EP2569112B1 - Method for producing a structural part from an iron-manganese-steel sheet - Google Patents

Method for producing a structural part from an iron-manganese-steel sheet Download PDF

Info

Publication number
EP2569112B1
EP2569112B1 EP11720423.0A EP11720423A EP2569112B1 EP 2569112 B1 EP2569112 B1 EP 2569112B1 EP 11720423 A EP11720423 A EP 11720423A EP 2569112 B1 EP2569112 B1 EP 2569112B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
metal workpiece
workpiece
temperature
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11720423.0A
Other languages
German (de)
French (fr)
Other versions
EP2569112A1 (en
Inventor
Ludovic Samek
Martin Peruzzi
Enno Arenholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2569112A1 publication Critical patent/EP2569112A1/en
Application granted granted Critical
Publication of EP2569112B1 publication Critical patent/EP2569112B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Definitions

  • the invention relates to a method for producing a component from an iron-manganese steel sheet.
  • Iron-manganese steels are lightweight steels that can have high strength and high ductility at the same time. This makes iron-manganese steels a material with great potential in vehicle construction. A high material strength allows a reduction in body weight, which can reduce fuel consumption. High extensibility and stability of the steels is important both for the production of the body parts by deep-drawing processes and for their crash behavior. For example, structure and / or security parts such as e.g. Door impact beams, A- and B-pillars, bumpers or longitudinal and transverse beams can realize complex component geometries and at the same time achieve the weight targets and safety requirements.
  • structure and / or security parts such as e.g. Door impact beams, A- and B-pillars, bumpers or longitudinal and transverse beams can realize complex component geometries and at the same time achieve the weight targets and safety requirements.
  • Hot forming offers a well-known alternative to the cold forming process.
  • Conventional hot forming processes are carried out at high temperatures of about 900 ° C or above. Hot working reduces both springback of the formed component and strain hardening in formed areas. Thus, with the hot forming technique complex deep drawn parts can be produced without appreciable spring-back in one go.
  • a disadvantage of hot forming are the high process temperatures and the material-dependent reduction in the strength of the component caused by the hot working after the cooling process.
  • hot forming is often combined with hardening technology. This is based on the known possibility of strengthening of steel materials by martensite formation.
  • an austenitic structure is produced by heating the component to the so-called hardening temperature above Ac3, which is then completely converted into martensite by rapid cooling.
  • Condition for the complete martensite transformation is that a critical cooling rate is exceeded.
  • it requires cooled pressing tools that allow a sufficiently rapid cooling of the workpiece by contact of the hot workpiece surface with the cold tool surface.
  • a method of manufacturing a ferro-manganese steel sheet member comprising the steps of cold working a sheet metal workpiece in a mold and heating the formed sheet metal workpiece to a temperature between 500 ° C and 700 ° C.
  • One object of the invention is to be seen to provide a method with which the production of formed parts made of iron-manganese steel sheet with good mechanical properties is made possible cost.
  • the method should be the Manufacture of formed sheet metal workpieces with complex component geometry and favorable material properties even in formed component areas.
  • a method of manufacturing a ferro-manganese steel sheet member in which a sheet metal workpiece is cold-formed in a molding die, the formed sheet metal workpiece is heated to a temperature between 500 ° C and 700 ° C, and the heated sheet metal workpiece calibrated in a calibration tool.
  • elevated temperatures can be achieved that a cold work hardening occurred in the cold forming is degraded again in the formed areas.
  • homogenization of the mechanical properties over the entire component can thereby be achieved.
  • the austenitizing temperature Ac3 is not exceeded, i. that during heating no transformation of the workpiece structure into a fully austenitic structure occurs.
  • the degree of degradation of strain hardening in the reformed part regions can be controlled by the choice of temperature. At high temperatures, the strength of the formed Even under the strength in areas not or less heavily deformed areas can be lowered ranges. In order to avoid excessive degradation of work hardening, a temperature between 600 ° C and 680 ° C may be advantageous.
  • the formed sheet metal workpiece can be heated in an oven and inserted after heating in the calibration. It is also conceivable that the heating of the sheet metal workpiece takes place directly in the calibration tool. In both cases, the initial temperature during calibration can also be in the specified range between 500 ° C and 700 ° C. During calibration, then a cooling of the formed sheet metal workpiece takes place in a held or fixed state.
  • the residence time of the sheet metal workpiece in the oven can be chosen so that a homogeneous heating of the sheet metal workpiece is ensured, it should be noted that with increasing thickness of the sheet metal workpiece is typically to be estimated an extension of the time for the warm-up.
  • the critical minimum cooling rate known from press-hardening does not have to be adhered to, ie. the cooling rate in the calibration tool may be determined according to other considerations (for example, cycle times, operating costs, tooling costs, etc.).
  • the heating temperature of the formed Blechwerk GmbH can be adjusted so that the work hardening in formed portions of the (formed) sheet metal workpiece by the calibration by at least 70%, in particular at least 80%, degraded.
  • the heating temperature of the sheet metal workpiece can be adjusted so that the calibrated sheet metal workpiece over its entire geometry has a maximum variation in tensile strength of 20%, in particular 10%. In other words, a substantial homogenization of the mechanical component properties in terms of tensile strength is achievable.
  • the component may be, for example, a body component for vehicle construction.
  • the body component may have a complex component geometry. It may be a structural and / or safety part, which may have to meet special safety requirements in the event of a load (crash).
  • the component may be an A or B pillar, a side impact protector in doors, a sill, a frame part, a bumper, a cross member for floor and roof or act on a front or rear side member.
  • the component consists of an iron-manganese (FeMn) steel.
  • FeMn components are known in the automotive industry and may have a manganese content of about 12 to 35 wt%.
  • TWIP, TRIP / TWIP and TRIPLEX steels as well as mixed forms of these steels can be used.
  • TWining (TWining Induced Plasticity) steels are austenitic steels. They are characterized by a high manganese content (for example over 25%) and relatively high alloying additions of aluminum and silicon. In cold plastic deformation, intensive twin formation takes place, which solidifies the steel. TWIP steels have a high elongation at break. They are therefore particularly suitable for the production of structural or safety parts in accident-relevant areas of the body.
  • TRIP / TWIP steels are combinations of TWIP and TRIP steels (TRANSformation Induced Plasticity).
  • TRIP steels essentially consist of several phases of iron-carbon alloys, namely ferrite, bainite and carbon-rich residual austenite.
  • the TRIP effect is based on the deformation-induced transformation of residual austenite into the high-strength martensitic phase (a-martensite).
  • a-martensite high-strength martensitic phase
  • TRIP / TWIP steels a double TRIP effect occurs because the austenitic structure is first converted into hexagonal and then cubic body-centered martensite. Due to the two martensitic transformations TRIP / TWIP steels have a double expansion reserve.
  • TRIPLEX steels consist of a multi-phase structure of ⁇ -ferrite and ⁇ -austenite mixed crystals with a martensitic s-phase and / or K-phase. They have good formability.
  • Fig. 1 shows a schematic embodiment of an embodiment of a method according to the invention, wherein also optional method steps are shown.
  • Starting point of the procedure is a coil 1 made of strip steel, as it is produced for example in a steel mill and delivered to a customer (eg vehicle manufacturers or suppliers).
  • the FeMn strip steel may be, for example, a cold-rolled and annealed steel. However, it is also possible to use a hot-rolled steel.
  • the manufacturing process of the FeMn steel strip in the steel mill should be designed to ensure good cold workability of the steel.
  • the steel strip will then be e.g. cut at the vehicle manufacturer or supplier in FeMn boards 2.
  • the cutting takes place in a cutting station.
  • One or more boards 2 are then placed in a cold forming tool 3 and cold formed.
  • the temperatures in the cold forming tool can be in the usual range, for example at about 70 ° C to 80 ° C. Furnaces are not used to realize these temperatures.
  • the residence time of the workpiece in the cold forming tool 3 is typically without significant influence on the workpiece properties.
  • the cold forming tool 3 can be realized in the form of a deep-drawing press.
  • a trimming of the workpiece can be carried out simultaneously in the cold forming tool 3.
  • This bleed can be the final trim of the part.
  • any necessary punching or the creation of a hole pattern in the cold forming tool 3 can be made. That is, after the cold forming step, a component having a completely finished component shape may already exist with respect to material removing processes.
  • material removing processes are performed in a cutting line (not shown) located outside and behind the cold forming tool 3 (which is in the so-called press line).
  • the final component may already be present after trimming or hole pattern generation with respect to material-removing processes.
  • the cold formed and optionally trimmed workpiece is then fed to a furnace 4 and heated there to a temperature between 500 ° C and 700 ° C.
  • T 500 ° C - 700 ° C.
  • the residence time in the oven may be 10 minutes, with 5 minutes being used for achieving the homogeneous temperature distribution and the remaining 5 minutes for holding the component at this homogeneous temperature.
  • a radiation furnace can be used or it can be provided furnaces that supply the workpiece in another way energy.
  • convective heating, inductive heating or infrared heating, as well as combinations of said mechanisms may be used.
  • the heated to the target temperature between 500 ° C and 700 ° C, formed workpiece is then removed from the oven 4, placed in a calibration tool 5 and fixed there in the desired shape and cooled.
  • the temperature of the workpiece at the beginning of the calibration process may also be lower than the temperature of the workpiece during removal from the furnace, it may in particular be between 400 ° C and 700 ° C.
  • the calibration tool 5 may be, for example act a sizing press. Calibration ensures the dimensional accuracy of the workpiece.
  • the surface geometry of the pressing surfaces of the tool corresponds to the final shape of the workpiece or is close to the final shape, since the calibration in the calibration tool significantly reduces the springback.
  • the cooling of the workpiece takes place in the calibration tool 5 when the workpiece is fixed, ie when the workpiece surfaces abut the tool surfaces.
  • the heat dissipation takes place via the tool.
  • the cooling rate may be, for example, about 30 ° C / s, but should not be critical because unlike the press hardening no critical cooling rate must be exceeded.
  • the cooling rate may be less than 50 ° C / s, which can be achieved without major tooling effort and in many cases sufficiently short cycle times possible. Higher cooling rates, for example in the range of 50 ° C / s to 150 ° C / s, are also possible.
  • the calibration tool 5 may have a cooling device (eg water cooling).
  • coated FeMn steels can be used for the process.
  • the sheet metal workpiece can be coated with an organic and / or inorganic or metallic coating, in particular an alloy based on zinc or aluminum.
  • the coating can be done before cold forming or at another time, eg after calibration.
  • a cathodic corrosion protection is effected for example by a galvanizing.
  • the coating may be carried out electrolytically or by a hot dip process prior to the cold forming step 3 (e.g., already at the steelmaker on coil 1) or even after the cold forming step 3 and before heating in the furnace 4.
  • the heat treatment before or during calibration forms a mixed crystal layer between the FeMn steel and the Zn coating in the case of a Zn coating, which ensures good adhesion of the Zn layer to the component. It is also possible to coat the coating (e.g., galvanizing) only on the finished component, i. after calibration in the calibration tool 5 make.
  • Fig. 2 refers to further embodiments of the basis Fig. 1 exemplified method and illustrates the reduction of work hardening as a function of the workpiece temperature achieved during heating.
  • the Vickers hardness Hv is shown as a function of the distance from the place of transformation.
  • a circuit board 2 which was cut from a cold-rolled, annealed FeMn steel strip.
  • the board 2 had a tensile strength R m ⁇ 1100 MPa, which corresponded to the tensile strength of the strip steel.
  • the residence time in the oven 4 was 10 minutes, so that a complete and homogeneous heating of the wells was guaranteed.
  • the hot wells were fixed in a calibration tool 5 in the final shape and cooled there.
  • the cooling rate in this example was about 30 ° C / s.
  • the risk of delayed cracking due to hydrogen embrittlement is increased, as this occurs especially where a high work hardening gradient is observed during cold working.
  • the hot calibration according to the invention leads to the reduction of strain hardening in the wells.
  • T 500 ° C
  • T 600 ° C
  • Fig. 2 It can be seen that by the choice of a suitable temperature T for the hot calibration, the strain hardening in the region of a component close to the forming area can be selectively influenced and, if desired, reduced to a certain value.
  • homogeneous mechanical properties in terms of tensile strength can be achieved with a variation of less than 20%, or even 10%, in terms of reshaped and unformed portions of the component. It is also possible to reduce the strain hardening, for example by 70% or 80%.
  • Fig. 2 illustrates that the heat treatment and the hot calibration only affect and degrade the increased strength values caused by work hardening, while the mechanical properties hardly change in the remaining sections of the work piece which are not subjected to forming. In other words, it can be achieved that a component with complex component geometry has homogeneous mechanical properties over its entire extension or that it attains specifically increased or reduced strength at transformation sites in comparison to non-deformed sections.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einem Eisen-Mangan-Stahlblech.The invention relates to a method for producing a component from an iron-manganese steel sheet.

Eisen-Mangan-Stähle sind Leichtbaustähle, die eine hohe Festigkeit und gleichzeitig eine hohe Dehnbarkeit aufweisen können. Dies macht Eisen-Mangan-Stähle zu einem Werkstoff mit großem Potential im Fahrzeugbau. Eine hohe Werkstofffestigkeit ermöglicht eine Reduzierung des Karosseriegewichts, wodurch der Kraftstoffverbrauch gesenkt werden kann. Eine hohe Dehnungsfähigkeit und Stabilität der Stähle ist sowohl für die Herstellung der Karosserieteile durch Tiefziehprozesse als auch für deren Crash-Verhalten von Bedeutung. Beispielsweise müssen Struktur und/oder Sicherheitsteile wie z.B. Türaufprallträger, A- und B-Säulen, Stoßfänger oder Längs- und Querträger komplexe Bauteilgeometrien realisieren und gleichzeitig die Gewichtsziele und Sicherheitsanforderungen erreichen können.Iron-manganese steels are lightweight steels that can have high strength and high ductility at the same time. This makes iron-manganese steels a material with great potential in vehicle construction. A high material strength allows a reduction in body weight, which can reduce fuel consumption. High extensibility and stability of the steels is important both for the production of the body parts by deep-drawing processes and for their crash behavior. For example, structure and / or security parts such as e.g. Door impact beams, A- and B-pillars, bumpers or longitudinal and transverse beams can realize complex component geometries and at the same time achieve the weight targets and safety requirements.

Es ist bereits bekannt, Karosseriebauteile aus Eisen-Mangan-Stahlblech durch Kaltumformung herzustellen. Die Kaltumformung führt jedoch durch Kaltverfestigung in umgeformten Bereichen zu einer Verminderung der Verformbarkeit und somit zu einer Reduzierung des Energieabsorptionspotentials im Belastungsfall (Crash). Solche durch die Kaltverfestigung bewirkten inhomogenen mechanischen Bauteileigenschaften können dazu führen, dass das Bauteil die Sicherheitsanforderungen nicht erreicht. Weitere Nachteile der Kaltumformtechnik bestehen darin, dass sie das Risiko der verzögerten Rissbildung durch Wasserstoffversprödung erhöht, das umgeformte Teil ein deutliches Rückfederungsverhalten (sogenannter "spring back"-Effekt) zeigt und kalt umgeformte Bauteile eine unzureichende numerische Simulierbarkeit des Bauteilverhaltens im Belastungsfall aufweisen.It is already known to produce body parts made of iron-manganese steel sheet by cold forming. Cold working, however, leads to a reduction in ductility due to strain hardening in formed areas and thus to a reduction in the energy absorption potential in the event of a load (crash). Such inhomogeneous mechanical component properties caused by the work hardening can lead to the component not meeting the safety requirements. Other disadvantages of the cold forming technique are that it increases the risk of delayed cracking by hydrogen embrittlement, the formed part a significant springback (so-called "spring back" effect) shows and cold-formed components have an insufficient numerical simulability of the component behavior in the load case.

Die Warmumformung bietet eine bekannte Alternative zum Kaltumformverfahren. Übliche Warmumformprozesse werden bei hohen Temperaturen von etwa 900°C oder darüber ausgeführt. Das Warmumformen vermindert sowohl die Rückfederung des umgeformten Bauteils als auch die Kaltverfestigung in umgeformten Bereichen. Somit lassen sich mit der Warmumformtechnik komplexe Tiefziehteile ohne nennenswerte Rückfederung in einem Zug herstellen. Nachteilig bei der Warmumformung sind jedoch die hohen Prozesstemperaturen und die durch das Warmumformen bewirkte, werkstoffabhängige Verminderung der Festigkeit des Bauteils nach dem Abkühlprozess.Hot forming offers a well-known alternative to the cold forming process. Conventional hot forming processes are carried out at high temperatures of about 900 ° C or above. Hot working reduces both springback of the formed component and strain hardening in formed areas. Thus, with the hot forming technique complex deep drawn parts can be produced without appreciable spring-back in one go. A disadvantage of hot forming, however, are the high process temperatures and the material-dependent reduction in the strength of the component caused by the hot working after the cooling process.

Um die Festigkeitsverminderung zu vermeiden, wird die Warmumformung häufig mit der Härtetechnik kombiniert. Diese beruht auf der bekannten Möglichkeit der Festigungssteigerung von Stahlwerkstoffen durch Martensit-Bildung. Beim Härten wird durch eine Erwärmung des Bauteils auf die sogenannte Härtetemperatur oberhalb Ac3 ein austenitisches Gefüge erzeugt, das anschließend durch schnelles Abkühlen vollständig in Martensit umgewandelt wird. Bedingung für die vollständige Martensit-Umwandlung ist dabei, dass eine kritische Abkühlgeschwindigkeit überschritten wird. Hierfür bedarf es gekühlter Presswerkzeuge, die durch Kontakt der heißen Werkstückoberfläche mit der kalten Werkzeugoberfläche eine ausreichend schnelle Abkühlung des Werkstückes ermöglichen.To avoid the reduction in strength, hot forming is often combined with hardening technology. This is based on the known possibility of strengthening of steel materials by martensite formation. During hardening, an austenitic structure is produced by heating the component to the so-called hardening temperature above Ac3, which is then completely converted into martensite by rapid cooling. Condition for the complete martensite transformation is that a critical cooling rate is exceeded. For this purpose, it requires cooled pressing tools that allow a sufficiently rapid cooling of the workpiece by contact of the hot workpiece surface with the cold tool surface.

Aus der DE 10 2008 050 315 A1 ist ein Verfahren zur Herstellung eines Bauteils aus einem Eisen-Mangan-Stahlblech bekannt, mit den Schritten Kaltumformen eines Blechwerkstückes in einem Formwerkzeug und Erwärmen des umgeformten Blechwerkstückes auf eine Temperatur zwischen 500°C und 700°C.From the DE 10 2008 050 315 A1 A method of manufacturing a ferro-manganese steel sheet member is known, comprising the steps of cold working a sheet metal workpiece in a mold and heating the formed sheet metal workpiece to a temperature between 500 ° C and 700 ° C.

Eine der Erfindung zugrunde liegende Aufgabenstellung kann darin gesehen werden, ein Verfahren zur Verfügung zu stellen, mit dem kostengünstig die Herstellung umgeformter Bauteile aus Eisen-Mangan-Stahlblech mit guten mechanischen Eigenschaften ermöglicht wird. Insbesondere soll das Verfahren die Herstellung von umgeformten Blechwerkstücken mit komplexer Bauteilgeometrie und günstigen Materialeigenschaften auch in umgeformten Bauteilbereichen erlauben.One object of the invention is to be seen to provide a method with which the production of formed parts made of iron-manganese steel sheet with good mechanical properties is made possible cost. In particular, the method should be the Manufacture of formed sheet metal workpieces with complex component geometry and favorable material properties even in formed component areas.

Die der Erfindung zugrunde liegende Aufgabenstellung wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den abhängigen Ansprüchen angegeben.The problem underlying the invention is solved by the features of claim 1. Advantageous embodiments and further developments are specified in the dependent claims.

Es wird ein Verfahren zur Herstellung einer Bauteils aus einem Eisen-Mangan-Stahlblech zur Verfügung gestellt, bei welchem ein Blechwerkstück in einem Formwerkzeug kalt umgeformt wird, das umgeformte Bleckwerkstück auf eine Temperatur zwischen 500°C und 700°C erwärmt wird und das erwärmte Blechwerkstück in einem Kalibrierwerkzeug kalibriert wird. Durch das Kalibrieren des umgeformten Blechwerkstückes bei den angegebenen, erhöhten Temperaturen kann erreicht werden, dass eine bei der Kaltumformung eingetretene Kaltverfestigung in den umgeformten Bereichen wieder abgebaut wird. Insbesondere kann dadurch eine Homogenisierung der mechanischen Eigenschaften über das gesamte Bauteil erreicht werden. Weitere Vorteile des erfindungsgemäßen Verfahrens sind darin zu sehen, dass durch das Kalibrieren des erwärmten Bauteils sowohl das Risiko der verzögerten Rissbildung durch Wasserstoffversprödung als auch die Rückfederung des Bauteils nach der Entnahme aus dem Kalibrierwerkzeug wesentlich reduziert sind.There is provided a method of manufacturing a ferro-manganese steel sheet member in which a sheet metal workpiece is cold-formed in a molding die, the formed sheet metal workpiece is heated to a temperature between 500 ° C and 700 ° C, and the heated sheet metal workpiece calibrated in a calibration tool. By calibrating the formed sheet metal workpiece at the indicated, elevated temperatures can be achieved that a cold work hardening occurred in the cold forming is degraded again in the formed areas. In particular, homogenization of the mechanical properties over the entire component can thereby be achieved. Further advantages of the method according to the invention can be seen in the fact that by calibrating the heated component, both the risk of delayed cracking due to hydrogen embrittlement and the springback of the component after removal from the calibration tool are substantially reduced.

Es wird darauf hingewiesen, dass bei den genannten Temperaturen die Austenitisierungstemperatur Ac3 nicht überschritten wird, d.h. dass beim Erwärmen keine Umwandlung des Werkstückgefüges in ein vollständig austenitisches Gefüge auftritt.It should be noted that at the stated temperatures the austenitizing temperature Ac3 is not exceeded, i. that during heating no transformation of the workpiece structure into a fully austenitic structure occurs.

Der Grad des Abbaus der Kaltverfestigung in den umgeformten Bauteilbereichen kann durch die Wahl der Temperatur gesteuert werden. Bei hohen Temperaturen kann die Festigkeit der umgeformten Bereiche sogar unter die Festigkeit in nicht oder weniger stark umgeformten Bereichen abgesenkt werden. Um einen zu starken Abbau der Kaltverfestigung zu vermeiden, kann eine Temperatur zwischen 600°C und 680°C vorteilhaft sein. Zum Erwärmen des umgeformten Blechwerkstückes auf die beim Kalibrieren benötigte erhöhte Temperatur kann das umgeformte Blechwerkstück in einem Ofen erwärmt und nach der Erwärmung in das Kalibrierwerkzeug eingelegt werden. Denkbar ist auch, dass die Erwärmung des Blechwerkstückes direkt im Kalibrierwerkzeug stattfindet. In beiden Fällen kann die Anfangstemperatur beim Kalibrieren ebenfalls in dem angegebenen Bereich zwischen 500°C und 700°C liegen. Beim Kalibrieren findet dann eine Abkühlung des umgeformten Blechwerkstücks in einem gehaltenen bzw. fixierten Zustand statt.The degree of degradation of strain hardening in the reformed part regions can be controlled by the choice of temperature. At high temperatures, the strength of the formed Even under the strength in areas not or less heavily deformed areas can be lowered ranges. In order to avoid excessive degradation of work hardening, a temperature between 600 ° C and 680 ° C may be advantageous. For heating the deformed sheet metal workpiece to the required during calibration elevated temperature, the formed sheet metal workpiece can be heated in an oven and inserted after heating in the calibration. It is also conceivable that the heating of the sheet metal workpiece takes place directly in the calibration tool. In both cases, the initial temperature during calibration can also be in the specified range between 500 ° C and 700 ° C. During calibration, then a cooling of the formed sheet metal workpiece takes place in a held or fixed state.

Die Verweildauer des Blechwerkstückes in dem Ofen kann so gewählt werden, dass eine homogene Durchwärmung des Blechwerkstückes gewährleistet wird, wobei zu berücksichtigen ist, dass mit zunehmender Dicke des Blechwerkstückes typischerweise eine Verlängerung der Zeitdauer für den Aufwärmvorgang zu veranschlagen ist.The residence time of the sheet metal workpiece in the oven can be chosen so that a homogeneous heating of the sheet metal workpiece is ensured, it should be noted that with increasing thickness of the sheet metal workpiece is typically to be estimated an extension of the time for the warm-up.

Im Kalibrierwerkzeug wird eine rasche Abkühlung des Blechwerkstückes im gehaltenen Zustand vorgenommen. Da bei der Abkühlung keine wie beim sogenannten Presshärten erforderliche Gefügeumwandlung vom Austenit-Gefüge in das Martensit-Gefüge bewirkt werden muss, muss nicht die aus dem Presshärten bekannte kritische minimale Abkühlrate eingehalten werden, d.h. die Abkühlgeschwindigkeit in dem Kalibrierwerkzeug kann nach anderen Gesichtspunkten (beispielsweise Taktzeiten, Betriebskosten, Werkzeugskosten, etc.) festgelegt werden.In the calibration tool a rapid cooling of the sheet metal workpiece is carried out in the held state. Since no cooling of the austenite microstructure into the martensite microstructure, as required in the case of so-called press-hardening, has to be effected during cooling, the critical minimum cooling rate known from press-hardening does not have to be adhered to, ie. the cooling rate in the calibration tool may be determined according to other considerations (for example, cycle times, operating costs, tooling costs, etc.).

Für den Abbau der Kaltverfestigung in umgeformten Abschnitten des Blechwerkstückes ist die Erwärmungstemperatur des umgeformten Blechwerkstückes von Bedeutung. In einem Ausführungsbeispiel kann diese so eingestellt werden, dass die Kaltverfestigung in umgeformten Abschnitten des (umgeformten) Blechwerkstückes durch die Kalibrierung um mindestens 70%, insbesondere mindestens 80%, abgebaut wird.For the reduction of strain hardening in formed sections of the sheet metal workpiece, the heating temperature of the formed Blechwerkstückes of importance. In one embodiment, this can be adjusted so that the work hardening in formed portions of the (formed) sheet metal workpiece by the calibration by at least 70%, in particular at least 80%, degraded.

Gemäß einem weiteren Ausführungsbeispiel kann die Erwärmungstemperatur des Blechwerkstückes so eingestellt werden, dass das kalibrierte Blechwerkstück über seine gesamte Geometrie eine maximale Schwankungsbreite der Zugfestigkeit von 20%, insbesondere 10%, aufweist. Mit anderen Worten ist eine weitgehende Homogenisierung der mechanischen Bauteileigenschaften in Bezug auf die Zugfestigkeit erreichbar.According to a further embodiment, the heating temperature of the sheet metal workpiece can be adjusted so that the calibrated sheet metal workpiece over its entire geometry has a maximum variation in tensile strength of 20%, in particular 10%. In other words, a substantial homogenization of the mechanical component properties in terms of tensile strength is achievable.

Die Erfindung wird nachfolgend anhand der Beschreibung unter Bezugnahme auf die Zeichnungen in beispielhafter Weise näher erläutert. In den Zeichnungen zeigen:

Fig. 1
eine schematische Darstellung einer Abfolge von Verfahrensschritten nach einem Ausführungsbeispiel der Erfindung; und
Fig. 2
ein Schaubild, in welchem die Härte eines umgeformten Bauteils gegenüber einer Distanz vom Umformort aufgetragen ist.
The invention will be explained in more detail below with reference to the description with reference to the drawings in an exemplary manner. In the drawings show:
Fig. 1
a schematic representation of a sequence of method steps according to an embodiment of the invention; and
Fig. 2
a graph in which the hardness of a formed component is plotted against a distance from the Umformort.

Im Folgenden werden Ausführungsbeispiele für ein Herstellungsverfahren eines Bauteils aus Eisen-Mangan-Stahlblech beschrieben. Bei dem Bauteil kann es sich beispielsweise um ein Karosseriebauteil für den Fahrzeugbau handeln. Das Karosseriebauteil kann eine komplexe Bauteilgeometrie aufweisen. Es kann sich um ein Struktur- und/oder Sicherheitsteil handeln, das gegebenenfalls besondere Sicherheitsanforderungen im Belastungsfall (Crash) genügen muss. Beispielsweise kann es sich bei dem Bauteil um eine A- oder B-Säule, einen Seitenaufprallschutzträger in Türen, einen Schweller, ein Rahmenteil, ein Stoßstangenfänger, ein Querträger für Boden und Dach oder um einen vorderen oder hinteren Längsträger handeln.Embodiments of a manufacturing method of an iron-manganese steel sheet member will be described below. The component may be, for example, a body component for vehicle construction. The body component may have a complex component geometry. It may be a structural and / or safety part, which may have to meet special safety requirements in the event of a load (crash). For example, the component may be an A or B pillar, a side impact protector in doors, a sill, a frame part, a bumper, a cross member for floor and roof or act on a front or rear side member.

Das Bauteil besteht aus einem Eisen-Mangan(FeMn)-Stahl. FeMn-Bauteile sind im Fahrzeugbau bekannt und können einen Mangangehalt von etwa 12 bis 35 Gew% aufweisen. Verwendbar sind beispielsweise TWIP-, TRIP/TWIP- und TRIPLEX-Stähle sowie Mischformen dieser Stähle.The component consists of an iron-manganese (FeMn) steel. FeMn components are known in the automotive industry and may have a manganese content of about 12 to 35 wt%. For example, TWIP, TRIP / TWIP and TRIPLEX steels as well as mixed forms of these steels can be used.

TWIP-Stähle (TWining Induced Plasticity) sind Austenit-Stähle. Sie zeichnen sich durch einen hohen Mangangehalt (z.B. über 25%) und relativ hohe Legierungszusätze von Aluminium und Silizium aus. Bei plastischer Kaltverformung findet eine intensive Zwillingsbildung statt, der den Stahl verfestigt. TWIP-Stähle weisen eine hohe Bruchdehnung auf. Sie eignen sich deshalb besonders zur Herstellung von Struktur- oder Sicherheitsteilen in unfallrelevanten Bereichen der Karosserie.TWining (TWining Induced Plasticity) steels are austenitic steels. They are characterized by a high manganese content (for example over 25%) and relatively high alloying additions of aluminum and silicon. In cold plastic deformation, intensive twin formation takes place, which solidifies the steel. TWIP steels have a high elongation at break. They are therefore particularly suitable for the production of structural or safety parts in accident-relevant areas of the body.

TRIP/TWIP-Stähle sind Kombinationen aus TWIP- uns TRIP-Stählen (TRansformation Induced Plasticity). TRIP-Stähle bestehen im Wesentlichen aus mehreren Phasen von Eisen-Kohlenstoff-Legierungen, nämlich Ferrit, Bainit und kohlenstoffreichem Rest-Austenit. Der TRIP-Effekt basiert auf der Verformungs-induzierten Umwandlung des Rest-Austenits in die hochfeste martensitische Phase (a-Martensit). Bei TRIP/TWIP-Stählen tritt ein doppelter TRIP-Effekt auf, da das austenitische Gefüge zunächst in das hexagonale und dann in das kubisch raumzentrierte Martensit gewandelt wird. Aufgrund der zwei martensitischen Umwandlungen weisen TRIP/TWIP-Stähle eine doppelte Dehnungsreserve auf.TRIP / TWIP steels are combinations of TWIP and TRIP steels (TRANSformation Induced Plasticity). TRIP steels essentially consist of several phases of iron-carbon alloys, namely ferrite, bainite and carbon-rich residual austenite. The TRIP effect is based on the deformation-induced transformation of residual austenite into the high-strength martensitic phase (a-martensite). With TRIP / TWIP steels, a double TRIP effect occurs because the austenitic structure is first converted into hexagonal and then cubic body-centered martensite. Due to the two martensitic transformations TRIP / TWIP steels have a double expansion reserve.

TRIPLEX-Stähle bestehen aus einem mehrphasigen Gefüge aus α-Ferrit und γ-Austenit-Mischkristallen mit einer martensitischen s-Phase und/oder K-Phase. Sie weisen eine gute Umformbarkeit auf.TRIPLEX steels consist of a multi-phase structure of α-ferrite and γ-austenite mixed crystals with a martensitic s-phase and / or K-phase. They have good formability.

Ferner können Kombinationen der genannten Stähle bei Ausführungsbeispielen der Erfindung zum Einsatz kommen. Die beispielhafte Aufzählung der oben genannten Stähle ist nicht abschließend, andere FeMn-Stähle können für die Erfindung ebenfalls eingesetzt werden.Furthermore, combinations of said steels may be used in embodiments of the invention. The exemplary list of the above-mentioned steels is not exhaustive, other FeMn steels can also be used for the invention.

Fig. 1 zeigt in schematischer Weise ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens, wobei auch optionale Verfahrensschritte dargestellt sind. Ausgangspunkt des Verfahrensablaufs ist ein Coil 1 aus Bandstahl, wie es beispielsweise in einem Stahlwerk hergestellt und an einen Kunden (z.B. Fahrzeughersteller oder Zulieferer) ausgeliefert wird. Bei dem FeMn-Bandstahl kann es sich beispielsweise um einen kaltgewalzten und geglühten Stahl handeln. Es ist jedoch auch möglich, einen warmgewalzten Stahl einzusetzen. Der Herstellungsprozess des FeMn-Bandstahls im Stahlwerk sollte so ausgestaltet sein, dass eine gute Kaltumformbarkeit des Stahls gewährleistet ist. Fig. 1 shows a schematic embodiment of an embodiment of a method according to the invention, wherein also optional method steps are shown. Starting point of the procedure is a coil 1 made of strip steel, as it is produced for example in a steel mill and delivered to a customer (eg vehicle manufacturers or suppliers). The FeMn strip steel may be, for example, a cold-rolled and annealed steel. However, it is also possible to use a hot-rolled steel. The manufacturing process of the FeMn steel strip in the steel mill should be designed to ensure good cold workability of the steel.

Der Bandstahl wird dann z.B. beim Fahrzeughersteller oder Zulieferer in FeMn-Platinen 2 geschnitten. Das Schneiden erfolgt in einer Schneidestation.The steel strip will then be e.g. cut at the vehicle manufacturer or supplier in FeMn boards 2. The cutting takes place in a cutting station.

Eine oder mehrere Platinen 2 werden dann in ein Kaltumformwerkzeug 3 eingelegt und kalt umgeformt. Die Temperaturen im Kaltumformwerkzeug können im üblichen Bereich, z.B. bei ca. 70°C bis 80°C liegen. Öfen werden zur Realisierung dieser Temperaturen nicht verwendet. Die Verweildauer des Werkstücks in dem Kaltumformwerkzeug 3 ist typischerweise ohne wesentlichen Einfluss auf die Werkstückeigenschaften.One or more boards 2 are then placed in a cold forming tool 3 and cold formed. The temperatures in the cold forming tool can be in the usual range, for example at about 70 ° C to 80 ° C. Furnaces are not used to realize these temperatures. The residence time of the workpiece in the cold forming tool 3 is typically without significant influence on the workpiece properties.

Bei der Kaltumformung werden in Abhängigkeit von der Bauteilgeometrie lokal unterschiedliche Festigkeiten erzielt. Je größer der lokale Umformungsgrad ist, um so höher liegt der entsprechende Festigkeitswert. Dieser Effekt wird auch als Kaltverfestigung bezeichnet. Es können starke Kaltverfestigungen bis zu etwa 1800 MPa auftreten. Die Zugfestigkeit des Ausgangsmaterials (Platine 2) kann z.B. etwa bei Rm ≈ 1100 MPa liegen, die Dehngrenze z.B. Rp0.2 ≈ 600 MPa betragen und die Bruchdehnung A des Ausgangsmaterials kann z.B. 40% oder mehr betragen (A ≥ 40%). Beim Kaltumformen kann der Rückfederung Rechnung getragen werden und das Werkstück über sein endgültiges Geometriemaß hinaus umgeformt werden. Dies ist aufgrund der nachfolgenden Prozessschritte jedoch nicht zwingend erforderlich. Das Kaltumformwerkzeug 3 kann in Form einer Tiefziehpresse realisiert sein.During cold forming, locally different strengths are achieved depending on the component geometry. The greater the local degree of deformation, the higher the corresponding strength value. This effect is also called cold work hardening. Strong work hardening up to about 1800 MPa can occur. The tensile strength of the starting material (board 2) may be, for example, at R m ≈ 1100 MPa, the yield strength eg R p0.2 ≈ 600 MPa and the elongation at break A of the starting material may be 40% or more (A ≥ 40%). During cold forming, springback can be accommodated and the workpiece can be reshaped beyond its final geometric dimension. However, this is not absolutely necessary due to the subsequent process steps. The cold forming tool 3 can be realized in the form of a deep-drawing press.

Ferner ist es möglich, dass in dem Kaltumformwerkzeug 3 gleichzeitig ein Beschnitt des Werkstückes vorgenommen wird. Bei diesem Beschnitt kann es sich um den Endbeschnitt des Bauteils handeln. Ferner können gegebenenfalls erforderliche Ausstanzungen bzw. die Erzeugung eines Lochbildes im Kaltumformwerkzeug 3 vorgenommen werden. D.h., nach dem Kaltumformschritt kann bereits ein Bauteil mit vollständig fertiggestellter Bauteilform in Bezug auf materialentfernende Prozesse vorliegen.Furthermore, it is possible for a trimming of the workpiece to be carried out simultaneously in the cold forming tool 3. This bleed can be the final trim of the part. Furthermore, any necessary punching or the creation of a hole pattern in the cold forming tool 3 can be made. That is, after the cold forming step, a component having a completely finished component shape may already exist with respect to material removing processes.

Es ist auch möglich, dass materialentfernende Prozesse (Beschnitt, Lochbilderzeugung etc.) in einer Schneidstraße (nicht dargestellt) vorgenommen werden, die außerhalb und hinter dem Kaltumformwerkzeug 3 (welches sich in der sogenannten Pressenstraße befindet) angeordnet ist. Auch in diesem Fall kann nach dem Beschnitt bzw. der Lochbilderzeugung in Bezug auf materialentfernende Prozesse bereits das Endbauteil vorliegen.It is also possible that material removing processes (trimming, hole patterning etc.) are performed in a cutting line (not shown) located outside and behind the cold forming tool 3 (which is in the so-called press line). In this case too, the final component may already be present after trimming or hole pattern generation with respect to material-removing processes.

Das kalt umgeformte und gegebenenfalls beschnittene Werkstück wird anschließend einem Ofen 4 zugeführt und dort auf eine Temperatur zwischen 500°C und 700°C erwärmt. Die Erwärmung sollte solange durchgeführt werden, dass das Bauteil homogen auf eine einheitliche Temperatur (T = 500°C - 700°C) gebracht wird. Mit Erreichen der einheitlichen Temperatur kann es für eine gewisse Zeit auf dieser Temperatur gehalten werden. Beispielsweise kann die Verweildauer im Ofen 10 min betragen, wobei 5 min für das Erreichen der homogenen Temperaturverteilung und die weiteren 5 min für das Halten des Bauteils bei dieser homogenen Temperatur verwendet werden. Da mit der Temperaturerhöhung jedoch keine für die Bauteileigenschaften ausschlaggebende Gefügeumwandlung verbunden ist, sollte der Erwärmungsschritt auch ohne Haltezeit durchführbar sein. Es ist möglich, dass die Ofentemperatur deutlich höher als die gewünschte Zieltemperatur T = 500°C - 700°C des Werkstückes liegt und die Werkstücktemperatur über die Verweildauer im Ofen 4 gesteuert wird.The cold formed and optionally trimmed workpiece is then fed to a furnace 4 and heated there to a temperature between 500 ° C and 700 ° C. The heating should be carried out so long that the component is brought homogeneously to a uniform temperature (T = 500 ° C - 700 ° C). Upon reaching the uniform temperature, it can be kept at this temperature for a certain time. For example, the residence time in the oven may be 10 minutes, with 5 minutes being used for achieving the homogeneous temperature distribution and the remaining 5 minutes for holding the component at this homogeneous temperature. However, since with the temperature increase, no crucial for the component properties microstructure transformation is connected, the heating step should be feasible without holding time. It is possible that the oven temperature is significantly higher than the desired target temperature T = 500 ° C - 700 ° C of the workpiece and the workpiece temperature over the residence time in the oven 4 is controlled.

Als Ofen 4 kann ein Strahlungsofen eingesetzt werden oder es können Öfen vorgesehen sein, die dem Werkstück auf andere Weise Energie zuführen. Beispielsweise können eine konvektive Erwärmung, eine induktive Erwärmung oder eine InfrarotErwärmung sowie Kombinationen der genannten Mechanismen verwendet werden.As a furnace 4, a radiation furnace can be used or it can be provided furnaces that supply the workpiece in another way energy. For example, convective heating, inductive heating or infrared heating, as well as combinations of said mechanisms may be used.

Das auf die Zieltemperatur zwischen 500°C und 700°C erwärmte, umgeformte Werkstück wird dann aus dem Ofen 4 entnommen, in ein Kalibrierwerkzeug 5 eingelegt und dort in der gewünschten Form fixiert und abgekühlt. Die Temperatur des Werkstücks beim Beginn des Kalibriervorgangs kann auch niedriger sein als die Temperatur des Werkstücks bei der Entnahme aus dem Ofen, sie kann insbesondere zwischen 400°C und 700°C liegen. Bei dem Kalibrierwerkzeug 5 kann es sich beispielsweise um eine Kalibrierpresse handeln. Das Kalibrieren gewährleistet die Maßhaltigkeit des Werkstückes. Die Oberflächengeometrie der Pressflächen des Werkzeugs entspricht der Endform der Werkstücks oder ist sehr endformnah, da durch die Kalibrierung in dem Kalibrierwerkzeug die Rückfederung deutlich reduziert wird. Durch das Halten des Werkstücks im Kalibrierwerkzeug in der gewünschten Form wird somit dem Werkstück die Endform verliehen.The heated to the target temperature between 500 ° C and 700 ° C, formed workpiece is then removed from the oven 4, placed in a calibration tool 5 and fixed there in the desired shape and cooled. The temperature of the workpiece at the beginning of the calibration process may also be lower than the temperature of the workpiece during removal from the furnace, it may in particular be between 400 ° C and 700 ° C. The calibration tool 5 may be, for example act a sizing press. Calibration ensures the dimensional accuracy of the workpiece. The surface geometry of the pressing surfaces of the tool corresponds to the final shape of the workpiece or is close to the final shape, since the calibration in the calibration tool significantly reduces the springback. By holding the workpiece in the calibration tool in the desired shape thus the workpiece is given the final shape.

Die Abkühlung des Werkstücks erfolgt in dem Kalibrierwerkzeug 5 bei fixiertem Werkstück, d.h. bei Anlage der Werkstückoberflächen an den Werkzeugoberflächen. Die Wärmeabfuhr erfolgt über das Werkzeug. Die Abkühlgeschwindigkeit kann z.B. ungefähr 30°C/s betragen, dürfte jedoch unkritisch sein, da anders als beim Presshärten keine kritische Abkühlgeschwindigkeit überschritten werden muss. Beispielsweise kann die Abkühlgeschwindigkeit kleiner als 50°C/s sein, was ohne größeren werkzeugtechnischen Aufwand erreichbar ist und in vielen Fällen ausreichend kurze Taktzeiten ermöglicht. Höhere Abkühlraten, beispielsweise im Bereich von 50°C/s bis 150°C/s, sind ebenfalls möglich. Das Kalibrierwerkzeug 5 kann eine Kühleinrichtung (z.B. Wasserkühlung) aufweisen. Durch die Erwärmung und das nachfolgende "gehaltene" Abkühlen des Werkstücks in fixierter Werkstückgeometrie wird die in den Bereichen starker Dehnung erzielte Kaltverfestigung abgebaut, d.h. verringert, egalisiert oder gegebenenfalls sogar überkompensiert, wie dies noch später im Zusammenhang mit Fig. 2 erläutert wird.The cooling of the workpiece takes place in the calibration tool 5 when the workpiece is fixed, ie when the workpiece surfaces abut the tool surfaces. The heat dissipation takes place via the tool. The cooling rate may be, for example, about 30 ° C / s, but should not be critical because unlike the press hardening no critical cooling rate must be exceeded. For example, the cooling rate may be less than 50 ° C / s, which can be achieved without major tooling effort and in many cases sufficiently short cycle times possible. Higher cooling rates, for example in the range of 50 ° C / s to 150 ° C / s, are also possible. The calibration tool 5 may have a cooling device (eg water cooling). By heating and the subsequent "held" cooling of the workpiece in a fixed workpiece geometry, the work hardening achieved in the areas of high elongation is reduced, ie reduced, equalized or possibly even overcompensated, as later in connection with Fig. 2 is explained.

Die Temperatur des erwärmten Werkstücks zu Beginn der Kalibrierung kann ebenfalls den angegebenen Bereich von T = 500°C bis 700°C oder nur geringfügig darunter betragen. Dies kann dadurch gewährleistet werden, dass der Transportweg zwischen dem Ofen 4 und dem Kalibrierwerkzeug 5 kurz ist und/oder dass das erwärmte Werkstück auf dem Transportweg zwischen dem Ofen 4 und dem Kalibrierwerkzeug 5 z.B. durch Wärmestrahlung erwärmt bzw. warmgehalten wird. Eine andere Möglichkeit besteht darin, den Ofen 4 und das Kalibrierwerkzeug 5 in ein und derselben Pressenstation zu verwirklichen, d.h. ein Kalibrierwerkzeug 5 vorzusehen, welches mit einem Ofen gekoppelt ist.The temperature of the heated workpiece at the beginning of calibration may also be within the stated range of T = 500 ° C to 700 ° C, or only slightly less. This can be ensured that the transport path between the oven 4 and the calibration tool 5 is short and / or that the heated workpiece on the transport path between the furnace 4 and the calibration tool 5 is heated or kept warm, for example, by thermal radiation. Another possibility is to realize the furnace 4 and the calibration tool 5 in one and the same press station, ie to provide a calibration tool 5, which is coupled to a furnace.

Die anhand Fig. 1 beschriebenen Ausführungsbeispiele der Erfindung können in vielfacher Hinsicht modifiziert und weitergebildet werden. Beispielsweise können beschichtete FeMn-Stähle für das Verfahren eingesetzt werden. Das Blechwerkstück kann mit einer organischen und/oder anorganischen oder metallischen Beschichtung, insbesondere einer Legierung auf Basis von Zink oder Aluminium, beschichtet werden. Die Beschichtung kann vor dem Kaltumformen oder zu einem anderen Zeitpunkt, z.B. nach dem Kalibrieren, vorgenommen werden.The basis Fig. 1 described embodiments of the invention can be modified and developed in many ways. For example, coated FeMn steels can be used for the process. The sheet metal workpiece can be coated with an organic and / or inorganic or metallic coating, in particular an alloy based on zinc or aluminum. The coating can be done before cold forming or at another time, eg after calibration.

Ein kathodischer Korrosionsschutz wird beispielsweise durch eine Verzinkung bewirkt. Die Beschichtung kann elektrolytisch oder durch ein Schmelztauchverfahren vor dem Kaltumformschritt 3 (z.B. am schon beim Stahlhersteller am Coil 1) oder auch nach dem Kaltumformschritt 3 und vor der Erwärmung im Ofen 4 vorgenommen werden. Durch die Wärmebehandlung vor oder während des Kalibrierens bildet sich bei einer Zn-Beschichtung eine Mischkristallschicht zwischen dem FeMn-Stahl und der Zn-Beschichtung aus, die für eine gute Haftung der Zn-Schicht auf dem Bauteil sorgt. Es ist auch möglich, die Beschichtung (z.B. Verzinkung) erst am fertigen Bauteil, d.h. nach dem Kalibrieren in dem Kalibrierwerkzeug 5 vorzunehmen.A cathodic corrosion protection is effected for example by a galvanizing. The coating may be carried out electrolytically or by a hot dip process prior to the cold forming step 3 (e.g., already at the steelmaker on coil 1) or even after the cold forming step 3 and before heating in the furnace 4. The heat treatment before or during calibration forms a mixed crystal layer between the FeMn steel and the Zn coating in the case of a Zn coating, which ensures good adhesion of the Zn layer to the component. It is also possible to coat the coating (e.g., galvanizing) only on the finished component, i. after calibration in the calibration tool 5 make.

Fig. 2 bezieht sich auf weitere Ausführungsbeispiele des anhand Fig. 1 beispielhaft erläuterten Verfahrens und illustriert den Abbau der Kaltverfestigung in Abhängigkeit von der beim Erwärmen erreichten Werkstücktemperatur. Dargestellt ist die Vickershärte Hv in Abhängigkeit von der Entfernung von dem Ort der Umformung. Verwendet wurde eine Platine 2, die aus einem kaltgewalzten, geglühten FeMn-Bandstahl geschnitten wurde. Die Platine 2 wies eine Zugfestigkeit Rm ≈ 1100 MPa auf, die der Zugfestigkeit des Bandstahls entsprach. Die Bruchdehnung betrug A ≈ 60%. Aus mehreren Platinen 2 wurden mittels eines Kaltumformwerkzeugs 3 mehrere identische Näpfchen tiefgezogen, deren Durchmesser D = 50 mm betrug. Die Näpfchen wurden dann in einem Ofen 4 auf die unterschiedlichen Temperaturen T = 500°C, 600°C, 650°C und 700°C erwärmt. Die Verweildauer im Ofen 4 betrug jeweils 10 min, sodass eine vollständige und homogene Durchwärmung der Näpfchen gewährleistet war. Unmittelbar anschließend und mit im wesentlichen derselben Temperatur T wurden die heißen Näpfchen in einem Kalibrierwerkzeug 5 in der Endform fixiert und dort abgekühlt. Die Abkühlgeschwindigkeit betrug bei diesem Beispiel etwa 30°C/s. Fig. 2 refers to further embodiments of the basis Fig. 1 exemplified method and illustrates the reduction of work hardening as a function of the workpiece temperature achieved during heating. The Vickers hardness Hv is shown as a function of the distance from the place of transformation. Was used a circuit board 2, which was cut from a cold-rolled, annealed FeMn steel strip. The board 2 had a tensile strength R m ≈ 1100 MPa, which corresponded to the tensile strength of the strip steel. The elongation at break was A ≈ 60%. From several blanks 2, several identical wells were deep drawn by means of a cold forming tool 3, whose diameter was D = 50 mm. The wells were then heated in an oven 4 to the different temperatures T = 500 ° C, 600 ° C, 650 ° C and 700 ° C. The residence time in the oven 4 was 10 minutes, so that a complete and homogeneous heating of the wells was guaranteed. Immediately thereafter and at substantially the same temperature T, the hot wells were fixed in a calibration tool 5 in the final shape and cooled there. The cooling rate in this example was about 30 ° C / s.

Die Vickershärte Hv kann als Maß für die Zugfestigkeit Rm verwendet werden, wobei der Umrechnungsfaktor etwa 3,1 beträgt, d.h. eine Vickershärte Hv = 350 entspricht etwa einer Zugfestigkeit Rm ≈ 1100 MPa des Ausgangsmaterials, siehe Bezugszeichen 6. Fig. 2 zeigt für das kaltgezogene, nicht erwärmte Näpfchen eine Kaltverfestigung im Bereich von Rm = 1600 MPa (entspricht Hv = 520), siehe Bezugszeichen 7, die im Bauteil zu stark inhomogenen mechanischen Eigenschaften führt. Außerdem wird das Risiko der verzögerten Rissbildung durch Wasserstoffversprödung erhöht, da dieses insbesondere dort auftritt, wo beim Kaltumformen ein hoher Kaltverfestigungsgradient beobachtet wird.The Vickers hardness Hv can be used as a measure of the tensile strength R m , wherein the conversion factor is about 3.1, ie a Vickers hardness Hv = 350 corresponds approximately to a tensile strength R m ≈ 1100 MPa of the starting material, see reference numeral 6. Fig. 2 shows for the cold-drawn, unheated cup a strain hardening in the range of R m = 1600 MPa (corresponds to Hv = 520), see reference numeral 7, which leads to strong inhomogeneous mechanical properties in the component. In addition, the risk of delayed cracking due to hydrogen embrittlement is increased, as this occurs especially where a high work hardening gradient is observed during cold working.

Die erfindungsgemäße Warmkalibrierung führt zur Verringerung der Kaltverfestigung in den Näpfchen. Bei einer Temperatur T = 500°C beträgt die Zugfestigkeit in der Nähe des Umformortes noch Rm ≈ 1490 MPa (Hv = 480), bei T = 600°C ist die maximale Kaltverfestigung bereits auf Rm ≈ 1330 MPa (Hv = 430) gesunken, T = 650°C führt nahezu zu einer Egalisierung der mechanischen Eigenschaften (Rm ≈ 1120 MPa, entspricht Hv = 360) in umgeformten und nicht umgeformten Abschnitten des Bauteils, und bei T = 700°C ergibt sich eine Überkompensation, d.h. die Werkstückfestigkeit im umformungsnahen Abschnitt beträgt Rm ≈ 870 MPa (Hv = 280) und liegt damit signifikant unter der Zugfestigkeit in Abschnitten des Werkstücks (Näpfchen), die nicht oder nur geringfügig umgeformt wurden.The hot calibration according to the invention leads to the reduction of strain hardening in the wells. At a temperature T = 500 ° C, the tensile strength near the forming site is still R m ≈ 1490 MPa (Hv = 480), at T = 600 ° C the maximum strain hardening is already at R m ≈ 1330 MPa (Hv = 430). decreased, T = 650 ° C leads almost to a leveling of the mechanical properties (R m ≈ 1120 MPa, corresponds to Hv = 360) in formed and non-formed sections of the component, and at T = 700 ° C results in overcompensation, ie Workpiece strength in the section close to the forming section is R m ≈ 870 MPa (Hv = 280) and is thus significantly below the tensile strength in sections of the workpiece (wells) which were not or only slightly reshaped.

Aus Fig. 2 ist erkennbar, dass durch die Wahl einer geeigneten Temperatur T für die Warmkalibrierung die Kaltverfestigung im umformungsnahen Bereich eines Bauteils gezielt beeinflussbar und nach Wunsch auf einen bestimmten Wert abbaubar ist. Beispielsweise können homogene mechanische Eigenschaften in Bezug auf die Zugfestigkeit mit einer Schwankungsbreite von weniger als 20% oder sogar 10% bezogen auf umgeformte und nicht umgeformte Abschnitte des Bauteils erreicht werden. Auch ist es möglich, die Kaltverfestigung z.B. um 70% oder 80% abzubauen. Fig. 2 verdeutlicht, dass durch die Wärmebehandlung und die Warmkalibrierung nur die durch Kaltverfestigung bewirkten erhöhten Festigkeitswerte beeinflusst und abgebaut werden, während sich die mechanischen Eigenschaften in den übrigen Abschnitten des Werkstücks, die keiner Umformung unterzogen werden, kaum ändern. D.h. mit anderen Worten, es kann erreicht werden, dass ein Bauteil mit komplexer Bauteilgeometrie über seine gesamte Erstreckung homogene mechanische Eigenschaften aufweist oder dass es an Umformungsorten gezielt erhöhte oder erniedrigte Festigkeiten im Vergleich zu nicht umgeformten Abschnitten erlangt.Out Fig. 2 It can be seen that by the choice of a suitable temperature T for the hot calibration, the strain hardening in the region of a component close to the forming area can be selectively influenced and, if desired, reduced to a certain value. For example, homogeneous mechanical properties in terms of tensile strength can be achieved with a variation of less than 20%, or even 10%, in terms of reshaped and unformed portions of the component. It is also possible to reduce the strain hardening, for example by 70% or 80%. Fig. 2 illustrates that the heat treatment and the hot calibration only affect and degrade the increased strength values caused by work hardening, while the mechanical properties hardly change in the remaining sections of the work piece which are not subjected to forming. In other words, it can be achieved that a component with complex component geometry has homogeneous mechanical properties over its entire extension or that it attains specifically increased or reduced strength at transformation sites in comparison to non-deformed sections.

Claims (10)

  1. Method for producing a structural part from an iron-manganese steel sheet, comprising the steps:
    cold-forming a sheet metal workpiece (2) in a forming die (3) ;
    heating the formed sheet metal workpiece to a temperature of between 500°C and 700°C; and
    calibrating the heated formed sheet metal workpiece by fixing the formed sheet metal workpiece in a calibrating die (5) in the final shape and held cooling of the heated formed workpiece with fixed workpiece geometry at an initial temperature for the calibration in the range of between 500°C and 700°C.
  2. Method according to claim 1, wherein the temperature is between 600°C and 680°C.
  3. Method according to claim 1 or 2, comprising the step:
    heating the formed sheet metal workpiece in a furnace (4); and
    inserting the heated sheet metal workpiece into the calibrating die (5).
  4. Method according to claim 3, wherein the residence time of the sheet metal workpiece in the furnace (4) is chosen so as to ensure substantially homogeneous through-heating of the sheet metal workpiece.
  5. Method according to one of the preceding claims, wherein the iron-manganese steel sheet is a TWIP steel, TRIP/TWIP steel or TRIPLEX steel.
  6. Method according to one of the preceding claims, wherein the manganese content of the iron-manganese steel sheet is between 12 and 35% by weight.
  7. Method according to one of the preceding claims, wherein the temperature is set such that cold work-hardening in formed portions of the formed sheet metal workpiece is reduced by at least 70%, in particular 80%, by the calibration.
  8. Method according to one of the preceding claims, wherein the temperature is set such that the calibrated sheet metal workpiece has a maximum tensile strength fluctuation range of 20%, in particular 10%, over its entire geometry.
  9. Method according to one of the preceding claims, further comprising:
    coating the sheet metal workpiece with an organic and/or inorganic or metallic coating, in particular an alloy based on zinc or aluminum, before the cold forming.
  10. Method according to one of the preceding claims, further comprising:
    coating the sheet metal workpiece with an organic and/or inorganic or metallic coating, in particular an alloy based on zinc or aluminum, after the calibration.
EP11720423.0A 2010-05-12 2011-05-06 Method for producing a structural part from an iron-manganese-steel sheet Active EP2569112B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010020373 DE102010020373A1 (en) 2010-05-12 2010-05-12 Process for producing a component from an iron-manganese steel sheet
PCT/EP2011/057280 WO2011141367A1 (en) 2010-05-12 2011-05-06 Method for producing a structural part from an iron-manganese-steel sheet

Publications (2)

Publication Number Publication Date
EP2569112A1 EP2569112A1 (en) 2013-03-20
EP2569112B1 true EP2569112B1 (en) 2019-10-23

Family

ID=44276268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11720423.0A Active EP2569112B1 (en) 2010-05-12 2011-05-06 Method for producing a structural part from an iron-manganese-steel sheet

Country Status (7)

Country Link
US (1) US9138797B2 (en)
EP (1) EP2569112B1 (en)
KR (1) KR101567132B1 (en)
CN (1) CN103003002B (en)
DE (1) DE102010020373A1 (en)
ES (1) ES2764790T3 (en)
WO (1) WO2011141367A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108162B4 (en) 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel
DE102012104734A1 (en) * 2012-05-31 2013-12-05 Outokumpu Nirosta Gmbh Method and device for producing formed sheet metal parts at cryogenic temperature
DE102012111959A1 (en) 2012-12-07 2014-06-12 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and motor vehicle component
WO2014109241A1 (en) * 2013-01-11 2014-07-17 フタバ産業株式会社 Heating device for hot stamping
DE102013003516A1 (en) 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Process for the production of an ultra-high-strength material with high elongation
KR101573579B1 (en) 2013-10-24 2015-12-01 현대자동차주식회사 A Hot Clamping Method and an Apparatus thereof
WO2016006232A1 (en) * 2014-07-10 2016-01-14 Jfeスチール株式会社 Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding
DE102014110564B4 (en) * 2014-07-25 2016-12-22 Thyssenkrupp Ag Method for producing a profile and a production line for producing a profile
EP3173504A1 (en) * 2015-11-09 2017-05-31 Outokumpu Oyj Method for manufacturing an austenitic steel component and use of the component
JP6705249B2 (en) * 2016-03-29 2020-06-03 日本製鉄株式会社 Method for manufacturing press-formed product made of tailored blank material
KR101720501B1 (en) * 2016-05-09 2017-03-28 주식회사 엠에스 오토텍 High-frequency heating method for hot stamping
DE102016114484A1 (en) * 2016-08-04 2018-02-08 Allgaier Werke Gmbh Method for indirect hot forming of a molded component, mold for performing the method and mold component
RU2631069C1 (en) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of producing sheets from high-manganese steel
DE102016121902A1 (en) * 2016-11-15 2018-05-17 Salzgitter Flachstahl Gmbh Process for the production of chassis parts made of micro-alloyed steel with improved cold workability
DE102018102974A1 (en) * 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh A method of manufacturing a component by hot working a manganese steel precursor and a hot worked steel component
WO2020096271A1 (en) * 2018-11-08 2020-05-14 Renault-Samsung Motors Co., Ltd. Combination structure of metal sheets for automobile by using trip steel and method for manufacturing the same
IT201800010394A1 (en) * 2018-11-16 2020-05-16 Mas Mecc S R L PLANT FOR MOLDING PIECES OF SHEET
CN117858771A (en) * 2021-08-24 2024-04-09 麦格纳国际公司 Process for manufacturing a vehicle component

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3854400A (en) * 1999-06-01 2000-12-18 Mehmet Terziakin Instant heating process with electric current application to the workpiece for high strength metal forming
JP4558877B2 (en) * 2000-01-17 2010-10-06 株式会社アマダ Bending method and apparatus
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
DE10120063C2 (en) * 2001-04-24 2003-03-27 Benteler Automobiltechnik Gmbh Process for the production of metallic profile components for motor vehicles
DE10149221C1 (en) * 2001-10-05 2002-08-08 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
JP4319987B2 (en) * 2002-09-13 2009-08-26 ダイムラー・アクチェンゲゼルシャフト Press-hardened parts and method of manufacturing the same
DE10314115A1 (en) * 2003-03-28 2004-10-14 Audi Ag Process for forming a sheet from a tempered steel and device for carrying out the process
DE102004038626B3 (en) * 2004-08-09 2006-02-02 Voestalpine Motion Gmbh Method for producing hardened components from sheet steel
CN100361762C (en) * 2005-07-29 2008-01-16 中国科学院金属研究所 Mild hot formation method for making magnesium alloy shell of cell phone and mould specially for the same
DE102008020757A1 (en) * 2007-04-30 2008-11-06 Volkswagen Ag Sheet workpiece forming method, involves inserting sheet workpiece into molding tool at specific temperature, forming workpiece by molding tool, and extracting heat from workpiece during retention period
KR100907225B1 (en) * 2007-05-23 2009-07-10 주식회사화신 Hot forming apparatus and hot forming method
US8181498B2 (en) * 2008-06-06 2012-05-22 Edag, Inc. Method and apparatus for shaping a rim of a three-dimensionally arched sheet metal
DE102008050315A1 (en) * 2008-10-02 2009-05-20 Daimler Ag mandatory TITLE MAX 240 characters subject of the invention and main use. Spelling American, no full stop
KR100902857B1 (en) * 2008-10-16 2009-06-16 현대하이스코 주식회사 Method for manufacturing ultra high strength steel parts
CN101412065B (en) * 2008-12-02 2010-06-30 华映光电股份有限公司 Technique for processing magnesium alloy case

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011141367A1 (en) 2011-11-17
EP2569112A1 (en) 2013-03-20
US9138797B2 (en) 2015-09-22
ES2764790T3 (en) 2020-06-04
CN103003002B (en) 2016-03-30
KR20130036250A (en) 2013-04-11
US20130125607A1 (en) 2013-05-23
CN103003002A (en) 2013-03-27
KR101567132B1 (en) 2015-11-06
DE102010020373A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
EP2569112B1 (en) Method for producing a structural part from an iron-manganese-steel sheet
EP3211103B1 (en) Method for manufacturing a motor vehicle component with at least two different strength areas
EP2441850B2 (en) Motor vehicle column and method for producing a thermoformed and press-hardened motor vehicle column
EP2155917B1 (en) Process for producing a locally hardened profile component
DE102010004081C5 (en) Method for thermoforming and curing a circuit board
EP2655675B1 (en) Method for producing hardened structural elements
DE102010012830B4 (en) Method for producing a motor vehicle component and body component
DE102013010946B3 (en) Method and plant for producing a press-hardened sheet steel component
EP2125263B1 (en) Method and apparatus for the temperature-controlled shaping of hot-rolled steel material
DE102011053939B4 (en) Method for producing hardened components
DE102013009232A1 (en) Process for producing a component by hot forming a precursor of steel
EP2609224B1 (en) Profiled component and method for producing a profiled component
DE102017108835A1 (en) GALVANIZED HOT-MOLDED HIGH-TIGHT STEEL PART WITH A THROTTLE THICK-GRADIENT MICROSTRUCTURE
EP2374910A1 (en) Steel, flat, steel product, steel component and method for producing a steel component
DE102006019567B3 (en) Method for producing formed steel components
DE102013003516A1 (en) Process for the production of an ultra-high-strength material with high elongation
DE102009053368A1 (en) Process and manufacturing plant for producing a sheet metal part with a corrosion protection coating
DE102008022401B4 (en) Process for producing a steel molding having a predominantly bainitic structure
DE102013104299B4 (en) Active media-based low-temperature forming
EP1865086A1 (en) Manganese-boron steel, sheet-like product made of the steel and method of its production
DE102008055514A1 (en) Method for producing a component with improved elongation at break properties
DE102021131713A1 (en) METHOD OF IMPROVING THE TIGHTNESS OF PRESS HARDENING STEEL
DE102005033360A1 (en) Process for the production of tempered steel automotive components
DE102019130381A9 (en) Motor vehicle component with increased strength
DE102022122051A1 (en) METHOD FOR PRODUCING HIGH PERFORMANCE PRESS HARDENED STEEL PARTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016190

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1193111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2764790

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016190

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200528

Year of fee payment: 10

Ref country code: FR

Payment date: 20200525

Year of fee payment: 10

Ref country code: ES

Payment date: 20200601

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200601

Year of fee payment: 10

Ref country code: IT

Payment date: 20200522

Year of fee payment: 10

Ref country code: GB

Payment date: 20200527

Year of fee payment: 10

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1193111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011016190

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210506

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506