temperature (25°C) and also the Expansion by means of the hole expansion test was carried out at room temperature (25°C).
  • Sample A2 (dark grey) was punched at room temperature (25°C) and expanded at 150°C.
  • Sample A3 Black was punched at 150°C and expanded at room temperature (25°C).
  • Sample A4 (stippled) was punched at 150°C and expanded at 150°C.
  • the expansion value A (lambda) clearly increases at a preheating temperature of the punched edge of 150 °C compared to punching at room temperature of 25 °C.
  • micrographs obtained by means of scanning electron microscopy in Figures 2a (sample A1, without preheating) and Figure 2b (sample A3, with preheating) on the formed cut edges show that significantly fewer and smaller cracks occur if the punching process was carried out on preheated samples.
  • FIG. 2a which shows a scanning micrograph of the formed sample A1 without preheated separating edges, cracks can be seen very clearly as dark lines on the concavely bent separating edges.
  • FIG. 2b which shows a scanning micrograph of the formed sample A3 with preheated separating edges
  • the component is/is made of a medium-manganese-containing circuit board with the following chemical composition (in % by weight) in order in particular to achieve the advantages described:
  • Mn 4 to 12, preferably greater than 5 to less than 10 and
  • Al 0 to 10, preferably 0.05 to 5, particularly preferably greater than 0.5 to 3;
  • Si 0 to 6, preferably 0.05 to 3, particularly preferably 0.1 to 1.5;
  • Nb 0 to 1, preferably 0.005 to 0.4, particularly preferably 0.01 to 0.1;
  • V 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3;
  • Ti 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3;
  • Mo 0 to 3, preferably 0.005 to 1.5, particularly preferably 0.01 to 0.6;
  • Sn 0 to 0.5, preferably less than 0.2, particularly preferably less than 0.05;
  • Cu 0 to 3, preferably less than 0.5, particularly preferably less than 0.1;
  • W 0 to 5, preferably 0.01 to 3, particularly preferably 0.2 to 1.5;
  • Co 0 to 8, preferably 0.01 to 5, particularly preferably 0.3 to 2;
  • Zr 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.2;
  • Ta 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1;
  • Te 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1;
  • B 0 to 0.15, preferably 0.001 to 0.08, particularly preferably 0.002 to 0.01;
  • P less than 0.1, preferably less than 0.04;
  • N less than 0.1, preferably less than 0.05.
  • This composition applies to both the circuit board and the component made from it.
  • the blank preferably has a structure with the following proportions: 10 to 80% by volume austenite, 20 to 90% by volume martensite, ferrite and bainite, with at least 30% by volume of martensite are present as tempered martensite.
  • the microstructure particularly preferably has 40 to 80% by volume austenite, less than 20% by volume ferrite/bainite and the remainder martensite.
  • the corresponding proportions are preferably approximately within the same limits as in the circuit board.
  • composition and structure corresponds to that from the publication DE 102016 117494 A1 mentioned at the outset. Effects of the alloying elements used can be found in this publication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The invention relates to a method for producing a component from a blank made of a medium manganese steel having 4 to 12 wt.% Mn and a TRIP effect at room temperature, in which method the blank is mechanically cut to make a prepared blank having the desired dimensions, cut edges are produced on the prepared blank by means of mechanical cutting, and the prepared blank with the cut edges is cold-formed to obtain the component at room temperature or at a temperature above room temperature but below 60°C. The method is distinguished by cost-effective production, improved formability with reduced cracking at the formed cut edges, while simultaneously reducing the forming forces. According to the invention, the mechanical cutting is performed at a pre-heating temperature in the range of 60°C to less than 250°C.

Description

Verfahren zur Herstellung eines umgeformten Bauteils aus einer Stahlplatine, Verwendung eines solchen Bauteils sowie entsprechende Platine und Bauteil Process for producing a formed component from a steel blank, use of such a component and corresponding blank and component
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einer Stahlplatine mit TRIP-Effekt bei Raumtemperatur. Auch betrifft die Erfindung die Verwendung eines solchen Bauteils. Der Stahl ist ein mittelmanganhaltiger Stahl mit 4 bis 12 Gewichts-% Mn, vorzugsweise mit mehr als 5 bis weniger als 10 Gewichts-% Mn. The invention relates to a method for producing a component from a steel plate with a TRIP effect at room temperature. The invention also relates to the use of such a component. The steel is a medium manganese containing 4 to 12% by weight Mn, preferably greater than 5 to less than 10% by weight Mn.
Die Erfindung betrifft weiterhin die Verwendung eines derart hergestellten Bauteils sowie eine entsprechende Platine und ein entsprechendes Bauteil selbst. The invention also relates to the use of a component produced in this way, as well as a corresponding circuit board and a corresponding component itself.
Unter Bauteil wird im Folgenden ein aus einer Stahlplatine durch Umformen mittels eines Umformwerkzeuges bei Raumtemperatur hergestelltes Bauteil verstanden. Die Stahlplatinen können unbeschichtet oder mit einem metallischen und/oder organischen Korrosionsschutzüberzug versehen sein. In the following, a component is understood to mean a component produced from a steel blank by forming using a forming tool at room temperature. The steel blanks can be uncoated or provided with a metallic and/or organic anti-corrosion coating.
Derartige Bauteile werden hauptsächlich im Karosseriebau verwendet, aber auch in der Hausgeräteindustrie, im Maschinenbau oder Bauwesen bieten sich Einsatzmöglichkeiten. Such components are mainly used in body construction, but there are also possible uses in the household appliance industry, in mechanical engineering or construction.
Der intensiv umkämpfte Automobilmarkt zwingt die Hersteller, ständig nach Lösungen zur Senkung ihres Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts und Insassenschutzes zu suchen. Dabei spielt einerseits die Gewichtsersparnis aller Fahrzeugkomponenten eine entscheidende Rolle andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung im Betrieb wie auch im Crashfall. The intensely competitive automotive market forces manufacturers to constantly look for solutions to reduce their fleet consumption while maintaining the highest possible level of comfort and occupant protection. On the one hand, the weight saving of all vehicle components plays a decisive role, but on the other hand, the best possible behavior of the individual components under high static and dynamic loads during operation and in the event of a crash also plays a role.
Den notwendigen Werkstoffanforderungen versuchen die Vormateriallieferanten dadurch Rechnung zu tragen, dass durch die Bereitstellung hoch- und höchstfester Stähle die Wanddicken reduziert werden können bei gleichzeitig verbessertem Bauteilverhalten bei der Fertigung und im Betrieb. The raw material suppliers try to meet the necessary material requirements by providing high-strength and ultra-high-strength steels, which allows the wall thicknesses to be reduced while at the same time improving component behavior during production and operation.
Diese Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich Festigkeit, Dehnfähigkeit, Zähigkeit, Energieaufnahme und Korrosionsbeständigkeit sowie ihrer Verarbeitbarkeit, beispielsweise bei der Kaltumformung und beim Schweißen, genügen. These steels therefore have to meet comparatively high requirements in terms of strength, ductility, toughness, energy absorption and corrosion resistance as well as their workability, for example in cold forming and welding.
Zur Herstellung eines Bauteils wird üblicherweise zunächst eine Blechplatine aus einem Warm- oder Kaltband bei Raumtemperatur auf Maß geschnitten. Als Schneidverfahren kommen zumeist mechanische Trennverfahren, wie zum Beispiel das Abscheren oder Stanzen, Scherschneiden oder Besäumen, seltener aber auch thermische Trennverfahren, wie zum Beispiel das Laserschneiden, zur Anwendung. To produce a component, a sheet metal blank is usually first cut to size from hot or cold strip at room temperature. Mechanical cutting methods, such as shearing or punching, shear cutting or trimming, are mostly used as cutting methods, but thermal cutting methods, such as laser cutting, are used more rarely.
Thermische Trennverfahren sind deutlich kostenintensiver im Vergleich zu mechanischen Trennverfahren, so dass diese nur in Ausnahmefällen eingesetzt werden. Nachfolgend wird nur auf mechanische Trennverfahren Bezug genommen. Thermal separation processes are significantly more expensive than mechanical separation processes, so they are only used in exceptional cases. In the following, only mechanical separation methods are referred to.
Nach dem Zuschneiden wird die zugeschnittene Platine in ein Umformwerkzeug gelegt und in ein- oder mehrstufigen Umformschritten das fertige Bauteil, wie z.B. ein Fahrwerksträger, erzeugt. After cutting, the blank is placed in a forming tool and the finished component, such as a chassis beam, is produced in one or more forming steps.
Vor der Umformung der Stahlplatine werden fallweise diverse weitere Fertigungsschritte, wie zum Beispiel Stanz- und Schneidoperationen an der Platine und während der Umformung kombinierte Bördeloperationen an gelochten Abschnitten vorgenommen. Die genannten Operationen umfassen insbesondere Operation innerhalb des Platinenzuschnitts. Before the steel blank is formed, various other manufacturing steps are carried out, such as punching and cutting operations on the blank and combined flanging operations on perforated sections during the forming process. The operations mentioned include, in particular, operations within the circuit board blank.
Nachfolgend werden die durch mechanische Trennverfahren erzeugten Kanten beziehungsweise Trennflächen als Trennkanten zusammengefasst. The edges or separating surfaces produced by mechanical separating processes are summarized below as separating edges.
Bei der Umformung werden die Trennkanten, insbesondere wenn sie auf- bzw. hochgestellt werden, z.B. bei Kragenoperationen in gelochten Platinen, besonders belastet. During forming, the separating edges are particularly stressed, especially when they are raised or raised, e.g. during collar operations in perforated blanks.
An den Trennkanten können diverse Vorschädigungen vorliegen. Zum einen bedingt durch eine Kaltverfestigung des Werkstoffs, hervorgerufen durch das mechanische Trennen, das eine totale Umformung bis zur Materialtrennung darstellt. Zum anderen kann eine Kerbwirkung auftreten, welche durch die Topografie der Trennfläche entsteht. Mittelmanganhaltige Stähle weisen ein mehrphasiges Gefüge mit Restaustenitanteilen auf. Weitere Phasenbestandteile können sowohl Ferrit, Bainit und Martensit, als auch angelassener Martensit sein. Der Restaustenitgehalt im Stahl wird durch eine Wärmebehandlung im Zweiphasengebiet durch interkritische Glühung eingestellt. Bei Raumtemperatur kann bei diesen Stählen eine verformungsinduzierte Zwillingsbildung (TWIP-Effekt) oder verformungsinduzierte Martensitbildung (TRIP-Effekt) eintreten. Der bei einer Umformung bei RT vorwiegend auftretende TRIP-Effekt bewirkt die Umwandlung von Austenit in Martensit, wodurch der Werkstoff verfestigt, die Umformkräfte sind entsprechend hoch. Neben der Verfestigung in Folge der Erhöhung der Versetzungsdichte tritt die Verfestigung aufgrund der Gefügeumwandlung von Austenit in Martensit auf. Der Martensitanteil vermindert gleichzeitig das verbleibende Restumformvermögen und die Resistenz gegen verzögerte Rissbildung durch Wasserstoff aufgrund der geringen Wasserstofflöslichkeit im Martensit gegenüber Austenit. Various previous damage can be present at the separating edges. On the one hand due to strain hardening of the material, caused by the mechanical cutting, which represents a total deformation up to the point of material separation. On the other hand, a notch effect can occur, which is caused by the topography of the interface. Steels containing medium manganese have a multi-phase structure with residual austenite. Other phase components can be ferrite, bainite and martensite, as well as tempered martensite. The residual austenite content in the steel is adjusted by heat treatment in the two-phase area using intercritical annealing. At room temperature, deformation-induced twinning (TWIP effect) or deformation-induced martensite formation (TRIP effect) can occur in these steels. The TRIP effect that occurs predominantly during forming at RT causes the transformation of austenite into martensite, which hardens the material and the forming forces are correspondingly high. In addition to hardening due to the increase in dislocation density, hardening occurs due to the microstructural transformation from austenite to martensite. At the same time, the proportion of martensite reduces the remaining formability and the resistance to delayed cracking due to hydrogen due to the low hydrogen solubility in martensite compared to austenite.
Das Schneiden und Stanzen von mittelmanganhaltigen Stählen bei Raumtemperatur führt zu einer mechanischen Beanspruchung der Trennkante, wodurch eine lokale spannungsinduzierte und/oder verformungsinduzierte Martensitbildung initiiert wird und kleine Anrisse in der Bandkante entstehen können. Der durch die mechanische Beanspruchung der Trennkante neu gebildete TRIP-Martensit, vermindert das Umformvermögen der Kanten, wodurch bei nachfolgenden Umformungen ein schlechteres Lochaufweitvermögen und geringere Kantenumformbarkeit allgemein erreicht werden. Des Weiteren kann bei Vorhandensein von Wasserstoff eine verstärkte wasserstoffinduzierte verzögerte Rissbildung bzw. Wasserstoffversprödung auftreten. The cutting and punching of medium-manganese steels at room temperature leads to mechanical stress on the cutting edge, which initiates local stress-induced and/or deformation-induced martensite formation and small cracks in the strip edge. The TRIP martensite newly formed as a result of the mechanical stress on the separating edge reduces the formability of the edges, as a result of which a poorer hole expansion capacity and lower edge formability are generally achieved during subsequent forming. Furthermore, if hydrogen is present, increased hydrogen-induced delayed cracking or hydrogen embrittlement can occur.
Gerade bei Werkstoffen mit TRIP-Effekt nicht nur aber auch bei Raumtemperatur tritt daher bei der anschließenden Umformung bei entsprechenden Temperaturen eine erhöhte Risswahrscheinlichkeit in den Randbereichen dieser Trennkanten auf. Particularly in the case of materials with the TRIP effect, not only but also at room temperature, there is an increased probability of cracking in the edge areas of these separating edges during the subsequent forming at the corresponding temperatures.
Die genannten Vorschädigungen an den Trennkanten können zum vorzeitigen Versagen bei nachfolgenden Umformoperationen, beziehungsweise beim Betrieb der Komponente führen. Die Prüfung des Umformverhaltens geschnittener Blechkanten im Hinblick auf deren Kantenrissempfindlichkeit wird mit einem Lochaufweitversuch nach ISO 16630 durchgeführt. The previously mentioned damage to the separating edges can lead to premature failure during subsequent forming operations or during the operation of the component. The testing of the forming behavior of cut sheet edges with regard to their sensitivity to edge cracking is carried out with a hole expansion test carried out according to ISO 16630.
Beim Lochaufweitversuch wird in das Blech durch Scherschneiden ein kreisrundes Loch eingebracht, das dann durch einen konischen Stempel aufgeweitet wird. Die Messgröße ist die auf den Ausgangsdurchmesser bezogene Änderung des Lochdurchmessers, bei der am Rand des Lochs der erste Riss durch das Blech auftritt. In the hole widening test, a circular hole is made in the sheet metal by shear cutting, which is then widened by a conical punch. The measurand is the change in the hole diameter related to the initial diameter at which the first crack through the sheet occurs at the edge of the hole.
Grundsätzlich ist es zur Verbesserung der Umformbarkeit mittelmanganhaltiger Stähle zum Beispiel aus der Offenlegungsschrift DE 102016 117494 A1 bekannt, den Umformschritt bei einer Temperatur des Stahlflachprodukts von 60 °C bis unterhalb Ac3, vorzugsweise von 60 °C bis 450 °C durchzuführen. Durch das Umformen mit Vorwärmung des Stahlflachprodukts vor dem ersten Umformschritt soll während des Umformvorgangs eine Umwandlung von metastabilem Austenit in Martensit (TRIP- Effekt) ganz oder teilweise unterdrückt werden, wobei sich im Austenit Verformungszwillinge (TWIP-Effekt) bilden können. Hierdurch soll eine Verfestigung vermieden und eine Reduktion der Umformkräfte erreicht, sowie dadurch das Gesamtumformvermögen erhöht werden. Das Stahlflachprodukt weist im Wesentlichen folgende chemische Zusammensetzung (in Gewichts-%) auf: C: 0,0005 bis 0,9, Mn: 4 bis 12, Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente. Basically, it is known to improve the formability of steels containing medium manganese, for example from published application DE 102016 117494 A1, to carry out the forming step at a temperature of the steel flat product of 60° C. to below Ac3, preferably from 60° C. to 450° C. By forming with preheating of the steel flat product before the first forming step, a transformation of metastable austenite into martensite (TRIP effect) should be suppressed completely or partially during the forming process, whereby deformation twins (TWIP effect) can form in the austenite. This is intended to avoid hardening and achieve a reduction in the forming forces, and thereby increase the overall forming capacity. The flat steel product essentially has the following chemical composition (in % by weight): C: 0.0005 to 0.9, Mn: 4 to 12, the remainder being iron, including unavoidable elements that accompany the steel.
Diese Verfahrensweise ist allerdings zur Verbesserung der Umformbarkeit und Vermeidung der Rissproblematik an Trennkanten der Stahlplatine relativ kostenintensiv und logistisch aufwändig, da die Umformung unmittelbar an die Erwärmung der Stahlplatine für die Umformung gekoppelt ist. However, this procedure is relatively cost-intensive and logistically complex in order to improve the formability and avoid the problem of cracks at the separating edges of the steel blank, since the forming is directly linked to the heating of the steel blank for the forming.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein kostengünstiges Verfahren zur Herstellung eines Bauteils aus einer Stahlplatine mit TRIP-Effekt bei Raumtemperatur, eine Verwendung hierfür sowie eine entsprechende Platine und ein entsprechendes Bauteil zu schaffen, welche sich durch eine kostengünstige Herstellung, eine verbesserte Umformbarkeit mit reduzierter Rissbildung der umgeformten Trennkanten bei gleichzeitiger Verringerung der Umformkräfte auszeichnen. Proceeding from this, the present invention is based on the object of creating a cost-effective method for producing a component from a steel plate with TRIP effect at room temperature, a use for this and a corresponding plate and a corresponding component, which is characterized by cost-effective production, a improved formability with reduced cracking of the formed separating edges while reducing the forming forces.
Diese Aufgabe wird durch ein Verfahren zur Herstellung eines Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt mit den Merkmalen des Anspruchs 1, die Verwendung eines solchen Bauteils mit den Merkmalen des Anspruchs 8, die Platine mit den Merkmalen des Anspruchs 9 und das Bauteil mit den Merkmalen des Anspruchs 10 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben. This object is achieved by a method for producing a component from a medium-manganese steel flat product with the features of claim 1, the use of such a component with the features of claim 8, the blank with the features of claim 9 and the component with the features of claim 10. Advantageous refinements of the invention are specified in the dependent claims.
Erfindungsgemäß wird durch ein Verfahren zur Herstellung eines Bauteils aus einer Platine aus einem mittelmanganhaltigen Stahl mit 4 bis 12 Gew.-% Mn und mit TRIP- Effekt bei Raumtemperatur, bei dem (i) die Platine zu einer vorbereiteten Platine mit gewünschten Abmessungen mechanisch getrennt wird, (ii) an der vorbereiteten Platine durch die mechanische Trennung Trennkanten erzeugt werden und (iii) die vorbereitete Platine mit den Trennkanten zu dem Bauteil bei Raumtemperatur TR oder bei einer Temperatur oberhalb Raumtemperatur TR und unterhalb von 60°C (TR < T < 60°C) kalt umgeformt wird, die Umformbarkeit der Trenn- beziehungsweise Schnittkanten bei einer Kaltumformung bei Raumtemperatur zwischen 5 °C bis 30 °C deutlich erhöht und eine Rissentstehung an den Trennkanten deutlich reduziert, indem bei einer Vorwärmtemperatur Tv im Bereich von 60°C < Tv < 250°C mechanisch getrennt wird. According to the invention, a component is produced from a blank made of a medium manganese steel with 4 to 12% by weight Mn and with the TRIP effect at room temperature by a method for producing a component in which (i) the blank is mechanically separated to form a prepared blank with the desired dimensions , (ii) separating edges are produced on the prepared board by the mechanical separation and (iii) the prepared board with the separating edges to the component at room temperature TR or at a temperature above room temperature TR and below 60°C (TR < T < 60 °C) is cold formed, the formability of the parting or cut edges is significantly increased during cold forming at room temperature between 5 °C and 30 °C and the formation of cracks on the parting edges is significantly reduced by using a preheating temperature Tv in the range of 60°C < Tv < 250°C is mechanically separated.
Der besagte mittelmanganhaltige Stahl ist ein Stahl, der neben dem TRIP-Effekt auch einen temperaturabhängigen TWIP-Effekt aufweist (kurz: TRIP-/TWIP-Stahl). Die Vorwärmtemperatur Tv ist dann bei diesem mittelmanganhaltigen Stahl auf einen Temperaturbereich, nämlich 60°C < Tv < 250 °C, begrenzt, bei dem an der Trennkannte ein durch die mechanische Trennung bewirkter TWIP-Effekt auftritt. The medium-manganese steel in question is a steel that, in addition to the TRIP effect, also has a temperature-dependent TWIP effect (in short: TRIP/TWIP steel). The preheating temperature Tv in this medium-manganese steel is then limited to a temperature range, namely 60° C. < Tv < 250° C., in which a TWIP effect caused by the mechanical separation occurs at the separating edge.
Das mechanische Trennen nach dem erfindungsgemäßen Verfahren bei einer Vorwärmtemperatur Tv im erweiterten Bereich von 60 bis 400 °C hat bereits den großen Vorteil, dass bei der nachfolgenden Umformung eine verformungsinduzierte Martensitbildung (TRIP-Effekt) an den Trennkanten vermieden wird. Mechanical cutting according to the method according to the invention at a preheating temperature Tv in the extended range of 60 to 400° C. already has the great advantage that deformation-induced martensite formation (TRIP effect) on the cutting edges is avoided during the subsequent forming.
Auch wird hierdurch eine Reduktion der Umformkräfte bei der Kaltumformung erreicht, sowie dadurch das Gesamtumformvermögen der Platine erhöht. Durch Entkopplung des Vorwärmschrittes beim mechanischen Trennen von der Umformung der Platine zu einem Bauteil, kann zudem eine wirtschaftlichere Herstellung des Bauteils erreicht werden, da jetzt eine Umformung der Platine bei Raumtemperatur erfolgen kann, also ohne vorhergehendes Erwärmen der gesamten Platine. A reduction in the forming forces during cold forming is also achieved as a result, and the overall forming capacity of the blank is increased as a result. By decoupling the preheating step during mechanical separation from the forming of the blank into a component, the component can also be manufactured more economically, since the blank can now be formed at room temperature, i.e without first heating the entire board.
Auch kann das Umformvermögen der Trennkanten der Stahlplatine durch eine Anpassung der Prozesstemperatur signifikant verbessert werden. The formability of the separating edges of the steel blank can also be significantly improved by adjusting the process temperature.
Wesentlich ist also, dass der mechanische Trennvorgang, wie zum Beispiel Schneiden, bei einem auf Vorwärmtemperatur Tv erwärmten Trenn- oder Schnittbereich erfolgt, um eine Martensitbildung durch einen TRIP-Effekt beim Schneiden zu vermeiden. It is therefore essential that the mechanical cutting process, such as cutting, takes place in a cutting or cutting area that has been heated to the preheating temperature Tv in order to avoid martensite formation due to a TRIP effect during cutting.
Erfindungsgemäß ist vorgesehen, dass die Vorwärmtemperatur weniger als 250 °C beträgt, da bis zu dieser Temperatur ein TWIP-Effekt an den Trennkanten beim mechanischen Trennen erreicht wird. Oberhalb dieser Temperatur setzt kein TWIP- Effekt mehr ein, jedoch wird eine die Umformbarkeit der Trennkanten verschlechternde Martensitbildung (TRIP-Effekt) weiterhin vermieden. Ab 400 °C aufwärts kommt es zu einer Versprödung des Werkstoffs durch Blausprödigkeit und eine optional vorhandene Zinkauflage verflüssigt sich. Beides geht mir deutlich verschlechterten Eigenschaften des Materials einher. According to the invention, the preheating temperature is less than 250° C., since up to this temperature a TWIP effect is achieved at the cutting edges during mechanical cutting. Above this temperature, the TWIP effect no longer sets in, but martensite formation (TRIP effect), which impairs the formability of the separating edges, is still avoided. From 400 °C upwards, the material becomes brittle due to blue brittleness and an optional zinc coating liquefies. Both are accompanied by significantly worsened properties of the material.
Im Zusammenhang mit der vorliegenden Erfindung wird Raumtemperatur TR als im Bereich zwischen 5 bis 30 °C liegend definiert. Die Kaltumformung der vorbereiteten Platine zum Bauteil erfolgt insbesondere bei Raumtemperatur. In the context of the present invention, room temperature TR is defined as being in the range between 5 and 30°C. The cold forming of the prepared blank into the component takes place in particular at room temperature.
Die Kaltumformung bei Raumtemperatur TR zum Bauteil kann vorteilhaft in einem oder mehreren Schritten erfolgen. The cold forming at room temperature TR to form the component can advantageously take place in one or more steps.
In vorteilhafter Weise ist vorgesehen, dass der Stahl ein mittelmanganhaltiger Stahl ist, mit mehr als 5 bis weniger als 10 Gewichts-% Mn. Ein solcher mittelmanganhaltiger Stahl eignet sich für das Verfahren zur Herstellung eines Bauteils besonders gut. It is advantageously provided that the steel is a medium-manganese steel with more than 5 to less than 10% by weight Mn. Such a steel containing medium manganese is particularly suitable for the method for producing a component.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird die Platine nur in Bereichen der durch die mechanische Trennung zu erzeugenden Trennkannten (besagte Trenn- oder Schnittbereiche) lokal auf die Vorwärmtemperatur erwärmt. Dieses Erwärmen ist also kein großflächiges, sondern ein gezielt lokales Erwärmen und erfolgt insbesondere induktiv, ist also ein induktives Erwärmen. According to a preferred embodiment of the invention, the blank is heated locally to the preheating temperature only in areas of the separating edges to be produced by the mechanical separation (said separating or cutting areas). This warming is therefore not a large-scale, but a targeted local warming and takes place in particular inductively, i.e. is inductive heating.
Unter einer Kosten- Nutzen-Relation ist es besonders bevorzugt, wenn die Vorwärmtemperatur Tv 100 bis 200 °C beträgt. From a cost-benefit point of view, it is particularly preferable if the preheating temperature Tv is 100 to 200°C.
In einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Trennkanten auf Vorwärmtemperatur in einer im Schneid- oder Stanzwerkzeug angeordneten Erwärmvorrichtung erwärmt werden. In an advantageous development of the invention, it is provided that the separating edges are heated to the preheating temperature in a heating device arranged in the cutting or stamping tool.
Alternativ kann auch vorgesehen werden, dass die Trennkanten auf Vorwärmtemperatur in einer separaten Erwärmvorrichtung erwärmt werden. Alternatively, it can also be provided that the separating edges are heated to the preheating temperature in a separate heating device.
Die Erwärmung der Trennkanten auf Vorwärmtemperatur kann dabei vorteilhaft induktiv, konduktiv oder über Strahlungswärme erfolgen. The heating of the separating edges to the preheating temperature can advantageously take place inductively, conductively or via radiant heat.
Das aus einer solchen Stahlplatine durch Kaltumformung hergestellte Bauteil aus TRIP (TRansformation Induced Plasticity)- und/oder TWIP (TWinning Induced Plasticity)-Stahl weist eine hervorragende Kalt- und Halbwarmumformbarkeit, erhöhten Widerstand gegen wasserstoffinduzierte verzögerte Rissbildung (delayed fracture), gegen Wasserstoffversprödung (hydrogen embrittlement) nach der Umformung sowie gegen Flüssigmetallversprödung (LME) beim Schweißen auf. The component made of TRIP (TRansformation Induced Plasticity) and/or TWIP (TWinning Induced Plasticity) steel produced from such a steel blank by cold forming has excellent cold and warm formability, increased resistance to hydrogen-induced delayed cracking (delayed fracture), to hydrogen embrittlement ( hydrogen embrittlement) after forming and against liquid metal embrittlement (LME) during welding.
Die Erfindung betrifft weiterhin eine vorbereitete Platine zur Herstellung eines Bauteils durch kaltes Umformen der vorbereiteten Platine bei Raumtemperatur, mit zumindest einer Trennkannte einer mechanischen Trennung aus einer ursprünglichen Platine aus einem mittelmanganhaltigen Stahl mit 4 bis 12 Gew.-% Mn und mit TRIP -Effekt bei Raumtemperatur, wobei die zumindest eine Trennkannte die Abmessungen der vorbereiteten Platine bestimmt oder zumindest mitbestimmt. Es ist vorgesehen, dass im Gefüge an der Trennkannte durch TWIP-Effekt induzierte Verformungszwillinge vorliegen, welche das Umformvermögen der Kante für die Umformung bei Raumtemperatur verbessern. The invention further relates to a prepared blank for producing a component by cold forming the prepared blank at room temperature, with at least one separating edge of a mechanical separation from an original blank made of a medium-manganese steel with 4 to 12% by weight Mn and with the TRIP effect Room temperature, the at least one separating edge determining or at least co-determining the dimensions of the prepared circuit board. It is intended that deformation twins induced by the TWIP effect are present in the structure at the parting edge, which improve the deformability of the edge for forming at room temperature.
Das Vorliegen von durch TWIP-Effekt induzierten Verformungszwillingen lässt sich mit Hilfe von Mikroskopie (beispielsweise mittels Lichtmikroskopie und/oder Rasterelektronenmikroskopie) an der Trennkannte nachweisen. Diese TWIP-Effekt induzierten Verformungszwillinge sind auch ein sicheres Indiz dafür, dass die Umformbarkeit der Trennkante bei einer nachfolgenden Kaltumformung bei Raumtemperatur TR zwischen 5 °C bis 30 °C deutlich erhöht und eine Rissentstehung an der Trennkante deutlich reduziert ist. The presence of deformation twins induced by the TWIP effect can be detected at the parting edge with the aid of microscopy (for example by means of light microscopy and/or scanning electron microscopy). This TWIP effect The induced deformation twins are also a sure indication that the formability of the separating edge during subsequent cold forming at room temperature TR between 5 °C and 30 °C is significantly increased and the formation of cracks at the separating edge is significantly reduced.
Die im Zusammenhang mit dem erfindungsgemäßen Herstellungsverfahren genannten Ausführungsformen der Erfindung und deren Vorteile ergeben sich entsprechend auch für die erfindungsgemäße vorbereitete Platine zur Herstellung eines Bauteils und das im Folgenden genannte erfindungsgemäße Bauteil. The embodiments of the invention mentioned in connection with the production method according to the invention and their advantages also result correspondingly for the circuit board prepared according to the invention for the production of a component and the component according to the invention mentioned below.
Die Erfindung betrifft weiterhin ein Bauteil aus einer Platine aus einem Stahl mit TRIP -Effekt bei Raumtemperatur. Es ist vorgesehen, dass die Platine eine vorstehend genannte vorbereitete Platine ist. Das Bauteil ist dann ein aus dieser Platine durch Umformen bei Raumtemperatur TR oder bei einer Temperatur oberhalb Raumtemperatur TR und unterhalb von 60°C (TR < T < 60°C) hergestelltes Bauteil. The invention also relates to a component made from a blank made from a steel with a TRIP effect at room temperature. The circuit board is intended to be a prepared circuit board mentioned above. The component is then a component produced from this blank by forming at room temperature TR or at a temperature above room temperature TR and below 60° C. (TR<T<60° C.).
Das Bauteil ist dabei insbesondere ein mittels des vorgenannten Verfahrens hergestelltes Bauteil. In this case, the component is in particular a component produced by means of the aforementioned method.
Bevorzugt ist das Bauteil ein Bauteil für zumindest eine der nachfolgend aufgeführten Anwendungen: Kraftfahrzeugbau, Schienenfahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, Bergbau, Luft- und Raumfahrttechnik und Hausgerätetechnik. The component is preferably a component for at least one of the following applications: motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, mining, aerospace engineering and household appliance technology.
Die guten Ergebnisse für die Umformbarkeit erfindungsgemäß hergestellter Trennkanten werden aus der im Anhang dargestellten Figur 1 für Ergebnisse von Lochaufweittests nach ISO 16630 deutlich. The good results for the formability of separating edges produced according to the invention are clear from FIG. 1 shown in the appendix for results of hole expansion tests according to ISO 16630.
Für die Untersuchungen wurde ein TRIP-/TWIP-Stahl in Gewichts-% mit 0,14 C, 6 Mn, 0,15 Si und 1,2 AI, gewählt, der bei Raumtemperatur zwischen 5 bis 30 °C einen TRIP-Effekt aufweist. An einem Stahlblech wurden durch Stanzen bei unterschiedlichen Vorwärmtemperaturen Löcher erzeugt und diese im Zuge des Lochaufweitversuchs nach ISO 16630 bei unterschiedlichen Temperaturen aufgeweitet. A TRIP/TWIP steel in % by weight with 0.14 C, 6 Mn, 0.15 Si and 1.2 Al was selected for the investigations, which exhibits a TRIP effect at room temperature between 5 and 30 °C . Holes were produced in a steel sheet by punching at different preheating temperatures and widened at different temperatures in the course of the hole expansion test according to ISO 16630.
Die Probe A1 (hellgrau) wurde bei Raumtemperatur (25 °C) gestanzt und auch die Aufweitung mittels des Lochaufweitversuchs erfolgte bei Raumtemperatur (25 °C). Sample A1 (light grey) was punched at room temperature (25°C) and also the Expansion by means of the hole expansion test was carried out at room temperature (25°C).
Die Probe A2 (dunkelgrau) wurde bei Raumtemperatur (25 °C) gestanzt und bei 150°C aufgeweitet. Sample A2 (dark grey) was punched at room temperature (25°C) and expanded at 150°C.
Die Probe A3 (Schwarz) wurde bei 150 °C gestanzt und bei Raumtemperatur (25 °C) aufgeweitet. Sample A3 (Black) was punched at 150°C and expanded at room temperature (25°C).
Die Probe A4 (gepunktet) wurde bei 150 °C gestanzt und bei 150 °C aufgeweitet. Sample A4 (stippled) was punched at 150°C and expanded at 150°C.
Deutlich erkennbar steigt der Aufweitungswert A (Lambda) bei einer Vorwärmtemperatur der Stanzkante von 150 °C im Vergleich zum Stanzen bei Raumtemperatur von 25 °C an. Der Wert für die Probe A3 liegt mit A = 31 ,8 % deutlich über dem Wert der Probe A1 von A = 14,18. The expansion value A (lambda) clearly increases at a preheating temperature of the punched edge of 150 °C compared to punching at room temperature of 25 °C. The value for sample A3 is A=31.8%, well above the value for sample A1 of A=14.18.
Eine Umformung durch Lochaufweitung bei erhöhter Temperatur von 150 °C im Vergleich zu einer Umformung bei Raumtemperatur, bringt dagegen keine signifikante Verbesserung des Lochaufweitungsverhältnisses. Der Wert für die Probe A2 liegt mit A = 16,92 % nur leicht über dem Wert von A1. Auch der Wert für die Probe A4 liegt mit A = 35,40 % nur leicht über dem Wert von A3. On the other hand, forming by hole expansion at an elevated temperature of 150 °C compared to forming at room temperature does not bring about a significant improvement in the hole expansion ratio. At A=16.92%, the value for sample A2 is only slightly above the value for A1. The value for sample A4, at A = 35.40%, is only slightly above the value for A3.
Zudem belegen die mittels Rasterelektronenmikroskopie erhaltenen Schliffbilder in den Figuren 2a (Probe A1 , ohne Vorwärmung) und Figur 2b (Probe A3, mit Vorwärmung) an den umgeformten Schnittkanten, dass deutlich weniger und kleinere Risse entstehen, wenn der Stanzvorgang an vorgewärmten Proben erfolgte. In addition, the micrographs obtained by means of scanning electron microscopy in Figures 2a (sample A1, without preheating) and Figure 2b (sample A3, with preheating) on the formed cut edges show that significantly fewer and smaller cracks occur if the punching process was carried out on preheated samples.
In der Figur 2a, die eine Rastermikroskopieaufnahme der umgeformten Probe A1 ohne vorerwärmte Trennkanten zeigt, sind sehr deutlich Risse als dunkle Linien an den konkav gebogenen Trennkanten ersichtlich. In FIG. 2a, which shows a scanning micrograph of the formed sample A1 without preheated separating edges, cracks can be seen very clearly as dark lines on the concavely bent separating edges.
In der Figur 2b, die eine Rastermikroskopieaufnahme der umgeformten Probe A3 mit vorerwärmten Trennkanten zeigt, sind dagegen keine derart deutlichen Risse an den konkav gebogenen Trennkanten ersichtlich. On the other hand, in FIG. 2b, which shows a scanning micrograph of the formed sample A3 with preheated separating edges, no such clear cracks can be seen on the concavely bent separating edges.
Erfindungsgemäß bietet sich vorteilhaft eine Verwendung eines nach dem vorbeschriebenen Verfahren hergestellten Bauteils im Kraftfahrzeugbau, Schienenfahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, in der Luft- und Raumfahrt, Hausgerätetechnik an. According to the invention offers advantageous use of a after Components manufactured using the above-described methods in motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, in aerospace and household appliance technology.
Bevorzugt ist vorgesehen, dass das Bauteil aus einer mittelmanganhaltigen Platine mit folgender chemischer Zusammensetzung (in Gew.-%) hergestellt wird/ist, um insbesondere die beschriebenen Vorteile zu erreichen: It is preferably provided that the component is/is made of a medium-manganese-containing circuit board with the following chemical composition (in % by weight) in order in particular to achieve the advantages described:
C: 0,0005 bis 0,9, vorzugsweise 0,05 bis 0,35; C: 0.0005 to 0.9, preferably 0.05 to 0.35;
Mn: 4 bis 12, vorzugsweise größer 5 bis kleiner 10 und Mn: 4 to 12, preferably greater than 5 to less than 10 and
Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente, mit optionaler Zulegierung der folgenden Elemente in Gew.-%: Rest iron including unavoidable steel-related elements, with optional addition of the following elements in % by weight:
AI: 0 bis 10, bevorzugt 0,05 bis 5, insbesondere bevorzugt größer 0,5 bis 3; Al: 0 to 10, preferably 0.05 to 5, particularly preferably greater than 0.5 to 3;
Si: 0 bis 6, bevorzugt 0,05 bis 3, insbesondere bevorzugt 0,1 bis 1,5; Si: 0 to 6, preferably 0.05 to 3, particularly preferably 0.1 to 1.5;
Cr: 0 bis 6, bevorzugt 0,1 bis 4, insbesondere bevorzugt größer 0,5 bis 2,5; Cr: 0 to 6, preferably 0.1 to 4, particularly preferably greater than 0.5 to 2.5;
Nb: 0 bis 1, bevorzugt 0,005 bis 0,4, insbesondere bevorzugt 0,01 bis 0,1 ; Nb: 0 to 1, preferably 0.005 to 0.4, particularly preferably 0.01 to 0.1;
V: 0 bis 1 ,5, bevorzugt 0,005 bis 0,6, insbesondere bevorzugt 0,01 bis 0,3; V: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3;
Ti: 0 bis 1 ,5, bevorzugt 0,005 bis 0,6, insbesondere bevorzugt 0,01 bis 0,3; Ti: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3;
Mo: 0 bis 3, bevorzugt 0,005 bis 1,5, insbesondere bevorzugt 0,01 bis 0,6; Mo: 0 to 3, preferably 0.005 to 1.5, particularly preferably 0.01 to 0.6;
Sn: 0 bis 0,5, bevorzugt kleiner 0,2, insbesondere bevorzugt kleiner 0,05; Sn: 0 to 0.5, preferably less than 0.2, particularly preferably less than 0.05;
Cu: 0 bis 3, bevorzugt kleiner 0,5, insbesondere bevorzugt kleiner 0,1; Cu: 0 to 3, preferably less than 0.5, particularly preferably less than 0.1;
W: 0 bis 5, bevorzugt 0,01 bis 3, insbesondere bevorzugt 0,2 bis 1,5; W: 0 to 5, preferably 0.01 to 3, particularly preferably 0.2 to 1.5;
Co: 0 bis 8, bevorzugt 0,01 bis 5, insbesondere bevorzugt 0,3 bis 2; Co: 0 to 8, preferably 0.01 to 5, particularly preferably 0.3 to 2;
Zr: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,2; Zr: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.2;
Ta: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,1; Ta: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1;
Te: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,1; Te: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1;
B: 0 bis 0,15, bevorzugt 0,001 bis 0,08, insbesondere bevorzugt 0,002 bis 0,01; B: 0 to 0.15, preferably 0.001 to 0.08, particularly preferably 0.002 to 0.01;
P: kleiner 0,1 , bevorzugt kleiner 0,04; P: less than 0.1, preferably less than 0.04;
S: kleiner 0,1 , bevorzugt kleiner 0,02; und S: less than 0.1, preferably less than 0.02; and
N: kleiner 0,1, bevorzugt kleiner 0,05. N: less than 0.1, preferably less than 0.05.
Diese Zusammensetzung ergibt sich sowohl für die Platine als auch für das daraus hergestellte Bauteil. This composition applies to both the circuit board and the component made from it.
Die Platine weist bevorzugt ein Gefüge mit den folgenden Anteilen auf: 10 bis 80 Vol.- % Austenit, 20 bis 90 Vol.-% Martensit, Ferrit und Bainit, wobei mindestens 30 Vol.-% des Martensits als angelassener Martensit vorliegen. Besonders bevorzugt weist das Gefüge 40 bis 80 Vol.-% Austenit, weniger als 20 Vol.-% Ferrit/Bainit und Rest Martensit auf. Bei dem Gefüge des resultierenden Bauteils liegen die entsprechenden Anteile bevorzugt in etwa in den gleichen Grenzen vor, wie bei der Platine. The blank preferably has a structure with the following proportions: 10 to 80% by volume austenite, 20 to 90% by volume martensite, ferrite and bainite, with at least 30% by volume of martensite are present as tempered martensite. The microstructure particularly preferably has 40 to 80% by volume austenite, less than 20% by volume ferrite/bainite and the remainder martensite. In the structure of the resulting component, the corresponding proportions are preferably approximately within the same limits as in the circuit board.
Die Angaben bezüglich Zusammensetzung und Gefüge entsprechen denen aus der eingangs erwähnten Druckschrift DE 102016 117494 A1. Effekte der verwendeten Legierungselemente können dieser Druckschrift entnommen werden. The information regarding composition and structure corresponds to that from the publication DE 102016 117494 A1 mentioned at the outset. Effects of the alloying elements used can be found in this publication.

Claims

Patentansprüche patent claims
1. Verfahren zur Herstellung eines Bauteils aus einer Platine aus einem mittelmanganhaltigen Stahl mit 4 bis 12 Gew.-% Mn und TRIP -Effekt bei Raumtemperatur, bei dem die Platine zu einer vorbereiteten Platine mit gewünschten Abmessungen mechanisch getrennt wird, an der vorbereitetem Platine durch die mechanische Trennung Trennkanten erzeugt werden und die vorbereitete Platine mit den Trennkanten zu dem Bauteil bei Raumtemperatur oder bei einer Temperatur oberhalb Raumtemperatur und unterhalb von 60°C kalt umgeformt wird, dadurch gekennzeichnet, dass bei einer Vorwärmtemperatur im Bereich von 60°C bis weniger als 250 °C mechanisch getrennt wird. 1. Process for the production of a component from a blank made of a medium-manganese steel with 4 to 12% by weight Mn and TRIP effect at room temperature, in which the blank is mechanically separated to form a prepared blank with the desired dimensions, on the prepared blank the mechanical separation separating edges are produced and the prepared circuit board with the separating edges is cold-formed into the component at room temperature or at a temperature above room temperature and below 60°C, characterized in that at a preheating temperature in the range from 60°C to less than 250 °C is mechanically separated.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahl ein mittelmanganhaltiger Stahl ist mit mehr als 5 bis weniger als 10 Gewichts-% Mn. 2. The method according to claim 1, characterized in that the steel is a medium manganese steel with more than 5 to less than 10% by weight Mn.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Platine nur in Bereichen der durch die mechanische Trennung zu erzeugenden Trennkannten lokal auf die Vorwärmtemperatur erwärmt wird. 3. The method according to claim 1 or 2, characterized in that the blank is heated locally to the preheating temperature only in areas of the separating edges to be produced by the mechanical separation.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vorwärmtemperatur 100 bis 200 °C beträgt. 4. The method according to at least one of claims 1 to 3, characterized in that the preheating temperature is 100 to 200 °C.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Trennkanten auf Vorwärmtemperatur in einer im Schneid- oder Stanzwerkzeug angeordneten Erwärmvorrichtung erwärmt werden. 5. The method according to at least one of claims 1 to 4, characterized in that the separating edges are heated to the preheating temperature in a heating device arranged in the cutting or punching tool.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Trennkanten auf Vorwärmtemperatur in einer separaten Erwärmvorrichtung erwärmt werden. 6. The method according to at least one of claims 1 to 4, characterized in that the separating edges are heated to the preheating temperature in a separate heating device.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Trennkanten induktiv, konduktiv oder über Strahlungswärme erwärmt werden. 7. The method according to claim 5 or 6, characterized in that the separating edges are heated inductively, conductively or via radiant heat.
8. Verwendung eines nach einem Verfahren nach mindestens einem der vorgenannten Ansprüche 1 bis 7 hergestellten Bauteils im Kraftfahrzeugbau, Schienenfahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, Bergbau, in der Luft- und Raumfahrt, Hausgerätetechnik. 8. Use of a component produced by a method according to at least one of the preceding claims 1 to 7 in motor vehicle construction, Rail vehicle construction, shipbuilding, plant construction, infrastructure construction, mining, in the aerospace industry, household appliance technology.
9. Vorbereitete Platine zur Herstellung eines Bauteils durch kaltes Umformen der vorbereiteten Platine bei Raumtemperatur, mit zumindest einer Trennkannte einer mechanischen Trennung aus einer ursprünglichen Platine aus einem mittelmanganhaltigen Stahl mit 4 bis 12 Gew.-% Mn und mit TRIP -Effekt bei Raumtemperatur, wobei die zumindest eine Trennkannte die Abmessungen der vorbereiteten Platine bestimmt oder zumindest mitbestimmt, dadurch gekennzeichnet, dass im Gefüge an der Trennkannte durch TWIP-Effekt induzierte Verformungszwillinge vorliegen. 9. Prepared circuit board for the production of a component by cold forming of the prepared circuit board at room temperature, with at least one separating edge of a mechanical separation from an original circuit board made of a medium-manganese steel with 4 to 12% by weight Mn and with TRIP effect at room temperature, wherein the at least one separating edge determines or at least partly determines the dimensions of the prepared blank, characterized in that deformation twins induced by the TWIP effect are present in the structure at the separating edge.
10. Bauteil aus einer Platine aus einem Stahl mit TRIP -Effekt bei Raumtemperatur, wobei die Platine eine vorbereitete Platine nach Anspruch 9 ist. 10. A component of a board made of a steel with TRIP effect at room temperature, wherein the board is a prepared board according to claim 9.
11. Bauteil nach Anspruch 10, hergestellt mittels eines Verfahrens nach einem der Ansprüche 1 bis 7. 11. Component according to claim 10, produced by means of a method according to one of claims 1 to 7.
12. Bauteil nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das Bauteil ein Bauteil für zumindest eine der nachfolgend aufgeführten Anwendungen ist: Kraftfahrzeugbau, Schienenfahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, Bergbau, Luft- und Raumfahrttechnik und Hausgerätetechnik. 12. Component according to claim 10 or 11, characterized in that the component is a component for at least one of the following applications: motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, mining, aerospace technology and household appliance technology.
EP22701227.5A 2021-01-21 2022-01-20 Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component Pending EP4281592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021101267.8A DE102021101267A1 (en) 2021-01-21 2021-01-21 Process for producing a formed component from a steel plate and use of such a component
PCT/EP2022/051161 WO2022157212A1 (en) 2021-01-21 2022-01-20 Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component

Publications (1)

Publication Number Publication Date
EP4281592A1 true EP4281592A1 (en) 2023-11-29

Family

ID=80121848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22701227.5A Pending EP4281592A1 (en) 2021-01-21 2022-01-20 Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component

Country Status (8)

Country Link
US (1) US20240084414A1 (en)
EP (1) EP4281592A1 (en)
KR (1) KR20230134125A (en)
CN (1) CN116724130A (en)
DE (1) DE102021101267A1 (en)
MX (1) MX2023008444A (en)
WO (1) WO2022157212A1 (en)
ZA (1) ZA202306957B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048858A1 (en) 2009-10-09 2011-04-14 Bayerische Motoren Werke Aktiengesellschaft Method and device for brittle-free cutting of a metallic material
CN104379791B (en) * 2013-11-27 2016-11-09 青岛玉兰祥商务服务有限公司 A kind of containing manganese steel and production method thereof
CN109790611A (en) * 2016-08-24 2019-05-21 香港大学 Dual phase steel and its manufacturing method
DE102016117494A1 (en) 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Process for producing a formed component from a medium manganese steel flat product and such a component

Also Published As

Publication number Publication date
DE102021101267A1 (en) 2022-07-21
CN116724130A (en) 2023-09-08
MX2023008444A (en) 2023-09-15
US20240084414A1 (en) 2024-03-14
KR20230134125A (en) 2023-09-20
WO2022157212A1 (en) 2022-07-28
ZA202306957B (en) 2024-02-28

Similar Documents

Publication Publication Date Title
DE2746982C2 (en) Process for producing a two-phase strip steel
DE60200326T2 (en) Ferritic stainless steel sheet with excellent ductility and process for its production
EP0946311B1 (en) Method for the production of a sheet metal part by forming
EP2569112B1 (en) Method for producing a structural part from an iron-manganese-steel sheet
EP2297367A1 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
DE2749017A1 (en) LOW CARBON STEEL
DE102018101735A1 (en) TWO-STAGE HOT-FORMING OF STEEL
DE112016007444T5 (en) Hot-formed parts with coating-free hardened steel and process
DE2334974A1 (en) HARDENABLE AND HIGH-STRENGTH STEEL FOR COLD-ROLLED PLATE
EP3541966B1 (en) Method for producing chassis parts from micro-alloyed steel with improved cold workability
DE102013003516A1 (en) Process for the production of an ultra-high-strength material with high elongation
EP3728657A1 (en) Method for generating metallic components having customised component properties
EP3585531B1 (en) Method for producing a component by further forming of a preformed contour
DE102016121905A1 (en) Method for producing dual-phase steel wheel discs with improved cold workability
DE102007030207A1 (en) Use of a high-strength steel alloy for producing high-strength and good formability blasting tubes
WO2022180146A1 (en) High-strength hot-rolled flat steel product having high local cold formability and a method of producing such a flat steel product
DE3733481C2 (en)
DE102018121709A1 (en) METHOD FOR HEAT TREATMENT OF STEEL
DE2657435C2 (en) Process for improving the physical properties of a high-strength, low-alloy carbon-manganese steel
EP3976842A1 (en) Method for producing a welded component made of a deformed high-strength steel, and component produced in this manner
DE102008055514A1 (en) Method for producing a component with improved elongation at break properties
DE102008020757A1 (en) Sheet workpiece forming method, involves inserting sheet workpiece into molding tool at specific temperature, forming workpiece by molding tool, and extracting heat from workpiece during retention period
EP4281592A1 (en) Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component
DE102019103502A1 (en) Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product
DE102021131713A1 (en) METHOD OF IMPROVING THE TIGHTNESS OF PRESS HARDENING STEEL

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)