EP4221918A1 - Dispositif et procédé de production de poudres métalliques - Google Patents

Dispositif et procédé de production de poudres métalliques

Info

Publication number
EP4221918A1
EP4221918A1 EP21782745.0A EP21782745A EP4221918A1 EP 4221918 A1 EP4221918 A1 EP 4221918A1 EP 21782745 A EP21782745 A EP 21782745A EP 4221918 A1 EP4221918 A1 EP 4221918A1
Authority
EP
European Patent Office
Prior art keywords
gas
manufacturing
particles
droplets
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21782745.0A
Other languages
German (de)
English (en)
Inventor
Sébastien DOUBLET
Eric Verna
Olivier DEBELLEMANIERE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
AddUp SAS
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
AddUp SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, AddUp SAS filed Critical Air Liquide SA
Publication of EP4221918A1 publication Critical patent/EP4221918A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/224Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the technical field of the invention is that of producing metal powders and in particular metal powders intended for additive manufacturing processes.
  • Additive manufacturing processes involve large quantities of metal powders of micrometric size, the diameter distribution of the powder particles being between 5 ⁇ m and 150 ⁇ m, in various alloys, such as alloys based on titanium, aluminium, nickel, copper or iron. These processes offer a great freedom of design but in return require a high level of quality of the powders.
  • the quality criteria of the particles forming the powders are: a sphericity of the particles, typically greater than 0.9, the perfect sphere having a value of 1; an absence of small grains attached to the surface of the particles, called satellites; a particle size distribution, between 5 ⁇ m and 150 ⁇ m and more particularly 10 ⁇ m and 63 ⁇ m; the median of the particle size distribution, generally denoted D50, in particular having to be constant from one batch to another; a chemical composition of the particles which must be stable over time; the chemical composition of the particles comprising a low content of chemical compounds that can generate undesirable compounds or phases in parts resulting from additive manufacturing, such as nitrogen, carbon, oxygen or even hydrogen.
  • US6398125 relates to a two-step process for the production of metal powders comprising a first step of heating and spraying by a thermal spray apparatus, of the arc-wire type, followed by a second step of atomization in a second chamber where a gas mixture including reactive elements can be employed.
  • the particles manufactured by this process are of nanometric size, too small to be implemented in additive manufacturing processes.
  • the invention offers a solution to the problems mentioned above, by offering a process for manufacturing metal powders that meets the quality criteria expected by additive manufacturing processes, making it possible in particular to obtain particles whose physical and chemical properties are controlled and reproducible. .
  • the invention relates to a process for manufacturing powder from a first material and a second material, the process comprising: a step of melting the first and second materials, by means of an electric arc; a step of spraying the first and second molten materials so as to form droplets; a step of cooling the droplets by means of a carrier gas so as to form solid particles; a step of enriching the droplets and/or the particles by means of an active substance, implemented during the cooling step; and a step of separating the solid particles from the carrier gas and collecting the solid particles so as to form the powder.
  • the cooling step allows the droplets to spheroidize and solidify into particles.
  • the droplets take on a spherical shape due to the surface tension on the surface of the molten metal and the interaction with the carrier gas present in the manufacturing device.
  • the vector gas, carrying the droplets and the particles limits the interactions of the particles being formed with the other particles, the other droplets or even the walls of the manufacturing device. In this way the formation of aggregates or the adhesion of satellites to the powder grains are limited.
  • the process thus makes it possible to obtain a sphericity of the particles as expected by additive manufacturing processes and a reproducible particle size distribution. Thanks to the enrichment step, the chemical composition of the particles is controlled.
  • the process may have one or more additional characteristics among the following, considered individually or in all technically possible combinations.
  • the active substance comprises: at least one neutral gas; and at least one active compound comprising at least one of the following atoms: oxygen, nitrogen, carbon or hydrogen; each active compound being in the gaseous, liquid or solid phase, the content of each active compound being between 5 ppm and 20,000 ppm. More preferably still, the content of each active compound is between 5 ppm and 1000 ppm.
  • each active compound can be carbon monoxide or methane.
  • At least one active compound of the active substance is in the liquid phase.
  • At least one active compound of the active substance is in solid phase.
  • the enrichment step is implemented during the spraying and cooling steps.
  • the enrichment step is preceded by a step of ionization of the active substance.
  • the cooling step is carried out by means of a cooling gas.
  • the cooling step is carried out by means of a gaseous buffer.
  • a gaseous buffer Within the gaseous buffer, the droplets and/or particles are slowed down, making it possible to limit the interactions of the particles with the walls of the device.
  • the temperature of the gas buffer is maintained below 400°C. Even more preferentially, the temperature of the gaseous buffer is maintained less than or equal to 100°C.
  • the cooling mixture is injected at a temperature below 50°C. Still preferably, the cooling gas is injected at a temperature less than or equal to 30°C.
  • the manufacturing process is carried out in sequences. Even more preferentially, the sequences are spaced apart by gas buffer cooling times.
  • the gaseous buffer comprises a high density gas, such as argon. Densities are preferably compared under normal conditions of temperature and pressure.
  • the speed of the gas within the gas buffer is less than 1 m/s.
  • the steps of the method are implemented by a manufacturing device, said method comprising a step of inerting the manufacturing device by means of an inert gas, intended to purge the manufacturing device, the melting step being triggered subsequent to the inerting step.
  • the collection step is followed by a particle passivation step.
  • the first and second materials are electrical conductors.
  • each material is a pure metal or an alloy.
  • the passivation step is triggered when the maximum temperature of the powder is below a threshold temperature.
  • the threshold temperature is, for example, 40°C.
  • the passivation step is triggered after a fixed waiting time.
  • the duration of the passivation step is controlled as a function of the temperature of the powder.
  • the duration of the passivation step is fixed.
  • At least one of the materials comprises a reagent.
  • the reagent is chosen to provide physico-chemical characteristics to the materials during the spraying step.
  • the physico-chemical characteristics are for example the flowability, the oxygen content, the nitrogen content or its affinity with a passivation gas.
  • the reagent is alphagenic, betagenic or gammagenic and makes it possible to modify the metallurgical phase of the particles
  • the invention also relates to a device for manufacturing powder from a first material and a second material, configured to carry out the manufacturing process comprising any one of the aforementioned characteristics, the manufacturing device comprising: a means of spray; an atomization chamber; a first collection means; and an exhaust means, connected to the atomization chamber so as to create a gaseous buffer.
  • the droplets entering the atomization chamber have a high speed, close to supersonic speed.
  • the cooled droplets and particles are slowed down by the gaseous buffer before coming into contact with the walls of the manufacturing device, allowing the particles not to deform. Thanks to the gas buffer, the particles maintain a high sphericity.
  • the device may have one or more additional characteristics among the following, considered individually or in all technically possible combinations.
  • the atomization chamber is oriented vertically.
  • the spray means is oriented vertically and directed downwards.
  • the atomization chamber comprises a cylindrical part with a diameter greater than or equal to 500 mm and a height of between three and six times the diameter.
  • the exhaust means is connected to the atomization chamber at a height relative to the lowest point of the atomization chamber greater than 500 mm.
  • a thermal regulation system is installed on the walls of the atomization chamber.
  • the thermal regulation system can implement a circulation of heat transfer fluid.
  • the spraying means comprises an arc-wire torch configured to generate an electric arc between the first material and the second material.
  • the manufacturing device comprises a gas/particle separation system connected to the exhaust means, the gas/particle separation system comprising an outlet connected to a second collection means.
  • the gas/particle separation system is a cyclone.
  • the invention also relates to an active substance comprising: at least one neutral gas; and at least one gas-phase active compound from oxygen, nitrogen, carbon monoxide, hydrogen or methane; the content of each active compound being between 5 ppm and 20,000 ppm and preferably between 5 ppm and 1,000 ppm.
  • At least one active compound of the active substance is in the liquid phase.
  • At least one active compound of the active substance is in solid phase.
  • FIG. 1 a shows schematically, in section, a first subassembly of a device for manufacturing particles according to the invention.
  • FIG. 1b shows schematically, in section, a second subassembly of the device for manufacturing particles according to the invention.
  • FIG. 1 c presents schematically, in section along the plane A-A of FIG. 1 b, a third subassembly of the device for manufacturing particles according to the invention.
  • FIG. 2 schematically presents a process for manufacturing particles according to the invention.
  • FIG. 3 shows a particle size distribution
  • FIG. 4a presents a photograph of a first set of particles.
  • FIG. 4b shows a photograph of a second set of particles.
  • Figures 1 a, 1 b and 1 c schematically show an embodiment of a device 200 according to the invention for manufacturing a first and a second powder 5, 6 from a first material 1 a and a second material 1b.
  • the manufacturing device 200 is in particular configured to carry out an embodiment of a manufacturing method 100 according to the invention, presented in FIG. 2.
  • Each material 1a, 1b is electrically conductive. It may for example be a pure metal such as titanium or aluminum or an alloy such as a titanium-based alloy, an aluminum-based alloy, a nickel-based alloy, an alloy based on copper or an iron-based alloy.
  • the materials 1a, 1b can be of the same nature or even identical.
  • the choice of the composition of each material 1a, 1b partly determines the composition of the powders 5, 6 obtained. In the embodiment presented schematically in FIG.
  • the manufacturing process 100 comprises the following characteristic steps, represented by rectangles in solid lines: a step of melting 110 each material 1 a, 1 b by means of an arc electrical 314; a step 120 of spraying each material 1a, 1b so as to form droplets 2; a cooling step 130 of the droplets 2, by means of a carrier gas 11, so as to form solid particles 3; and a step separating the particles 3 from the carrier gas 11 and collecting 140 the solid particles 3 so as to form the first and the second powder 5, 6.
  • the manufacturing process 100 can also comprise a step of enrichment 160 of the droplets 2 and the particles 3.
  • the enrichment 160 is carried out by means of an active substance 16 which we will detail later.
  • the enrichment 160 is at least implemented during the cooling step 130. However, the enrichment 160 can also begin during the spraying 120 to continue during the cooling 130.
  • FIGS. 1 a and 1 b schematically present an embodiment of the manufacturing device 200 making it possible to carry out the manufacturing process 100.
  • the manufacturing device 200 comprises at least: a spraying means 300; an atomization chamber 400; a first collection means 500; and an exhaust means 600.
  • the manufacturing device 200 can also comprise additional elements, shown in FIG. 1b, such as: a gas/particle separation system 700; and a second collection means 800.
  • FIG. 1a schematically presents the spraying means 300, configured to carry out: the step of melting 110 each material 1a, 1b by means of an electric arc 314; and the step 120 of spraying each material 1a, 1b so as to form the droplets 2.
  • the spraying means 300 includes an electric arc source 310, also called an arc-wire torch.
  • the arc-wire torch 310 is configured to generate an electric arc 314.
  • the electric arc 314 can be created from the carrier gas 11, such as argon, nitrogen or helium or even a mixture of these gas.
  • the arc-wire torch 310 comprises an enclosure 31 1 , filled with vector gas 1 1 , in which the electric arc 314 is generated.
  • the pressure of the vector gas 11 in the enclosure 31 1 can be greater than or equal to atmospheric pressure.
  • the arc-wire torch 310 is configured to generate the electric arc 314 between the first material 1a and the second material 1b.
  • the arc-wire torch comprises two conductive wires 312a, 312b, arranged on either side of the enclosure 311, separated from each other and configured to initiate and maintain the electric arc 314 by means of a continuous electric current.
  • the distance between the two conducting wires 312a, 312b is preferably kept less than 5 mm and depends on the energy delivered.
  • the voltage applied between the two conductor wires 312a, 312b can be between 10 V and 30 V.
  • the current flowing between the two conductor wires 312a, 312b can be between 100 A and 500 A. manufacturing 200, a first son 312a is made from the first material 1a and a second son 312b is made from the second material 1b.
  • the electric arc 314 is located near the two facing ends 313a, 313b of the two wires 312a, 312b.
  • the vector gas 11 is introduced as a jet into the enclosure 31 1 through an inlet 313.
  • the vector gas jet 1 1 is configured to strike the ends 313a, 313b of the two wires 312a, 312b.
  • the spraying means 300 comprises several arc-wire torches 310 making it possible to increase the quantity of powder generated by the manufacturing device 200.
  • the operating mode of the arc-wire torch 310 is chosen such that the temperature of the plasma at the level of the electric arc 314 is higher than the melting temperature of each material 1a, 1 b.
  • said plasma melts the ends 313a, 313b of the two wires 312a, 312b.
  • the direct involvement of the wires 312a, 312b in the generation of the plasma at the level of the electric arc 314 thus guarantees effective fusion 110 of the materials 1a, 1b and localized at the ends 313a, 313b of the wires 312a, 312b.
  • the energy efficiency of the manufacturing device 200 is thus improved.
  • the melting of materials within a plasma by blown or transferred arc is not localized at the ends 313a, 313b of the wires 312a, 312b.
  • the vector gas jet 11 is brought directly onto the liquefied ends 313a, 313b of the wires 312a, 312b so as to spray the melted ends 313a, 313b and create the droplets 2.
  • the wires 312a, 312b are introduced into the enclosure 31 1 by an unwinding system, not shown, at a predefined speed.
  • the temperature of the plasma at the electric arc 314 is advantageously much higher than the melting temperature of the materials 1a, 1b.
  • the ends 313a, 313b reach a high temperature, resulting in a reduction in the surface tension of each of the materials 1a, 1b.
  • the reduced surface tension facilitates the spraying of the liquefied materials 1a, 1b.
  • the molten materials 1a, 1b mix within the droplets 2, making it possible to obtain one or more alloys from pure metals.
  • the sprayed droplets 2 can form an alloy of nickel and aluminum according to the phase diagram of these two elements as thermodynamically defined as by example of the nickel aluminide Ni Al.
  • At least one of the materials 1a, 1b can comprise a reagent.
  • the first wire 312a can be filled, ie comprising the reagent at the heart of the wire, the first material 1a surrounding the reagent and forming an envelope around the reagent.
  • the reagent and the first material 1a react so as to confer additional physico-chemical characteristics on the first material 1a.
  • the reactant may be neither metallic nor electrically conductive.
  • the reagent is an element or mixture of elements that can be involved in the metallurgy of the particles 3.
  • it can be a so-called melting agent, that is to say allowing the melting point of the material to be lowered, or else a cleaning or pickling agent, allowing for example to eliminate the oxidized layers of the wires 312a, 312b.
  • the reagent can also be a so-called gammagenic element, such as nickel, carbon or even chromium, for steels, with a mass content greater than 8%, making it possible to obtain austenitic particles 3.
  • the reagent can also be alphagenic, such as silicon or even chromium, in the case of steels, with a mass content less than or equal to 8%, making it possible to obtain ferritic particles 3.
  • the reagent comprises, for example, gammagenic elements making it possible to obtain particles 3 of austeno-ferritic steel.
  • the reagent comprising alphagenic and betagenic elements makes it possible, for example, to obtain titanium alloy particles 3 according to the desired microstructural, mechanical or corrosion properties.
  • the reagent also makes it possible to provide particular physico-chemical characteristics to the powders 5, 6, such as good flowability, that is to say good spreading capacity or even a predetermined oxygen or nitrogen content.
  • Figure 1a schematically shows the atomization chamber 400 and the exhaust means 600, configured so as to carry out the cooling step 130 of the droplets 2, by means of the carrier gas 11, so as to form the solid particles 3.
  • the atomization chamber 400 comprises a cover 470, a cylindrical part 410 and a conical part 420, sealed together so as to form a first cavity.
  • the atomization chamber 400 is preferably oriented along a vertical axis z represented by an arrow in FIGS. 1a and 1b, the arrow extending from bottom to top.
  • the lid 470 is placed on the upper part of the atomization chamber 400.
  • the conical part 420 is placed on the lower part of the chamber atomization 400.
  • the cylindrical part 410 has a diameter DR greater than or equal to 500 mm and its height Z between three and six times this diameter.
  • the opening of the conical part 420 is oriented towards the spraying means 300.
  • the top of the conical part 420 is connected to the first collection means 500.
  • the angle a of the opening of the conical part 420 is between 45 ° and 80° and improves the separation of the particles 3 from the gases present in the atomization chamber 400.
  • the arc-wire torch 300 comprises a spray nozzle 360 connected to the cover 470.
  • the spray nozzle 360 is configured to accelerate the vector gas 11 and the droplets 2 coming from the enclosure 311 so as to create a cone of projection 450 of carrier gas 11 and droplets 2 in atomization chamber 400.
  • spray nozzle 360 is configured to accelerate carrier gas 11 and droplets 2 to a high speed, for example supersonic.
  • the spray nozzle 360 may have a conical or Laval-type profile.
  • the carrier gas 11 undergoes expansion within the spray nozzle 360 having the effect of reducing its temperature.
  • the expansion is preferably sized so that the temperature of the carrier gas 11 from the spray nozzle 360 is lower than the lowest of the solidification temperatures of each material 1a, 1b or of the alloys formed by the materials 1a, 1 b within the droplets 2.
  • the only expansion of the vector gas 1 1 makes it possible to cool the droplets 2 and form the solid particles 3.
  • a cooling gas 12 can be injected into the atomization chamber 400, in which case the cover 470 of the atomization chamber 400 can comprise at least one inlet 431a, 431b, for allow the injection of the cooling gas 12.
  • Each inlet 431 a, 431 b is arranged on the cover 470 so as to surround the spray nozzle 360.
  • the term “gas mixture” 13 will be used to refer to the mixture formed by the cooling gas 12 and the carrier gas 11. When no cooling gas 12 is injected, the gas mixture 13 will designate only the carrier gas 11.
  • the temperature of the cooling gas 12 injected is chosen such that it either lower than the lowest of the solidification temperatures of the materials 1a, 1b or of the alloys formed by the materials 1a, 1b within the droplets 2.
  • the mixture cooling 12 is for example injected at room temperature.
  • the expanded carrier gas 11 and the cold cooling gas 12 create a heat transfer from the droplets 2 to the gas mixture 13, cooling the droplets 2.
  • droplets 2 solidify to form solid particles 3.
  • the cooling step 130 allows the droplets 2 to become spheroidized, that is to say that they adopt a spherical shape thanks to the surface tension at the surface of the molten droplets 2 and the interaction with the gas mixture 13.
  • the droplets 2 form particles 3 whose sphericity is greater than 0.9 and as close as possible to 1.
  • the exhaust means 600 is connected to the cylindrical part 410 so as to evacuate the gas mixture 13.
  • the exhaust means 600 can for example be a duct.
  • the exhaust means 600 is connected to a height HR, measured from the lowest point of the atomization chamber 400.
  • the height H is greater than 500 mm and preferably greater than or equal to 1000 mm, allowing the formation of a gaseous buffer 440.
  • the gaseous buffer 440 also called “dead zone" corresponds to a volume in the atomization chamber 400 where the flow velocity of the gas mixture 13 is much lower than the velocity of the vector gas 11 when it leaves the spray nozzle 360.
  • the speed of the gas mixture 13 in the gas buffer 440 is of the order of a few meters per second and even more preferably less than 1 m/s.
  • the gas buffer 440 occupies the entire volume of the atomization chamber 400 located under the exhaust means 600, in other words, from the lowest point of the atomization chamber 400 to the connection of the exhaust means to the cylindrical part 410.
  • the diameter of the exhaust means 600 can for example be equal to 300 mm.
  • the droplets 2 issuing from the spray nozzle 360, and the resulting particles 3, have a high speed, even supersonic.
  • the particles 3 can come into contact with the walls of the manufacturing device 200 and become strongly deformed or remain stuck to the walls.
  • the speed of the flow of the gas mixture 13 is reduced within the gas buffer 440 and promotes viscous friction between the gas mixture 13, the droplets 2 and particles 3.
  • the droplets 2 and the particles 3 are slowed down before reaching the walls of the device 200.
  • the process 100 thus makes it possible to obtain a sphericity of the particles greater than 0.9.
  • the braking offered by the gas buffer 440 makes it possible in particular to reduce the height ZR of the cylindrical part 410, limiting the size of the atomization chamber 400.
  • the total height of the atomization chamber 400 can for example be less than or equal at 3m.
  • the droplets 2 and the particles 3 are slowed down by the drag force exerted by the gaseous buffer 440.
  • the drag force is notably proportional to the density of the fluid in which the droplets 2 and the particles 3 are moving, that is i.e. the gaseous buffer 440.
  • the density of the gaseous buffer 440 can be increased by controlling its temperature and/or its pressure.
  • the temperature of the gas buffer 440 is preferentially maintained below 400°C and still preferentially below or equal to 100°C.
  • One way to achieve this is to inject the cooling mixture 12 at a temperature preferably below 50° C. and even more preferably below or equal to 30° C. (ambient temperature).
  • the expansion that the carrier gas 11 undergoes during its passage through the spray nozzle 360 makes it possible to reduce its temperature and facilitates the maintenance of the temperature of the gaseous buffer 440.
  • the temperature of the gas mixture 13 within the atomization chamber 400 can vary spatially and temporally. It is in particular a function of the heat provided by the solidification of the droplets 2.
  • the average temperature of the gas mixture 13 above the exhaust means 600 can reach 100° C. and the average temperature of the mixture of gas 13 at the bottom of the atomization chamber 400 can reach 400°C. Part of the heat can be evacuated through the exhaust means 600.
  • the gas mixture 13 (and therefore the gas buffer 440) can also thermalize with the walls of the atomization chamber 400 by conduction, convection and radiation.
  • a regulation system thermal such as a circulation of a heat transfer fluid, can be installed on the walls of the atomization chamber 440.
  • the production of particles 3 can also be carried out in sequences, spaced out by cooling times of the gaseous buffer 440.
  • a gas mixture 13 comprising a gas of high density, such as argon. Densities are preferably compared under normal conditions of temperature and pressure. Indeed, under normal conditions of temperature and pressure, argon has a density at least twice as high as neon, nitrogen or even helium and therefore makes it possible to offer braking at least twice most important.
  • the drag force is also proportional to the relative speed of the droplets 2 and particles 3 with respect to the speed of the gas mixture 13 within the gaseous buffer 440.
  • the speed of the gas mixture 13 in the gaseous buffer 440 is low, preferably less than 1 m/s.
  • the droplets 2 can come into contact with each other and stick to each other, increasing the diameter of the resulting particles 3.
  • the droplets 2 can also come into contact with solid particles 3, creating large non-spherical aggregates or satellites on the surface of the solid particles 3.
  • the projection cone 450 makes it possible to increase the distance between the droplets 2, limiting the interactions of the droplets 2 with each other during the cooling 130.
  • the opening [3 of the projection cone 450 makes it possible to move the droplets 2 and the particles 3 away from each other, thus limiting the formation of aggregates during their cooling 130.
  • the opening [3 of the projection cone 450 is chosen in order to increase the distance between the droplets 2 and the particles 3 while limiting the impact of the particles 3 with the walls of the cylindrical part 410.
  • the opening [ 3 of the projection cone 450 is for example chosen such that the projection cone 450 has a diameter equal to the diameter DR of the cylindrical part 410 at the level of the gas buffer 440.
  • the opening [3 of the cone projection 450 is for example between 10° and 30°.
  • the ratio between the volume flow rate of the vector gas 11 coming from the spray nozzle 360 and the volume flow rate of the cooling gas 12 is preferably 2 to 1.
  • the volume flow rate of the gas mixture 13 is 120 m 3 /h.
  • the enrichment step 160 is combined with the manufacturing process 100.
  • enrichment we mean a metallurgical treatment of the materials 1a, 1b and of the alloys formed within the droplets 2 by means of an active substance 16 so as to provide particular physico-chemical characteristics to the resulting particles 3.
  • the active substance 16 implemented in the enrichment step 160 comprises: at least one neutral gas, advantageously of the same composition as the carrier gas 11; and at least one active compound comprising at least one of the following atoms: oxygen, nitrogen, carbon or hydrogen.
  • Each active compound can be in the gaseous, liquid or solid phase, for example, present in the form of droplets or particles in suspension.
  • the content of each active compound within the active substance 16 is between 5 ppm and 20000 ppm and preferably between 5 ppm and 1000 ppm. It may for example be carbon monoxide or hydrogen.
  • the active compound of active substance 16 can be a hydrocarbon, such as methane, rich in carbon and hydrogen.
  • the enrichment 160 corresponds to a carburization of the materials 1a, 1b.
  • the enrichment 160 corresponds to nitriding.
  • the enrichment 160 corresponds to an oxidation or on the contrary to a reduction of the materials 1a, 1b.
  • the active substance 16 can react with the materials 1a, 1b whether they are in the form of droplets 2 or solid particles 3.
  • the active substance 16 is preferentially injected into the device 200, at the level of the atomization chamber 400. Thus the active substance 16 reacts with the particles 3.
  • the active substance 16 is involved in the spraying step 120. From this way the active substance 16 reacts with the droplets 2.
  • the active substance 16 is also injected at the middle spraying 300.
  • the partial pressures of the neutral gas and of each active compound of the active substance 16 are controlled within the device 200 throughout the duration of the process 100 so that the content of each active compound remains between 5 ppm and 20000 ppm and preferably between 5 ppm and 1000 ppm.
  • the chemical reactions taking place between the active substance 16 and the surface of the droplets 2 and of the particles 3 makes it possible to optimize the exchange surface. In this way the enrichment step 160 is performed efficiently. Thus the enrichment step 160 makes it possible to control the final chemical composition of the resulting particles 3.
  • the angle of the conical part 420 makes it possible to convey the first part of the particles 3 to the collection means by limiting the accumulation of the particles 3 in the atomization chamber 400.
  • a first valve 460 is located at the top of the conical part making it possible to close the conduit towards the first collection means 500, in order to isolate the atomization chamber 400 from the outside.
  • a second part of the particles 3, formed mainly by the lightest particles, is carried by the gas mixture 13 out of the atomization chamber 400 by the exhaust means 600.
  • Figure 1a schematically presents the first collection means 500, configured to carry out the collection step 140 of the first solid particle part 3 so as to form the first powder 5.
  • the first collection means 500 is connected to the atomization chamber 400 by the top of the conical part 420.
  • the first collection means 500 comprises a main pot 520 configured to contain the first powder 5.
  • the first collection means 500 comprises a second valve 530 making it possible to isolate the main pot 520 from the rest of the manufacturing device 200. When the first and second valves 460, 530 are closed, the first collection means 500 can be disconnected from the manufacturing device 200 thanks to a first interface 550, in order to be, for example moved or replaced.
  • the first collection means 500 comprises a first temperature probe 560 configured to measure the maximum temperature within the first powder 5 in the main pot 520.
  • the first collection means 500 also comprises a first gas inlet 541 and a first gas outlet 542, intended to circulate a passivation gas 14 within the main pot 520 , in order to perform, for example, a passivation step 170.
  • the first gas inlet and outlet 541, 542 are closed by two first closing valves 544, 543 outside the passivation step 170.
  • the main pot 520 comprises a first gaseous diffusion grid 570 on the bottom of the pot 520, whose pore diameter is smaller than the diameter of the recovered powder particles, so as to ensure better distribution of the passivation gas 14 within the powder bed 5.
  • FIG. 1 b schematically presents the gas/particle separation system 700, configured to separate the second part of the particles 3 from the gas mixture 13.
  • the gas/particle separation system 700 can for example be a filtration means, a decanter or another hurricane.
  • the gas/particle separation system 700 is a cyclone.
  • the cyclone 700 is preferably oriented along the vertical axis z and comprises a cylindrical body 730 of height Le and of diameter De.
  • the cyclone 700 also comprises a conical body 740 of height Zc.
  • the cylindrical body 730 is sealed to the conical body 740 so as to create a second cavity.
  • the top of the conical body 740 comprises an opening, of diameter Du, on the collection means 800.
  • the cyclone 700 comprises an outlet duct 720, of diameter Do, arranged on the upper part of the cyclone 700, partially penetrating into the second cavity of a distance Sc.
  • the cyclone 700 comprises an inlet duct 710 of height Hc.
  • FIG. 1c schematically presents a cross-sectional view along plane A-A of cyclone 700 of FIG. 1b making it possible to visualize the width Bc of inlet duct 710.
  • a first opening 71 1 of inlet duct 710 is connected to the means exhaust 600 so that the gas mixture 13 can enter the cyclone 700.
  • the inlet duct 710 leads to the second cavity through a second opening 712 made in a wall of the cylindrical body 730.
  • the cyclone can be sized according to the velocity of the gas mixture 13 entering the cyclone and the so-called Lapple dimension ratios.
  • another type of cyclone can be implemented, chosen in particular according to the materials 1a, 1b pulverized and the hydrodynamics of the gas mixture 13.
  • the speed of the gas mixture 13 is preferably between 6 m/s and 21 m/s .
  • Lapple's dimension ratios are for example:
  • the gas mixture 13 and the second part of the particles 3 enter the cyclone 700 through the inlet pipe 710.
  • the second part of the particles 3 is separated from the gas mixture 13 thanks to the centrifugal force exerted on each particle 3, the centrifugal force resulting from the circular path 7 of the gas mixture 13 in the cyclone 700.
  • the conical body 740 collects the second part of the particles 3 towards the second collection means 800.
  • the gas mixture 13, freed from the second part of the particles 3, leaves the separation system 700 through the outlet duct 720.
  • the conical body 740 comprises at its top a third valve 760 making it possible to close the duct towards the second collection means 800, in order to isolate the system from gas/particle separation 700 from the outside.
  • Figure 1 b also schematically presents the second collection means 800, comparable to the first collection means 500.
  • the second collection means 800 comprises a secondary pot 820 configured to receive the second part of the particles 3 so as to form the second powder 6
  • the second collection means 800 comprises a fourth valve 810 making it possible to isolate the second collection means 800. When the third and fourth valves 760, 810 are closed, the second collection means 800 can be disconnected from the gas/gas separation system. particles 700 through a first interface 750, in order to be moved in order, for example, to make the second powder 6 available to additive manufacturing equipment.
  • the second collection means 800 comprises a second temperature probe 840 configured to measure the temperature within the second powder 6.
  • the second collection means 800 also comprises a second gas inlet 831 and a second gas outlet 832, intended to circulate the passivation gas 14 in order to perform, for example, the passivation step 170.
  • the second gas inlet and outlet 831, 832 are closed by two second closing valves 833, 834 outside the passivation 170 so as to control the atmosphere of the second means of collection 800.
  • the secondary pot 820 comprises a second gas diffusion grid 850 on the bottom of the pot 820, the pore diameter of which is less than the diameter of the particles 3 recovered, so as to ensure better distribution of the passivation gas 14 within powder bed 6.
  • the first part of the particles 3, separated from the gas mixture 13 by inertia, converges towards the top of the conical part 420.
  • the opening angle a of the conical part 420 makes it possible to avoid the accumulation of particles 3 in the atomization chamber 400 and makes it possible to effectively transfer the first part of the particles 3 to the first collection means 500.
  • the first part of the particles 3 is collected in the pot main 520 so as to form the first powder 5.
  • the first collection means 500 is isolated from the manufacturing device 200 by means of the first and second valves 460, 530.
  • the second part of the particles 3 is collected in the secondary pot 820 so as to form the second powder 6.
  • the second collection means 800 is isolated from the manufacturing device 200 by means of the third and fourth valves 760, 810.
  • the first powder 5 and the second powder 6 are of the same nature and comprise particles 3 whose chemical composition is equivalent, that is to say whose chemical constituents vary by less than 5%.
  • the second powder 6 comprises particles 3 of smaller size and lighter than the particles forming the first powder 5.
  • the first powder 5 and the second powder 6 can be stored and used separately or else mixed so as to form only one single powder.
  • the manufacturing method 100 shown schematically comprises several combinable steps, in dotted lines, which will now be described.
  • An ionization step 150 can be combined with the enrichment step 160 in order to improve the kinetics of the chemical reactions taking place between the droplets 2, the particles 3 and the active substance 16.
  • the ionization step 150 precedes the enrichment step 160, in which case the enrichment step can begin during the spraying 120.
  • the active substance 16 can be introduced into the enclosure 31 1 of the spraying means 300 so as to be ionized by the electric arc 314.
  • the electric arc 314 ionizes each component of the active substance 16 so as to create reactive free ions.
  • the reactive free ions which are very energetic, improve the kinetics of the reactions during the enrichment step 160.
  • the enrichment reactions are therefore balanced before the droplets 2 are solidified.
  • the chemical composition of the resulting particles 3 is controlled and reproducible.
  • the concentration of reactive free ions is highest within enclosure 31 1 . Outside the enclosure, the concentration of reactive free ions decreases due to recombination reactions.
  • the reactive free ions follow the trajectory of the droplets 2 in the atomization chamber 400 in order to increase the duration of the enrichment step 160.
  • the passivation step 170 of the surface of the particles 3 can be carried out, for example, in the case where the first and second powders 5, 6 are made from flammable materials, ie having a strong affinity with oxygen. This is for example the case with the powders 5, 6 formed from titanium, titanium alloys or aluminum.
  • the passivation step 170 is carried out by means of the passivation gas 14.
  • the passivation gas 14 can for example comprise a noble gas and an active gas such as oxygen, the active gas preferably having a concentration of between 20 ppm and 2%.
  • the passivation step 170 is carried out systematically on the two powders 5, 6. In the following example, we present the performance of the passivation step 170 on the first powder 5 in the first collection means 500.
  • the passivation step 170 can be transposed to the second collection means 800.
  • the second valve 530 is closed, allowing the first collection means 500 to be isolated from the rest of the manufacturing device 200.
  • a waiting time allows the first powder 5 to be allowed to cool before the closing valves 543 are opened. , 544.
  • the waiting time for example 15 min, is defined so that the maximum temperature of the first powder 5 is below a threshold temperature, for example 40°C.
  • the first temperature probe 560 makes it possible to measure the maximum temperature of the first powder 5 in real time and trigger the opening of the closing valves 543, 544 when the maximum temperature of the first powder 5 is less than 40° C. .
  • the first temperature probe 560 thus makes it possible to reduce or, on the contrary, increase the waiting time when the cooling of the first powder 5 is rapid or, on the contrary, slow.
  • the passivation gas 14 When opening the closing valves 543, 544, initially closed, the passivation gas 14 circulates in the main pot 520.
  • the passivation gas 14 circulates from the bottom of the main pot 520 upwards so as to diffuse between each particle 3 and thus act uniformly on each of them.
  • the duration of the circulation of the passivation gas 14 can be fixed.
  • the circulation time of the passivation gas 14 can be controlled by the first temperature sensor 560.
  • a sieving step 180 can be carried out on the first and the second powder 5, 6.
  • the sieving 180 makes it possible, for example, to get rid of the powders 5, 6 aggregates of particles 3 or particles 3 exceeding a size limit.
  • the particle size distribution can be characterized by three particular diameters noted D10, Dso and D90. 10% of particles 3 have a diameter less than D10, 50% of particles 3 have a diameter less than D50 and 90% of particles 3 have a diameter less than D90.
  • the sieving 180 can for example be carried out in order to adjust the distribution of the powders 5, 6, in particular the diameter D50, corresponding to the median of the distribution.
  • the manufacturing device 200 can undergo an inerting step 101 .
  • the inerting step 101 is carried out by means of an inerting gas, in order to purge the air contained in the device 200 until until the oxygen content is less than 100 ppm, preferably less than 10 ppm, before starting the melting step 110.
  • the inerting gas can for example comprise an inert gas or a mixture of inert gases.
  • FIG. 3 schematically presents a particle size distribution curve Q(D) of particles 3 obtained experimentally by the manufacturing process 100.
  • the curve Q(D) corresponds to the normalized distribution of particles 3 as a function of their diameters D.
  • the three zones hatched material ize the range of diameter between 5 ⁇ m and 150 ⁇ m.
  • the double-hatched area materializes the range of diameter comprised between 10 ⁇ m and 63 ⁇ m.
  • Figures 4a and 4b show two photographs of a first set and a second set of particles 3 manufactured by the manufacturing method 100.
  • the two photographs are produced by scanning electron microscopy. Both photographs show particles 3 that are spherical and, for the most part, absent from the surface satellite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Un aspect de l'invention concerne un procédé de fabrication de poudre (5) à partir de premier et deuxième matériaux (1a, 1b) destinée à être utilisée dans le domaine de la fabrication additive, le procédé de fabrication comprenant : - une étape de fusion des premier et deuxième matériaux (1a, 1b), au moyen d'un arc électrique (314); - une étape de pulvérisation des matériaux (1a, 1b) fondus de manière à former des gouttelettes (2); - une étape de refroidissement des gouttelettes (2) au moyen d'un gaz vecteur (11) de manière à former des particules solides (3); - une étape de séparation des particules solides du gaz vecteur (11) et de collecte des particules solides (3) de façon à former la poudre (5); et - une étape d'enrichissement des gouttelettes (2) et/ou des particules (3) au moyen d'une substance active (16).

Description

DESCRIPTION
TITRE : DISPOSITIF ET PROCÉDÉ DE PRODUCTION DE POUDRES MÉTALLIQUES
DOMAINE TECHNIQUE DE L’INVENTION
Le domaine technique de l’invention est celui de production de poudres métalliques et en particulier des poudres métalliques destinées aux procédés de fabrication additive.
ARRIÈRE-PLAN TECHNOLOGIQUE DE L’INVENTION
Les avancées technologiques relatives aux procédés de fabrication additive permettent de réaliser des pièces métalliques de géométries complexes et de conception optimisées en termes de performances. Ces procédés permettent de réaliser, par exemple, des pièces possédant les mêmes propriétés mécaniques que celles issues de procédés conventionnels (par moulage ou forgeage) tout en « ajoutant la matière >> uniquement aux endroits requis, permettant par conséquent d’optimiser la masse de ces composants. Ceci représente un enjeu majeur dans les secteurs industriels du transport, tel que celui l’aéronautique, afin de réduire les consommations de fuel et les émissions de CO2 de ces moyens de transport.
Les procédés de fabrication additive mettent en jeu de grandes quantités de poudres métalliques de taille micrométrique, la distribution de diamètre des particules de poudre étant comprise entre 5 pm et 150 pm, en divers alliages, tels que les alliages à base de titane, d'aluminium, de nickel, de cuivre ou de fer. Ces procédés offrent une grande liberté de conception mais en contrepartie requièrent un niveau de qualité des poudres élevé. Par exemple, les critères de qualité des particules formant les poudres sont : une sphéricité des particules, typiquement supérieure à 0,9, la sphère parfaite ayant une valeur de 1 ; une absence de petits grains attachés à la surface des particules, appelés satellites ; une distribution granulométrique, comprise entre 5 pm et 150 pm et plus particulièrement 10 pm et 63 pm ; la médiane de la distribution granulométrique, notée généralement D50, devant notamment être constante d'un lot à l'autre ; une composition chimique des particules devant être stable dans le temps ; la composition chimique des particules comportant une faible teneur de composés chimiques pouvant générer des composés ou phases indésirables dans les pièces issues de la fabrication additive, tels que l'azote, le carbone, l'oxygène ou encore l'hydrogène.
Le brevet US6398125 concerne un procédé en deux étapes pour la production de poudres métalliques comprenant une première étape de chauffage et de pulvérisation par un appareil de pulvérisation thermique, de type arc-fil, suivi d’une seconde étape d'atomisation dans une deuxième chambre où un mélange gazeux incluant des éléments réactifs peut être employé. Toutefois les particules fabriquées par ce procédé sont de taille nanométrique, trop faible pour être mise en oeuvre dans les procédés de fabrication additive.
RÉSUME DE L’INVENTION
L’invention offre une solution aux problèmes évoqués précédemment, en offrant un procédé de fabrication de poudres métalliques respectant les critères de qualité attendus par les procédés de fabrication additive, permettant notamment d'obtenir des particules dont les propriétés physiques et chimiques sont contrôlées et reproductibles.
L'invention concerne un procédé de fabrication de poudre à partir d'un premier matériau et d'un deuxième matériau, le procédé comprenant : une étape de fusion des premier et deuxième matériaux, au moyen d'un arc électrique ; une étape de pulvérisation des premier et deuxième matériaux fondus de manière à former des gouttelettes ; une étape de refroidissement des gouttelettes au moyen d'un gaz vecteur de manière à former des particules solides ; une étape d'enrichissement des gouttelettes et/ou des particules au moyen d'une substance active, mise en oeuvre pendant l'étape de refroidissement ; et une étape de séparation des particules solides du gaz vecteur et de collecte des particules solides de façon à former la poudre. L’étape de refroidissement permet aux gouttelettes de se sphéroïdiser et de se solidifier sous forme de particules. Les gouttelettes adoptent une forme sphérique grâce à la tension superficielle à la surface du métal fondu et à l’interaction avec le gaz vecteur gaz présent dans le dispositif de fabrication. Le gaz vecteur, portant les gouttelettes et les particules, limite les interactions des particules en formation avec les autres particules, les autres gouttelettes ou encore les parois du dispositif de fabrication. De la sorte la formation d'agrégats ou l’adhésion de satellites sur les grains de poudres sont limitées. Le procédé permet ainsi d'obtenir une sphéricité des particules telle qu'attendue par les procédés de fabrication additive et une distribution granulométrique reproductible. Grâce à l'étape d'enrichissement, la composition chimique des particules est contrôlée.
Outre les caractéristiques qui viennent d’être évoquées dans les paragraphes précédents, le procédé peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles.
Préférentiellement, la substance active comprend : au moins un gaz neutre ; et au moins un composé actif comprenant au moins l'un des atomes suivants : oxygène, azote, carbone ou hydrogène ; chaque composé actif étant en phase gazeuse, liquide ou solide, la teneur de chaque composé actif étant comprise entre 5 ppm et 20000 ppm. Encore préférentiellement, la teneur de chaque composé actif est comprise entre 5 ppm et 1000 ppm. Par exemple, chaque composé actif peut être du monoxyde de carbone ou du méthane.
Avantageusement, au moins un composé actif de la substance active est en phase liquide.
Avantageusement, au moins un composé actif de la substance active est en phase solide.
Préférentiellement, l'étape d'enrichissement est mise en oeuvre pendant les étapes de pulvérisation et de refroidissement.
Préférentiellement, l'étape d'enrichissement est précédée d'une étape d'ionisation de la substance active. Préférentiellement, outre le gaz vecteur, l'étape de refroidissement est réalisée au moyen d'un gaz de refroidissement.
Préférentiellement, outre le gaz vecteur, l'étape de refroidissement est réalisée au moyen d'un tampon gazeux. Au sein du tampon gazeux les gouttelettes et/ ou particules sont freinées permettant de limiter les interactions des particules avec les parois du dispositif.
Préférentiellement, la température du tampon gazeux est maintenue inférieure à 400 °C. Encore préférentiellement, la température du tampon gazeux est maintenue inférieure ou égale à 100 °C.
Préférentiellement, le mélange de refroidissement est injecté à une température inférieure à 50 °C. Encore préférentiellement, le gaz de refroidissement est injecté à une température inférieure ou égale à 30 °C.
Préférentiellement, le procédé de fabrication est réalisé par séquences. Encore préférentiellement, les séquences sont espacées par des temps de refroidissement du tampon gazeux.
Préférentiellement, le tampon gazeux comprend un gaz de masse volumique élevée, tel que l'argon. Les masses volumiques sont préférentiellement comparées dans les conditions normales de température et de pression.
Préférentiellement, la vitesse du gaz au sein du tampon gazeux est inférieure à 1 m/s.
Préférentiellement, les étapes du procédé sont mises en oeuvre par un dispositif de fabrication, ledit procédé comprenant une étape d’inertage du dispositif de fabrication au moyen d’un gaz neutre, destinée à purger le dispositif de fabrication, l'étape de fusion étant déclenchée subséquemment à l'étape d'inertage.
Avantageusement, l'étape de collecte est suivie d'une étape de passivation des particules.
Avantageusement, les premier et deuxième matériaux sont conducteurs électriques.
Avantageusement, chaque matériau est un métal pur ou un alliage.
Selon une première alternative du procédé, l'étape de passivation est déclenchée lorsque la température maximale de la poudre est inférieure à une température seuil. La température seuil est, par exemple, 40 °C. Selon une deuxième alternative du procédé, l'étape de passivation est déclenchée après un temps d'attente fixé.
Selon une troisième alternative du procédé, la durée de l'étape de passivation est contrôlée en fonction de la température de la poudre.
Selon une quatrième alternative du procédé, la durée de l'étape de passivation est fixée.
Avantageusement, au moins un des matériaux comprend un réactif. Le réactif est choisi pour apporter des caractéristiques physico-chimiques aux matériaux lors de l'étape de pulvérisation. Les caractéristiques physico-chimiques sont par exemple la coulabilité, la teneur en oxygène, la teneur en azote ou son affinité avec un gaz de passivation. Encore avantageusement, le réactif est alphagène, betagène ou gammagène et permet de modifier la phase métallurgique des particules
L'invention concerne également un dispositif de fabrication de poudre à partir d'un premier matériau et d'un deuxième matériau, configuré pour réaliser le procédé de fabrication comprenant l'une quelconque des caractéristiques précitées, le dispositif de fabrication comportant : un moyen de pulvérisation ; une chambre d'atomisation ; un premier moyen de collecte ; et un moyen d’échappement, connecté sur la chambre d'atomisation de façon à créer un tampon gazeux.
Les gouttelettes entrant dans la chambre d'atomisation présentent une vitesse élevée, proche de la vitesse supersonique. Lors du refroidissement, les gouttelettes et les particules refroidies sont freinées par le tampon gazeux avant d'entrer en contact avec les parois du dispositif de fabrication permettant aux particules de ne pas se déformer. Grâce au tampon gazeux, les particules conservent une sphéricité élevée.
Outre les caractéristiques qui viennent d’être évoquées dans les paragraphes précédents, le dispositif peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles. Avantageusement, la chambre d’atomisation est orientée verticalement.
Avantageusement, le moyen de pulvérisation est orienté verticalement et dirigé vers le bas.
Avantageusement, la chambre d'atomisation comporte une partie cylindrique de diamètre supérieur ou égale à 500 mm et de hauteur comprise entre trois et six fois le diamètre.
Préférentiellement, le moyen d’échappement est connecté sur la chambre d'atomisation à une hauteur par rapport au point le plus bas de la chambre d'atomisation supérieure à 500 mm.
Préférentiellement, un système de régulation thermique est installé sur les parois de la chambre d'atomisation. Le système de régulation thermique peut mettre en oeuvre une circulation de fluide caloporteur.
Préférentiellement, le moyen de pulvérisation comprend une torche arc-fil configurée pour générer un arc électrique entre le premier matériau et le deuxième matériau.
Préférentiellement, le dispositif de fabrication comporte un système de séparation gaz/particules connecté au moyen d’échappement, le système de séparation gaz/particules comportant une sortie connectée à un deuxième moyen de collecte.
Avantageusement, le système de séparation gaz/particules est un cyclone.
L'invention concerne également une substance active comprenant : au moins un gaz neutre ; et au moins un composé actif en phase gazeuse parmi l'oxygène, l'azote, le monoxyde de carbone, l'hydrogène ou le méthane ; la teneur de chaque composé actif étant comprise entre 5 ppm et 20000 ppm et de préférence entre 5 ppm et 1000 ppm.
Avantageusement, au moins un composé actif de la substance active est en phase liquide.
Avantageusement, au moins un composé actif de la substance active est en phase solide.
L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. BRÈVE DESCRIPTION DES FIGURES
Les figures sont présentées à titre indicatif et nullement limitatif de l’invention.
[Fig. 1 a] présente schématiquement, en coupe, un premier sous-ensemble d'un dispositif de fabrication de particules selon l’invention.
[Fig. 1 b] présente schématiquement, en coupe, un deuxième sous-ensemble du dispositif de fabrication de particules selon l’invention.
[Fig. 1 c] présente schématiquement, en coupe selon le plan A-A de la figure 1 b, un troisième sous-ensemble du dispositif de fabrication de particules selon l’invention.
[Fig. 2] présente schématiquement un procédé de fabrication de particules selon l’invention.
[Fig. 3] présente une distribution granulométrique de particules.
[Fig. 4a] présente une photographie d'un premier ensemble de particules.
[Fig. 4b] présente une photographie d'un deuxième ensemble de particules.
DESCRIPTION DÉTAILLÉE
Les figures sont présentées à titre indicatif et nullement limitatif de l’invention. Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique.
Les figures 1 a, 1 b et 1 c présentent schématiquement un mode de réalisation d'un dispositif de fabrication 200 selon l’invention d'une première et une deuxième poudre 5, 6 à partir d'un premier matériau 1 a et d'un deuxième matériau 1 b. Le dispositif de fabrication 200 est notamment configuré pour réaliser un mode de réalisation d'un procédé de fabrication 100 selon l’invention, présenté dans la figure 2.
Chaque matériau 1 a, 1 b est conducteur électrique. Il peut par exemple être un métal pur tel que du titane ou de l’aluminium ou un alliage tel qu'un alliage à base de titane, un alliage à base d'aluminium, un alliage à base de nickel, un alliage à base de cuivre ou un alliage à base de fer. Les matériaux 1 a, 1 b peuvent être de même nature voire même identiques. Le choix de la composition de chaque matériau 1 a, 1 b détermine en partie la composition des poudres 5, 6 obtenues. Dans le mode de réalisation présenté schématiquement dans la figure 2, le procédé de fabrication 100 comporte les étapes caractéristiques suivantes, représentées par des rectangles en traits pleins : une étape de fusion 110 de chaque matériau 1 a, 1 b au moyen d'un arc électrique 314 ; une étape de pulvérisation 120 de chaque matériau 1 a, 1 b de manière à former des gouttelettes 2 ; une étape de refroidissement 130 des gouttelettes 2, au moyen d'un gaz vecteur 1 1 , de manière à former des particules solides 3 ; et une étape séparation des particules 3 du gaz vecteur 1 1 et de collecte 140 des particules solides 3 de façon à former la première et la deuxième poudre 5, 6.
Le procédé de fabrication 100 peut également comprendre une étape d'enrichissement 160 des gouttelettes 2 et des particules 3. L'enrichissement 160 est réalisé au moyen d’une substance active 16 que nous détaillerons par la suite. L'enrichissement 160 est au moins mis en oeuvre lors de l'étape de refroidissement 130. Toutefois, l'enrichissement 160 peut également débuter lors de la pulvérisation 120 pour se poursuivre lors du refroidissement 130.
Les figures 1 a et 1 b présentent schématiquement un mode de réalisation du dispositif de fabrication 200 permettant de réaliser le procédé de fabrication 100. Le dispositif de fabrication 200 comporte au moins : un moyen de pulvérisation 300 ; une chambre d'atomisation 400 ; un premier moyen de collecte 500 ; et un moyen d'échappement 600.
Le dispositif de fabrication 200 peut également comporter des éléments complémentaires, présentés par la figure 1 b, tels que : un système de séparation gaz/particules 700 ; et un deuxième moyen de collecte 800. La figure 1 a présente schématiquement le moyen de pulvérisation 300, configuré pour réaliser : l'étape de fusion 1 10 de chaque matériau 1 a, 1 b au moyen d’un arc électrique 314 ; et l'étape de pulvérisation 120 de chaque matériau 1 a, 1 b de manière à former les gouttelettes 2.
Le moyen de pulvérisation 300 comporte une source d’arc électrique 310, également appelée torche arc-fil. La torche arc-fil 310 est configurée pour générer un arc électrique 314. L'arc électrique 314 peut être crée à partir du gaz vecteur 1 1 , tel que l'argon, l'azote ou l'hélium ou encore un mélange de ces gaz. La torche arc-fil 310 comporte une enceinte 31 1 , remplie du gaz vecteur 1 1 , dans laquelle l'arc électrique 314 est généré. La pression du gaz vecteur 11 dans l'enceinte 31 1 peut être supérieure ou égale à la pression atmosphérique. La torche arc-fil 310 est configurée pour générer l'arc électrique 314 entre le premier matériau 1 a et le deuxième matériau 1 b. La torche arc-fil comporte deux fils conducteurs 312a, 312b, disposés de part et d'autre de l'enceinte 311 , séparés l’un de l’autre et configurés pour amorcer et entretenir l’arc électrique 314 au moyen d'un courant électrique continu. En fonctionnement, la distance entre les deux fils conducteurs 312a, 312b est préférentiellement maintenue inférieure à 5 mm et dépend de l'énergie délivrée. La tension appliquée entre les deux fils conducteurs 312a, 312b peut être comprise entre 10 V et 30 V. Le courant circulant entre les deux fils conducteurs 312a, 312b peut être compris entre 100 A et 500 A. Dans ce mode de réalisation du dispositif de fabrication 200, un premier fils 312a est réalisé à partir du premier matériau 1 a et un deuxième fils 312b est réalisé à partir du deuxième matériau 1 b. Lorsque la torche arc-fil 310 est en fonctionnement, l’arc électrique 314 est localisé au voisinage des deux extrémités en vis-à-vis 313a, 313b des deux fils 312a, 312b.
Le gaz vecteur 11 est introduit en jet dans l'enceinte 31 1 par une entrée 313. Le jet de gaz vecteur 1 1 est configuré pour frapper les extrémités 313a, 313b des deux fils 312a, 312b.
Avantageusement le moyen de pulvérisation 300 comprend plusieurs torches arc-fil 310 permettant d’augmenter la quantité de poudre générée par le dispositif de fabrication 200. Lors de l'étape de fusion 1 10, le régime de fonctionnement de la torche arc-fil 310 est choisi tel que la température du plasma au niveau de l'arc électrique 314 soit supérieure à la température de fusion de chaque matériau 1 a, 1 b. Ainsi, en fonctionnement, ledit plasma met en fusion les extrémités 313a, 313b des deux fils 312a, 312b.
L'implication directe des fils 312a, 312b dans la génération du plasma au niveau de l'arc électrique 314 garantit ainsi une fusion 110 efficace des matériaux 1 a, 1 b et localisée aux extrémités 313a, 313b des fils 312a, 312b. Le rendement énergétique du dispositif de fabrication 200 est ainsi amélioré. De plus, il n'est pas nécessaire de chauffer la totalité des fils 312a, 312b afin de les mettre en fusion, la fusion 110 prenant uniquement place aux niveaux des deux extrémités 313a, 313b. La fusion de matériaux au sein d'un plasma par arc soufflé ou transféré n'est pas localisée aux extrémités 313a, 313b des fils312a, 312b. Ainsi, il est nécessaire de porter une plus grande quantité de matière à une température élevée, limitant le rendement énergétique.
Lors de l'étape de pulvérisation 120, le jet de gaz vecteur 11 est porté directement sur les extrémités 313a, 313b liquéfiées des fils 312a, 312b de façon à pulvériser les extrémités 313a, 313b mises en fusion et créer les gouttelettes 2. Afin de conserver un espacement fixe entre les extrémités 313a et 313b malgré la pulvérisation de matière, les fils 312a, 312b sont introduits dans l'enceinte 31 1 par un système de dévidage, non représenté, à une vitesse prédéfinie.
La température du plasma au niveau de l'arc électrique 314 est avantageusement très supérieure par rapport à la température de fusion des matériaux 1 a, 1 b. Ainsi les extrémités 313a, 313b atteignent une température élevée, ayant pour résultat de diminuer la tension de surface de chacun des matériaux 1 a, 1 b. La tension de surface réduite facilite la pulvérisation des matériaux 1 a, 1 b liquéfiés.
Lors de la pulvérisation, les matériaux 1 a, 1 b fondus se mélangent au sein des gouttelettes 2 permettant d'obtenir un ou plusieurs alliages à partir de métaux purs. Par exemple lorsque le premier matériau 1 a est en aluminium et le deuxième matériau 1 b est en nickel, les gouttelettes 2 pulvérisées peuvent former un alliage de nickel et d’aluminium selon le diagramme de phase de ces deux éléments tel que thermodynamiquement défini comme par exemple de l'aluminiure de nickel Ni Al. Au moins un des matériaux 1 a, 1 b peut comprendre un réactif. Par exemple le premier fil 312a peut être fourré, c'est à dire comprenant le réactif au cœur du fil, le premier matériau 1 a entourant le réactif et formant une enveloppe autour du réactif. Lorsque le fil fourré 312a est mis en fusion, pendant l'étape de fusion, le réactif et le premier matériau 1 a réagissent de façon à conférer des caractéristiques physico-chimiques complémentaires au premier matériau 1 a. Le réactif peut être ni métallique ni conducteur électrique. Le réactif est un élément ou mélange d'éléments pouvant intervenir dans la métallurgie des particules 3. Par exemple, il peut s'agit d'un agent dit fondant, c'est à dire permettant d'abaisser la température de fusion du matériau, ou bien d'un agent nettoyant ou décapant, permettant par exemple d'éliminer les couches oxydées des fils 312a, 312b. Le réactif peut également être un élément dit gammagène, tel que du nickel, du carbone ou encore du chrome, pour les aciers, avec une teneur massique supérieure à 8 %, permettant d'obtenir des particules 3 austénitiques. Le réactif peut encore être alphagène, tel que du silicium ou encore du chrome, dans le cas des aciers, avec une teneur massique inférieure ou égale à 8%, permettant d'obtenir des particules 3 ferritiques. Le réactif comprend, par exemple, des éléments gammagènes permettant d'obtenir des particules 3 en acier austéno- ferritique. Le réactif comprenant des éléments alphagènes et bétagènes permet par exemple d'obtenir des particules 3 en alliage de titane selon les propriétés microstructurales, mécaniques ou de corrosion recherchées. Le réactif permet également d'apporter des caractéristiques physico-chimiques particulières aux poudres 5, 6, telles qu'une bonne coulabilité, c'est à dire une bonne capacité à l'étalement ou encore une teneur prédéterminée en oxygène ou en azote.
La figure 1 a présente schématiquement la chambre d'atomisation 400 et le moyen d'échappement 600, configurés de manière à réaliser l'étape de refroidissement 130 des gouttelettes 2, au moyen du gaz vecteur 1 1 , de manière à former les particules solides 3.
La chambre d'atomisation 400 comporte un couvercle 470, une partie cylindrique 410 et une partie conique 420, scellés entre eux de façon à former une première cavité. La chambre d'atomisation 400 est préférentiellement orientée selon un axe vertical z représenté par une flèche sur les figures 1 a et 1 b, la flèche s'étirant du bas vers le haut. Le couvercle 470 est disposé sur la partie haute de la chambre d'atomisation 400. La partie conique 420 est disposée sur la partie basse de la chambre d'atomisation 400. La partie cylindrique 410 a un diamètre DR supérieur ou égal à 500 mm et sa hauteur Z comprise entre trois et six fois ce diamètre. L'ouverture de la partie conique 420 est orientée vers le moyen de pulvérisation 300. Le sommet de la partie conique 420 est connecté au premier moyen de collecte 500. L'angle a de l'ouverture de la partie conique 420 est compris entre 45° et 80° et améliore la séparation des particules 3 des gaz présents dans la chambre d'atomisation 400.
La torche arc-fil 300 comporte une buse de pulvérisation 360 connectée sur le couvercle 470. La buse de pulvérisation 360 est configurée pour accélérer le gaz vecteur 1 1 et les gouttelettes 2 issues de l'enceinte 31 1 de manière à créer un cône de projection 450 du gaz vecteur 1 1 et des gouttelettes 2 dans la chambre d'atomisation 400. Pour cela la buse de pulvérisation 360 est configurée pour accélérer le gaz vecteur 1 1 et les gouttelettes 2 à une vitesse élevée, par exemple supersonique. Par exemple la buse de pulvérisation 360 peut présenter un profil conique ou de type Laval. Le gaz vecteur 1 1 subit une détente au sein de la buse de pulvérisation 360 ayant pour effet de diminuer sa température. La détente est préférentiellement dimensionnée de sorte que la température du gaz vecteur 1 1 issu de la buse de pulvérisation 360 soit inférieure à la plus faible des températures de solidification de chaque matériau 1 a, 1 b ou des alliages formés par les matériaux 1 a, 1 b au sein des gouttelettes 2. Ainsi, la seule détente du gaz vecteur 1 1 permet de refroidir les gouttelettes 2 et former les particules solides 3.
Afin d'accélérer le refroidissement 130, un gaz de refroidissement 12 peut être injecté dans la chambre d'atomisation 400, auquel cas, le couvercle 470 de la chambre d'atomisation 400 peut comprendre au moins une entrée 431 a, 431 b, pour permettre l'injection du gaz de refroidissement 12. Chaque entrée 431 a, 431 b est disposée sur le couvercle 470 de manière à entourer la buse de pulvérisation 360. Par la suite on appellera "mélange de gaz" 13, le mélange formé par le gaz de refroidissement 12 et le gaz vecteur 1 1. Lorsqu'aucun gaz de refroidissement 12 n'est injecté, le mélange de gaz 13 désignera uniquement le gaz vecteur 1 1 .
Lors de l'étape de refroidissement 130, les gouttelettes 2, au contact du mélange de gaz 13, établissent un transfert de chaleur avec le mélange de gaz 13. De préférence, la température du gaz de refroidissement 12 injecté est choisie telle qu'elle soit inférieure à la plus faible des températures de solidification des matériaux 1 a, 1 b ou des alliages formés par les matériaux 1 a, 1 b au sein des gouttelettes 2. Le mélange de refroidissement 12 est par exemple injecté à température ambiante. Ainsi, le gaz vecteur 1 1 détendu et le gaz de refroidissement 12 froid créent un transfert de chaleur des gouttelettes 2 vers le mélange de gaz 13, refroidissant les gouttelettes 2. Lorsque la température des gouttelettes 2 est inférieure à la température de solidification des gouttelettes 2, les gouttelettes 2 se solidifient de manière à former les particules solides 3.
L’étape de refroidissement 130 permet aux gouttelettes 2 de se sphéroïdiser, c'est à dire qu'elles adoptent une forme sphérique grâce à la tension superficielle à la surface des gouttelettes 2 fondues et l’interaction avec le mélange de gaz 13. Ainsi, en se solidifiant, les gouttelettes 2 forment des particules 3 dont la sphéricité est supérieure à 0,9 et le plus proche possible de 1 .
Le moyen d'échappement 600 est connecté sur la partie cylindrique 410 de façon à évacuer le mélange de gaz 13. Le moyen d'échappement 600 peut par exemple être un conduit. Le moyen d'échappement 600 est connecté à une hauteur HR, mesurée à partir du point le plus bas de la chambre d'atomisation 400. La hauteur H est supérieure à 500 mm et préférentiellement supérieure ou égale à 1000 mm, permettant la formation d'un tampon gazeux 440. Le tampon gazeux 440, également appelé "zone morte", correspond à un volume dans la chambre d'atomisation 400 où la vitesse d'écoulement du mélange de gaz 13 est très inférieure à la vitesse du gaz vecteur 11 lorsqu'il sort de la buse de pulvérisation 360. Préférentiellement la vitesse du mélange de gaz 13 dans le tampon gazeux 440 est de l'ordre de quelques mètres par seconde et encore préférentiellement inférieure à 1 m/s. Le tampon gazeux 440 occupe tout le volume de la chambre d'atomisation 400 situé sous le moyen d’échappement 600, autrement dit, du point le plus bas de la chambre d'atomisation 400 jusqu'à la connexion du moyen d'échappement à la partie cylindrique 410. Le diamètre du moyen d'échappement 600 peut par exemple être égale à 300 mm.
Les gouttelettes 2 issues de la buse de pulvérisation 360, et les particules 3 résultantes, présentent une vitesse élevée, voire supersonique. Ainsi, en l'absence de tampon gazeux 440, les particules 3 peuvent entrer en contact avec les parois du dispositif de fabrication 200 et se déformer fortement ou rester collées aux parois.
La vitesse de l'écoulement du mélange de gaz 13 est réduite au sein du tampon gazeux 440 et favorise les frottements visqueux entre le mélange de gaz 13, les gouttelettes 2 et les particules 3. Les gouttelettes 2 et les particules 3 sont freinées avant d'atteindre les parois du dispositif 200. Ainsi, la déformation des particules 3 au contact des parois ou du premier moyen de collecte 500 est limitée. Le procédé 100 permet ainsi d'obtenir une sphéricité des particules supérieure à 0,9.
Le freinage offert par le tampon gazeux 440 permet notamment de réduire la hauteur ZR de la partie cylindrique 410, limitant l'encombrement de la chambre d'atomisation 400. La hauteur totale de la chambre d'atomisation 400 peut par exemple être inférieure ou égale à 3 m.
Les gouttelettes 2 et les particules 3 sont freinées par la force de traînée qu'exerce le tampon gazeux 440. La force de traînée est notamment proportionnelle à la masse volumique du fluide dans lequel les gouttelettes 2 et les particules 3 se déplacent, c'est à dire le tampon gazeux 440. Ainsi, plus la masse volumique du tampon gazeux 440 est élevée et meilleur est le freinage des gouttelettes 2 et des particules 3. La masse volumique du tampon gazeux 440 peut être augmentée en contrôlant sa température et/ou sa pression.
La température du tampon gazeux 440 est préférentiellement maintenue inférieure à 400 °C et encore préférentiellement inférieure ou égale à 100 °C. Un moyen d'y parvenir est d'injecter le mélange de refroidissement 12 à une température préférentiellement inférieure à 50 °C et encore préférentiellement inférieure ou égale à 30 °C (température ambiante). La détente que subit le gaz vecteur 1 1 lors de son passage par la buse de pulvérisation 360 permet de réduire sa température et facilite le maintien de la température du tampon gazeux 440.
La température du mélange de gaz 13 au sein de la chambre d'atomisation 400 peut varier spatialement et temporellement. Elle est notamment fonction de la chaleur apportée par la solidification des gouttelettes 2. Dans un mode de réalisation, la température moyenne du mélange de gaz 13 au-dessus du moyen d'échappement 600 peut atteindre 100 °C et la température moyenne du mélange de gaz 13 au fond de la chambre d'atomisation 400 peut atteindre 400 °C. Une partie de la chaleur peut être évacuée par le moyen d'échappement 600. Le mélange de gaz 13 (et donc le tampon gazeux 440) peut également se thermaliser avec les parois de la chambre d'atomisation 400 par conduction, convection et rayonnement. Afin d'améliorer le contrôle de la température du tampon gazeux 440, un système de régulation thermique, tel qu'une circulation d'un fluide caloporteur, peut être installé sur les parois de la chambre d'atomisation 440. La production de particules 3 peut également être réalisée par séquences, espacées par des temps de refroidissement du tampon gazeux 440.
Afin d'améliorer le freinage des gouttelettes 2 et des particules 3, il est avantageux d'utiliser un mélange de gaz 13 comportant un gaz de masse volumique élevée, tel que l'argon. Les masses volumiques sont préférentiellement comparées dans les conditions normales de température et de pression. En effet, dans les conditions normales de température et de pression, l'argon présente une masse volumique au moins deux fois plus élevée que le néon, l'azote ou encore l'hélium et permet donc d'offrir un freinage au moins deux fois plus important.
La force de traînée est également proportionnelle à la vitesse relative des gouttelettes 2 et particules 3 par rapport à la vitesse du mélange de gaz 13 au sein du tampon gazeux 440. Ainsi il est préférable que la vitesse du mélange de gaz 13 dans le tampon gazeux 440 soit faible, préférentiellement inférieure à 1 m/s.
Lors de l'étape de refroidissement 130, les gouttelettes 2 peuvent entrer en contact les unes avec les autres et se coller les unes aux autres, augmentant le diamètre des particules 3 résultantes. Les gouttelettes 2 peuvent également entrer en contact avec des particules solides 3, créant des agrégats non-sphérique de grandes tailles ou des satellites à la surface des particules solides 3. Le cône de projection 450 permet d'augmenter la distance entre les gouttelettes 2, limitant les interactions des gouttelettes 2 entre elles pendant le refroidissement 130. L'ouverture [3 du cône de projection 450 permet d'éloigner les gouttelettes 2 et les particules 3 les unes des autres, limitant ainsi la formation d'agrégats lors de leur refroidissement 130. L'ouverture [3 du cône de projection 450 est choisie afin d'augmenter la distance entre les gouttelettes 2 et les particules 3 tout en limitant l'impact des particules 3 avec les parois de la partie cylindrique 410. L'ouverture [3 du cône de projection 450 est par exemple choisie telle que le cône de projection 450 présente un diamètre égale au diamètre DR de la partie cylindrique 410 au niveau du tampon gazeux 440. L'ouverture [3 du cône de projection 450 est par exemple comprise entre 10° et 30°.
Afin de limiter les turbulences et les recirculations au sein du cône de projection 450, au-dessus du tampon gazeux 440, le rapport entre le débit volumique du gaz vecteur 11 issue de la buse de pulvérisation 360 et le débit volumique du gaz de refroidissement 12 est préférentiellement de 2 pour 1. Selon un mode de réalisation, le débit volumique du mélange de gaz 13 est de 120 m3/h .
L'étape d'enrichissement 160 est combinée avec le procédé de fabrication 100. Par "enrichissement", nous entendons un traitement métallurgique des matériaux 1 a, 1 b et des alliages formés au sein des gouttelettes 2 au moyen d'une substance active 16 de façon à apporter des caractéristiques physico-chimiques particulières aux particules 3 résultantes.
La substance active 16 mise en oeuvre dans l'étape d'enrichissement 160 comporte : au moins un gaz neutre, avantageusement de même composition que le gaz vecteur 1 1 ; et au moins un composé actif comprenant au moins l'un des atomes suivants : oxygène, azote, carbone ou hydrogène.
Chaque composé actif peut être en phase gazeuse, liquide ou solide, par exemple, présent sous forme de gouttelettes ou de particules en suspension. La teneur de chaque composé actif au sein de de la substance active 16 est comprise entre 5 ppm et 20000 ppm et de préférence entre 5 ppm et 1000 ppm. Il peut par exemple s'agit de monoxyde de carbone ou d'hydrogène.
Le composé actif de la substance active 16 peut être un hydrocarbure, tel que du méthane, riche en carbone et en hydrogène. Dans le cas où la substance active 16 comporte du monoxyde de carbone ou du méthane, l'enrichissement 160 correspond à une carburation des matériaux 1 a, 1 b. Dans le cas où la substance active 16 comporte de l'azote, l'enrichissement 160 correspond à une nitruration. Dans le cas où la substance active 16 comporte de l'oxygène ou de l'hydrogène, l'enrichissement 160 correspond à une oxydation ou au contraire à une réduction des matériaux 1 a, 1 b. La substance active 16 peut réagir avec les matériaux 1 a, 1 b qu'ils soient sous forme de gouttelettes 2 ou de particules solides 3.
La substance active 16 est préférentiellement injectée dans le dispositif 200, au niveau de la chambre d'atomisation 400. Ainsi la substance active 16 réagit avec les particules 3. Avantageusement la substance active 16 est impliquée dans l'étape de pulvérisation 120. De cette manière la substance active 16 réagit avec les gouttelettes 2. Alternativement, la substance active 16 est également injectée au niveau du moyen de pulvérisation 300. Les pressions partielles du gaz neutre et de chaque composé actif de la substance active 16 sont contrôlés au sein du dispositif 200 pendant toute la durée du procédé 100 de sorte que la teneur de chaque composé actif reste comprise entre 5 ppm et 20000 ppm et de préférence entre 5 ppm et 1000 ppm.
Les réactions chimiques se déroulant entre la substance active 16 et la surface des gouttelettes 2 et des particules 3 permet d'optimiser la surface d'échange. De cette manière l'étape d'enrichissement 160 est réalisée de manière efficace. Ainsi l'étape d'enrichissement 160 permet de contrôler la composition chimique finale des particules 3 résultantes.
Une première partie des particules solides 3, freinée par le tampon gazeux 440, tombe au fond de la chambre d'atomisation 400 et converge vers le fond de la chambre d'atomisation 400, afin d'être collectée par le premier moyen de collecte 500. L'angle de la partie conique 420 permet d'acheminer la première partie des particules 3 jusqu'au moyen de collecte en limitant l'accumulation des particules 3 dans la chambre d'atomisation 400. Une première vanne 460 se situe au sommet de la partie conique permettant de fermer le conduit vers le premier moyen de collecte 500, afin d'isoler la chambre d'atomisation 400 de l'extérieur.
Une deuxième partie des particules 3, formée principalement par les particules les plus légères, est portée par le mélange de gaz 13 hors de la chambre d'atomisation 400 par le moyen d’échappement 600.
La figure 1 a présente schématiquement le premier moyen de collecte 500, configuré pour réaliser l'étape de collecte 140 de la première partie particules solides 3 de façon à former la première poudre 5.
Le premier moyen de collecte 500 est connecté à la chambre d'atomisation 400 par le sommet de la partie conique 420. Le premier moyen de collecte 500 comprend un pot principal 520 configuré pour contenir la première poudre 5. Le premier moyen de collecte 500 comprend une deuxième vanne 530 permettant d'isoler le pot principal 520 du reste du dispositif de fabrication 200. Lorsque les première et deuxième vannes 460, 530 sont fermées, le premier moyen de collecte 500 peut être déconnecté du dispositif de fabrication 200 grâce à une première interface 550, ceci afin d'être, par exemple déplacé ou remplacé. Le premier moyen de collecte 500 comprend une première sonde de température 560 configurée pour mesurer la température maximale au sein de la première poudre 5 dans le pot principal 520. Le premier moyen de collecte 500 comporte également une première entrée de gaz 541 et une première sortie de gaz 542, destinée à faire circuler un gaz de passivation 14 au sein du pot principal 520, afin de réaliser, par exemple, une étape de passivation 170. Les premières entrée et sortie de gaz 541 , 542 sont fermées par deux premières vannes de fermeture 544, 543 en dehors de l'étape de passivation 170. Le pot principal 520 comporte une première grille de diffusion gazeuse 570 sur le fond du pot 520, dont le diamètre des pores est inférieur au diamètre des particules de poudres récupérées, de manière à assurer une meilleure distribution du gaz de passivation 14 au sein du lit de poudre 5.
La figure 1 b présente schématiquement le système de séparation gaz/particules 700, configuré pour séparer la deuxième partie des particules 3 du mélange de gaz 13. Le système de séparation gaz/particules 700 peut par exemple être un moyen de filtration, un décanteur ou encore un cyclone.
Dans le mode de réalisation de la figure 1 b, le système de séparation gaz/particule 700 est un cyclone. Le cyclone 700 est préférentiellement orienté selon l'axe vertical z et comprend un corps cylindrique 730 de hauteur Le et de diamètre De. Le cyclone 700 comporte également un corps conique 740 de hauteur Zc. Le corps cylindrique 730 est scellé au corps conique 740 de façon à créer une deuxième cavité. Le sommet du corps conique 740 comporte une ouverture, de diamètre Du, sur le moyen de collecte 800. Le cyclone 700 comporte un conduit de sortie 720, de diamètre Do, disposé sur la partie supérieure du cyclone 700, pénétrant partiellement dans la deuxième cavité d'une distance Sc. Le cyclone 700 comporte un conduit d'entrée 710 de hauteur Hc.
La figure 1 c présente schématiquement une vue en coupe selon le plan A-A du cyclone 700 de la figure 1 b permettant de visualiser la largeur Bc du conduit d'entrée 710. Une première ouverture 71 1 du conduit d'entrée 710 est connectée au moyen d’échappement 600 de sorte que le mélange de gaz 13 puisse entrer dans le cyclone 700. Le conduit d'entrée 710 débouche sur la deuxième cavité par une deuxième ouverture 712 pratiquée dans une paroi du corps cylindrique 730.
Le cyclone peut être dimensionné selon la vitesse du mélange de gaz 13 entrant dans le cyclone et des rapports de dimensions dits de Lapple. Toutefois, un autre type de cyclone peut être mis en oeuvre, choisi notamment en fonction des matériaux 1 a, 1 b pulvérisés et de l'hydrodynamique du mélange de gaz 13. La vitesse du mélange de gaz 13 est préférentiellement comprise entre 6 m/s et 21 m/s. Les rapports de dimensions de Lapple sont par exemple :
Bc / De = 0,25 ;
Hc / De = 0,50 ;
Do / De = 0,50 ;
Du / De = 0,25 ;
Se / De = 0,62 ;
Le / De = 2 ; et
Zc / Dc = 2.
En fonctionnement, le mélange de gaz 13 et la deuxième partie des particules 3 entrent dans le cyclone 700 par le conduit d'entrée 710. La deuxième partie des particules 3 est séparée du mélange de gaz 13 grâce à la force centrifuge exercée sur chaque particule 3, la force centrifuge résultant de la trajectoire circulaire 7 du mélange de gaz 13 dans le cyclone 700. Le corps conique 740 rassemble la deuxième partie des particules 3 vers le deuxième moyen de collecte 800. Le mélange de gaz 13, débarrassé de la deuxième partie des particules 3, quitte le système de séparation 700 par le conduit de sortie 720. Le corps conique 740 comprend en son sommet une troisième vanne 760 permettant de fermer le conduit vers le deuxième moyen de collecte 800, afin d'isoler le système de séparation gaz/particules 700 de l'extérieur.
La figure 1 b présente également schématiquement le deuxième moyen de collecte 800, comparable au premier moyen de collecte 500. Le deuxième moyen de collecte 800 comprend un pot secondaire 820 configuré pour accueillir la deuxième partie des particules 3 de manière à former la deuxième poudre 6. Le deuxième moyen de collecte 800 comprend une quatrième vanne 810 permettant d'isoler le deuxième moyen de collecte 800. Lorsque les troisième et quatrième vannes 760, 810 sont fermées, le deuxième moyen de collecte 800 peut être déconnecté du système de séparation gaz/particules 700 grâce à une première interface 750, ceci afin d'être déplacé pour, par exemple, mettre la deuxième poudre 6 à disposition d'un équipement de fabrication additive. Le deuxième moyen de collecte 800 comprend une deuxième sonde de température 840 configurée pour mesure la température au sein de la deuxième poudre 6. Le deuxième moyen de collecte 800 comporte également une deuxième entrée de gaz 831 et une deuxième sortie de gaz 832, destinée à faire circuler le gaz de passivation 14 afin de réaliser, par exemple, l'étape de passivation 170. Les deuxièmes entrée et sortie de gaz 831 , 832 sont fermées par deux deuxièmes vannes de fermeture 833, 834 en dehors de la passivation 170 de manière à contrôler l'atmosphère du deuxième moyen de collecte 800. Le pot secondaire 820 comporte une deuxième grille de diffusion gazeuse 850 sur le fond du pot 820, dont le diamètre des pores est inférieur au diamètre des particules 3 récupérées, de manière à assurer une meilleure distribution du gaz de passivation 14 au sein du lit de poudre 6.
Lors de l'étape de séparation gaz/particules et de collecte 140, la première partie des particules 3, séparées du mélange de gaz 13 par inertie, converge vers le sommet de la partie conique 420. L'angle d'ouverture a de la partie conique 420 permet d'éviter l'accumulation de particules 3 dans la chambre d'atomisation 400 et permet de transférer efficacement la première partie des particules 3 vers le premier moyen de collecte 500. La première partie des particules 3 est rassemblée dans le pot principal 520 de manière à former la première poudre 5. Une fois la première partie des particules 3 collectée, le premier moyen de collecte 500 est isolé du dispositif de fabrication 200 au moyen des première et deuxième vannes 460, 530.
La deuxième partie des particules 3, séparée du mélange de gaz 13 au moyen du système de séparation 700, converge vers le sommet du corps conique 740 de façon à être transférée vers le deuxième moyen de collecte 800. La deuxième partie des particules 3 est rassemblée dans le pot secondaire 820 de manière à former la deuxième poudre 6. Une fois la deuxième partie des particules 3 collectée, le deuxième moyen de collecte 800 est isolé du dispositif de fabrication 200 au moyen des troisième et quatrième vannes 760, 810.
La première poudre 5 et la deuxième poudre 6 sont de même nature et comportent des particules 3 dont la composition chimique est équivalente, c'est à dire dont les constituants chimiques varient à moins de 5 %. Toutefois, la deuxième poudre 6 comporte des particules 3 de plus petite taille et plus légères que les particules formant la première poudre 5. La première poudre 5 et la deuxième poudre 6 peuvent être conservées et utilisées séparément ou bien mélangées de façon à ne former plus qu'une seule et unique poudre.
Dans la figure 2, le procédé de fabrication 100 présenté schématiquement comporte plusieurs étapes combinables, en traits pointillés, qui vont maintenant être décrites.
Une étape d'ionisation 150 peut-être combinée avec l'étape d'enrichissement 160 afin d'améliorer la cinétique des réactions chimiques prenant place entre les gouttelettes 2, les particules 3 et la substance active 16.
L'étape d'ionisation 150 précède l'étape d'enrichissement 160, auquel cas l'étape d'enrichissement peut débuter lors de la pulvérisation 120. Dans cette étape, la substance active 16 peut être introduite dans l'enceinte 31 1 du moyen de pulvérisation 300 de façon à être ionisée par l’arc électrique 314. L’arc électrique 314 ionise chaque composant de la substance active 16 de façon à créer des ions libres réactifs. Les ions libres réactifs, très énergétiques, améliorent la cinétique des réactions lors de l'étape d'enrichissement 160. Les réactions d'enrichissement s'équilibrent donc avant que les gouttelettes 2 soient solidifiées. Ainsi, la composition chimique des particules 3 résultantes est maîtrisée et reproductible.
La concentration d'ions libres réactifs est la plus élevée au sein de l'enceinte 31 1. En dehors de l'enceinte la concentration d'ions libres réactifs diminue du fait des réactions de recombinaison. Avantageusement les ions libres réactifs suivent la trajectoire des gouttelettes 2 dans la chambre d'atomisation 400 afin d'augmenter la durée de l'étape d'enrichissement 160.
À la suite de l'étape de collecte 140, l'étape de passivation 170 de la surface des particules 3 peut être réalisée, par exemple, dans le cas où les première et deuxième poudres 5, 6 sont fabriquées à partir de matériaux inflammables, c'est à dire ayant une forte affinité avec l'oxygène. C'est par exemple le cas avec les poudres 5, 6 formées à partir de titane, d'alliages de titane ou d'aluminium. L'étape de passivation 170 est réalisée au moyen du gaz de passivation 14. Le gaz de passivation 14 peut par exemple comporter un gaz noble et un gaz actif tel que de l'oxygène, le gaz actif ayant préférentiellement une concentration comprise entre 20 ppm et 2 %. L'étape de passivation 170 est réalisée systématiquement sur les deux poudres 5, 6. Dans l'exemple suivant, nous présentons la réalisation de l'étape de passivation 170 sur la première poudre 5 dans le premier moyen de collecte 500. L'étape de passivation 170 est transposable au deuxième moyen de collecte 800.
Dans un premier temps la deuxième vanne 530 est fermée permettant d'isoler le premier moyen de collecte 500 du reste du dispositif de fabrication 200. Un temps d'attente permet de laisser la première poudre 5 refroidir avant l'ouverture des vannes de fermetures 543, 544. Le temps d'attente, par exemple de 15 min, est défini de sorte que la température maximale de la première poudre 5 soit inférieure à une température seuil, par exemple 40 °C. Avantageusement la première sonde de température 560 permet de mesurer la température maximale de la première poudre 5 en temps réel et déclencher l'ouverture des vannes de fermetures 543, 544 dès lors que la température maximale de la première poudre 5 est inférieure à 40 °C. La première sonde de température 560 permet ainsi de réduire ou au contraire augmenter le temps d'attente lorsque le refroidissement de la première poudre 5 est rapide ou au contraire lent. Lors de l'ouverture des vannes de fermetures 543, 544, initialement fermées, le gaz de passivation 14 circule dans le pot principal 520. Avantageusement, le gaz de passivation 14 circule du bas du pot principale 520 vers le haut de façon à diffuser entre chaque particule 3 et agir ainsi uniformément sur chacune d'elles. La durée de la circulation du gaz de passivation 14 peut être fixée. Toutefois, la réaction de passivation étant exothermique, la durée de circulation du gaz de passivation 14 peut être contrôlée par la première sonde de température 560.
Afin d'obtenir une première et une deuxième poudre 5, 6 répondant à des caractéristiques de distribution granulométrique, une étape de tamisage 180 peut être réalisée sur la première et la deuxième poudre 5, 6. Le tamisage 180 permet par exemple de débarrasser les poudres 5, 6 des agrégats de particules 3 ou des particules 3 dépassant une taille limite. La distribution granulométrique peut être caractérisée par trois diamètres particuliers notés D10, Dso et D90. 10 % des particules 3 ont un diamètre inférieur à D10, 50 % des particules 3 ont un diamètre inférieur à D50 et 90 % des particules 3 ont un diamètre inférieur à D90. Le tamisage 180 peut par exemple être réalisé afin d'ajuster la distribution des poudres 5, 6, notamment le diamètre D50, correspondant à la médiane de la distribution.
Afin que la composition chimique des poudres 5, 6 soit reproductible, le dispositif de fabrication 200 peut subir une étape d'inertage 101 . L'étape d'inertage 101 est réalisée au moyen d'un gaz d'inertage, afin de purger l’air contenu dans le dispositif 200 jusqu’à ce que la teneur en oxygène soit inférieure à 100 ppm, préférentiellement inférieure à 10 ppm, avant de démarrer l'étape de fusion 110. Le gaz d'inertage peut par exemple comporter un gaz neutre ou un mélange de gaz neutres.
La figure 3 présente schématiquement une courbe de distribution granulométrique Q(D) de particules 3 obtenue expérimentalement par le procédé de fabrication 100. La courbe Q(D) correspond à la distribution normalisée des particules 3 en fonction de leurs diamètres D. Les trois zones hachurées matérialisent l'intervalle de diamètre compris entre 5 pm et 150 pm. La zone doublement hachurée matérialise l'intervalle de diamètre compris entre 10 pm et 63 pm. La distribution granulométrique Q(D) montre un maximum pour un diamètre D = 63 pm. Ainsi le procédé de fabrication 100 permet de fabriquer des poudres 5, 6 répondant aux attentes des procédés de fabrication additive.
Les figures 4a et 4b présentent deux photographies d'un premier ensemble et d'un deuxième ensemble de particules 3 fabriquées par le procédé de fabrication 100. Les deux photographies sont réalisées par microscopie à balayage électronique. Les deux photographies montrent des particules 3 sphériques et, pour la plus grande partie, absente de satellite en surface.

Claims

REVENDICATIONS
[Revendication 1 ] Procédé de fabrication (100) de poudre (5, 6) à partir d'un premier matériau (1 a) et d'un deuxième matériau (1 b), le procédé de fabrication (100) étant caractérisé en ce qu'il comprend :
- une étape de fusion (110) des premier et deuxième matériaux (1 a, 1 b), au moyen d'un arc électrique (314) ;
- une étape de pulvérisation (120) des premier et deuxième matériaux (1 a, 1 b) fondus de manière à former des gouttelettes (2) ;
- une étape de refroidissement (130) des gouttelettes (2) au moyen d'un gaz vecteur (11 ) de manière à former des particules solides (3) ;
- une étape d'enrichissement (160) des gouttelettes (2) et/ou des particules (3) au moyen d'une substance active (16), mise en oeuvre pendant l'étape de refroidissement (130) ; et
- une étape de séparation des particules solides du gaz vecteur (11 ) et de collecte (140) des particules solides (3) de façon à former la poudre (5, 6), outre le gaz vecteur, l'étape de refroidissement est réalisée dans une chambre d'atomisation au moyen d'un tampon gazeux, un moyen d’échappement étant connecté sur la chambre d'atomisation de manière à créer ledit tampon gazeux.
[Revendication 2] Procédé de fabrication (100) selon la revendication précédente, dans lequel la substance active (16) comprend :
- au moins un gaz neutre ; et
- au moins un composé actif comprenant au moins l'un des atomes suivants : oxygène, azote, carbone ou hydrogène ; chaque composé actif étant en phase gazeuse, liquide ou solide, la teneur de chaque composé actif étant comprise entre 5 ppm et 20000 ppm.
[Revendication s] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel l'étape d'enrichissement (160) est mise en oeuvre pendant les étapes de pulvérisation et de refroidissement (120, 130).
[Revendication 4] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel l'étape d'enrichissement (160) est précédée d'une étape d'ionisation (150) de la substance active (16).
[Revendication s] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel, outre le gaz vecteur (1 1 ), l'étape de refroidissement (130) est réalisée au moyen d'un gaz de refroidissement (12).
[Revendication 6] Procédé de fabrication (100) selon la revendication précédente, dans lequel le gaz de refroidissement (12) est injecté à une température inférieure à 50 °C.
[Revendication 7] Procédé de fabrication (100) selon l'une des revendications précédentes, dans lequel la température du tampon gazeux (440) est maintenue inférieure à 400 °C.
[Revendication s] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel le tampon gazeux comprend un gaz, le gaz étant de l'argon.
[Revendication 9] Procédé de fabrication (100) selon la revendication précédente, dans lequel la vitesse du gaz au sein du tampon gazeux (440) est inférieure à 1 m/s.
[Revendication 10] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel le procédé de fabrication (100) est réalisé par séquences.
[Revendication 1 1 ] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dont les étapes du procédé (100) sont mises en oeuvre par un dispositif de fabrication (200), ledit procédé (100) comprenant une étape d’inertage (101 ) du dispositif de fabrication (200) au moyen d’un gaz neutre, destinée à purger le dispositif de fabrication (200), l'étape de fusion (1 10) étant déclenchée subséquemment à l'étape d'inertage (101 ).
[Revendication 12] Procédé de fabrication (100) selon l'une quelconque des revendications précédentes, dans lequel l'étape de collecte (140) est suivie d'une étape de passivation (170) des particules (3).
[Revendication 13] Procédé de fabrication (100) selon la revendication précédente, dans lequel l'étape de passivation (170) est déclenchée lorsque la température maximale de la poudre (5) est inférieure à une température seuil.
[Revendication 14] Procédé de fabrication (100) selon la revendication 12, dans lequel l'étape de passivation (170) est déclenchée après un temps d'attente fixé.
[Revendication 15] Procédé de fabrication (100) selon l'une quelconque des revendications 12 à 14, dans lequel la durée de l'étape de passivation (170) est contrôlée en fonction de la température de la poudre (5).
[Revendication 16] Procédé de fabrication (100) selon l'une quelconque des revendications 12 à 14, dans lequel la durée de l'étape de passivation (170) est fixée.
[Revendication 17] Dispositif de fabrication (200) de poudre (5) à partir d'un premier matériau (1 a) et d'un deuxième matériau (1 b), configuré pour réaliser le procédé de fabrication selon l'une quelconque des revendications 1 à 16, le dispositif de fabrication (200) comportant :
- un moyen de pulvérisation (300) ;
- une chambre d'atomisation (400) ;
- un premier moyen de collecte (500) ; et
- un moyen d’échappement (600), connecté sur la chambre d'atomisation (400) de façon à créer un tampon gazeux (440).
[Revendication 18] Dispositif de fabrication (200) selon la revendication précédente, dans lequel le moyen d’échappement (600) est connecté sur la chambre d'atomisation (400) à une hauteur (HR) par rapport au point le plus bas de la chambre d'atomisation (400) supérieure à 500 mm.
[Revendication 19] Dispositif de fabrication (200) selon l'une des revendications 17 ou 20, dans lequel un système de régulation thermique est installé sur les parois de la chambre d'atomisation (400).
[Revendication 20] Dispositif de fabrication (200) selon l'une quelconque des revendications 17 à 19, dans lequel le moyen de pulvérisation (300) comprend une torche arc-fil (310) configurée pour générer un arc électrique (314) entre le premier matériau (1 a) et le deuxième matériau (1 b). [Revendication 21] Dispositif de fabrication (200) selon l'une quelconque des revendications 17 ou 20, comportant un système de séparation gaz/particules (700) connecté au moyen d’échappement (600), le système de séparation gaz/particules (700) comportant une sortie connectée à un deuxième moyen de collecte (800).
EP21782745.0A 2020-09-29 2021-09-27 Dispositif et procédé de production de poudres métalliques Pending EP4221918A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009909A FR3114526B1 (fr) 2020-09-29 2020-09-29 Dispositif et procédé de production de poudres métalliques
PCT/EP2021/076492 WO2022069405A1 (fr) 2020-09-29 2021-09-27 Dispositif et procédé de production de poudres métalliques

Publications (1)

Publication Number Publication Date
EP4221918A1 true EP4221918A1 (fr) 2023-08-09

Family

ID=74859974

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21782745.0A Pending EP4221918A1 (fr) 2020-09-29 2021-09-27 Dispositif et procédé de production de poudres métalliques
EP21782559.5A Pending EP4221916A1 (fr) 2020-09-29 2021-09-27 Dispositif et procédé de production de poudres métalliques

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21782559.5A Pending EP4221916A1 (fr) 2020-09-29 2021-09-27 Dispositif et procédé de production de poudres métalliques

Country Status (7)

Country Link
US (2) US20230356297A1 (fr)
EP (2) EP4221918A1 (fr)
KR (2) KR20230113731A (fr)
CN (2) CN116802002A (fr)
CA (2) CA3193690A1 (fr)
FR (1) FR3114526B1 (fr)
WO (2) WO2022069405A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117415324B (zh) * 2023-12-14 2024-03-01 西安赛隆增材技术股份有限公司 一种微波等离子体粉末球化设备用的金属粉末送料装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398125B1 (en) 2001-02-10 2002-06-04 Nanotek Instruments, Inc. Process and apparatus for the production of nanometer-sized powders
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US20130236582A1 (en) * 2012-03-07 2013-09-12 Qualmat, Inc. Apparatus for producing refractory compound powders
EP3243587A1 (fr) * 2016-05-13 2017-11-15 Linde Aktiengesellschaft Procede et dispositif de fabrication et de codage de poudre metallique et gaz de codage pour poudre metallique
CN111299601A (zh) * 2020-04-29 2020-06-19 辽宁冠达新材料科技有限公司 一种提高金属粉球形率的装置及方法

Also Published As

Publication number Publication date
US20230356296A1 (en) 2023-11-09
CA3193686A1 (fr) 2022-04-07
KR20230113730A (ko) 2023-08-01
FR3114526A1 (fr) 2022-04-01
US20230356297A1 (en) 2023-11-09
FR3114526B1 (fr) 2023-04-21
KR20230113731A (ko) 2023-08-01
EP4221916A1 (fr) 2023-08-09
WO2022069405A1 (fr) 2022-04-07
CN116802002A (zh) 2023-09-22
CA3193690A1 (fr) 2022-04-07
CN116745049A (zh) 2023-09-12
WO2022069404A1 (fr) 2022-04-07

Similar Documents

Publication Publication Date Title
US20210060641A1 (en) Passivation and alloying element retention in gas atomized powders
CN108213406B (zh) 一种球形雾化铝锌非晶合金粉体及其制备方法
US20120325051A1 (en) Production of atomized powder for glassy aluminum-based alloys
CA2183290A1 (fr) Methode de production de poudres metalliques ou ceramiques par atomisation plasma
JPH11502760A (ja) 高速冷却反応器及び方法
EP0524887A1 (fr) Procédé et dispositif de production de poudres et notamment de poudres métalliques par atomisation
EP4221918A1 (fr) Dispositif et procédé de production de poudres métalliques
FR2662182A1 (fr) Depot par projection de plasma a radiofrequence.
JPS59208006A (ja) 合金微粉末の製造方法
EP3974053A1 (fr) Poudre multimateriaux a grains composites pour la synthese additive
EP3817877A1 (fr) Procédé et dispositif de granulation
FR2671546A1 (fr) Poudre de silicium metallurgique a faible oxydation superficielle.
FR2937053A1 (fr) Dispositif pour la synthese de nanoparticules par depot chimique en phase vapeur en lit fluidise
EP0331541A1 (fr) Installation pour l'amélioration de la qualité d'une poudre métallique ou céramique
FR2682625A1 (fr) Poudres de metaux et d'alliages de metaux sous forme de grains microcristallins spheriques et compacts, et procede et dispositif pour la fabrication des poudres.
CH358168A (fr) Four électrique à arc et utilisation de ce four
EP0125173A1 (fr) Procédé de production de particules solides métalliques à partir d'un bain métallique
Karastoyanov et al. Metal powder production by atomization methods
EP0246162B1 (fr) Procédé de frittage dans un four continu de matériau en poudre
WO1996016731A1 (fr) Procede de fabrication de particules fines ou ultrafines et reacteur pour la production de telles particules
WO2018041410A1 (fr) Procédé de fabrication additive
BE635091A (fr)
EP0536185B1 (fr) Procede de rechauffage d'un bain d'acier liquide
WO1997000413A1 (fr) Procede de fusion d'une charge dans un four electrique a arc
JPS59208005A (ja) 合金微粉末の製造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)