EP4247576A1 - Verfahren zum verarbeiten von einer übergangsbramme oder -knüppel - Google Patents
Verfahren zum verarbeiten von einer übergangsbramme oder -knüppelInfo
- Publication number
- EP4247576A1 EP4247576A1 EP21783168.4A EP21783168A EP4247576A1 EP 4247576 A1 EP4247576 A1 EP 4247576A1 EP 21783168 A EP21783168 A EP 21783168A EP 4247576 A1 EP4247576 A1 EP 4247576A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chemical analysis
- slab
- local
- billet
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000012545 processing Methods 0.000 title claims abstract description 30
- 230000007704 transition Effects 0.000 title claims abstract description 27
- 238000004458 analytical method Methods 0.000 claims abstract description 65
- 239000000126 substance Substances 0.000 claims abstract description 62
- 238000005259 measurement Methods 0.000 claims description 16
- 238000005266 casting Methods 0.000 claims description 12
- 238000009749 continuous casting Methods 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000005204 segregation Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000005097 cold rolling Methods 0.000 claims description 2
- 238000011161 development Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000011572 manganese Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1213—Accessories for subsequent treating or working cast stock in situ for heating or insulating strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
- B22D11/142—Plants for continuous casting for curved casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
Definitions
- the invention relates to a method for processing a transition slab or billet.
- metallic transition slabs or billets have a largely constant geometric shape and a chemical analysis that is not constant in relation to the geometric shape. This analysis deviation can be brought about by a specific process or result from a process error in a previous process step in the production of the transition slab or billet.
- transition slabs or billets can be produced in a continuous casting plant or from a remelting process by mixing two initial batches with different analyzes in a targeted manner.
- Process errors can be, for example, incorrect mixing of a batch in the liquid state or an incorrectly set continuous alloying process in continuous casting.
- an intermediate or finished product is produced that can have non-uniform properties, in particular mechanical properties, due to its geometric shape.
- the object of the invention is therefore to provide a method by which a transition slab or billet can be processed into an intermediate or finished product with mechanical properties in a usable target corridor.
- a metallic transition slab or billet with a chemical analysis that is locally variable in the transition slab or billet is processed into an intermediate or finished product with a target corridor for the mechanical properties and a target dimension in a forming facility, in particular in a rolling train.
- a target corridor for the mechanical properties and a target dimension in a forming facility in particular in a rolling train.
- at least the working steps of heating and/or holding the transition slab or billet at a target temperature, forming the heated transition slab or billet into an intermediate or finished product and cooling the intermediate or finished product are carried out.
- the respective target process values for the individual units involved in the processing are specified by a higher-level control or regulation.
- the local chemical analysis B x , y , z of the transition slab or billet is determined and/or calculated by a measurement and/or a model at least before the first tapping at at least two positions.
- a possible measurement method is, for example, a measurement of the chemical analysis by means of a spectral analysis on the surface of the slab or billet.
- the determination by a model can take place, for example, on the basis of two analyzes of initial batches.
- the change in the local chemical analysis can be described by a linear time-dependent function will.
- the combination of different models and measurements increases the accuracy of the determination of the local chemical analysis.
- the local chemical analysis B x , y , z represents a value that is assigned to a volume element V x , y , z within the slab or the billet.
- the volume elements V x , y , z can be arranged next to one another in all three spatial directions within the slab.
- the local chemical analysis is known at as many points or volume elements as possible, preferably at least one analysis point per meter, within the slab or the billet.
- a forming process model determines the local chemical analysis of the intermediate or finished product F x , y , z at least from the local chemical analysis B x , y , z and a planned forming. In the simplest case, this is done by changing the geometric shape of a volume element V x , y , z , taking into account the constant volume.
- the different material flow in the different areas of the slab or billet in the individual forming stages is preferably also taken into account. For this purpose, for example, offline forming simulations can be carried out in advance and the material flow determined from this can be adopted as a parameter set.
- a material process model determines the existing structure and/or the mechanical properties of the intermediate or finished product depending on the local chemical analysis F x , y , z of the intermediate or finished product and the target process parameters of the forming line, in particular one rolling mill.
- a possible material model for this is known, for example, from EP 3 096 896 B1.
- the target Process parameters of the forming line can be the usual target process parameters for processing a local chemical analysis occurring in the slab or the billet.
- a processing process model adapts the target process parameters of the forming line, in particular the temperature profile during processing, the pass reduction of the individual forming steps and / or the cooling intensity or cooling location within the forming line, and thus the local microstructure development in the course of processing in such a way that the mechanical properties of the intermediate or finished product are within a planned target corridor.
- the target corridor for the mechanical properties in the sense of the invention is a range that makes it possible to produce usable components from the slab or billet.
- the desired process parameters determined are not constant values, but change over time in relation to the individual unit or in relation to the respective area or the volume element of the slab or billet.
- an optimization algorithm for example an iteration algorithm, within the processing process model in conjunction with the microstructure model improves compliance with the planned target corridor when processing the temporary slab or billet.
- variable target process parameters determined in this way are transferred to the control or regulation as target values for processing.
- the transition slab or billet is preferably produced by continuous casting of two batches with a chemical analysis difference in which the batches are in a continuous Mix continuous casting distributor.
- the local chemical analysis B x , y , z is determined based on the mean chemical analysis of the first batch and the second batch.
- the mean chemical analysis of a batch in the liquid state can be determined easily and reliably.
- a mixture model preferably determines a chemical analysis T over time from the mean chemical analysis of a first cast batch and a second batch in the continuous casting mold.
- a specific residence time model for the charge or the chemical elements must be created for the system used, consisting of continuous casting distributor and mold. This can be determined by CFD simulations or measurements.
- the chemical analysis T over time is preferably converted into a local average chemical casting analysis G x , y ,z of the slab.
- the local chemical analysis B x , y , z is calculated from the local average cast chemical analysis G x , y , z of the slab.
- the local mean chemical casting analysis G x , y , z is preferably converted into the local chemical analysis B x , y , z by a solidification model which preferably takes into account the segregation during solidification.
- a thermodynamic equilibrium model for example, can be used here as the solidification model. In this way, the influence of segregation during the solidification of an alloy on the local chemical analysis can be taken into account. In particular, in combination with measurement of the chemical composition on the surface of the slab or billet, the accuracy of the local chemical analysis can thereby be improved.
- the slab has a defined head and foot area, and the head or foot area comprises preferably ⁇ 10%, more preferably ⁇ 5% of the total length of the slab.
- the mean local chemical analyzes of the top and bottom areas of the slab preferably differ in at least one element, preferably C, Si, Mn, Cr, Mo, Al, N, Nb and/or B, by at least 10% by weight, preferably at least 20% by weight.
- the local chemical analysis is determined from a measurement of the chemical analysis on the surface of the slab or billet.
- the surface of the slab is easily accessible for chemical analysis measurement.
- Corresponding measurement methods can also be easily retrofitted in existing production lines.
- a casting-rolling plant is preferably used in the processing.
- the inward and outward transfer of the transition slabs or billets between the casting plant and the rolling plant causes effort and costs. These can be avoided by proceeding according to the invention.
- the microstructure model preferably calculates the mechanical properties on the basis of the Hall Petch Relation and solid solution hardening, among other things. Such relations offer sufficiently precise values for the control or regulation of the processing process.
- the structural composition is preferably determined by a measurement, preferably a continuous one measurement, determined. This can improve the modeling of the mechanical properties.
- the control or regulation is preferably adapted to the setpoint values of the processing on the basis of the measured microstructure composition. This enables the microstructure composition to be fine-tuned, thereby reducing the scatter within the target range of the mechanical properties.
- the target dimension of the intermediate or finished product to maintain the mechanical properties is preferably adjusted variably. This additional degree of freedom during forming enables mechanical properties to be maintained even with larger differences in chemical analysis in the transition slab or billet.
- a cold rolling process, surface coating and/or skin-passing process is preferably involved in the processing. This includes the entire processing chain, especially in the case of a steel strip.
- Figure 1 Plant diagram of the hot strip mill with diagram of the model and measurements
- Figure 2 course of the brazen. analysis, mechanical Property and an exemplary process variable
- FIG. 1 shows a casting and rolling plant in the upper area. This consists of a continuous casting plant, 6 roll stands, a cooling section and a coiler. With help slabs can be produced almost continuously in the continuous casting plant. In the area below, the connection of the system technology to the measurement or modeling and the Level 3 system is shown.
- the continuous casting is linked to the determination of the local chemical analysis through a measurement and/or a modeling of this value.
- the location-dependent local chemical analysis is passed to the first modeling unit. This includes a microstructure simulation and determines the optimal time-dependent winding temperature, taking into account the specified target properties of the finished steel strip.
- the local chemical analysis and the optimal time-dependent coiling temperature are transferred to the conversion process model. This determines the setting of the water supply in the cooling depending on the strip length.
- the Level 3 system saves the data from the casting and rolling plant and provides the interface for specifying target corridors.
- a higher-level control of the system monitors compliance with the target values that depend on the belt position.
- Figure 2 shows a diagram of a transition slab with different values.
- the starting material for slab 1 is grade A with an average manganese content of 0.4% by weight.
- a batch with a manganese content of 0.75% by weight is then cast in the continuous casting plant. This results in the increasing manganese content shown for the slab 2 as a transition slab.
- a tensile strength of approx. 450 N/mm 2 can be set over the entire length of the tape.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020214532.6A DE102020214532A1 (de) | 2020-11-18 | 2020-11-18 | Verfahren zum Verarbeiten von einer Übergangsbramme oder -knüppel |
PCT/EP2021/076076 WO2022106097A1 (de) | 2020-11-18 | 2021-09-22 | Verfahren zum verarbeiten von einer übergangsbramme oder -knüppel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4247576A1 true EP4247576A1 (de) | 2023-09-27 |
Family
ID=78008134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21783168.4A Pending EP4247576A1 (de) | 2020-11-18 | 2021-09-22 | Verfahren zum verarbeiten von einer übergangsbramme oder -knüppel |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4247576A1 (de) |
DE (1) | DE102020214532A1 (de) |
WO (1) | WO2022106097A1 (de) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014224461A1 (de) * | 2014-01-22 | 2015-07-23 | Sms Siemag Ag | Verfahren zur optimierten Herstellung von metallischen Stahl- und Eisenlegierungen in Warmwalz- und Grobblechwerken mittels eines Gefügesimulators, -monitors und/oder -modells |
CN106794499B (zh) * | 2014-10-10 | 2018-10-12 | 杰富意钢铁株式会社 | 材料特性值推定方法、材料特性值推定装置、及钢带的制造方法 |
-
2020
- 2020-11-18 DE DE102020214532.6A patent/DE102020214532A1/de active Pending
-
2021
- 2021-09-22 WO PCT/EP2021/076076 patent/WO2022106097A1/de unknown
- 2021-09-22 EP EP21783168.4A patent/EP4247576A1/de active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102020214532A1 (de) | 2022-05-19 |
WO2022106097A1 (de) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT408623B (de) | Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen | |
AT414316B (de) | Verfahren und einrichtung zur steuerung einer hüttentechnischen anlage | |
AT501314B1 (de) | Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes | |
EP2603337B1 (de) | Verfahren zum herstellen von walzgut mittels einer giesswalzverbundanlage, steuer- und/oder regeleinrichtung für eine giesswalzverbundanlage und giesswalzverbundanlage | |
EP1732716B1 (de) | Verfahren zum herstellen eines metalls | |
EP2742158A1 (de) | Verfahren zum betrieb einer konti-glühe für die verarbeitung eines walzguts | |
EP1289691B1 (de) | Verfahren zum stranggiessen eines metallstranges | |
EP0829548B1 (de) | Modellgestütztes Verfahren zur kontrollierten Kühlung von Warmband oder Grobblech in einem rechnergeführten Walz- und Kühlprozess | |
EP1596999B1 (de) | Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer kühlstrecke | |
WO2022229146A1 (de) | Verbesserung der produktqualität durch berücksichtigung alternativer produktauswahl | |
EP4146414B1 (de) | Verfahren zum steuern oder regeln der temperatur eines stahlbandes bei der warmumformung in einer warmbandstrasse | |
EP1448330B1 (de) | Verfahren zum stranggiessen | |
WO2023186585A1 (de) | Verfahren zum herstellen eines metallproduktes | |
WO2022106097A1 (de) | Verfahren zum verarbeiten von einer übergangsbramme oder -knüppel | |
EP4061552B1 (de) | Verfahren, steuervorrichtung sowie walzanlage zur einstellung einer auslauftemperatur eines aus einer walzstrasse auslaufenden metallbands | |
EP3642372A1 (de) | Verfahren zum betreiben eines glühofens | |
DE60113132T2 (de) | Blechbreitenregelung beim warmbandwalzen | |
WO2023089012A1 (de) | Verfahren zum herstellen eines warmbandes aus einem feinkornstahlwerkstoff | |
DE102022212627A1 (de) | Verfahren zum Herstellen eines Stahlbandes aus einem Vorprodukt, bei dem die Sollwerte über die Länge eines einzelnen Stahlbandes und / oder zeitlich in Bezug auf eine einzelne Produktionsanlage einer Walzstraße variabel vorgegeben werden | |
EP4247574A1 (de) | VERFAHREN ZUR EINSTELLUNG DER EIGENSCHAFTEN EINES WARMBANDES MIT EINER BESTIMMTEN CHEMISCHEN ZUSAMMENSETZUNG IN EINER WARMBANDSTRAßE | |
DE19633738C5 (de) | Verfahren und Einrichtung zum Gießen eines Stranges aus flüssigem Metall | |
EP3927478A1 (de) | VERFAHREN ZUR EINSTELLUNG VERSCHIEDENER KÜHLVERLÄUFE VON WALZGUT ÜBER DER BANDBREITE EINER KÜHLSTRECKE IN EINER WARMBAND- ODER GROBBLECH-STRAßE | |
WO2023104836A1 (de) | Verfahren zum optimieren der chemischen zusammensetzung eines werkstoffs | |
AT408074B (de) | Verfahren und vorrichtung zur durchführung des stichplanwechsels während des walzens in einer mehrgerüstigen warmbandstrasse | |
DE102019203088A1 (de) | Verfahren zur Herstellung eines metallischen Bandes oder Blechs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230619 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240112 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240704 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMS GROUP GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |