EP4264717A1 - Layer and layer system and electrically conductive plate and electrochemical cell - Google Patents

Layer and layer system and electrically conductive plate and electrochemical cell

Info

Publication number
EP4264717A1
EP4264717A1 EP21819340.7A EP21819340A EP4264717A1 EP 4264717 A1 EP4264717 A1 EP 4264717A1 EP 21819340 A EP21819340 A EP 21819340A EP 4264717 A1 EP4264717 A1 EP 4264717A1
Authority
EP
European Patent Office
Prior art keywords
layer
chemical element
group
base
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21819340.7A
Other languages
German (de)
French (fr)
Inventor
Romina BAECHSTAEDT
Moritz Wegener
Jan Martin STUMPF
Edgar Schulz
Ricardo Henrique Brugnara
Joachim Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102021130935.2A external-priority patent/DE102021130935A1/en
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP4264717A1 publication Critical patent/EP4264717A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a layer, in particular for forming an electrically conductive plate for an electrochemical cell. Furthermore, the invention relates to a layer system with such a layer and an electrically conductive plate with such a layer system. The invention also relates to an electrochemical cell, in particular a fuel cell, an electrolyzer or a redox flow cell, with at least one such electrically conductive plate.
  • Electrochemical systems such as fuel cells, in particular polymer electrolyte fuel cells, and electrically conductive, current-collecting plates for such fuel cells and electrolyzers, as well as current collectors in galvanic cells and electrolyzers, are known.
  • bipolar or monopolar plates in fuel cells, especially in an oxygen half-cell.
  • the bipolar or monopolar plates are in the form of carbon plates (e.g. graph oil plates) which contain carbon as an essential component. These plates tend to be brittle and are comparatively thick, so that they significantly reduce the power volume of the fuel cell.
  • Another disadvantage is their lack of physical (e.g. thermomechanical) and/or chemical and/or electrical stability.
  • the production of the current collecting plates of the fuel cell from metallic (in particular austenitic) stainless steels.
  • the advantage of these panels is that the panel thickness that can be achieved is less than 0.5 mm. This thickness is desirable so that both the space and the weight of the fuel cell can be kept as small as possible.
  • the problem with these plates is that surface oxides are formed when the fuel cell is in operation, so that a surface resistance is impermissibly increased and/or electrochemical decomposition (such as corrosion, for example) occurs.
  • Laid-Open Specifications DE 10 2010 026 330 A1, DE 10 2013 209 918 A1, DE 11 2005 001 704 T5 and DE 11 2008 003 275 T5 describe the coating of austenitic stainless steels as carriers to achieve the requirement, for example for the use of bipolar plates in fuel cells with a gold layer, which is in a band range of up to 2 nm.
  • a gold layer even if only 2 nm thick, is still too expensive for mass applications.
  • a much greater disadvantage can be seen in a basic property of the chemical element gold.
  • Gold is nobler than the carrier material than stainless austenitic steel (stainless steel) and under unfavorable operating conditions in the fuel cells causes the carrier to dissolve (e.g. pitting or pitting corrosion), which results in a reduction in service life. Corrosion cannot be prevented, particularly in environments containing chloride (eg aerosols).
  • gold is not stable for high-load applications, e.g. at electrolysis conditions above 1500 mV standard hydrogen unit, in both acidic and basic environments.
  • Layers on the carrier in the form of so-called hard material layers based on nitride or carbide are also known from the prior art.
  • An example of this is titanium nitride, which, however, tends to form oxidic metal complexes through to closed surface layers during operation of a fuel cell. As a result, the surface resistance increases to high values, as with stainless steel.
  • Processes for coating with chromium nitride or chromium carbonitride can be found, for example, in the patent specifications DE 199 37 255 B4 and EP 1273060 B1 and the published application DE 100 17 200 A1.
  • the hard material layers have very good operating properties (e.g. resistance to corrosion, abrasion resistance, high contour accuracy), but they harbor the risk of anodic dissolution if concentration chains form in the fuel cell under unfavorable operating conditions.
  • This anodic dissolution occurs when internal electrochemical short circuits in the fuel cell, such as the formation of a water film between Between an active electrode of a membrane-electrode unit of the fuel cell and the bipolar plate, a so-called local element or an unexpected and undesired reaction element arises.
  • So-called dimensionally stable anodes are also known.
  • single-phase or multi-phase oxides with ruthenium oxide and/or iridium oxide are formed with the aid of refractory metals.
  • this type of layer is very stable, the electrical resistance is too high.
  • a surface of the carrier generally made of a noble metal, is doped with iridium.
  • a bipolar fuel cell plate comprising a conductive metal plate which is anodized and on which a conductive layer is subsequently deposited by means of an atomic layer deposition process.
  • the conductive layer comprises at least one of titanium oxynitride, gold, platinum, carbon, ruthenium or ruthenium oxide.
  • DE 10 2016 202 372 A1 discloses a layer consisting of a homogeneous or heterogeneous solid metallic solution or compound containing a first chemical element from the group of noble metals in the form of iridium and/or a second chemical element from the group of noble metals in the form of ruthenium and at least one other non-metallic chemical element from the group consisting of nitrogen, carbon, boron, fluorine and hydrogen.
  • WO 2018/145 720 A1 discloses a plate-shaped electrode made of composite material for a redox flow cell, which is structured for optimal distribution of fluid.
  • the object is achieved according to the invention by a layer, in particular for forming an electrically conductive plate for an electrochemical cell, the layer containing a first chemical element from the group of noble metals in the form of ruthenium in a concentration in the range from 50 to 99 at. % and at least one second chemical element in the form of silicon in a concentration of ⁇ 10 at.%.
  • Silicon forms stable compounds, especially oxides, which have a positive effect on the resistance of the layer to electrochemical attack.
  • the silicon is preferably contained in a concentration in the range from 3 to ⁇ 10 at %.
  • a layer system in particular for an electrically conductive plate of an electrochemical cell, comprising a top layer and a bottom layer system, the top layer being in the form of the layer according to the invention.
  • an electrochemical cell in particular in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising at least one electrically conductive plate according to the invention.
  • the layer according to the invention is electrically conductive and electrocatalytically active and designed to protect against corrosion.
  • the layer according to the invention preferably contains at least one further second chemical element from the group consisting of nitrogen, carbon, boron, fluorine, hydrogen and oxygen.
  • the at least one second chemical element is preferably present in the layer in a concentration in the range from 1 at.% to 40 at.%.
  • the at least one second chemical element is preferably dissolved in the metal lattice of the ruthenium in such a way that the lattice type of the host metal or the host metal alloy essentially does not change.
  • the layer according to the invention preferably comprises a) ruthenium, silicon and carbon; or b) ruthenium, silicon, carbon and hydrogen; or c) ruthenium, silicon, carbon and fluorine, optionally also hydrogen; or d) ruthenium, silicon, carbon and oxygen; or e) ruthenium, silicon, carbon, oxygen and hydrogen.
  • the specific electrical resistance of gold is about 10 m ⁇ cm' 2 at room temperature.
  • the layer preferably also has at least one chemical element from the group of refractory metals, in particular titanium and/or zirconium and/or hafnium and/or niobium and/or tantalum and/or tungsten.
  • the at least one chemical element from the group of refractory metals is contained in the layer in particular in a concentration range of 0.01 to 10 at. It has been shown that the addition of the refractory metals partially controls the H2O2 and ozone formed during the electrolysis.
  • the layer preferably also contains at least one chemical element from the group of base metals.
  • the at least one chemical element from the group of base metals is preferably formed by aluminum, iron, nickel, cobalt, zinc, cerium, tin.
  • the at least one further chemical element from the group of base metals is contained in the layer, in particular in a concentration range of 0.01 to 10 at.
  • the at least one chemical element from the group of base metals in the form of tin and the at least one chemical element from the group of refractory metals together are contained in the layer in particular in a concentration range of 0.01 to 10 at.
  • the layer also preferably has at least one additional chemical element from the group comprising indium, platinum, gold, silver, rhodium, palladium in a concentration range of 0.01 to 25 at %. It is preferred if the layer has a layer thickness in the range from 0.5 to 500 nm.
  • the corrosion protection on metallic carriers is further improved by applying the layer according to the invention to an underlayer system formed between the carrier and the layer. This is particularly advantageous when corrosive media are present, especially when the corrosive media contain chloride.
  • a layer system in particular for an electrically conductive plate of an electrochemical cell, comprising a cover layer and an underlayer system, the cover layer being in the form of the layer according to the invention.
  • the underlayer system comprises at least one underlayer which has at least one chemical element from the group titanium, niobium, hafnium, zirconium, tantalum.
  • the underlayer system has in particular a first underlayer in the form of a metallic alloy layer comprising the chemical elements titanium and niobium, in particular 20-50% by weight niobium and the remainder titanium.
  • the underlayer system has a second underlayer comprising at least one chemical element from the group titanium, niobium, zirconium, hafnium, tantalum and also at least one non-metallic element from the group nitrogen, carbon, boron, fluorine.
  • the underlayer system has a second underlayer comprising the chemical elements a) titanium, niobium and also carbon and fluorine, or b) titanium, niobium and also nitrogen, is in particular made of (Ti6?Nb33)No.8- i,i formed.
  • the second backing layer is preferably positioned between the first backing layer and the top layer.
  • the second sub-layer can further contain up to 5 at.% oxygen.
  • a thickness of the layer or cover layer according to the invention of less than 10 nm is sufficient to protect against resistance-increasing oxidation of the second base layer.
  • the double layer formed with the help of the two-layer structure under the layer according to the invention ensures on the one hand an electrochemical adaptation to a substrate material, i.e. the material from which the substrate for receiving the layer system is formed, and on the other hand pore formation due to oxidation and hydrolysis processes is excluded.
  • the metallic first substrate layer is formed from preferably titanium or niobium or zirconium or tantalum or hafnium or from alloys of these metals, the baser are as the substrate material in the form of steel, in particular stainless steel, and initially react during corrosion processes to form insoluble oxides or voluminous, partly gel-like hydroxo compounds of these refractory metals. As a result, the pores become blocked and protect the base material from corrosion. The process represents a self-healing of the layer system.
  • a second base layer in the form of a nitride layer serves as a hydrogen barrier and thus protects the substrate, in particular made of stainless steel, the bipolar plate and the metallic first base layer from hydrogen embrittlement.
  • an electrically conductive plate in particular a bipolar plate of a fuel cell or an electrolyzer or an electrode of a redox flow cell, having a metallic substrate and a layer system according to the invention applied at least in partial areas of the surface of the substrate.
  • the layer system is applied over the full area to one or both sides of the substrate.
  • the metallic substrate is formed in particular from steel or titanium, preferably from high-grade steel.
  • a thickness of the substrate is preferably less than 1 mm and is in particular equal to 0.5 mm.
  • an electrochemical cell in particular in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising at least one electrically conductive plate according to the invention.
  • a fuel cell according to the invention in particular a polymer electrolyte fuel cell, comprising at least one electrically conductive plate according to the invention in the form of a bipolar plate, has proven to be particularly advantageous in terms of electrical values and corrosion resistance.
  • Such a fuel cell therefore has a long service life of more than 10 years or more than 5000 motor vehicle operating hours. Comparably long service lives can be achieved with an electrolyzer according to the invention, which works with the opposite principle of action with regard to a fuel cell and brings about a chemical reaction, ie a material conversion, with the aid of electric current.
  • the electrolyzer is one that is suitable for hydrogen electrolysis.
  • a redox flow cell according to the invention comprising at least one electrically conductive plate according to the invention in the form of an electrode, long service lives and power densities can be achieved.
  • Figure 1 shows an electrically conductive plate in section
  • FIG. 2 an electrode with a flow field
  • FIG. 3 a redox flow cell or a redox flow battery with a redox flow cell
  • FIG. 4 shows an electrolyzer in section
  • FIG. 5 shows a fuel cell stack in a three-dimensional view.
  • Figure 1 shows a sectional view of an electrically conductive plate 1, comprising a substrate 2 made of stainless steel and a layer system 3 applied over the entire surface on one side of the substrate 2.
  • the layer system 3 comprises a cover layer 3a and an underlayer system 4 comprising a first underlayer 4a and a second underlayer 4b.
  • a metallic substrate 2 in the form of a con ductor here for a bipolar plate of a polymer electrolyte fuel cell for the conversion of (reformed) hydrogen, made of stainless steel, in particular a so-called authentic steel with very high known requirements regarding corrosion resistance, eg with the DIN ISO material number 1.4404.
  • the layer system 3 is formed on the substrate 2 by means of a coating process, for example a vacuum-based coating process (PVD), with the substrate 2 in one process step initially having a first underlying layer 4a in the form of a 1.5 ⁇ m thick titanium layer, then having an approximately equal thick second base layer 4b in the form of a titanium nitride layer and finally coated with a top layer 3a in the composition RuSiC.
  • the cover layer 3a corresponds to a layer layer that is open on one side, since only one cover layer surface of a further layer, here the second base layer 4b, is designed to make contact with it.
  • the free surface 30 of the cover layer 3a in a fuel cell is arranged facing an electrolyte, in particular a polymer electrolyte.
  • the metallic substrate 2 is initially coated with a first underlying layer 4a in the form of a metallic alloy layer with a thickness of several 100 nm, the metallic alloy layer having the composition Tio.9 Nbo.i.
  • a further application of a second base layer 4b then takes place with a thickness of a further several 100 nm of the composition Tio.9 Nbo.i Ni- X .
  • a cover layer 3a with a thickness of several nm in the composition RuSiC is applied thereto.
  • the advantage is an extraordinarily high stability against oxidation of the plate 1 according to the invention. Even with a permanent load of +3000 mV compared to a standard hydrogen electrode, no increase in resistance is found in a sulfuric acid solution, which has a pH of 3.
  • the cover layer 3a according to the invention of the first and second exemplary embodiment can be applied both by means of the sputtering technique and by means of a cathodic ARC coating method, also known as vacuum arc evaporation.
  • a cathodic ARC coating method also known as vacuum arc evaporation.
  • the cover layer 3a according to the invention produced in the cathodic ARC method also has the advantageous properties of high corrosion resistance with time-stable surface conductivity of the cover layer 3a according to the invention produced using the sputtering technique.
  • the layer system 3 according to the invention is formed on a substrate 2 in the form of a structured perforated stainless steel sheet.
  • the substrate 2 has been electrolytically polished in a H2SO4/HsPO4 bath before a layer system 3 is applied.
  • a cover layer 3a in the form of RuSiCHO is applied.
  • the advantage of the underlayer formed from tantalum carbide consists not only in its extraordinary resistance to corrosion but also in the fact that it does not absorb any hydrogen and thus serves as a hydrogen barrier for the substrate 2 . This is particularly advantageous if titanium is used as the substrate material.
  • the layer system 3 according to the invention of the third exemplary embodiment is suitable for use in an electrolytic cell for generating hydrogen at current densities i that are greater than 500 mA cm -2 .
  • the layer or cover layer according to the invention can also be formed without a second underlying layer or metalloid layer, with a possible increase in resistance.
  • Table 1 shows some coating systems with their characteristic values.
  • Table 1 shows only a few exemplary layer systems.
  • the layer systems according to the invention show no increase in resistance over several weeks at an anodic load of +2000 mV compared to standard hydrogen electrode in sulfuric acid solution at a temperature with a value of 70-80°C.
  • the layer systems applied in a high vacuum using a sputtering or ARC method or in a fine vacuum using a PECVD method (plasma-enhanced chemical vapor deposition method) were partially darkened after this exposure time. However, there were no visible signs of corrosion or significant changes in surface resistance.
  • FIG. 2 shows a three-dimensional view of a plate 1 in the form of an electrode comprising a substrate 2 in the form of a metal sheet made of stainless steel with a profile 40 that forms a flow field 7 .
  • a profiling 40 on both sides for forming a flow field 7 in each case, resulting in a three-dimensional structuring of the surface of the electrode.
  • the substrate 2 is on both sides with a layer system 3, which is to be flown by an electrolyte in a redox flow cell 8 (see FIG. 3).
  • FIG. 3 shows an electrochemical cell 50 in the form of a redox flow cell 8 or a redox flow battery with a redox flow cell 8.
  • the redox flow cell 8 comprises two plates 1a, 1b in the form of electrodes , a first reaction space 10a and a second reaction space 10b, each reaction space 10a, 10b being in contact with one of the electrodes.
  • the reaction spaces 10a, 10b are separated from one another by an ion exchange membrane 9a.
  • a liquid anolyte 11a is pumped from a tank 13a via a pump 12a into the first reaction chamber 10a and passed between the plate 1a and the ion exchange membrane 9a.
  • a liquid catholyte 11b is pumped from a tank 13b via a pump 12b into the second reaction chamber 10b and passed between the plate 1b and the ion exchange membrane 9a. Ion exchange takes place across the ion exchange membrane 9a, electrical energy being released at the electrodes due to the redox reaction.
  • FIG. 4 shows an electrochemical cell 50 in the form of an electrolysis cell 20 of an electrolyzer comprising a polymer electrolyte membrane 9 which separates an anode side A and a cathode side K from one another.
  • a catalyst layer 21a, 21b each comprising a catalyst material and a fluid diffusion layer 22a, 22b, is arranged adjacent to the catalyst layer 21a, 21b on both sides of the polymer electrolyte membrane 9.
  • the fluid diffusion layers 22a, 22b are each disposed adjacent an electrically conductive plate 24a, 24b, with the fluid diffusion layers 22a and 22b being formed of expanded metal.
  • the plates 24a, 24b each have flow channels 23a, 23b on their sides facing the fluid diffusion layers 22a, 22b in order to improve the supply of reaction medium (water) and the removal of reaction products (water, hydrogen, oxygen).
  • FIG. 5 schematically shows a fuel cell stack 100 comprising a plurality of electrochemical cells 50 in the form of fuel cells 90.
  • Each fuel cell 90 comprises a polymer electrolyte membrane 9 which is adjacent to plates 1c, 1d in the form of bipolar plates on both sides.
  • Each bipolar plate has a substrate 2 made of stainless steel, which is covered on both sides with a layer system 3 (see FIG. 1).
  • the bipolar plate has an inflow area with openings 80a and an outlet area with further openings 80b, which are used to supply a fuel cell 90 with process gases and coolant and to remove reaction products from the fuel cell 90 and coolant.
  • the bipolar plate also has a gas distributor structure 7 ′ on each side, which is arranged facing the polymer electrolyte membrane 9 .

Abstract

The invention relates to a layer (3a), in particular for forming an electrically conductive plate (1) for an electrochemical cell (50), wherein the layer (3a) contains a first chemical element from the group of precious metals in the form of ruthenium in a concentration in the range of 50 to 99 at.% and at least a second chemical element in the form of silicon in a concentration of < 10 at.%. The invention furthermore relates to a layer system, an electrically conductive plate and an electrochemical cell.

Description

Schicht und Schichtsystem, sowie elektrisch leitfähige Platte und elektrochemische Zelle Layer and layer system, as well as electrically conductive plate and electrochemical cell
Die Erfindung betrifft eine Schicht, insbesondere zum Ausbilden einer elektrisch leitfähigen Platte für eine elektrochemischen Zelle. Des Weiteren betrifft die Erfindung ein Schichtsystem mit einer derartigen Schicht sowie eine elektrisch leitfähige Platte mit einem derartigen Schichtsystem. Die Erfindung betrifft weiterhin eine elektrochemische Zelle, insbesondere eine Brennstoffzelle, einen Elektrolyseur oder eine Redox-Flow- Zelle, mit mindestens einer solchen elektrisch leitfähigen Platte. The invention relates to a layer, in particular for forming an electrically conductive plate for an electrochemical cell. Furthermore, the invention relates to a layer system with such a layer and an electrically conductive plate with such a layer system. The invention also relates to an electrochemical cell, in particular a fuel cell, an electrolyzer or a redox flow cell, with at least one such electrically conductive plate.
Elektrochemische Systeme wie bspw. Brennstoffzellen, insbesondere Polymerelektrolytbrennstoffzellen, und elektrisch leitfähige, stromabnehmende Platten für derartige Brennstoffzellen und Elektrolyseure sowie Stromabnehmer in galvanischen Zellen und Elektrolyseuren sind bekannt. Electrochemical systems such as fuel cells, in particular polymer electrolyte fuel cells, and electrically conductive, current-collecting plates for such fuel cells and electrolyzers, as well as current collectors in galvanic cells and electrolyzers, are known.
Ein Beispiel hierfür sind die Bipolar- oder Monopolarplatten in Brennstoffzellen, insbesondere in einer Sauerstoffhalbzelle. Die Bipolar- oder Monopolarplatten sind in Form von Kohlenstoffplatten (z.B. Graphoilplatten) ausgebildet, die als wesentlichen Bestandteil Kohlenstoff enthalten. Diese Platten neigen zur Brüchigkeit und sind vergleichsweise dick, sodass sie ein Leistungsvolumen der Brennstoffzelle wesentlich mindern. Ein weiterer Nachteil ist ihre mangelnde physikalische (z.B. thermomechanische) und/oder chemische und/oder elektrische Stabilität. An example of this are the bipolar or monopolar plates in fuel cells, especially in an oxygen half-cell. The bipolar or monopolar plates are in the form of carbon plates (e.g. graph oil plates) which contain carbon as an essential component. These plates tend to be brittle and are comparatively thick, so that they significantly reduce the power volume of the fuel cell. Another disadvantage is their lack of physical (e.g. thermomechanical) and/or chemical and/or electrical stability.
Ebenso bekannt ist die Herstellung der stromabnehmenden Platten der Brennstoffzelle aus metallischen (insbesondere austenitischen) Edelstählen. Der Vorteil dieser Platten liegt in einer erzielbaren Dicke der Platten von weniger als 0,5 mm. Diese Dicke ist anzustreben, damit sowohl ein Bauraum als auch ein Gewicht der Brennstoffzelle so gering wie möglich gehalten werden kann. Problematisch ist bei diesen Platten, dass Oberflächenoxide bei Betrieb der Brennstoffzelle gebildet werden, sodass ein Oberflächenwiderstand unzulässig erhöht wird und/oder ein elektrochemischer Zerfall (wie beispielsweise Korrosion) eintritt. Aus den Offenlegungsschriften DE 10 2010 026 330 A1 , DE 10 2013 209 918 A1 , DE 11 2005 001 704 T5 und DE 11 2008 003 275 T5 geht zur Erzielung der Anforderung z.B. für den Einsatz von Bipolarplatten von Brennstoffzellen die Beschichtung von austenitischen Edelstahlen als Träger mit einer Goldschicht hervor, welche in einem Bandbereich von bis zu 2 nm liegt. Dieser Anforderungslösung obliegen gleich mehrere Nachteile. So ist beispielsweise eine, wenn auch nur 2 nm dicke Goldschicht für Massenanwendungen immer noch zu teuer. Ein wesentlich größerer Nachteil ist in einer Grundeigenschaft des chemischen Elementes Gold zu sehen. Gold ist edler als das Trägermaterial als nicht rostender austenitischer Stahl (Edelstahl) und erwirkt dadurch unter ungünstigen Betriebsbedingungen in den Brennstoffzellen eine Auflösung des Trägers (z.B. Lochfraß- bzw. Pittingkorrosion), die eine Reduzierung der Lebensdauer zur Folge hat. In insbesondere chloridhaltiger Umgebung (z.B. Aerosolen) ist die Korrosion nicht zu verhindern. Also known is the production of the current collecting plates of the fuel cell from metallic (in particular austenitic) stainless steels. The advantage of these panels is that the panel thickness that can be achieved is less than 0.5 mm. This thickness is desirable so that both the space and the weight of the fuel cell can be kept as small as possible. The problem with these plates is that surface oxides are formed when the fuel cell is in operation, so that a surface resistance is impermissibly increased and/or electrochemical decomposition (such as corrosion, for example) occurs. Laid-Open Specifications DE 10 2010 026 330 A1, DE 10 2013 209 918 A1, DE 11 2005 001 704 T5 and DE 11 2008 003 275 T5 describe the coating of austenitic stainless steels as carriers to achieve the requirement, for example for the use of bipolar plates in fuel cells with a gold layer, which is in a band range of up to 2 nm. There are several disadvantages to this requirement solution. For example, a gold layer, even if only 2 nm thick, is still too expensive for mass applications. A much greater disadvantage can be seen in a basic property of the chemical element gold. Gold is nobler than the carrier material than stainless austenitic steel (stainless steel) and under unfavorable operating conditions in the fuel cells causes the carrier to dissolve (e.g. pitting or pitting corrosion), which results in a reduction in service life. Corrosion cannot be prevented, particularly in environments containing chloride (eg aerosols).
Insbesondere ist ein weiterer Nachteil, dass Gold für Hochlastanwendungen z.B. bei Elektrolysebedingungen oberhalb 1500 mV Standardwasserstoffeinheit sowohl in saurer als auch basischer Umgebung nicht stabil ist. In particular, another disadvantage is that gold is not stable for high-load applications, e.g. at electrolysis conditions above 1500 mV standard hydrogen unit, in both acidic and basic environments.
Aus dem Stand der Technik bekannt sind ebenso Schichten auf dem Träger in Form so genannter Hartstoffschichten auf Nitrid- bzw. Carbidbasis. Ein Beispiel hierfür ist Titannitrid, das allerdings im Betrieb einer Brennstoffzelle zur Ausbildung oxidischer Metallkomplexe bis hin zu geschlossenen Oberflächenschichten neigt. Infolgedessen steigt der Oberflächenwiderstand wie auch beim Edelstahl auf hohe Werte. Verfahren zur Beschichtung mit Chromnitrid oder Chromcarbonitrid gehen beispielsweise aus den Patentschriften DE 199 37 255 B4 und EP 1273060 B1 und der Offenlegungsschrift DE 100 17 200 A1 hervor. Layers on the carrier in the form of so-called hard material layers based on nitride or carbide are also known from the prior art. An example of this is titanium nitride, which, however, tends to form oxidic metal complexes through to closed surface layers during operation of a fuel cell. As a result, the surface resistance increases to high values, as with stainless steel. Processes for coating with chromium nitride or chromium carbonitride can be found, for example, in the patent specifications DE 199 37 255 B4 and EP 1273060 B1 and the published application DE 100 17 200 A1.
Die Hartstoffschichten weisen je nach Zusammensetzung sehr gute Betriebseigenschaften (bspw. Widerstand gegen Korrosion, Abriebfestigkeit, hohe Konturtreue) auf, bergen jedoch das Risiko zur anodischen Auflösung, wenn sich unter ungünstigen Betriebsbedingungen in der Brennstoffzelle Konzentrationsketten ausbilden. Diese anodische Auflösung tritt dann in Erscheinung, wenn bei inneren elektrochemischen Kurzschlüssen in der Brennstoffzelle, wie z.B. bei der Ausbildung eines Wasserfilmes zwi- schen einer aktiven Elektrode einer Membran-Elektroden-Einheit der Brennstoffzelle und der Bipolarplatte ein so genanntes Lokalelement bzw. ein unerwartetes und unerwünschtes Reaktionselement entsteht. Depending on the composition, the hard material layers have very good operating properties (e.g. resistance to corrosion, abrasion resistance, high contour accuracy), but they harbor the risk of anodic dissolution if concentration chains form in the fuel cell under unfavorable operating conditions. This anodic dissolution occurs when internal electrochemical short circuits in the fuel cell, such as the formation of a water film between Between an active electrode of a membrane-electrode unit of the fuel cell and the bipolar plate, a so-called local element or an unexpected and undesired reaction element arises.
Ebenfalls bekannt sind Mehrfachbeschichtungen auf Basis von Nitriden mit sehr dünnen Gold- oder Platinschichten. Somit können bei Schichtdicken der Edelmetalle von über 2 pm zufriedenstellende Betriebsergebnisse für eine Brennstoffzelle erzielt werden. Das grundlegende Problem der Auflösung bleibt bei hohen anodischen Potenzialen bestehen. Die Schichtdicke gewährleistet eine nahezu porenfreie Decklage und mindert somit das Risiko der Pittingkorrosion. Also known are multiple coatings based on nitrides with very thin layers of gold or platinum. Thus, satisfactory operating results for a fuel cell can be achieved with layer thicknesses of the noble metals of more than 2 μm. The fundamental problem of dissolution remains at high anodic potentials. The layer thickness ensures an almost pore-free top layer and thus reduces the risk of pitting corrosion.
Weiterhin sind so genannte dimensionsstabile Anoden bekannt. Hier werden mit Hilfe von Refraktärmetallen einphasige oder mehrphasige Oxide mit Rutheniumoxid und/oder Iridiumoxid gebildet. Diese Art der Schicht ist zwar sehr stabil, bildet aber zu hohe elektrische Widerstände aus. Entsprechendes liegt auch vor, wenn eine Oberfläche des Trägers, im Allgemeinen aus einem Edelmetall hergestellt, mit Iridium dotiert wird. So-called dimensionally stable anodes are also known. Here, single-phase or multi-phase oxides with ruthenium oxide and/or iridium oxide are formed with the aid of refractory metals. Although this type of layer is very stable, the electrical resistance is too high. The same is also true when a surface of the carrier, generally made of a noble metal, is doped with iridium.
Die DE 10 2009 010 279 A1 beschreibt eine bipolare Brennstoffzellenplatte umfassend eine leitfähige Metallplatte, die anodisiert wird und auf die anschließend eine leitfähige Schicht mittels eines Atomlagenabscheideverfahrens abgeschieden wird. Die leitfähige Schicht umfasst insbesondere zumindest eines von Titanoxinitrid, Gold, Platin, Kohlenstoff, Ruthenium oder Rutheniumoxid. DE 10 2009 010 279 A1 describes a bipolar fuel cell plate comprising a conductive metal plate which is anodized and on which a conductive layer is subsequently deposited by means of an atomic layer deposition process. In particular, the conductive layer comprises at least one of titanium oxynitride, gold, platinum, carbon, ruthenium or ruthenium oxide.
Die DE 10 2016 202 372 A1 offenbart eine Schicht, die aus einer homogenen oder heterogenen festen metallischen Lösung oder Verbindung besteht, die ein erstes chemisches Element aus der Gruppe der Edelmetalle in Form von Iridium und/oder ein zweites chemisches Element aus der Gruppe der Edelmetalle in Form von Ruthenium sowie zumindest ein weiteres nichtmetallisches chemisches Element enthält aus der Gruppe umfassend Stickstoff, Kohlenstoff, Bor, Fluor, Wasserstoff. DE 10 2016 202 372 A1 discloses a layer consisting of a homogeneous or heterogeneous solid metallic solution or compound containing a first chemical element from the group of noble metals in the form of iridium and/or a second chemical element from the group of noble metals in the form of ruthenium and at least one other non-metallic chemical element from the group consisting of nitrogen, carbon, boron, fluorine and hydrogen.
Somit sind an die in diesen beispielhaft genannten elektrochemischen Systemen, insbesondere zur Energiewandlung, ausgebildeten metallischen Träger bzw. eine Bipo- larplatte für eine PEM-Brennstoffzelle oder einen Elektrolyseur folgende Anforderungen zu stellen: Thus, in the electrochemical systems mentioned by way of example, in particular for energy conversion, embodied metallic carriers or a bipo lar plate for a PEM fuel cell or an electrolyser to make the following requirements:
- Hohe Korrosionsfestigkeit gegenüber ein sie umgebendes Medium, und/oder- High corrosion resistance to a surrounding medium, and/or
- hohe Belastbarkeit gegenüber anodischen bzw. kathodisch polarisierenden Belastungen, - high resilience to anodic or cathodic polarizing loads,
- geringer Oberflächenwiderstand einer einem Elektrolyten zugewandten Oberfläche des Trägers bzw. seiner Beschichtung, und - low surface resistance of an electrolyte facing surface of the carrier or its coating, and
- niedrige Produktionskosten des Trägers, insbesondere bspw. eines elektrisch leitenden Konduktors in Form von Bipolarplatten für die Anwendung von Brennstoffzellen für die mobile Anwendung. - Low production costs of the carrier, in particular, for example, an electrically conductive conductor in the form of bipolar plates for the use of fuel cells for mobile use.
Die WO 2018 / 145 720 A1 offenbart eine plattenförmige Elektrode aus Kompo- sit-Material für eine Redox-Flow-Zelle, die eine Strukturierung zur optimalen Verteilung von Fluid aufweist. WO 2018/145 720 A1 discloses a plate-shaped electrode made of composite material for a redox flow cell, which is structured for optimal distribution of fluid.
Somit ist es die Aufgabe der vorliegenden Erfindung eine verbesserte Schicht bzw. ein verbessertes Schichtsystem ganz allgemein für einen Energiewandler, insbesondere für eine Bipolarplatte einer Brennstoffzelle oder eines Elektrolyseurs oder eine Elektrode einer Redox-Flow-Zelle, bereitzustellen. Des Weiteren ist es die Aufgabe der Erfindung, eine elektrisch leitfähige Platte mit einem verbesserten Schichtsystem und eine damit ausgestattete elektrochemischen Zelle anzugeben. It is therefore the object of the present invention to provide an improved layer or an improved layer system in general for an energy converter, in particular for a bipolar plate of a fuel cell or an electrolyzer or an electrode of a redox flow cell. Furthermore, it is the object of the invention to specify an electrically conductive plate with an improved layer system and an electrochemical cell equipped therewith.
Die Aufgabe wird erfindungsgemäß durch eine Schicht, insbesondere zum Ausbilden einer elektrisch leitfähigen Platte für eine elektrochemischen Zelle, gelöst, wobei die Schicht ein erstes chemisches Element aus der Gruppe der Edelmetalle in Form von Ruthenium in einer Konzentration im Bereich von 50 bis 99 At.-% enthält sowie zumindest ein zweites chemisches Element in Form von Silizium in einer Konzentration < 10 at.-% enthält. The object is achieved according to the invention by a layer, in particular for forming an electrically conductive plate for an electrochemical cell, the layer containing a first chemical element from the group of noble metals in the form of ruthenium in a concentration in the range from 50 to 99 at. % and at least one second chemical element in the form of silicon in a concentration of <10 at.%.
Silizium bildet stabile Verbindungen, insbesondere Oxide, die sich positiv auf eine Beständigkeit der Schicht gegenüber elektrochemischem Angriff auswirkt. Silicon forms stable compounds, especially oxides, which have a positive effect on the resistance of the layer to electrochemical attack.
Das Silizium ist bevorzugt in einer Konzentration im Bereich von 3 bis < 10 At.-% enthalten. The silicon is preferably contained in a concentration in the range from 3 to <10 at %.
Die Aufgabe wird weiterhin erfindungsgemäß durch ein Schichtsystem, insbesondere für eine elektrisch leitfähige Platte einer elektrochemischen Zelle, gelöst, umfassend eine Deckschicht und ein Unterlagenschichtsystem, wobei die Deckschicht in Form der erfindungsgemäßen Schicht ausgebildet ist. The object is further achieved by a layer system, in particular for an electrically conductive plate of an electrochemical cell, comprising a top layer and a bottom layer system, the top layer being in the form of the layer according to the invention.
Die Aufgabe wird weiterhin erfindungsgemäß durch eine elektrochemische Zelle, insbesondere in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Redox-Flow- Zelle, gelöst, umfassend mindestens eine erfindungsgemäße elektrisch leitfähige Platte. The object is also achieved according to the invention by an electrochemical cell, in particular in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising at least one electrically conductive plate according to the invention.
Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Advantageous configurations with expedient and non-trivial developments of the invention are specified in the dependent claims.
Die erfindungsgemäße Schicht ist elektrisch leitend und elektrokatalytisch aktiv sowie korrosionsschützend ausgebildet. The layer according to the invention is electrically conductive and electrocatalytically active and designed to protect against corrosion.
Die erfindungsgemäße Schicht enthält bevorzugt mindestens ein weiteres zweites chemisches Element aus der Gruppe umfassend Stickstoff, Kohlenstoff, Bor, Fluor, Wasserstoff, Sauerstoff. The layer according to the invention preferably contains at least one further second chemical element from the group consisting of nitrogen, carbon, boron, fluorine, hydrogen and oxygen.
Das mindestens eine zweite chemische Element ist vorzugsweise in einer Konzentration im Bereich von 1 At.-% bis 40 At.-% in der Schicht vorhanden. The at least one second chemical element is preferably present in the layer in a concentration in the range from 1 at.% to 40 at.%.
Das mindestens eine zweite chemische Element ist bevorzugt im Metallgitter des Rutheniums so gelöst, dass sich der Gittertyp des Wirtsmetalls oder der Wirtsmetalllegierung im Wesentlichen nicht ändert. The at least one second chemical element is preferably dissolved in the metal lattice of the ruthenium in such a way that the lattice type of the host metal or the host metal alloy essentially does not change.
Die erfindungsgemäße Schicht umfasst bevorzugt a) Ruthenium, Silizium und Kohlenstoff; oder b) Ruthenium, Silizium, Kohlenstoff und Wasserstoff; oder c) Ruthenium, Silizium, Kohlenstoff und Fluor, optional weiterhin Wasserstoff; oder d) Ruthenium, Silizium, Kohlenstoff und Sauerstoff; oder e) Ruthenium, Silizium, Kohlenstoff, Sauerstoff und Wasserstoff. Es hat sich gezeigt, dass mit einer kohlenstoffhaltigen Schicht, somit durch den Einsatz des Metalloids bzw. nichtmetallischen chemischen Elements Kohlenstoff, die Leitfähigkeit der Schicht höher ist als bei Gold und dass zugleich ihre Oxidationsstabilität in einer sauren Lösung deutlich über einer Spannung von 2000 mV einer Standardwasserstoffelektrode liegt. Gemessene spezifische elektrische Widerstände liegen je nach Ausführungsform unter 5 mQ cm’2 (unter standardisierten Bedingungen). The layer according to the invention preferably comprises a) ruthenium, silicon and carbon; or b) ruthenium, silicon, carbon and hydrogen; or c) ruthenium, silicon, carbon and fluorine, optionally also hydrogen; or d) ruthenium, silicon, carbon and oxygen; or e) ruthenium, silicon, carbon, oxygen and hydrogen. It has been shown that with a carbon-containing layer, i.e. through the use of the metalloid or non-metallic chemical element carbon, the conductivity of the layer is higher than with gold and that at the same time its oxidation stability in an acidic solution is significantly above a voltage of 2000 mV standard hydrogen electrode. Depending on the embodiment, measured specific electrical resistances are below 5 mΩ cm′ 2 (under standardized conditions).
Im Vergleich hierzu liegt der spezifische elektrische Widerstand von Gold bei ca. 10 mQ cm’2 bei Raumtemperatur. In comparison, the specific electrical resistance of gold is about 10 mΩ cm' 2 at room temperature.
Die Schicht weist bevorzugt weiterhin zumindest ein chemisches Element aus der Gruppe der Refraktärmetalle, insbesondere Titan und/oder Zirkonium und/oder Hafnium und/oder Niob und/oder Tantal und/oder Wolfram, auf. Das mindestens eine chemische Element aus der Gruppe der Refraktärmetalle ist insbesondere im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht enthalten. Es hat sich gezeigt, dass durch den Zusatz der Refraktärmetalle zusätzlich anteilsweise während der Elektrolyse entstehendes H2O2 und Ozon gesteuert werden. The layer preferably also has at least one chemical element from the group of refractory metals, in particular titanium and/or zirconium and/or hafnium and/or niobium and/or tantalum and/or tungsten. The at least one chemical element from the group of refractory metals is contained in the layer in particular in a concentration range of 0.01 to 10 at. It has been shown that the addition of the refractory metals partially controls the H2O2 and ozone formed during the electrolysis.
Die Schicht enthält bevorzugt weiterhin mindestens ein chemisches Element aus der Gruppe der unedlen Metalle. Das mindestens eine chemische Element aus der Gruppe der unedlen Metalle ist vorzugsweise durch Aluminium, Eisen, Nickel, Kobalt, Zink, Cer, Zinn, gebildet. Das mindestens eine weitere chemische Element aus der Gruppe der unedlen Metalle ist insbesondere im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht enthalten. The layer preferably also contains at least one chemical element from the group of base metals. The at least one chemical element from the group of base metals is preferably formed by aluminum, iron, nickel, cobalt, zinc, cerium, tin. The at least one further chemical element from the group of base metals is contained in the layer, in particular in a concentration range of 0.01 to 10 at.
Das mindestens eine chemische Element aus der Gruppe der unedlen Metalle in Form von Zinn und das mindestens eine chemische Element aus der Gruppe der Refraktärmetalle zusammen sind insbesondere im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht enthalten. The at least one chemical element from the group of base metals in the form of tin and the at least one chemical element from the group of refractory metals together are contained in the layer in particular in a concentration range of 0.01 to 10 at.
Die Schicht weist weiterhin bevorzugt mindestens ein zusätzliches chemisches Element aus der Gruppe umfassend Indium, Platin, Gold, Silber, Rhodium, Palladium, in einem Konzentrationsbereich von 0,01 bis 25 At.-% auf. Es ist bevorzugt, wenn die Schicht eine Schichtdicke im Bereich von 0,5 bis 500 nm aufweist. The layer also preferably has at least one additional chemical element from the group comprising indium, platinum, gold, silver, rhodium, palladium in a concentration range of 0.01 to 25 at %. It is preferred if the layer has a layer thickness in the range from 0.5 to 500 nm.
Es hat sich bewährt, wenn alle chemischen Elemente aus der Gruppe der Edelmetalle, d.h. zusammen mit Ruthenium, im Konzentrationsbereich von > 50 bis 99 At.-% in der Schicht enthalten sind. It has proven useful if all chemical elements from the group of noble metals, i.e. together with ruthenium, are contained in the layer in a concentration range of > 50 to 99 At.-%.
Der Korrosionsschutz auf metallischen Trägem, wie aus Stählen, insbesondere Edelstählen, oder Titan, wird dadurch weiter verbessert, indem die erfindungsgemäße Schicht auf ein zwischen dem Träger und der Schicht ausgebildetes Unterschichtsystem aufgebracht wird. Dieses ist besonders dann von Vorteil, wenn korrosive Umgebungsmedien vorhanden sind, insbesondere wenn die Korrosionsmedien ch loridhaltig sind. The corrosion protection on metallic carriers, such as those made of steel, in particular high-grade steel, or titanium, is further improved by applying the layer according to the invention to an underlayer system formed between the carrier and the layer. This is particularly advantageous when corrosive media are present, especially when the corrosive media contain chloride.
Eine Unteroxidation, d.h. eine Oxidation der Oberfläche eines Trägers mit einer auf dieser Oberfläche aufgebrachten Schicht, führt normalerweise zur Delamination aufliegender Edelmetallschichten. Under-oxidation, i.e. oxidation of the surface of a support with a layer applied to this surface, normally leads to the delamination of precious metal layers on top.
Die Aufgabe wird weiterhin durch ein Schichtsystem, insbesondere für eine elektrisch leitfähige Platte einer elektrochemischen Zelle, gelöst, umfassend eine Deckschicht und ein Unterlagenschichtsystem, wobei die Deckschicht in Form der erfindungsgemäßen Schicht ausgebildet ist. The object is also achieved by a layer system, in particular for an electrically conductive plate of an electrochemical cell, comprising a cover layer and an underlayer system, the cover layer being in the form of the layer according to the invention.
Insbesondere umfasst das Unterlagenschichtsystem mindestens eine Unterlagenschicht, die mindestens ein chemisches Element aufweist aus der Gruppe Titan, Niob, Hafnium, Zirkonium, Tantal. In particular, the underlayer system comprises at least one underlayer which has at least one chemical element from the group titanium, niobium, hafnium, zirconium, tantalum.
Das Unterlagenschichtsystem weist insbesondere eine erste Unterlagenschicht in Form einer metallischen Legierungsschicht auf umfassend die chemischen Elemente Titan und Niob, insbesondere 20 - 50 Gew.-% Niob und Rest Titan. The underlayer system has in particular a first underlayer in the form of a metallic alloy layer comprising the chemical elements titanium and niobium, in particular 20-50% by weight niobium and the remainder titanium.
Das Unterlagenschichtsystem weist insbesondere eine zweite Unterlagenschicht auf umfassend mindestens ein chemisches Element aus der Gruppe Titan, Niob, Zirkonium, Hafnium, Tantal und weiterhin mindestens ein nichtmetallisches Element aus der Gruppe Stickstoff, Kohlenstoff, Bor, Fluor. In particular, the underlayer system has a second underlayer comprising at least one chemical element from the group titanium, niobium, zirconium, hafnium, tantalum and also at least one non-metallic element from the group nitrogen, carbon, boron, fluorine.
Das Unterlagenschichtsystem weist in einer besonders bevorzugten Ausführungsform eine zweite Unterlagenschicht umfassend die chemischen Elemente a) Titan, Niob und weiterhin Kohlenstoff und Fluor auf, oder b) Titan, Niob und weiterhin Stickstoff auf, ist insbesondere aus (Ti6?Nb33)No,8-i,i gebildet. In a particularly preferred embodiment, the underlayer system has a second underlayer comprising the chemical elements a) titanium, niobium and also carbon and fluorine, or b) titanium, niobium and also nitrogen, is in particular made of (Ti6?Nb33)No.8- i,i formed.
Die zweite Unterlagenschicht ist bevorzugt zwischen der ersten Unterlagenschicht und der Deckschicht angeordnet. The second backing layer is preferably positioned between the first backing layer and the top layer.
Die zweite Unterlagenschicht kann weiterhin bis zu 5 At.-% Sauerstoff enthalten. The second sub-layer can further contain up to 5 at.% oxygen.
Vorteilhafterweise ist eine Dicke der erfindungsgemäßen Schicht beziehungsweise Deckschicht von weniger als 10 nm ausreichend, um vor einer widerstandserhöhenden Oxidation der zweiten Unterlagenschicht zu schützen. Zur Ausbildung eines gesicherten Korrosionsschutzes, sind Teilschichten des Unterlagenschichtsystems aus zumindest einem Refraktärmetall ausgebildet, welche zumindest zweilagig auf dem Stahl, insbesondere Edelstahl, appliziert sind, und zwar zunächst als Metall- bzw. Legierungsschicht (= erste Unterlagenschicht) und dann als Metalloidschicht (= zweite Unterlagenschicht). Die mit Hilfe der Zweilagigkeit ausgebildete Doppelschicht unter der erfindungsgemäßen Schicht sorgt einerseits für eine elektrochemische Anpassung an ein Substratmaterial, also das Material, aus welchem das Substrat zur Aufnahme des Schichtsystems ausgebildet ist, und andererseits wird Porenbildung auf Grund von Oxidations- und Hydrolyseprozessen ausgeschlossen. Advantageously, a thickness of the layer or cover layer according to the invention of less than 10 nm is sufficient to protect against resistance-increasing oxidation of the second base layer. In order to provide reliable protection against corrosion, partial layers of the underlayer system are made of at least one refractory metal, which are applied in at least two layers to the steel, in particular stainless steel, first as a metal or alloy layer (=first underlayer) and then as a metalloid layer (=second backing layer). The double layer formed with the help of the two-layer structure under the layer according to the invention ensures on the one hand an electrochemical adaptation to a substrate material, i.e. the material from which the substrate for receiving the layer system is formed, and on the other hand pore formation due to oxidation and hydrolysis processes is excluded.
Die elektrochemische Anpassung an das Substratmaterial ist notwendig, da sowohl die Metalloidschicht (= zweite Unterlagenschicht) als auch die erfindungsgemäße Schicht bzw. die Deckschicht, sehr edel sind. Bei Porenbildung würden sich hohe Lokalelementpotentiale mit der Folge unzulässiger Korrosionsströme aufbauen. Die metallische erste Unterlagenschicht ist aus vorzugsweise Titan oder Niob oder Zirkonium oder Tantal oder Hafnium oder aus Legierungen dieser Metalle gebildet, die unedler sind als das Substratmaterial in Form von Stahl, insbesondere Edelstahl, und reagieren zunächst bei Korrosionsvorgängen zu nicht löslichen Oxiden bzw. voluminösen teils gelartigen Hydroxoverbindungen dieser Refraktärmetalle. Hierdurch wachsen die Poren zu und schützen das Grundmaterial vor Korrosion. Der Vorgang stellt eine Selbstheilung des Schichtsystems dar. Electrochemical adaptation to the substrate material is necessary because both the metalloid layer (=second underlying layer) and the layer according to the invention or the top layer are very precious. In the event of pore formation, high local element potentials would build up, resulting in impermissible corrosion currents. The metallic first substrate layer is formed from preferably titanium or niobium or zirconium or tantalum or hafnium or from alloys of these metals, the baser are as the substrate material in the form of steel, in particular stainless steel, and initially react during corrosion processes to form insoluble oxides or voluminous, partly gel-like hydroxo compounds of these refractory metals. As a result, the pores become blocked and protect the base material from corrosion. The process represents a self-healing of the layer system.
Insbesondere eine zweite Unterlagenschicht in Form einer nitridischen Schicht dient als Wasserstoffbarriere und schützt somit das Substrat, insbesondere aus Edelstahl, der Bipolarplatte als auch die metallische erste Unterlagenschicht vor einer Wasserstoffversprödung. In particular, a second base layer in the form of a nitride layer serves as a hydrogen barrier and thus protects the substrate, in particular made of stainless steel, the bipolar plate and the metallic first base layer from hydrogen embrittlement.
Die Aufgabe wird weiterhin gelöst durch eine elektrisch leitfähige Platte, insbesondere eine Bipolarplatte einer Brennstoffzelle oder eines Elektrolyseurs oder eine Elektrode einer Redox-Flow-Zelle, aufweisend ein metallisches Substrat und ein zumindest in Teilbereichen der Oberfläche des Substrats aufgebrachtes erfindungsgemäßes Schichtsystem. The object is also achieved by an electrically conductive plate, in particular a bipolar plate of a fuel cell or an electrolyzer or an electrode of a redox flow cell, having a metallic substrate and a layer system according to the invention applied at least in partial areas of the surface of the substrate.
Insbesondere ist das Schichtsystem auf einer oder beiden Seiten des Substrats vollflächig aufgebracht. Das metallische Substrat ist insbesondere aus Stahl oder Titan, bevorzugt aus Edelstahl, gebildet. Eine Dicke des Substrats beträgt bevorzugt weniger als 1 mm und ist insbesondere gleich 0,5 mm. In particular, the layer system is applied over the full area to one or both sides of the substrate. The metallic substrate is formed in particular from steel or titanium, preferably from high-grade steel. A thickness of the substrate is preferably less than 1 mm and is in particular equal to 0.5 mm.
Die Aufgabe wird schließlich für eine elektrochemische Zelle, insbesondere in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Redox-Flow-Zelle, gelöst, umfassend mindestens eine erfindungsgemäße elektrisch leitfähige Platte. Finally, the object is achieved for an electrochemical cell, in particular in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising at least one electrically conductive plate according to the invention.
Eine erfindungsgemäße Brennstoffzelle, insbesondere eine Polymerelektrolytbrennstoffzelle, umfassend mindestens eine erfindungsgemäße elektrisch leitfähige Platte in Form einer Bipolarplatte, hat sich als besonders vorteilhaft hinsichtlich der elektrischen Werte und der Korrosionsbeständigkeit erwiesen. Eine solche Brennstoffzelle weist daher eine hohe Lebensdauer von mehr als 10 Jahren oder mehr als 5000 KFZ-Betriebsstunden auf. Mit einem erfindungsgemäßen Elektrolyseur, der mit umgekehrtem Wirkprinzip im Hinblick auf eine Brennstoffzelle arbeitet und mit Hilfe elektrischen Stroms eine chemische Reaktion, also eine Stoffumwandlung, herbeiführt, sind vergleichbar hohe Lebensdauern erreichbar. Insbesondere handelt es sich bei dem Elektrolyseur um einen zur Wasserstoffelektrolyse geeigneten. A fuel cell according to the invention, in particular a polymer electrolyte fuel cell, comprising at least one electrically conductive plate according to the invention in the form of a bipolar plate, has proven to be particularly advantageous in terms of electrical values and corrosion resistance. Such a fuel cell therefore has a long service life of more than 10 years or more than 5000 motor vehicle operating hours. Comparably long service lives can be achieved with an electrolyzer according to the invention, which works with the opposite principle of action with regard to a fuel cell and brings about a chemical reaction, ie a material conversion, with the aid of electric current. In particular, the electrolyzer is one that is suitable for hydrogen electrolysis.
Mit einer erfindungsgemäßen Redox-Flow-Zelle umfassend mindestens eine erfindungsgemäße elektrisch leitfähige Platte in Form einer Elektrode lassen sich hohe Lebensdauer und Leistungsdichten erreichen. With a redox flow cell according to the invention comprising at least one electrically conductive plate according to the invention in the form of an electrode, long service lives and power densities can be achieved.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele und den Figuren. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and the figures. The features and feature combinations mentioned above in the description can be used not only in the combination specified in each case, but also in other combinations or on their own, without departing from the scope of the invention.
So zeigt So shows
Figur 1 eine elektrisch leitfähige Platte im Schnittbild, Figure 1 shows an electrically conductive plate in section,
Figur 2 eine Elektrode mit einem Flussfeld, FIG. 2 an electrode with a flow field,
Figur 3 eine Redox-Flow-Zelle beziehungsweise eine Redox-Flow-Batterie mit einer Redox-Flow-Zelle, FIG. 3 a redox flow cell or a redox flow battery with a redox flow cell,
Figur 4 einen Elektrolyseur im Schnittbild und Figure 4 shows an electrolyzer in section and
Figur 5 einen Brennstoffzellenstapel in einer dreidimensionalen Ansicht. FIG. 5 shows a fuel cell stack in a three-dimensional view.
Figur 1 zeigt eine elektrisch leitfähige Platte 1 im Schnittbild, umfassend ein Substrat 2 aus Edelstahl und ein vollflächig auf einer Seite des Substrats 2 aufgebrachtes Schichtsystem 3. Das Schichtsystem 3 umfasst eine Deckschicht 3a und ein Unterlagenschichtsystem 4 umfassend eine erste Unterlagenschicht 4a und eine zweite Unterlagenschicht 4b. Figure 1 shows a sectional view of an electrically conductive plate 1, comprising a substrate 2 made of stainless steel and a layer system 3 applied over the entire surface on one side of the substrate 2. The layer system 3 comprises a cover layer 3a and an underlayer system 4 comprising a first underlayer 4a and a second underlayer 4b.
In einem ersten Ausführungsbeispiel ist ein metallisches Substrat 2 in Form eines Kon- duktors, hier für eine Bipolarplatte einer Polymerelektrolytbrennstoffzelle zur Umsetzung von (reformiertem) Wasserstoff, aus einem Edelstahl, insbesondere aus einem so genannten authentischen Stahl mit sehr hoher bekannter Anforderung bzgl. Korrosionsbeständigkeit, z.B. mit der DIN ISO Werkstoffnummer 1.4404, hergestellt. In a first embodiment, a metallic substrate 2 in the form of a con ductor, here for a bipolar plate of a polymer electrolyte fuel cell for the conversion of (reformed) hydrogen, made of stainless steel, in particular a so-called authentic steel with very high known requirements regarding corrosion resistance, eg with the DIN ISO material number 1.4404.
Mittels eines Beschichtungsverfahrens, beispielsweise einem vakuumbasierten Beschichtungsverfahrens (PVD), wird das Schichtsystem 3 auf dem Substrat 2 ausgebildet, wobei das Substrat 2 in einem Verfahrensdurchgang zunächst mit einer ersten Unterlagenschicht 4a in Form einer 1 ,5 pm dicken Titanschicht, anschließend mit einer etwa gleich dicken zweiten Unterlagenschicht 4b in Form einer Titannitridschicht und abschließend mit einer Deckschicht 3a in der Zusammensetzung RuSiC beschichtet wird. Die Deckschicht 3a entspricht einer einseitig offenen Schichtlage, da nur eine Deckschichtfläche einer weiteren Schicht, hier der zweiten Unterlagenschicht 4b, diese kontaktierend ausgebildet ist. Somit ist die freie Oberfläche 30 der Deckschicht 3a in einer Brennstoffzelle einem Elektrolyten, insbesondere einem Polymerelektrolyten, zugewandt angeordnet. The layer system 3 is formed on the substrate 2 by means of a coating process, for example a vacuum-based coating process (PVD), with the substrate 2 in one process step initially having a first underlying layer 4a in the form of a 1.5 μm thick titanium layer, then having an approximately equal thick second base layer 4b in the form of a titanium nitride layer and finally coated with a top layer 3a in the composition RuSiC. The cover layer 3a corresponds to a layer layer that is open on one side, since only one cover layer surface of a further layer, here the second base layer 4b, is designed to make contact with it. Thus, the free surface 30 of the cover layer 3a in a fuel cell is arranged facing an electrolyte, in particular a polymer electrolyte.
In einem zweiten Ausführungsbeispiel wird das metallische Substrat 2 zunächst mit einer ersten Unterlagenschicht 4a in Form einer metallischen Legierungsschicht in einer Dicke von mehreren 100 nm beschichtet, wobei die metallische Legierungsschicht die Zusammensetzung Tio.9 Nbo.i aufweist. Anschließend erfolgt eine weitere Auftragung einer zweiten Unterlagenschicht 4b mit einer Dicke von weiteren mehreren 100nm der Zusammensetzung Tio.9 Nbo.i Ni-X . Darauf wird eine Deckschicht 3a in einer Dicke von mehreren nm in der Zusammensetzung RuSiC aufgetragen. In a second exemplary embodiment, the metallic substrate 2 is initially coated with a first underlying layer 4a in the form of a metallic alloy layer with a thickness of several 100 nm, the metallic alloy layer having the composition Tio.9 Nbo.i. A further application of a second base layer 4b then takes place with a thickness of a further several 100 nm of the composition Tio.9 Nbo.i Ni- X . A cover layer 3a with a thickness of several nm in the composition RuSiC is applied thereto.
Der Vorteil ist eine außergewöhnlich hohe Stabilität gegen Oxidation der erfindungsgemäßen Platte 1. Selbst bei einer dauerhaften Belastung von +3000 mV gegenüber einer Normalwasserstoffelektrode wird in schwefelsaurer Lösung, welche einen pH- Wert von 3 aufweist, keine Widerstandserhöhung festgestellt. The advantage is an extraordinarily high stability against oxidation of the plate 1 according to the invention. Even with a permanent load of +3000 mV compared to a standard hydrogen electrode, no increase in resistance is found in a sulfuric acid solution, which has a pH of 3.
Die erfindungsgemäße Deckschicht 3a des ersten und zweiten Ausführungsbeispiels ist sowohl mittels der Sputtertechnik als auch mittels eines kathodischen ARC- Beschichtungs-verfahren, auch Vakuumlichtbogenverdampfen genannt, applizierbar. Trotz einer höheren Dropletsanzahl, mit anderen Worten, einer im Vergleich zur Sput- tertechnologie gesteigerten Metalltröpfchenanzahl, weist auch die im kathodischen ARC-Verfahren hergestellte erfindungsgemäße Deckschicht 3a die vorteilhaften Eigenschaften hoher Korrosionsbeständigkeit bei zeitstabiler Oberflächenleitfähigkeit, der mittels der Sputtertechnik hergestellten erfindungsgemäßen Deckschicht 3a auf. The cover layer 3a according to the invention of the first and second exemplary embodiment can be applied both by means of the sputtering technique and by means of a cathodic ARC coating method, also known as vacuum arc evaporation. Despite a higher number of droplets, in other words, one compared to the sput tertechnology increased number of metal droplets, the cover layer 3a according to the invention produced in the cathodic ARC method also has the advantageous properties of high corrosion resistance with time-stable surface conductivity of the cover layer 3a according to the invention produced using the sputtering technique.
In einem dritten Ausführungsbeispiel ist das erfindungsgemäße Schichtsystem 3 auf einem Substrat 2 in Form eines strukturierten Edelstahllochblechs ausgebildet. Das Substrat 2 ist vor einer Auftragung eines Schichtsystems 3 in einem H2SO4/HsPO4-Bad elektrolytisch poliert worden. Nach Aufbringung einer einzelnen Unterlagenschicht in Form einer mehrere 1000 nm dicken Tantalcarbidschicht wird eine Deckschicht 3a in Form von RuSiCHO aufgebracht. In a third exemplary embodiment, the layer system 3 according to the invention is formed on a substrate 2 in the form of a structured perforated stainless steel sheet. The substrate 2 has been electrolytically polished in a H2SO4/HsPO4 bath before a layer system 3 is applied. After the application of a single underlying layer in the form of a tantalum carbide layer several 1000 nm thick, a cover layer 3a in the form of RuSiCHO is applied.
Der Vorteil der aus Tantalcarbid ausgebildeten Unterlagenschicht besteht nicht nur in ihrer außerordentlichen Korrosionsbeständigkeit sondern auch darin, dass sie keinen Wasserstoff aufnimmt und dem Substrat 2 somit als Wasserstoffbarriere dient. Dieses ist insbesondere von Vorteil, sofern Titan als Substratmaterial verwendet wird. The advantage of the underlayer formed from tantalum carbide consists not only in its extraordinary resistance to corrosion but also in the fact that it does not absorb any hydrogen and thus serves as a hydrogen barrier for the substrate 2 . This is particularly advantageous if titanium is used as the substrate material.
Das erfindungsgemäße Schichtsystem 3 des dritten Ausführungsbeispiels ist geeignet für einen Einsatz einer Elektrolysezelle zur Erzeugung von Wasserstoff bei Stromdichten i, die größer als 500 mA cm-2 sind. The layer system 3 according to the invention of the third exemplary embodiment is suitable for use in an electrolytic cell for generating hydrogen at current densities i that are greater than 500 mA cm -2 .
Der Vorteil der im Schichtsystem zwischenliegenden und/oder beidseitig geschlossenen Metalloidschicht bzw. der zweiten Unterlagenschicht, die im einfachsten Fall beispielsweise aus Titannitrid gebildet ist, ist ihr niedriger elektrischer Widerstand von 10- 12 mQ cm-2. Ebenso kann die erfindungsgemäße Schicht bzw. Deckschicht unter möglicher Widerstandserhöhung auch ohne eine zweite Unterlagenschicht bzw. Metalloidschicht ausgebildet sein. The advantage of the metalloid layer lying in between and/or closed on both sides in the layer system or of the second underlying layer, which in the simplest case is formed from titanium nitride, for example, is its low electrical resistance of 10-12 mΩ cm -2 . Likewise, the layer or cover layer according to the invention can also be formed without a second underlying layer or metalloid layer, with a possible increase in resistance.
In Tabelle 1 sind beispielhaft einige Schichtsysteme mit ihren charakteristischen Werten dargestellt. Table 1 shows some coating systems with their characteristic values.
Tabelle 1 : Schichten und ausgewählte charakteristische Werte Table 1 : Layers and selected characteristic values
In Tabelle 1 sind nur einige exemplarische Schichtsysteme dargestellt. Vorteilhafter- weise weisen die erfindungsgemäßen Schichtsysteme bei einer anodischen Belastung von +2000 mV gegenüber Normalwasserstoffelektrode in schwefelsaurer Lösung bei einer Temperatur mit einem Wert von 70-80 °C über mehrere Wochen keine Widerstandserhöhung auf. Die im Hochvakuum mittels eines Sputter- oder ARC-Verfahrens oder im Feinvakuum mittels PECVD-Verfahren (Plasmaunterstütztes chemisches Gas- phasenabscheideverfahren) aufgebrachten Schichtsysteme waren nach dieser Belastungszeit teilweise dunkel verfärbt. Allerdings traten keine sichtbaren Korrosionserscheinungen oder signifikante Veränderungen der Oberflächenwiderstände auf. Table 1 shows only a few exemplary layer systems. Advantageously, the layer systems according to the invention show no increase in resistance over several weeks at an anodic load of +2000 mV compared to standard hydrogen electrode in sulfuric acid solution at a temperature with a value of 70-80°C. The layer systems applied in a high vacuum using a sputtering or ARC method or in a fine vacuum using a PECVD method (plasma-enhanced chemical vapor deposition method) were partially darkened after this exposure time. However, there were no visible signs of corrosion or significant changes in surface resistance.
Figur 2 zeigt eine Platte 1 in Form einer Elektrode in dreidimensionaler Ansicht um- fassend ein Substrat 2 in Form eines Metallblechs aus Edelstahl mit einer Profilierung 40, die ein Flussfeld 7 ausbildet. In dem Substrat 2 ist beidseitig eine Profilierung 40 zur Ausbildung jeweils eines Flussfeldes 7 vorhanden, so dass eine dreidimensionale Strukturierung der Oberfläche der Elektrode resultiert. Das Substrat 2 ist beidseitig mit einem Schichtsystem 3 belegt, welches in einer Redox-Flow-Zelle 8 (vergleiche Figur 3) von einem Elektrolyten angeströmt werden soll. FIG. 2 shows a three-dimensional view of a plate 1 in the form of an electrode comprising a substrate 2 in the form of a metal sheet made of stainless steel with a profile 40 that forms a flow field 7 . In the substrate 2 there is a profiling 40 on both sides for forming a flow field 7 in each case, resulting in a three-dimensional structuring of the surface of the electrode. The substrate 2 is on both sides with a layer system 3, which is to be flown by an electrolyte in a redox flow cell 8 (see FIG. 3).
Figur 3 zeigt eine elektrochemische Zelle 50 in Form einer Redox-Flow-Zelle 8 beziehungsweise eine Redox-Flow-Batterie mit einer Redox-Flow-Zelle 8. Die Redox-Flow- Zelle 8 umfasst zwei Platten 1a, 1 b in Form von Elektroden, einen ersten Reaktionsraum 10a und einen zweiten Reaktionsraum 10b, wobei jeder Reaktionsraum 10a, 10b in Kontakt mit einer der Elektroden steht. Die Reaktionsräume 10a, 10b sind durch eine lonenaustauschmembran 9a voneinander getrennt. Ein flüssiger Anolyt 11a wird aus einem Tank 13a über eine Pumpe 12a in den ersten Reaktionsraum 10a gepumpt und zwischen der Platte 1a und der lonenaustauschmembran 9a hindurchgeführt. Ein flüssiger Katholyt 11 b wird aus einem Tank 13b über eine Pumpe 12b in den zweiten Reaktionsraum 10b gepumpt und zwischen der Platte 1 b und der lonenaustauschmembran 9a hindurchgeführt. Es erfolgt ein lonentausch über die lonenaustauschmembran 9a hinweg, wobei aufgrund der Redox-Reaktion an den Elektroden elektrische Energie frei wird. FIG. 3 shows an electrochemical cell 50 in the form of a redox flow cell 8 or a redox flow battery with a redox flow cell 8. The redox flow cell 8 comprises two plates 1a, 1b in the form of electrodes , a first reaction space 10a and a second reaction space 10b, each reaction space 10a, 10b being in contact with one of the electrodes. The reaction spaces 10a, 10b are separated from one another by an ion exchange membrane 9a. A liquid anolyte 11a is pumped from a tank 13a via a pump 12a into the first reaction chamber 10a and passed between the plate 1a and the ion exchange membrane 9a. A liquid catholyte 11b is pumped from a tank 13b via a pump 12b into the second reaction chamber 10b and passed between the plate 1b and the ion exchange membrane 9a. Ion exchange takes place across the ion exchange membrane 9a, electrical energy being released at the electrodes due to the redox reaction.
Figur 4 zeigt eine elektrochemische Zelle 50 in Form einer Elektrolysezelle 20 eines Elektrolyseurs umfassend eine Polymerelektrolytmembrane 9, welche eine Anodenseite A und eine Kathodenseite K voneinander trennt. Beiderseits der Polymerelektrolytmembrane 9 ist jeweils eine Katalysatorschicht 21a, 21 b umfassend jeweils ein Katalysatormaterial sowie eine Fluiddiffusionslage 22a, 22b an die Katalysatorschicht 21a, 21 b angrenzend angeordnet. Die Fluiddiffusionslagen 22a, 22b sind jeweils angrenzend an eine elektrisch leitfähige Platte 24a, 24b angeordnet, wobei die Fluiddiffusionslagen 22a und 22b aus Streckmetall gebildet sind. Die Platten 24a, 24b weisen jeweils Strömungskanäle 23a, 23b auf ihren den Fluiddiffusionslagen 22a, 22b zugewandten Seiten auf, um eine Zufuhr von Reaktionsmedium (Wasser) und eine Abfuhr von Reaktionsprodukten (Wasser, Wasserstoff, Sauerstoff) zu verbessern. FIG. 4 shows an electrochemical cell 50 in the form of an electrolysis cell 20 of an electrolyzer comprising a polymer electrolyte membrane 9 which separates an anode side A and a cathode side K from one another. A catalyst layer 21a, 21b, each comprising a catalyst material and a fluid diffusion layer 22a, 22b, is arranged adjacent to the catalyst layer 21a, 21b on both sides of the polymer electrolyte membrane 9. The fluid diffusion layers 22a, 22b are each disposed adjacent an electrically conductive plate 24a, 24b, with the fluid diffusion layers 22a and 22b being formed of expanded metal. The plates 24a, 24b each have flow channels 23a, 23b on their sides facing the fluid diffusion layers 22a, 22b in order to improve the supply of reaction medium (water) and the removal of reaction products (water, hydrogen, oxygen).
Figur 5 zeigt schematisch einen Brennstoffzellenstapel 100 umfassend mehrere elektrochemische Zellen 50 in Form von Brennstoffzellen 90. Jede Brennstoffzelle 90 umfasst eine Polymerelektrolytmembrane 9, die zu beiden Seiten von Platten 1c, 1d in Form von Bipolarplatten benachbart ist. Eine jede Bipolarplatte weist ein Substrat 2 aus Edelstahl auf, das beidseitig mit einem Schichtsystem 3 (vergleiche Figur 1 ) belegt ist. Die Bipolarplatte weist einen Einströmbereich mit Öffnungen 80a sowie einen Auslassbereich mit weiteren Öffnungen 80b auf, die zur Versorgung einer Brennstoffzelle 90 mit Prozessgasen und Kühlmittel und Abführung von Reaktionsprodukten aus der Brennstoffzelle 90 und Kühlmittel dienen. Die Bipolarplatte weist weiterhin auf jeder Seite eine Gasverteilerstruktur 7' auf, die der Polymerelektrolytmembrane 9 zugewandt angeordnet ist. FIG. 5 schematically shows a fuel cell stack 100 comprising a plurality of electrochemical cells 50 in the form of fuel cells 90. Each fuel cell 90 comprises a polymer electrolyte membrane 9 which is adjacent to plates 1c, 1d in the form of bipolar plates on both sides. Each bipolar plate has a substrate 2 made of stainless steel, which is covered on both sides with a layer system 3 (see FIG. 1). The bipolar plate has an inflow area with openings 80a and an outlet area with further openings 80b, which are used to supply a fuel cell 90 with process gases and coolant and to remove reaction products from the fuel cell 90 and coolant. The bipolar plate also has a gas distributor structure 7 ′ on each side, which is arranged facing the polymer electrolyte membrane 9 .
BezuqszeichenlisteReference character list
1 , 1a, 1 b, 1c, 1d, 24a, 24b elektrisch leitfähige Platte 1, 1a, 1b, 1c, 1d, 24a, 24b electrically conductive plate
2 Substrat 2 substrate
3 Schichtsystem 3 layer system
3a Schicht, Deckschicht 3a layer, top layer
4 Unterlagenschichtsystem 4 underlayer system
4a erste Unterlagenschicht 4a first backing layer
4b zweite Unterlagenschicht 4b second backing layer
7 Flussfeld 7 river field
7' Gasverteilerstruktur 7' gas distribution structure
8 Redox-Flow-Zelle 8 redox flow cell
9 Polymerelektrolytmembrane9 polymer electrolyte membrane
9a lonenaustauschmembran 9a ion exchange membrane
10a erster Reaktionsraum 10a first reaction space
10b zweiter Reaktionsraum 10b second reaction space
11a Anolyt 11a anolyte
11 b Katholyt 11 b catholyte
12a, 12b Pumpe 12a, 12b pump
13a, 13b Tank 13a, 13b Tank
20 Elektrolysezelle 20 electrolytic cell
21a, 21 b Katalysatorschicht 21a, 21b catalyst layer
22a, 22b Fluiddiffusionslage 22a, 22b fluid diffusion layer
23a, 23b Strömungskanal 23a, 23b flow channel
30 freie Oberfläche 30 free surface
40 Profilierung 40 profiling
50 elektrochemische Zelle 50 electrochemical cell
80a, 80b Öffnung 80a, 80b opening
90 Brennstoffzelle 90 fuel cell
100 Brennstoffzellenstapel 100 fuel cell stacks
K Kathodenseite K cathode side
A Anodenseite A anode side

Claims

Patentansprüche Schicht (3a), insbesondere zum Ausbilden einer elektrisch leitfähigen Platte (1 ) für eine elektrochemische Zelle (50), wobei die Schicht (3a) ein erstes chemisches Element aus der Gruppe der Edelmetalle in Form von Ruthenium in einer Konzentration im Bereich von 50 bis 99 At.-% enthält sowie zumindest ein zweites chemisches Element in Form von Silizium in einer Konzentration < 10 At.-% enthält. Schicht (3a) nach Anspruch 1 , enthaltend mindestens ein weiteres zweites chemisches Element aus der Gruppe umfassend Stickstoff, Kohlenstoff, Bor, Fluor, Wasserstoff, Sauerstoff. Schicht (3a) nach Anspruch 2, wobei das mindestens eine zweite chemische Element in einer Konzentration im Bereich von 1 At.-% bis 40 At.-% in der Schicht (3a) vorhanden ist. Schicht (3a) nach einem der Ansprüche 1 bis 3, wobei diese a) Ruthenium, Silizium und Kohlenstoff umfasst; oder b) Ruthenium, Silizium, Kohlenstoff und Wasserstoff umfasst; oder c) Ruthenium, Silizium, Kohlenstoff und Fluor, optional weiterhin Wasserstoff, umfasst; oder d) Ruthenium, Silizium, Kohlenstoff und Sauerstoff umfasst; oder e) Ruthenium, Silizium, Kohlenstoff, Sauerstoff und Wasserstoff umfasst. Schicht (3a) nach einem der vorherigen Ansprüche, wobei die Schicht (3a) weiterhin zumindest ein chemisches Element aus der Gruppe der Refraktärmetalle, insbesondere Titan und/oder Zirkonium und/oder Hafnium und/oder Niob und/oder Tantal und/oder Wolfram, aufweist. Schicht (3a) nach Anspruch 5, wobei das mindestens eine chemische Element aus der Gruppe der Refraktärmetalle im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht (3a) enthalten ist. Schicht (3a) nach einem der vorherigen Ansprüche, wobei die Schicht (3a) weiterhin mindestens ein chemisches Element aus der Gruppe der unedlen Metalle enthält. Schicht (3a) nach Anspruch 7, wobei das mindestens eine chemische Element aus der Gruppe der unedlen Metalle Aluminium, Eisen, Nickel, Kobalt, Zink, Cer, Zinn, ist. Schicht (3a) nach Anspruch 7 oder 8, wobei das mindestens eine weitere chemische Element aus der Gruppe der unedlen Metalle im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht (3a) enthalten ist. . Schicht (3a) nach einem der Ansprüche 5 oder 6 in Verbindung mit einem der Ansprüche 7 bis 9, wobei das mindestens eine chemische Element aus der Gruppe der unedlen Metalle in Form von Zinn und das mindestens eine chemische Element aus der Gruppe der Refraktärmetalle zusammen im Konzentrationsbereich von 0,01 bis 10 At.-% in der Schicht (3a) enthalten sind. . Schicht (3a) nach einem der vorherigen Ansprüche, wobei die Schicht (3a) weiterhin mindestens ein zusätzliches chemisches Element aus der Gruppe umfassend Indium, Platin, Gold, Silber, Rhodium, Palladium, in einem Konzentrationsbereich von 0,01 bis 25 At.-% aufweist. . Schicht (3a) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schicht (3a) eine Schichtdicke im Bereich von 0,5 bis 500 nm aufweist. . Schichtsystem (3), insbesondere für eine elektrisch leitfähige Platte (1 ) einer elektrochemischen Zelle (50), umfassend eine Deckschicht (3a) und ein Unterlagenschichtsystem (4), wobei die Deckschicht (3a) in Form einer Schicht (3a) nach den Ansprüchen 1 bis 12 ausgebildet ist. . Schichtsystem (3) nach Anspruch 13, wobei das Unterlagenschichtsystem (4) mindestens eine Unterlagenschicht (4a, 4b) aufweist umfassend mindestens ein chemisches Element aus der Gruppe Titan, Niob, Hafnium, Zirkonium, Tantal. - 19 - . Schichtsystem (3) nach Anspruch 14, wobei das Unterlagenschichtsystem (4) mindestens eine erste Unterlagenschicht (4a) in Form einer metallischen Legierungsschicht umfassend die chemischen Elemente Titan und Niob aufweist. . Schichtsystem (3) nach Anspruch 14 oder 15, wobei das Unterlagenschichtsystem (4) eine zweite Unterlagenschicht (4b) aufweist umfassend mindestens ein chemisches Element aus der Gruppe Titan, Niob, Hafnium, Zirkonium, Tantal und weiterhin mindestens ein nichtmetallisches Element aus der Gruppe Stickstoff, Kohlenstoff, Bor, Fluor. . Schichtsystem (3) nach Anspruch 16, dadurch gekennzeichnet, dass die zweite Unterlagenschicht (4b) zwischen der ersten Unterlagenschicht (4a) und der Deckschicht (3a) angeordnet ist. . Schichtsystem nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die zweite Unterlagenschicht (4b) bis zu 5 At.-% Sauerstoff enthält. . Elektrisch leitfähige Platte (1 , 1 a, 1 b, 1 c, 1 d, 24a, 24b), insbesondere eine Bipolarplatte einer Brennstoffzelle (90) oder eines Elektrolyseurs (20) oder eine Elektrode einer Redox-Flow-Zelle (8), aufweisend ein metallisches Substrat (2) und ein zumindest in Teilbereichen der Oberfläche des Substrats (2) aufgebrachtes Schichtsystem (3) nach einem der Ansprüche 13 bis 18. . Elektrochemische Zelle (50), insbesondere in Form einer Brennstoffzelle (90), eines Elektrolyseurs (20) oder einer Redox-Flow-Zelle (8), umfassend mindestens eine elektrisch leitfähige Platte (1 , 1a, 1 b, 1 c, 1 d, 24a, 24b) nach Anspruch 19. . Elektrochemische Zelle (50) nach Anspruch 20, wobei es sich um eine Brennstoffzelle (90), insbesondere Polymerelektrolytbrennstoffzelle, umfassend mindestens eine Platte (1 c, 1 d) nach Anspruch 19 in Form einer Bipolarplatte handelt. - 20 -Claims Layer (3a), in particular for forming an electrically conductive plate (1) for an electrochemical cell (50), the layer (3a) containing a first chemical element from the group of noble metals in the form of ruthenium in a concentration in the range of 50 up to 99 At.-% and contains at least one second chemical element in the form of silicon in a concentration of <10 At.-%. Layer (3a) according to Claim 1, containing at least one further second chemical element from the group consisting of nitrogen, carbon, boron, fluorine, hydrogen and oxygen. Layer (3a) according to Claim 2, in which the at least one second chemical element is present in the layer (3a) in a concentration in the range from 1 at% to 40 at%. Layer (3a) according to any one of claims 1 to 3, wherein this a) comprises ruthenium, silicon and carbon; or b) comprises ruthenium, silicon, carbon and hydrogen; or c) ruthenium, silicon, carbon and fluorine, optionally further comprising hydrogen; or d) comprises ruthenium, silicon, carbon and oxygen; or e) ruthenium, silicon, carbon, oxygen and hydrogen. Layer (3a) according to one of the preceding claims, wherein the layer (3a) further contains at least one chemical element from the group of refractory metals, in particular titanium and/or zirconium and/or hafnium and/or niobium and/or tantalum and/or tungsten, having. Layer (3a) according to claim 5, wherein the at least one chemical element from the group of refractory metals is contained in the layer (3a) in a concentration range of 0.01 to 10 at. Layer (3a) according to one of the preceding claims, wherein the layer (3a) further contains at least one chemical element from the group of base metals. Layer (3a) according to claim 7, wherein the at least one chemical element from the group of base metals is aluminium, iron, nickel, cobalt, zinc, cerium, tin. Layer (3a) according to claim 7 or 8, wherein the at least one further chemical element from the group of base metals is contained in the layer (3a) in a concentration range of 0.01 to 10 at. . Layer (3a) according to one of claims 5 or 6 in conjunction with one of claims 7 to 9, wherein the at least one chemical element from the group of base metals in the form of tin and the at least one chemical element from the group of refractory metals together in Concentration range of 0.01 to 10 at .-% are included in the layer (3a). . Layer (3a) according to one of the preceding claims, wherein the layer (3a) further contains at least one additional chemical element from the group comprising indium, platinum, gold, silver, rhodium, palladium, in a concentration range of 0.01 to 25 At.- % having. . Layer (3a) according to one of the preceding claims, characterized in that the layer (3a) has a layer thickness in the range from 0.5 to 500 nm. . Layer system (3), in particular for an electrically conductive plate (1) of an electrochemical cell (50), comprising a cover layer (3a) and an underlayer system (4), the cover layer (3a) in the form of a layer (3a) according to claims 1 to 12 is formed. . Layer system (3) according to claim 13, wherein the base layer system (4) has at least one base layer (4a, 4b) comprising at least one chemical element from the group titanium, niobium, hafnium, zirconium, tantalum. - 19 - . Layer system (3) according to claim 14, wherein the base layer system (4) has at least one first base layer (4a) in the form of a metallic alloy layer comprising the chemical elements titanium and niobium. . Layer system (3) according to claim 14 or 15, wherein the base layer system (4) has a second base layer (4b) comprising at least one chemical element from the group titanium, niobium, hafnium, zirconium, tantalum and also at least one non-metallic element from the group nitrogen , carbon, boron, fluorine. . Layer system (3) according to Claim 16, characterized in that the second base layer (4b) is arranged between the first base layer (4a) and the cover layer (3a). . Layer system according to Claim 16 or 17, characterized in that the second underlying layer (4b) contains up to 5 at.% oxygen. . Electrically conductive plate (1, 1a, 1b, 1c, 1d, 24a, 24b), in particular a bipolar plate of a fuel cell (90) or an electrolyzer (20) or an electrode of a redox flow cell (8), having a metallic substrate (2) and a layer system (3) according to one of claims 13 to 18 applied at least in partial areas of the surface of the substrate (2). Electrochemical cell (50), in particular in the form of a fuel cell (90), an electrolyzer (20) or a redox flow cell (8), comprising at least one electrically conductive plate (1, 1a, 1b, 1c, 1d , 24a, 24b) according to claim 19. . Electrochemical cell (50) according to Claim 20, which is a fuel cell (90), in particular a polymer electrolyte fuel cell, comprising at least one plate (1c, 1d) according to Claim 19 in the form of a bipolar plate. - 20 -
22. Elektrochemische Zelle (50) nach Anspruch 20, wobei es sich um einen Elektrolyseur (20) umfassend mindestens eine Platte (1 a, 1 b) nach Anspruch 19 in Form einer Bipolarplatte handelt. 23. Elektrochemische Zelle (50) nach Anspruch 20, wobei es sich um eine Redox-22. Electrochemical cell (50) according to claim 20, which is an electrolyzer (20) comprising at least one plate (1a, 1b) according to claim 19 in the form of a bipolar plate. 23. Electrochemical cell (50) according to claim 20, wherein it is a redox
Flow-Zelle (8) umfassend mindestens eine Platte (24a, 24b) nach Anspruch 19 in Form einer Elektrode handelt. Flow cell (8) comprising at least one plate (24a, 24b) according to claim 19 in the form of an electrode.
EP21819340.7A 2020-12-16 2021-11-26 Layer and layer system and electrically conductive plate and electrochemical cell Pending EP4264717A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020133766 2020-12-16
DE102021130935.2A DE102021130935A1 (en) 2020-12-16 2021-11-25 Layer and layer system, as well as electrically conductive plate and electrochemical cell
PCT/DE2021/100936 WO2022127976A1 (en) 2020-12-16 2021-11-26 Layer and layer system and electrically conductive plate and electrochemical cell

Publications (1)

Publication Number Publication Date
EP4264717A1 true EP4264717A1 (en) 2023-10-25

Family

ID=78821555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21819340.7A Pending EP4264717A1 (en) 2020-12-16 2021-11-26 Layer and layer system and electrically conductive plate and electrochemical cell

Country Status (5)

Country Link
US (1) US20240047703A1 (en)
EP (1) EP4264717A1 (en)
JP (1) JP2023543875A (en)
CN (1) CN116348634A (en)
WO (1) WO2022127976A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121615A1 (en) 2022-08-26 2024-02-29 Schaeffler Technologies AG & Co. KG Bipolar plate, electrolyzer and method for producing a bipolar plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE808719A (en) * 1973-05-03 1974-06-17 Ppg Industries Inc Electrolytic cell with silicon bipolar electrodes - useful for the electrolysis of brine
DE19937255B4 (en) 1999-08-06 2004-05-06 Ballard Power Systems Inc., Burnaby Corrosion resistant bipolar plate for PEM fuel cells and use
DE10017200A1 (en) 2000-04-06 2001-10-18 Dornier Gmbh Electrically conductive multiple layers for bipolar plates in fuel cells
US7223685B2 (en) * 2003-06-23 2007-05-29 Intel Corporation Damascene fabrication with electrochemical layer removal
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
JP2006278217A (en) * 2005-03-30 2006-10-12 Hitachi Maxell Ltd Fuel cell and membrane electrode assembly
US8053133B2 (en) * 2007-11-07 2011-11-08 GM Global Technology Operations LLC Bipolar plate hydrophilic treatment for stable fuel cell stack operation at low power
JP2009140789A (en) 2007-12-07 2009-06-25 Toyota Motor Corp Method for manufacturing fuel cell separator, and fuel cell separator
US9136545B2 (en) 2008-02-27 2015-09-15 GM Global Technology Operations LLC Low cost fuel cell bipolar plate and process of making the same
US8182963B2 (en) 2009-07-10 2012-05-22 GM Global Technology Operations LLC Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates
US8778562B2 (en) 2012-06-11 2014-07-15 GM Global Technology Operations LLC Method of depositing durable thin gold coating on fuel cell bipolar plates
DE102016202372A1 (en) 2016-02-17 2017-08-17 Friedrich-Alexander-Universität Erlangen-Nürnberg Layer and layer system, as well as bipolar plate, fuel cell and electrolyzer
WO2018145720A1 (en) 2017-02-10 2018-08-16 Cmblu Projekt Ag Flow-by electrode unit and use thereof, redox flow battery system and use thereof, method of manufacturing a flow-by electrode unit, method of operating a redox flow battery system

Also Published As

Publication number Publication date
WO2022127976A1 (en) 2022-06-23
US20240047703A1 (en) 2024-02-08
CN116348634A (en) 2023-06-27
JP2023543875A (en) 2023-10-18

Similar Documents

Publication Publication Date Title
EP4184621A1 (en) Fuel cell and electrolyzer with a bipolar plate having a layer system
DE60003851T2 (en) CORROSION-RESISTANT COATED FUEL CELL BIPOLAR PLATE WITH A GRAPHITE PROTECTIVE LAYER AND METHOD FOR PRODUCING THE SAME
EP3665314B1 (en) Coating and layer system, and bipolar plate, fuel cell and electrolyser
DE19842396A1 (en) Electrically-conductive diamond layer forming electrode for electrochemical generation of ozone and ultra-pure water
DE102016102393A1 (en) CORROSION-RESISTANT METAL BIPOLAR PLATE FOR A PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC) WITH RADICAL RECEIVER
EP3532654B1 (en) Use of a bipolar plate and of a porous transport layer in an electrolyser
DE102016102179A1 (en) Multilayer coating for a corrosion-resistant metal bipolar plate for a proton exchange membrane fuel cell (PEMFC)
DE102017118318A1 (en) Method for producing a fuel cell stack, and fuel cell stack
DE10017200A1 (en) Electrically conductive multiple layers for bipolar plates in fuel cells
WO2022105960A1 (en) Component for an electrochemical cell, redox flow cell, fuel cell, and electrolyser
EP4264717A1 (en) Layer and layer system and electrically conductive plate and electrochemical cell
WO2019029769A1 (en) Method for producing components and components produced in accordance with said method
DE102021130935A1 (en) Layer and layer system, as well as electrically conductive plate and electrochemical cell
EP3984088A1 (en) Layer system for coating a bipolar plate, bipolar plate, and fuel cell
DE102020130695A1 (en) Component of an electrochemical cell and electrochemical cells
WO2023025426A1 (en) Electrolysis cell for polymer electrolyte membrane electrolysis and coating
WO2003026036A2 (en) Coated metal object in the form of a plate and used as component of a fuel cell stack
EP1336670A2 (en) Plate treatment
DE2424126A1 (en) BIPOLAR ELECTRODES
DE102022112319A1 (en) Component for an electrochemical cell, as well as a redox flow cell, fuel cell and electrolyser
DE102020130693A1 (en) Component for an electrochemical cell, as well as a redox flow cell, fuel cell and electrolyser
EP4124676A1 (en) Electrolysis system with a plurality of electrolysis cells
EP3948996A1 (en) Layer system, bipolar plate comprising such a layer system, and fuel cell produced therewith
DE2452485A1 (en) BIPOLAR ELECTRODE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)