EP3585531B1 - Method for producing a component by further forming of a preformed contour - Google Patents
Method for producing a component by further forming of a preformed contour Download PDFInfo
- Publication number
- EP3585531B1 EP3585531B1 EP18702238.9A EP18702238A EP3585531B1 EP 3585531 B1 EP3585531 B1 EP 3585531B1 EP 18702238 A EP18702238 A EP 18702238A EP 3585531 B1 EP3585531 B1 EP 3585531B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- forming
- temperature
- edge regions
- blank
- subjected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000005520 cutting process Methods 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 238000011282 treatment Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 15
- 238000006243 chemical reaction Methods 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 description 17
- 238000005482 strain hardening Methods 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D19/00—Flanging or other edge treatment, e.g. of tubes
- B21D19/08—Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
- B21D19/088—Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws for flanging holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D19/00—Flanging or other edge treatment, e.g. of tubes
- B21D19/08—Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/08—Means for treating work or cutting member to facilitate cutting
- B26D7/10—Means for treating work or cutting member to facilitate cutting by heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
Definitions
- the present invention relates to a method for producing a component by further shaping a preformed contour of a blank according to the preamble of patent claim 1.
- the method according to the invention is characterized in particular by increased design freedom when forming, in particular shear-cut ones edge areas of the board.
- a blank or sheet metal blank is understood below to mean a blank of a sheet metal, in particular a steel sheet.
- the sheet metal blanks can be uncoated or provided with a metallic and/or organic anti-corrosion coating.
- a component is understood to mean a component produced from a sheet metal blank by forming using a forming tool at ambient temperature. All formable metal materials can be considered as sheet metal materials, but in particular steel.
- Such components are mainly used in automobile construction, but there are also possible uses in the household appliance industry, in mechanical engineering or in construction or in the area of the same.
- the primary material suppliers try to meet the necessary material requirements to take account of the fact that the wall thicknesses can be reduced by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.
- These steels therefore have to meet comparatively high requirements in terms of strength, deformability, toughness, energy absorption capacity and corrosion resistance as well as their workability, for example in cold forming with regard to fatigue behavior and in welding.
- the blank After cutting, the blank is placed in a forming tool and the finished component, such as a chassis beam, is produced in one or more forming steps.
- the finished component such as a chassis beam
- the cut edges are particularly stressed, especially if they are raised or raised, e.g. during collar operations in perforated blanks.
- the testing of the forming behavior of cut sheet edges with regard to their sensitivity to edge cracking is carried out with a hole expansion test according to ISO 16630.
- a hole expansion test In the hole widening test, a circular hole is made in the sheet metal by shear cutting, which is then widened by a conical punch.
- the measurand is the change in the hole diameter related to the initial diameter at which the first crack appears at the edge of the hole at the cutting edge.
- a particular disadvantage here is the local softening, which represents a discontinuity with regard to the often used high-strength and ultra-high-strength material, especially in load situations and under oscillating stress.
- it is unclear how and to what extent the formability of the sheet metal that has already been cold-formed can be improved by partial softening.
- the DE 10 2014 016 614 A1 which forms the basis for the preamble of claim 1, describes a method for producing a component by forming a blank made of steel, in which a cut blank is subjected to a short temperature treatment (max 10 seconds) at a temperature of at least 600 °C. The heat treated edges are then cold worked at any time after their heating. Even if this method basically enables an increased formability of work-hardened, mechanically separated sheet metal edges compared to other previously known methods, it is still desirable for the reasons mentioned at the outset to achieve even greater formability of the shear-cut edges.
- It is therefore the object of the present invention to provide an alternative method for producing a cold-formed component from a sheet metal blank that has been shear-cut at room temperature Process is characterized by increased formability and reduced susceptibility to cracking.
- the invention solves this problem with the features of the claims and in particular by a method for producing a component by further shaping an already preformed contour of a circuit board, the circuit board previously cut to size from a strip or sheet at ambient temperature after further manufacturing steps carried out at ambient temperature, such as e.g.
- punching or cutting operations to achieve recesses or openings, in selected edge areas cold-hardened by the punching or cutting operations, to obtain a preformed contour is subjected to a first forming at ambient temperature, which is characterized in that the edge areas intended for forming are optionally already subjected but at least the edge areas that have already undergone the first deformation are heated to a temperature of at least 600 °C for a maximum period of 10 seconds and the edge areas are at any time after the heat treatment ndlung be subjected to a second forming or further forming at ambient temperature, each with preceding heat treatments.
- Both the room temperature, for example 20° C., and the temperature of the forming tool are considered as the ambient temperature.
- the temperature of the forming tool can be well above room temperature.
- the desired component can now already be obtained as a result of the second forming.
- any number, in particular two, three or four, further forming steps of the edge regions can alternatively be carried out at room temperature after the second forming, with each of the further forming steps also including a further temperature treatment of the edge regions at at least 600 °C for the Duration of a maximum of 10 seconds, in particular for 0.02 to 10 or 0.1 to 2 seconds, precedes.
- a component can be produced in a multi-step process in which the undesirable material properties resulting from strain hardening, in particular the increased susceptibility to cracking, are initially set in the material in each forming step, but these are eliminated again or at least significantly reduced by the subsequent heat treatment will.
- any number of alternating forming and Connect heat treatment steps as a result of which the desired component is finally obtained.
- the individual forming and heat treatment steps of the method according to the invention can take place at any time, i.e. at different times.
- the method according to the invention can be applied in particular to any shear-cut material edges, in particular to punched holes and to edges with any contour.
- the heat treatment preferably takes place over the entire thickness of the blank and in the direction of the plane of the blank in an area which corresponds at most to its thickness.
- the duration of the heat exposure depends on the type of heat treatment process.
- the heating itself can take place in any way, for example conductively, inductively via radiation heating or by means of laser processing.
- Conductive heating such as that often used in automotive manufacturing, for example for spot welding, is excellently suited to heat treatment.
- a spot welding machine with rather short exposure times is advantageous for treating punched holes in the blank, whereas the inductive process, radiation heating or laser processing with longer exposure times can be used for longer edge sections to be treated.
- the heat input is only very concentrated in the shear-influenced n cutting edge areas and is therefore associated with a comparatively low energy consumption, especially with regard to methods in which the entire circuit board is heated or stress-relief annealing, which is orders of magnitude more time-consuming, is used.
- the process window for the temperature to be reached in the cutting edge area is also very large and covers a temperature range from over 600 °C up to the solidus temperature of approx. 1500 °C.
- the heat treatment is carried out above Ac1
- a transformation into so-called metastable phases occurs after the treatment in the course of rapid cooling due to the surrounding cold material.
- the resulting structure has at least the same or increased hardness compared to the non-heat-treated area.
- the Vickers hardness increases by up to 1000 HV.
- an advantageous development of the invention provides for these areas to be flushed with inert gases, for example argon or nitrogen.
- inert gases for example argon or nitrogen.
- the inert gas flushing takes place during the duration of the heat treatment, but can also, if it appears necessary, also take place shortly before the start and/or in a limited period of time after the heat treatment has been carried out.
- the forming steps of the method according to the invention can advantageously be carried out with the forming tools already available in production, e.g. cylindrical or conical punches.
- the temporal decoupling of the individual forming and temperature treatment steps of the method according to the invention enables a particularly high degree of flexibility in the production process when the method is used industrially.
- the cut edges can also be heated immediately after the first forming step or immediately after an optional further forming step.
- a heat treatment device can be connected directly downstream of a forming device for cold forming of the blank.
- the blank itself can, for example, be flexibly rolled with different thicknesses or be joined from cold or hot strip of the same or different thickness and/or quality.
- the invention can be used for hot- or cold-rolled steel strips made from soft to high-strength steels, which can be provided with a corrosion-inhibiting layer as a metallic and/or organic coating.
- the metallic coating can contain or consist of zinc, magnesium, aluminum and/or silicon, for example.
- the suitability of coated steel strips is explained by the possibility of limiting the treatment of the edge area to a distance from the edge that corresponds to a fraction of the blank thickness, since the majority of the harmful strain hardening during shear cutting occurs in this area.
- the area up to a distance of a few tens of micrometers from the edge can be sufficient, so that, for example, the effective corrosion protection of a metallic corrosion-inhibiting layer is not or only slightly affected.
- All single-phase but also multi-phase steel grades are used as high-strength steels. This includes micro-alloyed, high-strength steel grades as well as bainitic, ferritic or martensitic grades as well as dual-phase, complex-phase and TRIP steels.
- steels with the following alloy composition in % by weight are used: C 0.01 - 0.2% si 0.2 - 4.0% Mn 0.5-4.0% Al 0.02 - 0.1 Ti 0.0-0.2 V 0.0-0.3 Nb 0.0-0.1 with optional addition of Cr, Ni, Mo, B, remainder iron, including impurities caused by smelting.
- the method according to the invention has the advantage that the heat treatment only changes the microstructure of the edge regions affected by shearing and the strength is usually not reduced but increased.
- the insensitivity to edge cracks in terms of greater hole expansion capacity can thus be improved by a factor of 3 or even more than 4.
- the method according to the invention also allows more complex component geometries due to the improved deformability of the cut edge regions and thus greater design freedom when using the same materials.
- the fatigue strength of the cold-formed component is as expected due to the resulting structure, which may be harder but more homogeneous than the initial state, is not reduced, but rather increased, especially in the case of pronounced two-phase structures such as dual-phase structures.
- the method according to the invention can be integrated as an intermediate production step in series production, which specifies a cycle time in the range from 0.1 to 10 seconds.
- the production of sheet metal components in the automotive sector in several successive steps thus represents a predestined area of application for the method according to the invention.
- the strip or sheet from which the blank used to produce the component is cut can already be preformed in a pre-treatment step and then the blank can be cut from the preformed strip or sheet if this makes sense in terms of production technology.
- the preforming can also only take place on the blank that has already been cut to size.
- the cutting is done by shear cutting, the term shear cutting encompassing both open and closed cuts, i.e. both cutting and punching operations.
- FIG. 1 shows a schematic representation of the individual steps of the method according to the invention.
- the image on the left of FIG. 1 shows the optional preforming of a circuit board that has already been cut to size by shearing.
- the second image from the left in Figure 1 shows the punching of a hole in the circuit board (step 1).
- the cut edges of the hole are then optionally subjected to heating according to the invention (step 1a).
- the method according to the invention also includes the subsequent shaping of the blank in its edge regions into a preformed contour, for example into an incompletely formed collar (step 2).
- the edge areas are then subjected to the temperature treatment according to the invention of at least 600 °C for a period of subjected to a maximum of 10 seconds (step 3).
- the component also regains its formability to a considerable extent in the stressed edge areas, so that a new, further forming can take place in the next step (step 4).
- the material stresses generated by the second forming can be at least partially eliminated again by a subsequent temperature treatment of at least 600 °C for a maximum period of 10 seconds, after which a third Forming step can take place.
- the heat treatment steps of at least 600 °C for a maximum of 10 seconds, followed by a subsequent forming step at room temperature, can be repeated as often as desired.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Ceramic Capacitors (AREA)
- Soft Magnetic Materials (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils durch Weiterformen einer vorgeformten Kontur einer Platine gemäß dem Oberbegriff des Patentanspruchs 1. Das erfindungsgemäße Verfahren zeichnet sich dabei im Vergleich zu bekannten Verfahren zur Herstellung eines Bauteils insbesondere durch eine erhöhte gestalterische Freiheit bei der Umformung insbesondere schergeschnittener Kantenbereiche der Platine aus.The present invention relates to a method for producing a component by further shaping a preformed contour of a blank according to the preamble of
Unter einer Platine oder Blechplatine wird im Folgenden ein Zuschnitt eines Bleches, insbesondere eines Stahlbleches verstanden. Die Blechplatinen können unbeschichtet oder mit einem metallischen und/oder organischen Korrosionsschutzüberzug versehen sein.A blank or sheet metal blank is understood below to mean a blank of a sheet metal, in particular a steel sheet. The sheet metal blanks can be uncoated or provided with a metallic and/or organic anti-corrosion coating.
Unter Bauteil wird im Folgenden ein aus einer Blechplatine durch Umformen mittels eines Umformwerkzeuges bei Umgebungstemperatur hergestelltes Bauteil verstanden. Als Blechwerkstoffe kommen dabei alle umformbaren Metallwerkstoffe in Betracht, insbesondere jedoch Stahl.In the following, a component is understood to mean a component produced from a sheet metal blank by forming using a forming tool at ambient temperature. All formable metal materials can be considered as sheet metal materials, but in particular steel.
Derartige Bauteile werden hauptsächlich im Automobilbaubau verwendet, aber auch in der Hausgeräteindustrie, im Maschinenbau oder im Bauwesen oder im Bereich der selben bieten sich Einsatzmöglichkeiten.Such components are mainly used in automobile construction, but there are also possible uses in the household appliance industry, in mechanical engineering or in construction or in the area of the same.
Der intensiv umkämpfte Automobilmarkt zwingt die Hersteller, ständig nach Lösungen zur Senkung ihres Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts und Insassenschutzes zu suchen. Dabei spielt einerseits die Gewichtsersparnis aller Fahrzeugkomponenten eine entscheidende Rolle, andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung im Betrieb wie auch im Crashfall.The intensely competitive automotive market forces manufacturers to constantly look for solutions to reduce their fleet consumption while maintaining the highest possible level of comfort and occupant protection. On the one hand, the weight saving of all vehicle components plays a decisive role, but on the other hand, the best possible behavior of the individual components under high static and dynamic loads during operation and in the event of a crash also plays a role.
Den notwendigen Werkstoffanforderungen versuchen die Vormateriallieferanten dadurch Rechnung zu tragen, dass durch die Bereitstellung hoch- und höchstfester Stähle die Wanddicken reduziert werden können, bei gleichzeitig verbessertem Bauteilverhalten bei der Fertigung und im Betrieb.The primary material suppliers try to meet the necessary material requirements to take account of the fact that the wall thicknesses can be reduced by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.
Diese Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich Festigkeit, Formänderungsvermögen, Zähigkeit, Energieaufnahmevermögen und Korrosionsbeständigkeit sowie ihrer Verarbeitbarkeit, beispielsweise bei der Kaltumformung in Bezug auf das Dauerschwingverhalten und beim Schweißen, genügen.These steels therefore have to meet comparatively high requirements in terms of strength, deformability, toughness, energy absorption capacity and corrosion resistance as well as their workability, for example in cold forming with regard to fatigue behavior and in welding.
Unter den vorgenannten Aspekten gewinnt die Herstellung von Bauteilen aus höherund hochfesten Stählen mit Streckgrenzen oberhalb 400 MPa, vorteilhaft oberhalb 600 oder oberhalb 800 MPa bis etwa 1800 MPa oder sogar darüber zunehmend an Bedeutung.In view of the aspects mentioned above, the production of components from high-strength steels with yield points above 400 MPa, advantageously above 600 or above 800 MPa to about 1800 MPa or even above, is becoming increasingly important.
Es ist bekannt, zur Herstellung eines Bauteils zunächst eine Blechplatine aus Warmoder Kaltband bei Raumtemperatur auf Maß zu schneiden. Als Schneidverfahren kommen zumeist mechanische Trennverfahren, wie z.B. das Abscheren oder Stanzen, seltener aber auch thermische Trennverfahren, wie z.B. das Laserschneiden, zur Anwendung. Thermische Trennverfahren sind deutlich kostenintensiver im Vergleich zu mechanischen Trennverfahren, so dass diese nur in Ausnahmefällen eingesetzt werden.In order to produce a component, it is known to first cut a sheet metal blank from hot or cold strip to size at room temperature. Mechanical cutting processes, such as shearing or punching, are mostly used as cutting processes, but thermal cutting processes such as laser cutting are also used more rarely. Thermal separation processes are significantly more expensive than mechanical separation processes, so they are only used in exceptional cases.
Nach dem Zuschneiden wird die zugeschnittene Platine in ein Umformwerkzeug gelegt und in ein- oder mehrstufigen Umformschritten das fertige Bauteil, wie z.B. ein Fahrwerksträger, erzeugt.After cutting, the blank is placed in a forming tool and the finished component, such as a chassis beam, is produced in one or more forming steps.
Bei der Umformung werden die Schnittkanten, insbesondere wenn sie auf- bzw. hochgestellt werden, z.B. bei Kragenoperationen in gelochten Platinen, besonders belastet.During forming, the cut edges are particularly stressed, especially if they are raised or raised, e.g. during collar operations in perforated blanks.
Vor der Umformung werden optional diverse weitere Fertigungsschritte, wie z.B. Stanz- und Schneidoperationen an der Platine, vorgenommen.Various other manufacturing steps, such as punching and cutting operations on the blank, are optionally carried out before forming.
An den Schnittkanten können diverse Vorschädigungen vorliegen. Diese sind einerseits bedingt durch eine Kaltverfestigung des Werkstoffs, hervorgerufen durch das mechanische Trennen, das eine totale Umformung bis zur Materialtrennung darstellt. Andererseits kann eine Kerbwirkung auftreten, welche durch die Topographie der Schnittfläche entsteht.Various previous damage may be present on the cut edges. On the one hand, these are due to strain hardening of the material, caused by the mechanical separation, which represents a total transformation up to the separation of the material. On the other hand, a notch effect can occur, which is caused by the topography of the cut surface.
Gerade bei den hier betrachteten Stählen tritt daher bei der anschließenden Umformung eine erhöhte Risswahrscheinlichkeit in den Randbereichen dieser Schnittkanten auf.Especially with the steels considered here, there is an increased probability of cracking in the marginal areas of these cut edges during the subsequent forming.
Die genannten Vorschädigungen an den Blechkanten können zum vorzeitigen Versagen bei nachfolgenden Umformoperationen bzw. beim Betrieb der Komponente führen.The previously mentioned damage to the sheet metal edges can lead to premature failure during subsequent forming operations or when the component is in operation.
Die Prüfung des Umformverhaltens geschnittener Blechkanten im Hinblick auf deren Kantenrissempfindlichkeit wird mit einem Lochaufweitversuch nach ISO 16630 durchgeführt. Beim Lochaufweitversuch wird in das Blech durch Scherschneiden ein kreisrundes Loch eingebracht, das dann durch einen konischen Stempel aufgeweitet wird. Die Messgröße ist die auf den Ausgangsdurchmesser bezogene Änderung des Lochdurchmessers, bei der am Rand des Lochs an der Schnittkante der erste Riss auftritt.The testing of the forming behavior of cut sheet edges with regard to their sensitivity to edge cracking is carried out with a hole expansion test according to ISO 16630. In the hole widening test, a circular hole is made in the sheet metal by shear cutting, which is then widened by a conical punch. The measurand is the change in the hole diameter related to the initial diameter at which the first crack appears at the edge of the hole at the cutting edge.
Um die vorab beschriebene Kantenrissempfindlichkeit bei der Kaltumformung von schergeschnittenen oder gestanzten Blechkanten zu minimieren, sind z.B. Ansätze zur Veränderung der Legierungszusammensetzung und Werkstoffprozessierung (z.B. gezieltes Einstellen eines optimierten Gefüges) oder der Verfahrenstechnik beim Kaltbeschnitt der Platine (z.B. über Modifikationen von Schneidspalt, Geschwindigkeit, Mehrfachbeschnitt etc.) bekannt.In order to minimize the sensitivity to edge cracks described above during cold forming of shear-cut or stamped sheet metal edges, there are, for example, approaches to changing the alloy composition and material processing (e.g. targeted setting of an optimized structure) or the process engineering during cold trimming of the blank (e.g. by modifying the cutting gap, speed, multiple trimming). etc.) known.
Diese Maßnahmen sind entweder teuer und aufwändig (z.B. mehrstufige Schneidoperationen, Instandhaltung von 3-D Schneidwerkzeugen etc.), oder sie liefern noch keine optimalen Ergebnisse.These measures are either expensive and time-consuming (e.g. multi-stage cutting operations, maintenance of 3-D cutting tools, etc.), or they do not yet deliver optimal results.
Des Weiteren ist es aus der Offenlegungsschrift
Die
Es ist daher die Aufgabe der vorliegenden Erfindung, ein alternatives Verfahren zur Herstellung eines kaltumgeformten Bauteils aus einer bei Raumtemperatur schergeschnittenen Blechplatine bereitzustellen, das sich vorzugsweise in den durch Schneid- oder Stanzoperationen stark beanspruchten Kantenbereichen der Platine während der nachfolgenden Kaltumformung durch eine gegenüber herkömmlichen Verfahren erhöhte Umformbarkeit sowie verminderte Rissempfindlichkeit auszeichnet.It is therefore the object of the present invention to provide an alternative method for producing a cold-formed component from a sheet metal blank that has been shear-cut at room temperature Process is characterized by increased formability and reduced susceptibility to cracking.
Die Erfindung löst diese Aufgabe mit den Merkmalen der Ansprüche und insbesondere durch ein Verfahren zur Herstellung eines Bauteils durch Weiterformen einer bereits vorgeformten Kontur einer Platine, wobei die zuvor bei Umgebungstemperatur aus einem Band oder einem Blech zugeschnittene Platine nach weiteren, bei Umgebungstemperatur durchgeführten Fertigungsschritten, wie z.B. Stanz- oder Schneidoperationen zur Erzielung von Aussparungen oder Durchbrüchen, in ausgewählten, durch die Stanz- oder Schneidoperationen kaltverfestigten Kantenbereichen, zum Erhalt einer vorgeformten Kontur einer ersten Umformung bei Umgebungstemperatur unterzogen wird, welches dadurch gekennzeichnet ist, dass optional schon die zur Umformung vorgesehenen Kantenbereiche aber mindestens die der ersten Umformung bereits unterzogenen Kantenbereiche für eine Dauer von maximal 10 Sekunden auf eine Temperatur von mindestens 600 °c erwärmt werden und die Kantenbereiche zu einem beliebigen Zeitpunkt nach der Wärmebehandlung einer zweiten Umformung oder weiteren Umformungen bei Umgebungstemperatur mit jeweils wieder vorgeschalteten Wärmebehandlungen unterzogen werden.The invention solves this problem with the features of the claims and in particular by a method for producing a component by further shaping an already preformed contour of a circuit board, the circuit board previously cut to size from a strip or sheet at ambient temperature after further manufacturing steps carried out at ambient temperature, such as e.g. punching or cutting operations to achieve recesses or openings, in selected edge areas cold-hardened by the punching or cutting operations, to obtain a preformed contour, is subjected to a first forming at ambient temperature, which is characterized in that the edge areas intended for forming are optionally already subjected but at least the edge areas that have already undergone the first deformation are heated to a temperature of at least 600 °C for a maximum period of 10 seconds and the edge areas are at any time after the heat treatment ndlung be subjected to a second forming or further forming at ambient temperature, each with preceding heat treatments.
Als Umgebungstemperatur werden sowohl die Raumtemperatur, beispielsweise 20° C, als auch die Temperatur des Umformwerkzeugs betrachtet. Die Temperatur des Umformwerkzeugs kann dabei deutlich über der Raumtemperatur liegen.Both the room temperature, for example 20° C., and the temperature of the forming tool are considered as the ambient temperature. The temperature of the forming tool can be well above room temperature.
In Versuchen hat sich gezeigt, dass die unerwünschte aber unumgängliche Kaltverfestigung mechanisch geschnittener Kanten, die bei der nachfolgenden Umformung der Kantenbereiche noch ausgeprägter wird, durch eine Temperaturbehandlung nur der beanspruchten Kantenbereiche bei mindestens 600 ° c deutlich vermindert oder sogar eliminiert werden kann. Dafür ist bereits eine sehr kurze Temperaturbehandlung von maximal 10 Sekunden, insbesondere von 0,02 bis 10 Sekunden oder sogar von 0,1 bis 2 Sekunden ausreichend.Tests have shown that the undesirable but unavoidable strain hardening of mechanically cut edges, which becomes even more pronounced during the subsequent forming of the edge areas, can be significantly reduced or even eliminated by heat treatment of only the stressed edge areas at at least 600 °C. A very short temperature treatment of a maximum of 10 seconds, in particular from 0.02 to 10 seconds or even from 0.1 to 2 seconds, is sufficient for this.
Es wurde nun gefunden, dass eine durch Scherschneiden und Umformen der Kantenbereiche erschöpfte oder zumindest eingeschränkte Umformbarkeit des Materials durch die erwähnte Temperaturbehandlung wieder vollständig, großenteils oder zumindest anteilig regeneriert wird. In der Folge können vorgeformte Konturen nach der kurzen Temperaturbehandlung bei mindestens 600 °C erneut bei Raumtemperatur umgeformt bzw. weitergeformt werden, ohne dass ein erhöhtes Risiko einer Rissbildung in den Kantenbereichen besteht. Denn durch die Temperaturbehandlung der Kantenbereiche der vorgeformten Kontur wird nicht nur die unerwünschte Kaltverfestigung eliminiert, sondern es werden auch Gefügeschädigungen im Werkstoff sowie nachteilige Konturveränderungen wie beispielsweise Mikrorisse entfernt, sodass der zuvor in seiner Umformbarkeit nahezu erschöpfte Werkstoff nach der Temperaturbehandlung wieder bedenkenlos weiter umgeformt werden kann. Die erfindungsgemäße Abfolge einer ersten Umformung, der Temperaturbehandlung und der zweiten Umformung ermöglicht daher ein wesentlich größeres Umformpotential von Werkstoffen als es herkömmliche Verfahren bieten können.It has now been found that a formability of the material that has been exhausted or at least restricted by shearing and forming of the edge regions is completely, largely or at least partially regenerated by the temperature treatment mentioned. As a result, pre-formed contours can be re-formed or re-formed at room temperature after the short heat treatment at at least 600 °C without there being an increased risk of cracking in the edge areas. Because the temperature treatment of the edge areas of the preformed contour not only eliminates the unwanted strain hardening, but also structural damage in the material and disadvantageous contour changes such as microcracks are removed, so that the material, which was previously almost exhausted in its formability, can be reshaped again without hesitation after the temperature treatment . The sequence according to the invention of a first forming, the temperature treatment and the second forming therefore enables a significantly greater forming potential of materials than conventional methods can offer.
Durch die zweite Umformung kann nun nach einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens bereits das gewünschte Bauteil erhalten werden.According to a possible embodiment of the method according to the invention, the desired component can now already be obtained as a result of the second forming.
Nach einer anderen Ausführungsform des Verfahrens können alternativ nach der zweiten Umformung noch beliebig viele, insbesondere zwei, drei oder vier, weitere Umformschritte der Kantenbereiche bei Raumtemperatur durchgeführt werden, wobei jedem der weiteren Umformschritte auch eine weitere Temperaturbehandlung der Kantenbereiche bei mindestens 600 °C für die Dauer von maximal 10 Sekunden, insbesondere für 0,02 bis 10 oder 0,1 bis 2 Sekunden, vorausgeht. Auf diese Weise kann ein Bauteil in einem mehrschrittigen Prozess hergestellt werden, in dem sich in dem Material zunächst in jedem Umformschritt die aus der Kaltverfestigung resultierenden unerwünschten Materialeigenschaften, insbesondere die erhöhte Rissanfälligkeit, einstellen, diese aber durch die nachfolgende Temperaturbehandlung wieder eliminiert oder zumindest deutlich reduziert werden.According to another embodiment of the method, any number, in particular two, three or four, further forming steps of the edge regions can alternatively be carried out at room temperature after the second forming, with each of the further forming steps also including a further temperature treatment of the edge regions at at least 600 °C for the Duration of a maximum of 10 seconds, in particular for 0.02 to 10 or 0.1 to 2 seconds, precedes. In this way, a component can be produced in a multi-step process in which the undesirable material properties resulting from strain hardening, in particular the increased susceptibility to cracking, are initially set in the material in each forming step, but these are eliminated again or at least significantly reduced by the subsequent heat treatment will.
An die zweite Umformung können sich daher gemäß dieser Ausführungsform des erfindungsgemäßen Verfahrens beliebig viele alternierende Umform- und Wärmebehandlungsschritte anschließen, in Folge derer schließlich das gewünschte Bauteil erhalten wird.According to this embodiment of the method according to the invention, any number of alternating forming and Connect heat treatment steps, as a result of which the desired component is finally obtained.
Die einzelnen Umform- und Temperaturbehandlungsschritte des erfindungsgemäßen Verfahrens können zu einem beliebigen Zeitpunkt, d.h. zeitlich voneinander entkoppelt, erfolgen.The individual forming and heat treatment steps of the method according to the invention can take place at any time, i.e. at different times.
Das erfindungsgemäße Verfahren ist insbesondere anwendbar auf beliebige schergeschnittene Materialkanten, insbesondere auf gestanzte Löcher sowie auf Kanten mit beliebiger Kontur. Durch die erfindungsgemäß erhöhte Umfor mbarkeit ist es dabei möglich, auch komplexe Geometrien herzustellen, für die es beispielsweise mehrerer Umformschritte bedarf. Auch anspruchsvolle Bauteile können dadurch einteilig hergestellt werden, sodass zusätzliche Fügeoperationen entfallen können.The method according to the invention can be applied in particular to any shear-cut material edges, in particular to punched holes and to edges with any contour. As a result of the increased formability according to the invention, it is also possible to produce complex geometries which, for example, require several forming steps. This means that even complex components can be manufactured in one piece, so that additional joining operations can be dispensed with.
In dem erfindungsgemäßen Verfahren erfolgt die Wärmebehandlung bevorzugt über die gesamte Dicke der Platine und in Ebenenrichtung der Platine in einem Bereich, der höchstens ihrer Dicke entspricht. Die Dauer der Wärmeeinwirkung richtet sich dabei nach der Art des Wärmebehandlungsverfahrens.In the method according to the invention, the heat treatment preferably takes place over the entire thickness of the blank and in the direction of the plane of the blank in an area which corresponds at most to its thickness. The duration of the heat exposure depends on the type of heat treatment process.
Die Erwärmung selbst kann auf beliebige Weise, zum Beispiel konduktiv, induktiv über Strahlungserwärmung oder mittels Laserbearbeitung erfolgen. Hervorragend geeignet für die Wärmebehandlung ist die konduktive Erwärmung, wie sie zum Beispiel in der Automobilfertigung vielfach am Beispiel von Punktschweißungen angewendet wird.The heating itself can take place in any way, for example conductively, inductively via radiation heating or by means of laser processing. Conductive heating, such as that often used in automotive manufacturing, for example for spot welding, is excellently suited to heat treatment.
Vorteilhaft eignet sich zum Beispiel eine Punktschweißmaschine mit eher kurzen Einwirkzeiten zur Behandlung von gestanzten Löchern in der Platine, wohingegen bei zu behandelnden längeren Kantenabschnitten das induktive Verfahren, Strahlungserwärmung oder Laserbearbeitung mit längeren Einwirkzeiten in Frage kommen.For example, a spot welding machine with rather short exposure times is advantageous for treating punched holes in the blank, whereas the inductive process, radiation heating or laser processing with longer exposure times can be used for longer edge sections to be treated.
Somit erfolgt die Wärmeeinbringung nur sehr konzentriert in den scherbeeinflusste n Schnittkantenbereichen und ist daher mit einem vergleichsweise geringen Energieaufwand verbunden, insbesondere hinsichtlich Verfahren, bei denen die gesamte Platine einer Erwärmung zugeführt wird oder eine um Größenordnungen zeitlich aufwendigere Spannungsarmglühung Anwendung findet.Thus, the heat input is only very concentrated in the shear-influenced n cutting edge areas and is therefore associated with a comparatively low energy consumption, especially with regard to methods in which the entire circuit board is heated or stress-relief annealing, which is orders of magnitude more time-consuming, is used.
Das Prozessfenster für die zu erreichende Temperatur im Schnittkantenbereich ist zudem sehr groß und umfasst einen Temperaturbereich von oberhalb 600 °C bis hin zur Solidustemperatur von ca. 1500°C.The process window for the temperature to be reached in the cutting edge area is also very large and covers a temperature range from over 600 °C up to the solidus temperature of approx. 1500 °C.
Die Versuche haben außerdem gezeigt, dass die Eliminierung der Kaltverfestigung entscheidend für eine deutliche Verbesserung des Lochaufweitvermögens ist. Zudem werden durch die Wärmebehandlung Ungänzen, wie z.B. Poren, geschlossen und so die Topografie der Schnittkanten positiv beeinflusst.The tests have also shown that the elimination of work hardening is crucial for a significant improvement in hole expansion capacity. In addition, the heat treatment closes imperfections, such as pores, which has a positive effect on the topography of the cut edges.
Dies ist unabhängig davon, ob die Wärmebehandlung unterhalb oder oberhalb der Umwandlungstemperatur Ac1 stattfindet.This is independent of whether the heat treatment takes place below or above the transformation temperature Ac1.
Wird die Wärmebehandlung oberhalb von Ac1 durchgeführt, kommt es nach der Behandlung im Zuge einer raschen Abkühlung aufgrund des umgebenden kalten Materials bei umwandlungsfähigen Stählen zu einer Umwandlung in sogenannte metastabile Phasen. Das sich daraufhin einstellende Gefüge weist im Vergleich zum nicht wärmebehandelten Bereich mindestens die gleiche oder eine erhöhte Härte auf. Beispielweise steigt die Vickershärte um bis zu 1000 HV.If the heat treatment is carried out above Ac1, in the case of transformable steels, a transformation into so-called metastable phases occurs after the treatment in the course of rapid cooling due to the surrounding cold material. The resulting structure has at least the same or increased hardness compared to the non-heat-treated area. For example, the Vickers hardness increases by up to 1000 HV.
Eine Gefügeumwandlung mit einer damit in aller Regel einhergehenden Härtesteigerung hat überraschenderweise keinen negativen Einfluss auf das Lochaufweitvermögen, unabhängig davon, ob ein im Vergleich zum Ausgangsgefüge härteres und damit weniger zähes Gefüge eingestellt wird, so dass auch Behandlungstemperaturen der Schnittkanten bis hin zur Solidusgrenze möglich sind.Surprisingly, a structural transformation with an increase in hardness that usually accompanies it has no negative impact on the hole expansion capacity, regardless of whether a structure that is harder and therefore less tough than the original structure is set, so that treatment temperatures of the cut edges up to the solidus limit are also possible.
Entscheidend bleibt in jedem Falle, dass die durch das Schneiden eingebrachte Kaltverfestigung weitestgehend eliminiert wird.In any case, it remains crucial that the strain hardening introduced by cutting is largely eliminated.
Zum Schutz der erwärmten Schnittkantenbereiche vor Oxidation sieht eine vorteilhafte Weiterbildung der Erfindung vor, diese Bereiche mit Inertgasen, zum Beispiel Argon oder Stickstoff, zu spülen. Die Inertgasspülung erfolgt dabei während der Dauer der Wärmebehandlung, kann aber auch, falls es notwendig erscheint, zusätzlich schon kurz vor Beginn und/oder in einem begrenzten Zeitraum noch nach Durchführung der Wärmebehandlung erfolgen.In order to protect the heated cutting edge areas from oxidation, an advantageous development of the invention provides for these areas to be flushed with inert gases, for example argon or nitrogen. The inert gas flushing takes place during the duration of the heat treatment, but can also, if it appears necessary, also take place shortly before the start and/or in a limited period of time after the heat treatment has been carried out.
Die Umformschritte des erfindungsgemäßen Verfahrens können vorteilhafterweise mit den bereits in der Produktion vorhandenen Umformwerkzeugen, z.B. zylindrischen oder konischen Stempeln, durchgeführt werden.The forming steps of the method according to the invention can advantageously be carried out with the forming tools already available in production, e.g. cylindrical or conical punches.
Durch die zeitliche Entkopplung der einzelnen Umform- und Temperaturbehandlungsschritte des erfindungsgemäßen Verfahrens wird bei der industriellen Anwendung des Verfahrens eine besonders hohe Flexibilität im Produktionsablauf ermöglicht. Wenn es aus produktionstechnischer Sicht vorteilhaft erscheint, kann die Erwärmung der Schnittkanten jedoch auch unmittelbar nach dem ersten Umformschritt bzw. unmittelbar nach einem optionalen weiteren Umformschritt erfolgen. Dazu kann eine Wärmebehandlungsvorrichtung einer Umformeinrichtung zum Kaltumformen der Platine direkt nachgeschaltet sein.The temporal decoupling of the individual forming and temperature treatment steps of the method according to the invention enables a particularly high degree of flexibility in the production process when the method is used industrially. However, if it appears advantageous from a production point of view, the cut edges can also be heated immediately after the first forming step or immediately after an optional further forming step. For this purpose, a heat treatment device can be connected directly downstream of a forming device for cold forming of the blank.
Die Platine selbst kann z.B. flexibel mit unterschiedlichen Dicken gewalzt sein oder aus Kalt- oder Warmband gleicher oder unterschiedlicher Dicke und/oder Güte gefügt sein. Die Erfindung ist anwendbar für warm- oder kaltgewalzte Stahlbänder aus weichen bis hochfesten Stählen, die mit einer korrosionshemmenden Schicht als metallischem und/oder organischem Überzug versehen sein können. Der metallische Überzug kann zum Beispiel Zink, Magnesium, Aluminium und/oder Silizium enthalten oder daraus bestehen.The blank itself can, for example, be flexibly rolled with different thicknesses or be joined from cold or hot strip of the same or different thickness and/or quality. The invention can be used for hot- or cold-rolled steel strips made from soft to high-strength steels, which can be provided with a corrosion-inhibiting layer as a metallic and/or organic coating. The metallic coating can contain or consist of zinc, magnesium, aluminum and/or silicon, for example.
Die Eignung von beschichteten Stahlbändern erklärt sich aus der Möglichkeit, die Behandlung des Kantenbereichs auf einen Abstand zur Kante zu beschränken, der einem Bruchteil der Platinendicke entspricht, da in diesem Bereich der überwiegende Anteil der schädlichen Kaltverfestigung beim Scherschneiden vorliegt. So kann bei Blechdicken von einigen Millimetern Dicke der Bereich bis zu einem Abstand zur Kante von einigen zehn Mikrometern bereits ausreichend sein, so dass beispielsweise der wirksame Korrosionsschutz einer metallischen korrosionshemmenden Schicht nicht oder nur unerheblich beeinflusst wird.The suitability of coated steel strips is explained by the possibility of limiting the treatment of the edge area to a distance from the edge that corresponds to a fraction of the blank thickness, since the majority of the harmful strain hardening during shear cutting occurs in this area. For sheet metal thicknesses of a few millimeters, the area up to a distance of a few tens of micrometers from the edge can be sufficient, so that, for example, the effective corrosion protection of a metallic corrosion-inhibiting layer is not or only slightly affected.
Als höherfeste Stähle kommen alle einphasigen aber auch mehrphasige Stahlsorte n zur Anwendung. Dazu gehören mikrolegierte, höherfeste Stahlsorten genauso wie bainitische, ferritische oder martensitische Sorten sowie Dualphasen, Komplexphasen und TRIP Stähle. Beispielsweise kommen Stähle mit folgender Legierungszusammensetzung in Gew.-% zum Einsatz:
Das erfindungsgemäße Verfahren hat gegenüber den bekannten Maßnahmen zur Verminderung der Kantenrissempfindlichkeit den Vorteil, dass durch die Wärmebehandlung nur die scherbeeinflussten Kantenbereiche mikrostrukturell verändert werden und die Festigkeit dabei in der Regel nicht verringert, sondern erhöht wird. Die Unempfindlichkeit gegenüber Kantenrissen im Sinne eines größeren Lochaufweitvermögens kann damit um den Faktor 3 oder sogar mehr als 4 verbessert werden.Compared to the known measures for reducing the sensitivity to edge cracks, the method according to the invention has the advantage that the heat treatment only changes the microstructure of the edge regions affected by shearing and the strength is usually not reduced but increased. The insensitivity to edge cracks in terms of greater hole expansion capacity can thus be improved by a factor of 3 or even more than 4.
Bei der industriellen Anwendung des erfindungsgemäßen Verfahrens kann aufgrund der deutlich erhöhten Umformbarkeit der kritischen scherbeeinflussten Kantenbereiche von Platinen einerseits der Ausschuss an umgeformten Bauteilen gesenkt werden und andererseits können bislang notwendige Fügeoperationen zum Beispiel durch jetzt durchführbare Kragenoperationen bei der Ausbildung z.B. von Lagerstellen eingespart werden.In the industrial application of the method according to the invention, due to the significantly increased formability of the critical shear-affected edge areas of blanks, on the one hand the waste of formed components can be reduced and on the other hand previously necessary joining operations can be saved, for example by collar operations that can now be carried out in the formation of bearing points, for example.
Das erfindungsgemäße Verfahren erlaubt darüber hinaus durch das verbesserte Umformvermögen der Schnittkantenbereiche komplexere Bauteilgeometrien und somit eine größere konstruktive Freiheit bei Verwendung derselben Werkstoffe. Zudem wird die Dauerfestigkeit des kalt umgeformten Bauteils erwartungsgemäß aufgrund des sich einstellenden, zwar möglicherweise im Vergleich zum Ausgangszustand härteren aber homogeneren Gefüges nicht verringert, sondern insbesondere bei ausgeprägt zweiphasigen Gefügen wie z.B. Dualphasengefügen erhöht.The method according to the invention also allows more complex component geometries due to the improved deformability of the cut edge regions and thus greater design freedom when using the same materials. In addition, the fatigue strength of the cold-formed component is as expected due to the resulting structure, which may be harder but more homogeneous than the initial state, is not reduced, but rather increased, especially in the case of pronounced two-phase structures such as dual-phase structures.
Aufgrund der kurzen Temperaturbehandlungsdauer von maximal 10 Sekunden kann das erfindungsgemäße Verfahren in einer Serienfertigung, die eine Taktung im Bereich von 0,1 bis 10 Sekunden vorgibt, als Zwischenfertigungsschritt integriert werden. Insbesondere die Fertigung von Blechkomponenten im Automobilbereich in mehreren aufeinander folgenden Schritten stellt somit einen prädestinierten Anwendungsbereich des erfindungsgemäßen Verfahrens dar.Due to the short temperature treatment time of a maximum of 10 seconds, the method according to the invention can be integrated as an intermediate production step in series production, which specifies a cycle time in the range from 0.1 to 10 seconds. In particular, the production of sheet metal components in the automotive sector in several successive steps thus represents a predestined area of application for the method according to the invention.
Optional kann das Band oder Blech, aus welchem die für die Erzeugung des Bauteils verwendete Platine zugeschnitten wird, in einem Vorbehandlungsschritt bereits vorgeformt und anschließend aus dem schon vorgeformten Band oder Blech die Platine geschnitten werden, wenn dies fertigungstechnisch sinnvoll erscheint. Alternativ kann die Vorformung auch erst an der bereits zugeschnittenen Platine erfolgen.Optionally, the strip or sheet from which the blank used to produce the component is cut can already be preformed in a pre-treatment step and then the blank can be cut from the preformed strip or sheet if this makes sense in terms of production technology. Alternatively, the preforming can also only take place on the blank that has already been cut to size.
Gemäß einer bevorzugten Ausführungsform erfolgt der Zuschnitt dabei durch Scherschneiden, wobei der Begriff Scherschneiden sowohl offene als auch geschlossene Schnitte umfasst, d.h. sowohl Schneid- als auch Stanzoperationen.According to a preferred embodiment, the cutting is done by shear cutting, the term shear cutting encompassing both open and closed cuts, i.e. both cutting and punching operations.
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Figur 1, die eine schematische Darstellung der einzelnen Schritte des erfindungsgemäßen Verfahrens zeigt.Further features, advantages and details of the invention result from the following description of FIG. 1, which shows a schematic representation of the individual steps of the method according to the invention.
Das linke Bild der Figur 1 zeigt das optionale Vorformen einer bereits durch Scherschneiden zugeschnittenen Platine. Das zweite Bild von links in der Figur 1 zeigt das Ausstanzen eines Loches in die Platine (Schritt 1). Die Schnittkanten des Loches werden sodann optional einer erfindungsgemäßen Erwärmung unterzogen (Schritt 1a) Das erfindungsgemäße Verfahren beinhaltet weiterhin das anschließende Umformen der Platine in ihren Kantenbereichen zu einer vorgeformten Kontur, beispielsweise zu einem unvollständig ausgebildeten Kragen (Schritt 2).The image on the left of FIG. 1 shows the optional preforming of a circuit board that has already been cut to size by shearing. The second image from the left in Figure 1 shows the punching of a hole in the circuit board (step 1). The cut edges of the hole are then optionally subjected to heating according to the invention (step 1a). The method according to the invention also includes the subsequent shaping of the blank in its edge regions into a preformed contour, for example into an incompletely formed collar (step 2).
Da die so erhaltene vorgeformte Kontur in ihren scherbeeinträchtigten Kantenbereichen eine hohe Kaltverfestigung aufweist, welche bei weiterer Umformung möglicherweise zu Defekten im Werkstoff führen würde, werden die Kantenbereiche anschließend zur Eliminierung bzw. Reduzierung der Kaltverfestigung der erfindungsgemäßen Temperaturbehandlung von mindestens 600 °C für eine Dauer von maximal 10 Sekunden unterzogen (Schritt 3).Since the preformed contour obtained in this way has a high level of strain hardening in its shear-impaired edge areas, which would possibly lead to defects in the material if further forming were carried out, the edge areas are then subjected to the temperature treatment according to the invention of at least 600 °C for a period of subjected to a maximum of 10 seconds (step 3).
Durch die Temperaturbehandlung erhält das Bauteil auch in den beanspruchten Kantenbereichen in erheblichem Maße seine Umformbarkeit zurück, sodass im nächsten Schritt eine erneute, weitere Umformung stattfinden kann (Schritt 4).As a result of the temperature treatment, the component also regains its formability to a considerable extent in the stressed edge areas, so that a new, further forming can take place in the next step (step 4).
In Ausführungsformen, in denen durch die zweite Umformung noch nicht das gewünschte Bauteil erhalten wird, können die durch die zweite Umformung erzeugten Materialspannungen wieder zumindest teilweise durch eine nachfolgende Temperaturbehandlung von mindestens 600 °C für eine Dauer von maximal 10 Sekunden eliminiert werden, woraufhin ein dritter Umformschritt stattfinden kann.In embodiments in which the desired component is not yet obtained by the second forming, the material stresses generated by the second forming can be at least partially eliminated again by a subsequent temperature treatment of at least 600 °C for a maximum period of 10 seconds, after which a third Forming step can take place.
Sollte das gewünschte Ergebnis auch infolge des dritten Umformschrittes noch nicht erreicht sein, können die Schritte der Temperaturbehandlung von mindestens 600 °C für eine Dauer von maximal 10 Sekunden, gefolgt von einem nachfolgenden Umformschritt bei Raumtemperatur, beliebig oft wiederholt werden.If the desired result is not yet achieved as a result of the third forming step, the heat treatment steps of at least 600 °C for a maximum of 10 seconds, followed by a subsequent forming step at room temperature, can be repeated as often as desired.
Claims (14)
- Method for producing a component by further forming of a preformed contour of a blank, the blank, which is cut in advance from a strip or a metal sheet at room temperature, being subjected, after further manufacturing steps implemented at ambient temperature, such as e.g. stamping or cutting operations in order to obtain recesses or through-openings, in selected edge regions work-hardened by the stamping or cutting operations, to a first forming at ambient temperature in order to obtain a preformed contour,
characterised in that
optionally, in fact, the edge regions provided for the forming but at least the edge regions already subjected to the first forming are heated for a duration of at most 10 seconds to a temperature of at least 600°C, and the edge regions are subjected, at any time after this heat treatment, to a second forming or further formings at ambient temperature with respectively preceding heat treatments. - Method according to claim 1,
characterised in that
the strip or metal sheet, from which the blank used for the production of the component is cut, is preformed in a pretreatment step before the first forming. - Method according to claim 1 and 2,
characterised in that
the component is obtained by the second forming. - Method according to one of the preceding claims,
characterised in that,
after the second forming, any number of further forming steps of the edge regions are implemented at ambient temperature, each of the further forming steps being preceded by a further temperature treatment of the edge regions at at least 600°C for the duration of at most 10 seconds. - Method according to at least one of the preceding claims, characterised in that the edge regions subjected to the first forming are heated to a temperature of at least 600°C for a duration of 0.02 to 10 seconds.
- Method according to at least one of the preceding claims, characterised in that the edge regions subjected to the first forming are heated to a temperature of at least 600°C for a duration of 0.1 to 2 seconds.
- Method according to at least one of the preceding claims, characterised in that the edge regions subjected to the first forming are heated to a temperature of at least 600°C up to solidus temperature.
- Method according to at least one of the preceding claims, characterised in that the edge regions subjected to the first forming are heated to a temperature from the conversion temperature Ac 1 up to solidus temperature.
- Method according to at least one of the preceding claims, characterised in that the heating to a temperature of at least 600°C is effected inductively, conductively, by means of radiation heating or by means of laser radiation.
- Method according to at least one of the preceding claims, characterised in that the blank has an organic and/or metallic coating.
- Method according to claim 10,
characterised in that the metallic coating comprises Zn, Mg, Al and/or Si. - Method according to at least one of the preceding claims, characterised in that
the heat treatment of the blank, starting from the edge, is effected in a region which corresponds to the maximum of the thickness of the blank. - Method according to at least one of the preceding claims, characterised in that
the region around the position of the heat treatment is scoured by means of an inert gas for protection from oxidation, during and optionally before and/or after the heat treatment. - Method according to at least one of the preceding claims, characterised in that
a steel with the following alloy composition in % by weight is used:C 0.01 - 0.2% Si 0.2 - 4.0% Mn 0.5 - 4.0% Al 0.02 - 0.1% Ti 0.0 - 0.2% V 0.0 - 0.3% Nb 0.0 - 0.1%
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017103729.2A DE102017103729A1 (en) | 2017-02-23 | 2017-02-23 | Method for producing a component by further shaping a preformed contour |
PCT/EP2018/051978 WO2018153615A1 (en) | 2017-02-23 | 2018-01-26 | Method for producing a component by further forming of a preformed contour |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3585531A1 EP3585531A1 (en) | 2020-01-01 |
EP3585531B1 true EP3585531B1 (en) | 2022-10-05 |
Family
ID=61094510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18702238.9A Active EP3585531B1 (en) | 2017-02-23 | 2018-01-26 | Method for producing a component by further forming of a preformed contour |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200038933A1 (en) |
EP (1) | EP3585531B1 (en) |
KR (1) | KR102386137B1 (en) |
DE (1) | DE102017103729A1 (en) |
ES (1) | ES2930811T3 (en) |
RU (1) | RU2743046C1 (en) |
WO (1) | WO2018153615A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016121902A1 (en) * | 2016-11-15 | 2018-05-17 | Salzgitter Flachstahl Gmbh | Process for the production of chassis parts made of micro-alloyed steel with improved cold workability |
CN113474100B (en) * | 2019-02-27 | 2023-06-16 | 杰富意钢铁株式会社 | Method for manufacturing steel sheet for cold pressing and method for manufacturing press member |
EP4201578A1 (en) * | 2021-12-24 | 2023-06-28 | Fundación Azterlan | Apparatus and method of forming countersinks and/or mouse holes in a stamped high strength aluminium sheet |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2859510A (en) * | 1955-01-13 | 1958-11-11 | Wheeling Steel Corp | Method of forming a boiler head or the like |
SU795631A2 (en) * | 1978-11-24 | 1981-01-15 | Предприятие П/Я Р-6543 | Beading method |
RU2105626C1 (en) * | 1993-06-15 | 1998-02-27 | Комсомольское-на-Амуре авиационное производственное объединение | Opening flanging method |
DE102009016027A1 (en) * | 2009-04-02 | 2010-10-07 | Volkswagen Ag | Method for producing a component, in particular a body part, and production line for carrying out the method |
DE102009049155B4 (en) | 2009-10-12 | 2017-01-05 | Bayerische Motoren Werke Aktiengesellschaft | Method for determining the edge crack sensitivity of a sheet metal material and apparatus for producing a test piece from this sheet metal material |
DE102011121904A1 (en) | 2011-12-21 | 2013-06-27 | Volkswagen Aktiengesellschaft | Method for manufacturing recess in metal sheets for motor car wheel suspension, involves introducing target contour of recess to extend sectional contour such that recess is introduced in the metal sheet |
EP2679692A1 (en) * | 2012-06-29 | 2014-01-01 | GEDIA Gebrüder Dingerkus GmbH | Method for manufacturing a press hardened formed component made of sheet steel |
DE102012014258A1 (en) * | 2012-07-12 | 2014-01-16 | Salzgitter Flachstahl Gmbh | Method for manufacturing engine carrier from steel for body construction in automobile industry, involves carrying out shaping of sheet metal blank to component in temperature range using stamping process, and ending shaping of blank |
KR101477375B1 (en) * | 2013-02-27 | 2014-12-30 | 현대제철 주식회사 | Steel sheet and manufacturing method of the same |
US20140261919A1 (en) | 2013-03-14 | 2014-09-18 | Thyssenkrupp Steel Usa, Llc | Low carbon-high manganese steel and manufacturing process thereof |
DE102014016614A1 (en) | 2014-10-31 | 2016-05-04 | Salzgitter Flachstahl Gmbh | Process for producing a component by forming a steel circuit board |
DE102014116017A1 (en) * | 2014-11-04 | 2016-05-04 | Lissmac Maschinenbau Gmbh | Device with a turning unit for turning a workpiece and a machining device |
-
2017
- 2017-02-23 DE DE102017103729.2A patent/DE102017103729A1/en active Pending
-
2018
- 2018-01-26 ES ES18702238T patent/ES2930811T3/en active Active
- 2018-01-26 EP EP18702238.9A patent/EP3585531B1/en active Active
- 2018-01-26 WO PCT/EP2018/051978 patent/WO2018153615A1/en unknown
- 2018-01-26 US US16/488,143 patent/US20200038933A1/en not_active Abandoned
- 2018-01-26 RU RU2019129532A patent/RU2743046C1/en active
- 2018-01-26 KR KR1020197024438A patent/KR102386137B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20200038933A1 (en) | 2020-02-06 |
KR20190120205A (en) | 2019-10-23 |
WO2018153615A1 (en) | 2018-08-30 |
KR102386137B1 (en) | 2022-04-12 |
RU2743046C1 (en) | 2021-02-12 |
ES2930811T3 (en) | 2022-12-22 |
DE102017103729A1 (en) | 2018-08-23 |
EP3585531A1 (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3212348B1 (en) | Method for producing a component by subjecting a sheet bar of steel to a forming process | |
EP2155917B1 (en) | Process for producing a locally hardened profile component | |
EP2553133B1 (en) | Steel, flat steel product, steel component and method for producing a steel component | |
EP2125263B1 (en) | Method and apparatus for the temperature-controlled shaping of hot-rolled steel material | |
DE102005014298A1 (en) | Armor for a vehicle | |
DE102015203644A1 (en) | Press-hardened sheet metal part with different sheet thicknesses and strengths | |
EP3585531B1 (en) | Method for producing a component by further forming of a preformed contour | |
EP3541966B1 (en) | Method for producing chassis parts from micro-alloyed steel with improved cold workability | |
DE102018101735A1 (en) | TWO-STAGE HOT-FORMING OF STEEL | |
WO2018091039A1 (en) | Method for producing wheel discs from a dual-phase steel with improved cold workability | |
EP3365469B1 (en) | Method for producing a steel component for a vehicle | |
DE102016211661A1 (en) | METHOD FOR FORMING A COMPONENT | |
EP3456456A1 (en) | Method for the preparation of tailor welded blank (twbs) | |
EP2457673A1 (en) | Method for producing workpieces by hot forming blanks | |
DE102012014258A1 (en) | Method for manufacturing engine carrier from steel for body construction in automobile industry, involves carrying out shaping of sheet metal blank to component in temperature range using stamping process, and ending shaping of blank | |
DE102017110851B3 (en) | Method for producing steel composite materials | |
EP3296104A1 (en) | Bodywork component with reduced cracking and a method for producing same | |
EP3585530B1 (en) | Method for the optimized production of a component with at least one secondary formed element | |
WO2019137910A1 (en) | Method for producing a steel sheet component | |
DE102015221635A1 (en) | Press-hardened sheet metal part with different sheet thicknesses and strengths | |
DE102015116186A1 (en) | Semi-finished product and method for producing a vehicle component, use of a semi-finished product and vehicle component | |
WO2022157212A1 (en) | Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component | |
DE102020103977A1 (en) | Method for manufacturing a component by forming a metal strip | |
DE102020115345A1 (en) | Process for the production of a component as well as a component | |
DE102019209666A1 (en) | Structural components for armor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190702 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200608 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220412 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1522424 Country of ref document: AT Kind code of ref document: T Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018010766 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2930811 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221222 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230105 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230205 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230106 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018010766 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20230706 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230126 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230126 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1522424 Country of ref document: AT Kind code of ref document: T Effective date: 20230126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240227 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240122 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221005 |