EP4214546A1 - Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base - Google Patents

Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base

Info

Publication number
EP4214546A1
EP4214546A1 EP21870074.8A EP21870074A EP4214546A1 EP 4214546 A1 EP4214546 A1 EP 4214546A1 EP 21870074 A EP21870074 A EP 21870074A EP 4214546 A1 EP4214546 A1 EP 4214546A1
Authority
EP
European Patent Office
Prior art keywords
transceiver
transceivers
return
base unit
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21870074.8A
Other languages
German (de)
English (en)
Other versions
EP4214546A4 (fr
Inventor
Richard Seltzer
Grant Given
Eric Myers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Radio Systems Corp
Original Assignee
Radio Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/208,714 external-priority patent/US11372077B2/en
Application filed by Radio Systems Corp filed Critical Radio Systems Corp
Publication of EP4214546A1 publication Critical patent/EP4214546A1/fr
Publication of EP4214546A4 publication Critical patent/EP4214546A4/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/10Means for reducing or compensating for quadrantal, site, or like errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/12Means for determining sense of direction, e.g. by combining signals from directional antenna or goniometer search coil with those from non-directional antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/50Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being pulse modulated and the time difference of their arrival being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Definitions

  • the disclosure herein involves identifying a location of a roaming object in an environment using wireless communications.
  • Figure 1 shows a transceiver of a pet collar communicating with base units, under an embodiment.
  • Figure 2 shows a method of trilateration, under an embodiment.
  • Figure 3 shows a transceiver of a pet collar communicating with base units, under an embodiment.
  • Figure 4 shows a method of trilateration, under an embodiment.
  • Figure 5 shows a transceiver of a pet collar communicating with base units, under an embodiment.
  • Figure 6A shows a transceiver of a pet collar communicating with a single base unit, under an embodiment.
  • Figure 6B shows a top down view of a single base unit, under an embodiment
  • Figure 7 shows components of a single base unit, under an embodiment.
  • Figure 8 shows an example of range and angular coordinates, under an embodiment.
  • Figure 9 shows a function grid superimposed over a monitored area, under an embodiment.
  • Figure 10 shows a transceiver of a pet collar communicating with a single base unit, under an embodiment.
  • Figure 11 shows a division of space surrounding a single base unit into quadrants, under an embodiment.
  • Figure 12 shows a sample computation of an angular value, under an embodiment.
  • Figure 13 shows a sample computation of an angular value, under an embodiment.
  • Figure 14 shows a sample computation of an angular value, under an embodiment.
  • Figure 15 shows a sample computation of an angular value, under an embodiment.
  • Figure 16 shows a configuration of transceivers and antennas in a base unit, under an embodiment.
  • Figure 17 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 18 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 19 shows an elevated position of a base unit, under an embodiment.
  • Figure 20 shows an elevated position of a base unit, under an embodiment.
  • Figure 21 shows a configuration of transceivers and antennas in a base unit, under an embodiment.
  • Figure 22 shows a configuration of transceivers and antennas in a base unit, under an embodiment.
  • Figure 23 shows a configuration of transceivers and antennas in a base unit, under an embodiment.
  • Figure 24 shows a configuration of transceivers and antennas in a base unit, under an embodiment.
  • Figure 25 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 26 shows an elevated position of a base unit, under an embodiment.
  • Figure 27 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 28 shows an elevated position of a base unit, under an embodiment.
  • Figure 29 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 30 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 31 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 32 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 33 shows a configuration of transceivers and antennas, under an embodiment.
  • Figure 34 shows a configuration of transceivers and antennas, under an embodiment.
  • a wireless animal location system that identifies a location of a pet roaming within an environment and tracks/manages animal behavior in the environment using information of pet location.
  • the wireless pet location system may disallow access to an area within an environment by applying a negative stimulus when an animal enters a prohibited location. For example, the system may apply a negative stimulus when an animal approaches a pantry space or waste collection space. Conversely, the system may allow the animal free and unimpeded access to other portions of the environment. For example, the system may forgo adverse stimulus when the animal is in desired locations such as animal bedding areas or dedicated animal play areas.
  • the system may simply log an event in order to compile information regarding the animal’s behavior. For example, the system may detect and log the presence of the animal near a watering bowl. Further the system may report such information to mobile applications allowing pet owners to monitor and track animal behavior in a home.
  • An RF -based wireless pet location system may utilize signal strength, two way ranging techniques, and/or time difference of arrival (techniques) to locate a target.
  • a signal strength based approach uses Received Signal Strength Indicator (RS SI) values to determine the range between a roaming target and three or more spatially separated base units.
  • the target or animal may wear a transceiver housed within a collar.
  • the transceiver may receive and send RF signals to base units.
  • three base units within the target’s environment periodically transmit RF signals.
  • the pet transceiver estimates its distance from each base unit using the strength of the corresponding RF communication received from each of the base units, i.e. using RSSI values. Based on the multiple ranging measurements, and a known location of the base units within a grid system, a single location may be resolved within the grid system.
  • Figure 1 shows an animal worn transceiver 102 in range of three transmitting base units 104, 106, 108.
  • the transceiver 102 communicates with base unit 104, base unit 106, and base unit 108. Based on measured RSSI values, the animal worn collar determines an approximate range from pet to base 104 (-30dBm, 30 meters), from pet to base 106 (-40dBm, 40 meters), and from pet to base 108 (-50dBm, 50 meters).
  • Figure 2 shows a trilateration method which uses information of the three radii (i.e., distances from transceiver to base units) to identify the location of the pet as a point of intersection between three circles.
  • base units 104, 106, 108 become center points A, B, C of circles with respective radii of 30m, 40m, and 50m. Since locations of the base units are known within a grid system, the circles intersect at a grid location corresponding to the pet transceiver location. The grid system is established and linked to absolute positions at time of system set-up.
  • This system requires at least three base units. This complicates the system as an outdoor installation needs to power any unit that is remote to an AC power source. This likely requires that one or more of the base units operate on underground wires or DC power, which is inconvenient if rechargeable, or expensive if primary cells are used. Also, the inclusion of three base units greatly increases the cost of a system. Further, the resultant location is not precise due to the variation of each signal strength determination due to environmental conditions and antenna pattern variation.
  • a wireless animal location system may use two way ranging (TWR) to determine and monitor animal location under an embodiment.
  • the system may comprise a transceiver housed by a collar worn by an animal and three or more base units distributed in the monitored environment.
  • the system determines the range between the animal target (i.e., animal collar) and the three or more spatially separated base units based on TWR of an RF signal between the target and each of the base units. Based on the multiple time of flight measurements between the collar transceiver and known locations of the base units within a grid system, a single location may be resolved within the grid system.
  • Figure 3 shows an animal worn transceiver 302 in range of three transmitting base units 304, 306, 308.
  • the animal worn collar determines an approximate range from pet to base 304 (30 meters), from pet to base 306 (50 meters), and from pet to base 308 (10 meters).
  • Figure 4 shows a trilateration method which uses information of the three radii (i.e., distances from transceiver to base units) to identify the location of the pet as a point of intersection between three circles.
  • base units 304, 306, 308 become center points A, B, C of circles with respective radii of 30m, 50m, and 10m. Since locations of the base units are known within a grid system, the circles intersect at a grid location corresponding to the pet transceiver location.
  • the system described above requires at least three base units. This complicates the system as an outdoor installation needs to power any unit that is remote to an AC power source. This likely requires that one or more of the base units operate on underground wires or DC power, which is inconvenient if rechargeable, or expensive if primary cells are used. Also, the inclusion of three base units greatly increases the cost of a system.
  • a wireless animal location system may use time difference of arrival calculations under an embodiment.
  • Figure 5 shows an animal worn transceiver 502 in range of three transmitting base units 504, 506, 508.
  • the base units 504, 506, 508 communicate 520 with each other to synchronize their respective clocks.
  • the pet collar transceiver 502 periodically transmits RF signals.
  • a pet collar RF transmission is received by base units 504, 506, 508.
  • each base unit time stamps the received signal data.
  • a location of the pet transceiver may be resolved. Typically, the resolved location is calculated in one of the base units or a remote computer and then communicated to the animal worn transceiver as the animal worn transceiver is typically battery powered and energy conservation is a concern.
  • the time differential information may be used to determine the difference in distances between the target transceiver 502 and base units 504, 506, 508.
  • the difference in distance information may then be used to determine hyperbolas representing possible locations of the transceiver.
  • the intersection of hyperbolas is then used to locate the pet transceiver in a grid system.
  • Figure 6A shows a base unit 602 and an animal worn collar housing a transceiver 604.
  • the base unit comprises antennas 610, 612, 614.
  • Figure 6B displays a top down view of the base unit.
  • Figures 6A & 6B together disclose that the distance between antenna 610 and antenna 614 is d + d 2 .
  • the altitude of the triangle (formed by the antennas) extending from antenna 612 is d 3 .
  • the distance d may be equal to distance d 2 but embodiments are not so limited.
  • Each antenna may be connected or coupled with a transceiver for sending and receiving RF communications or with a receiver for receiving communications.
  • Figure 7 shows a stylized side view of the base unit 702 communicating with a pet transceiver 704 housed by a pet collar.
  • the base unit couples transceiver/antenna 710, receiver/antenna 712, and receiver/antenna 714 with a processing unit 720 which is further connected/ coupled to memory 722.
  • the processing unit clocks incoming and/or outgoing communications and synchronizes the transceiver/receivers 710, 712, 714.
  • the base unit emits an RF signal communication 740 using antenna/transceiver 710.
  • the pet transceiver 704 processes the communication and sends a return communication 760.
  • Each antenna unit 710, 712, 714 receives the return communication.
  • the base unit may use two way ranging and the time differential of the return communication received at each transceiver/receiver to resolve a range and angular reference for locating the pet transceiver.
  • Figure 8 shows an example of range and angular reference location.
  • Figure 8 shows an x-y Cartesian coordinate system.
  • the point 810 is located 22 meters from (0,0) and is offset from unit vector (0,1) by 310 degrees (when the angular degree value represents a clockwise rotation of 310 degrees).
  • the range and angular coordinates are then expressed as (22m, 310 degrees).
  • This coordinate system may be more formally described as a polar coordinate system.
  • a polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point, i.e. range value, and an angle from a reference direction, i.e. an angular value.
  • the range and angular information may be mapped into Cartesian coordinates as follows: 16.85 .14
  • Figure 9 shows a grid superimposed over the monitored area.
  • Each square in the grid corresponds to a set of (range, angular) locations or (x,y) coordinates.
  • Each grid square and corresponding (range, angular) locations may be assigned particular functions.
  • grid assignments are not restricted to square or rectangular areas.
  • Grid assignments may be assigned to grid portions (i.e. circular, elliptical, manually defined, etc.) and corresponding (range, angular) or (x,y) coordinates.
  • a grid portion or collection of grid portions may comprise a correction region (i.e. stimulus applied to pet in such region), a keep out region, a containment area, or a notification area.
  • a base unit may transmit appropriate commands to the pet collar when the base unit locates the collar in corresponding grid portions. For example, the base unit may instruct the collar to apply a negative stimulus when the animal is in location 910. The base unit may instruct the collar take no action (or otherwise provide no instruction to take any action) when the animal is at location 914 within containment area 912. The base unit may instruct the collar to apply a negative stimulus when the animal is within a keep out region 916. The base unit may instruct the collar to log the location of the animal when the animal is within location areas 918, 920.
  • a keep out region or a notification region may be assigned to locations within a region that is a general containment area and in which no instruction is generally provided to the animal. This is possible due to the fact that specific areas within the monitored environment may be specifically associated with a function. In this way monitored environment areas 910 and 916 map to a corrective function and monitored environment areas 918, 920 map to logging/notification functions. Under an embodiment, a containment area may simply be all areas in the monitored environment not assigned a correction function.
  • Figure 10 shows a top down view of a base unit 1002 communicating with a pet transceiver 1004 housed by a pet collar.
  • the base unit couples transceiver/antenna 1010, receiver/antenna 1012, and receiver/antenna 1014 with a processing unit 1020 which is further connected or coupled to memory (as shown in Figure 7).
  • the transceiver/antenna 1010, receiver/antenna 1012, and receiver/antenna 1014 may form vertices of an equilateral triangle with sides of 20cm under one embodiment.
  • the processing unit clocks incoming and/or outgoing communications and synchronizes the transceiver/receivers 1010, 1012, 1014.
  • the base unit emits an RF signal communication (not represented in Figure 10) using antenna/transceiver 1010.
  • the pet transceiver processes the communication and sends a return communication 1040.
  • Each antenna unit receives the return communication.
  • the base unit may use time of flight information received and processed through antenna/transceiver 1010 and time differential of the return communication received at each base unit antenna to resolve a range and angular reference for locating the pet transceiver. A detailed example of this method is provided below.
  • the transceiver/antenna 1010 transmits an RF message or communication at time 0 seconds.
  • the pet transceiver receives the first pulse of the communication at 66.7128ns.
  • the pet transceiver then processes the message and develops a response.
  • the pet transceiver transmits the response at 1000 ns.
  • the base unit transceiver/antenna 1010 receives the first pulse of the communication at 1066.7128ns.
  • the base unit receiver/antenna 1014 receives the first pulse of the communication at 1067.18648ns.
  • the base unit receiver/antenna 1012 receives the first pulse of the communication at 1067.3572 ns. Note that the data disclosed in this paragraph corresponds to the example set forth below with respect to Figure 13.
  • This process collects key information for resolution of a range and angular value for locating the pet transceiver.
  • the process reveals the order in which base unit antennas 1010, 1012, 1014 receive the return transmission from the pet transceiver.
  • the process reveals a return time differential between base unit antennas. Continuing with the example set forth above the receive time differential between transceiver/antenna 1010 and receiver/antenna 1014 is .47368 ns.
  • the process provides range information.
  • the time of flight between transmission of the response communication and receipt thereof by transceiver/antenna 1010 with respect to the example set forth above comprises 66.7128 ns corresponding to a distance of 20 meters from transceiver/antenna 1010 to pet transceiver.
  • This information may be used to determine range and angular values for locating the pet using a far field model as further described below.
  • the data disclosed in this paragraph corresponds to the example set forth below with respect to Figure 13.
  • the antennas 1010, 1012, 1014 form an equilateral triangles with sides of 20cm with respect to all of the examples set forth below (see Figures 12-14 and corresponding examples).
  • a far field model may determine range and angular values using two way ranging and time difference of arrival computations set forth above.
  • the far field model is based on the fact that the distance from base unit to pet transceiver is significantly farther than the distance between transceiver/receivers of the base unit. This model allows a spherical wave to be approximated by a plane.
  • Figure 11 shows an example of quadrant determination based on the time of arrival among antennas.
  • the example shown in Figure 11 is based on an implementation utilizing a base unit consisting of three transceiver/receivers positioned as an equilateral triangle, although the number and position of transceiver/receivers are not limited to these arrangements.
  • Figure 11 shows Quadrants I- VI and corresponding order of reception among antennas:
  • Quadrant 1 (30-90 degrees): first reception 1014, second reception 1010
  • Quadrant II (90-150 degrees): first reception 1010, second reception 1014
  • Quadrant III (150-210 degrees): first reception 1010, second reception 1012
  • Quadrant IV (210-270 degrees): first reception 1012, second reception 1010
  • Quadrant V (270-330 degrees): first reception 1012, second reception 1014
  • Quadrant VI (330-30 degrees): first reception 1014, second reception 1012
  • order of reception limits the location of the pet transceiver to a particular quadrant or angular region.
  • Figure 12 shows a computation of an angular value with respect to a pet location.
  • Figure 12 show a return RF transmission 1220 from a pet transceiver 1230 located in quadrant I. This is known due to first reception at antenna 1014 and second reception at antenna 1010.
  • antenna 1010 and 1014 are vertices of a triangle with side 1210 oriented in the general direction of the pet transceiver.
  • the far field model approximates the angle between side 1210 and side 1212 as a ninety (90) degree angle. Again this is possible because the distance between antennas is significantly less than the distance between antennas and pet transceiver.
  • the length L of the line 1214 between antenna 1010 and antenna 1014 is known at 20 cm.
  • Figure 12 shows the angle 0 between lines 1210 and 1214.
  • the length of side 1210 i.e., the value of D as shown in Figure 12
  • the length of side 1210 may then be computed as follows:
  • T receive time differential between antennas 1010, 1014
  • Figure 13 shows an example of a base unit receiving a transmission 1330 from pet transceiver 1320 in Quadrant I. This is known due to first reception at antenna 1014 and second reception at antenna 1010.
  • the time of flight and corresponding distance between antenna 1010 and pet transceiver 1320 is 66.7128 ns and 20m.
  • Antenna 1010 and 1014 form vertices of a triangle with side 1310 oriented in the general direction of the pet transceiver.
  • the angle between sides 1310 and 1312 is approximated as 90 degrees under the far field model.
  • the length of side 1314 is known at 20cm.
  • the time differential between antennas 1010 and 1014 is .47368 ns.
  • the location of the pet may be approximated with a range, angular value of (20m, 44.723).
  • the location of the pet may be approximated with a range, angular value of (20m, 147.53).
  • Figure 15 shows an example of a base unit receiving a transmission 1530 from pet transceiver 1520 in Quadrant III. This is known due to first reception at antenna 1012 and second reception at antenna 1010. It is assumed the time of flight between pet transceiver 1520 and antenna 1012 indicates a distance of 20m. Antenna 1010 and 1012 form vertices of a triangle with side 1510 oriented in the general direction of the pet transceiver. The angle between sides 1510 and 1512 is approximated as 90 degrees under the far field model. The length of side 1514 is known at 20cm. The time differential between antennas 1010 and 1012 is .5342 ns. The length
  • the location of the pet may be approximated with a range, angular value of (20m, 263.25).
  • angular value 20m, 263.25
  • angular estimates for the pet transceiver in quadrants IV, V, and VI should add 180°, 240°, and 300°, respectively.
  • angle computations are applied according the detected position of the pet transceiver. As indicated above, it is known based on receive time differentials that the pet transceiver is located in one of Quadrants I- VI. As one example, the pet transceiver may be located in Quadrant V. Therefore, a known computation may be applied to determine an angular location of the animal with respect to a line between antennas 1012 and 1014. Assuming the facts set forth above with respect to Figures 12-16, an additional 240 degrees is then added to the angular estimate. The pet transceiver is then located at the adjusted angular estimate (with respect to the line between antennas 1010 and 1014, i.e. the zero angular reference) and approximately 20 meters from the base unit.
  • the examples presented above utilize three antennas in an equilateral triangle configuration, however this is not a limitation as the number of antennas can be any number greater than three, or greater than two if a physical limitation exists to block 180 degrees of the coverage of the area. Further, the configuration of antennas is not limited to any specific trigonometric configuration.
  • time difference of arrival among transceiver/antennas and/or receiver/antennas may be determined by the difference in phase of the carrier signal of an incoming signal.
  • Three dimensional positional resolution can also be performed. It can be treated as two separate two-dimensional position resolutions in two perpendicular planes as long as there are positional differences between the antennas in the two planes.
  • a single base station wireless animal location system as described above determines the distance and bearing angle relative from a reference axis originating at the base station and a target animal wearing a transceiver that is communicatively coupled with the base station.
  • the base station contains at least one transceiver and two receivers. These receivers can also be realized as transceivers. The embodiments below simply refer to transceiver arrays. Each of these transceivers has an associated antenna.
  • the base station also includes a system processing unit. The system processing unit is linked to the transceivers via analog or digital cabling. This Linking typically occurs within a system Printed Circuit Board Assembly (PCBA).
  • PCBA system Printed Circuit Board Assembly
  • FIG. 16 shows a base unit comprising PCBA 1650, tran scei vers/ antennas 1630, system processing unit 1640, and power source 1620.
  • the PCBA provides connectivity from system processing unit to transceivers and receivers.
  • the PCBA provides power distribution from the power source to die system processing unit and transceivers. The distance between the transceivers/antennas is under one embodiment 20 cm as shown in Figure 11.
  • the system utilizes time-ofl-flight of an RF signal as described in detail above.
  • One of the transceivers on the base unit is responsible for communicating with the animal transceiver via RF signals.
  • the time of flight of an RF signal from a transceiver antenna on the animal to the location of the base unit transceiver antenna may be determined.
  • the time of flight is then converted into a distance.
  • the difference in RF communication time between the transceivers contained within the base unit and the transceiver on the animal must be determined. As already described in detail above, this delta time can be measured as a time difference or a phase difference. Once the difference in times between the transceivers are known, a direction to the target can be calculated.
  • the transceiver antennas within the base unit must have first-path RF communication with the transceiver on the animal. If this first-path is blocked and a reflection is utilized, the additional path distance the reflected signal took will be utilized, corrupting the range and relative bearing calculations.
  • a single base station wireless animal location system depends on reliable RF communication between the multiple transceivers contained within the base unit and the transceiver located on the target animal.
  • PCBAs Printed Circuit Board Assemblies
  • These PCBAs typically contain conductive traces and ground planes.
  • the PCBA provides connectivity from the system processing unit to the transceivers.
  • the PCBA also provides power distribution from the power source to the system processing unit and transceivers.
  • the problem is that the RE signals sent to, and received from, the target animal transceiver can be blocked by the conductive components of this PCB A.
  • the impact of the blockage is a degradation in the accuracy of the resulting position. This can manifest itself in the lack of an ability to retrieve a position, or even worse, a false position report.
  • a false position report can lead to a false “correction” being applied to an animal within a wireless containment system. If the area of obstruction is near a boundary, it could even allow an animal to escape the containment system, endangering the animal’s wellbeing.
  • Figure 17 and Figure 18 show a three transceiver/antenna array 1730 (with one transceiver, antenna not visible in Figure 17), PCBA 1710, system processing unit 1740, and power source 1720.
  • the antennas sit on the PCBA with a height of 50 mm .
  • the angle 0 of triangle ABC is computed at The angle of obstruction is then calculated as Figures 19 and 20 show triangle ECD.
  • Line ED comprises a line parallel with ground and intersecting animal transceiver at point D.
  • Line EC connects point E and point C (which is the top of transceiver 1 ).
  • angle ECD is 80.4 degrees.
  • transceiver/antenna placement configurations are described below and are each designed to mitigate RF blockage.
  • the transceivers/antennas in the examples below are positioned 20 cm from each other in a manner similar to the configuration shown in Figure 11 but embodiments are not so limited.
  • FIGS 21 and 22 show antennas 2215 within the base unit mounted on small individual PCBAs 2210 captured by the enclosure.
  • Each transceiver/antenna/PCBA mount is connected to a system processing unit PCBA 2220 and power source 2230 with cables.
  • the system processing unit PCBA 2220 is mounted above the transceivers.
  • Each transceiver/antenna is mounted on a small PCBA.
  • the PCBA comprising the system processing unit (SPU) is located above transceiver PCBAs.
  • the system processing unit PCBA is held in place within a low dielectric loss factor enclosure (likely a plastic) by a material with a low dielectric loss factor.
  • the SPU communicates with the transceivers via cables. These cables also distribute power throughout the base unit.
  • the precise positioning of the transceivers within the base unit are critical to the calculations of the positional determination of the pet transceiver. To accomplish this requirement, the transceivers are precisely captured within the low dielectric loss factor enclosure by a material with a low dielectric loss factor. This approach allows the RF energy to pass relatively unimpeded between the transceivers within the base unit to the transceiver on the pet.
  • the power cables can enter the enclosure from the top or bottom. If the implementation is battery powered, the power source could be mounted on the top of the enclosure above the SPU PCBA.
  • FIGS 23 and 24 show antennas 2415 within the base unit mounted on small individual PCBAs 2410 captured by the enclosure.
  • Each transceiver/'antenna/PCBA mount is connected to a system processing unit PCBA 2420 and power source 2430 with cables 2450.
  • the system processing unit PCBA 2420 is mounted below the transceivers.
  • Each transceiver/antenna is mounted on a small PCBA.
  • the PCBA comprising the system processing unit (SPU) is located below transceiver PCBAs.
  • the system processing unit PCBA is held in place within a low dielectric loss factor enclosure (likely a plastic) by a material with a low dielectric loss factor.
  • the SPU communicates with the transceivers via cables. These cables also distribute power throughout the base unit.
  • the precise positioning of the transceivers within the base unit are critical to the calculations of the positional determination of the pet transceiver. To accomplish this requirement, the transceivers are precisely captured within the low dielectric loss factor enclosure by a material with a low' dielectric loss factor. This approach allows the RF energy to pass unimpeded between the transceivers within the base unit to the transceiver on the pet.
  • the power cables can enter the enclosure from the top or bottom. If the implementation is battery powered, the power source could be mounted on the top of the enclosure above the SPU PCBA.
  • Figures 25-27 show' transceiver antennas 2510 that extend above and below the system processing unit (SPU) PCBA 2520. Figures 25-27 also show power source 2530.
  • the transceiver antennas extend above and below' the system PCBA. Any base unit transceiver to pet transceiver RF path 2560 that is blocked by the PCBA has a second path 2570 on the opposite side of the PCBA that would not be blocked.
  • the antenna extension to the second side of the PCBA may be accomplished with a single array of antennas that extend above and below the PCBA or separate array of antennas on each side of the SPU PCBA.
  • Figures 25-27 demonstrate the RF path blockage between the animal and transceiver antenna.
  • each antenna 2510 may extend 35mm above and 35mm below the PCBA. under an embodiment. Each antenna is served by a transceiver residing on the motherboard. Accordingly, the 35mm heigh antennas are the only vertical components extending above and below the motherboard. Each antenna location on a first surface of the PCBA has a mirrored antenna location on an opposite surface of the PCBA. Each transceiver is integrated into the PCBA and is located directly between a corresponding upper and lower antenna.
  • This transceiver placement allows the trace distance between the transceiver (including RF switch) to the top antenna to be the same be same as the trace distance between the transceiver (including RF switch) to the bottom antenna
  • Each pair of antennas are served by a single transceiver with an RF switch. Operation of the RF switch is described below.
  • all RF switches are set either to top or bottom based on success of the prior communication sequence between the base unit transceivers and remote transceiver.
  • Signal quality may be used to select top or bottom position.
  • Signal quality may be assessed using a Standard Deviation of Channel Impulse Response Estimate (CIRE) Noise value. With a higher absolute CIRE noise figure, it is more likely that the quality of receive timestamp is poorer. High noise may mean that the real first path is irretrievably buried in the noise.
  • Signal quality may also be assessed using a received power figure estimate. This is a calculation based on Channel impulse response power value and preamble accumulation count value. These values (CIRE and received power figure estimate) are reported by the transceivers for use in assessing signal quality.
  • a processor of the base unit implements the following operation, under an embodiment.
  • an RF switch choice flag is set to top.
  • a base unit processor or controller commands an RF switch to utilize the top antenna if the antenna choice flag is set to top or to switch and use the bottom antenna if the antenna choice flag is set to bottom.
  • the controller commands one transceiver of the three transceivers to transmit a message to the remote transceiver.
  • All transceivers listen for a response from the remote transceiver and store away the reception signal quality.
  • the controller collects the reception signal quality of responses detected by transceivers.
  • the controller toggles the choice flag for all transceivers, i.e. the controller sets the respective antenna choice flag to top if the antenna choice flag was set to bottom or sets the antenna choice flag to bottom if the antenna choice flag was set to top.
  • each RF switch is independently set either to top or bottom based on success of the prior communication sequence between the base unit and remote transceiver.
  • a processor of the base unit implements the following operation, under an embodiment.
  • a processor or controller in base unit commands transceiver 1 to set its RF switch for utilizing the top antenna if the transceiver 1 antenna choice flag is set to top or to set its RF switch for utilizing the bottom antenna if the transceiver 1 antenna choice flag is set to bottom.
  • the controller commands one transceiver to transmit a message to the remote transceiver. 4. All transceivers listen for a response from the remote transceiver and store away the reception signal quality.
  • the controller collects the reception signal quality of all transceivers.
  • transceiver 1 antenna choice flag is set to top if transceiver 1 antenna choice flag was set to bottom or transceiver 1 antenna choice flag is set to bottom if transceiver 1 antenna choice flag was set to top (toggle transceiver 1 antenna choice flag).
  • antennas 251.0 only extend from an upper surface of the PCBA.
  • each such antenna may comprise a transceiver portion extending 30mm from the PCBA and an antenna portion extending an additional 35mm. This embodiment eliminates the need for an RF' switch.
  • Figures 28 and 29 feature transceiver antennas 2810 that extend well above the SPU PCBA 2820, minimizing the angle of obstruction.
  • the figures show antennas positioned on antenna mounts 2840 which themselves extend from the SPU PCBA.
  • the antenna mounts provide shielded cabling 2890 which connects each antenna to a transducer incorporated into the PCBA. The shielding prevents the cabling from itself acting as an antenna.
  • Figure 28 shows that antenna 2860 is positioned 400 mm above the PCBA resulting in an obstruction angle ⁇ of 126.5 degrees.
  • Figure 28 also shows that antenna 2860 is positioned 1600 mm above the height of collar receiver. Accordingly, distance y is computed as y ⁇ Based on these calculations, Figure 28 shows the reduced degraded coverage area 2870.
  • Figures 30 and 31 show a PCBA 3040 that is hollow. All PCBA components (including transceivers 3010, antennas 3020, and SPU 3030) and interconnections are located in a narrow strip PCBA. As some trace lengths and trace length matching are critical, this is accomplished in the trace patterns. The PCBA still acts as a source of RF blockage, but the area blocked is significantly reduced due to the open area in the center which wmuld otherwise be partially or completely blocked.
  • Figures 32 and 33 show a PCBA 3240 that is solid. However, the PCBA center is void of any planes (i.e. power, ground). The power and ground planes block RF signals.
  • All PCBA components are located in a narrow exterior strip of the PCBA.
  • Figure 34 shows half of the transceivers/antennas 3410 mounted on top of the PCBA 3430 and half of the tr nsceivers/antennas 3420 mounted on the bottom of the PCBA 3430.
  • Thi s allows for coverage even when the tag (i.e. collar receiver) is directly above or below the base station.
  • the transceiver/antenna location configurations differ on top and bottom surfaces of the PCBA, this approach requires an increase in the number of transceivers but provides complete coverage above, below, and in all directions around the base unit.
  • a device comprises under an embodiment a base unit including a first transceiver, a second receiver, and a third receiver, wherein the first transceiver comprises a first antenna, the second receiver comprises a second antenna, and the third receiver comprises a third antenna, wherein the first transceiver, the second receiver, and the third receiver are communicatively coupled with at least one processor of the base unit, wherein the base unit comprises a clock that synchronizes communications of the first transceiver, the second receiver, and the third receiver, wherein the first transceiver, the second receiver, and the third receiver comprise vertices of a triangle.
  • the base unit includes the first transceiver configured to transmit a communication to a transceiver remote to the base unit.
  • the base unit includes the first transceiver, the second receiver, and the third receiver configured to receive a response from the transceiver, wherein the response comprises a return communication.
  • the base unit includes the at least one processor configured to use information of the return communication to determine a first time of flight, wherein the first time of flight comprises the time elapsed between transmission of the return communication and the receiving of the return communication by the first transceiver.
  • the base unit includes the at least one processor configured to use the first time of flight to determine a first distance between the first transceiver and the transceiver.
  • the base unit includes the at least one processor configured to use the clock to determine a time difference of arrival between the first transceiver receiving the return communication, the second receiver receiving the return communication, and the third receiver receiving the return communication.
  • the base unit includes the at least one processor configured to determine an angular value using information of the time difference of arrival, the relative positioning of the first antenna, the second antenna, and the third antenna and signal transmission speed of the return communication, wherein the angular value comprises an angle between a reference direction and an axis, wherein the angular value and the first distance approximate a location of the transceiver.
  • the triangle of an embodiment comprises an equilateral triangle.
  • the at least one processor of an embodiment is configured to determine the time difference of arrival using the difference in phase of a carrier signal of the return communication among the first transceiver, the second receiver, and the third receiver.
  • the reference direction of an embodiment comprises a fixed unit vector originating at a vertex of the triangle and extending along a side of the triangle.
  • the vertices of the triangle approximately define a plane, wherein a plurality of quadrants partition the plane into radial segments extending from the base unit, under an embodiment.
  • the information of the time difference of arrival comprises an order of reception between the initial two antennas receiving the return communication, under an embodiment.
  • the determining the angular value includes using the order of reception between the initial two antennas to locate the transceiver in a quadrant of the plurality of quadrants, under an embodiment.
  • the determining the angular value includes under an embodiment constructing a right triangle, wherein the initial two antennas comprise vertices of the right triangle, wherein a first side of the right triangle is oriented in a direction of the transceiver in the quadrant, wherein a second side comprises a line between the initial two antennas.
  • the determining the angular value includes under an embodiment determining a first length of the first side using the signal transmission speed and the time difference of arrival between the initial two antennas receiving the return communication.
  • a second length comprises a length of the second side, under an embodiment.
  • the determining the angular value comprises under an embodiment determining the angular value using the first length, the second length, and information of the quadrant.
  • the transceiver of an embodiment is communicatively coupled with a stimulus unit positioned in a collar worn by an animal.
  • the at least one processor of an embodiment is configured to identify at least one instruction using the first distance and the angular value.
  • the at least one instruction of an embodiment includes logging the first distance and the angular value.
  • the identifying the at least one instruction includes transmitting the at least one instruction to the transceiver, under an embodiment.
  • the at least one instruction includes an instruction to apply a positive stimulus, under an embodiment.
  • the at least one instruction includes an instruction to apply a negative stimulus, under an embodiment.
  • a device comprises under an embodiment a base unit including at least three transceivers, wherein the at least three transceivers are communicatively coupled with at least one processor of the base unit, wherein the base unit comprises a clock that synchronizes communications of the at least three transceivers.
  • the device includes a first transceiver of the at least three transceivers configured to transmit a communication to a transceiver remote to the base unit.
  • the device includes the at least three transceivers configured to receive a response from the transceiver, wherein the response comprises a return communication.
  • the device includes the at least one processor configured to use information of the return communication to determine a first time of flight, wherein the first time of flight comprises the time elapsed between transmission of the return communication and the receiving of the return communication by the first transceiver.
  • the device includes the at least one processor configured to use the first time of flight to determine a first distance between the first transceiver and the transceiver.
  • the device includes the at least one processor configured to use the clock to determine a time difference of arrival among the at least three transceivers receiving the return communication.
  • the device includes the at least one processor configured to determine an angular value using information of the time difference of arrival, the relative positioning of the at least three transceivers and signal transmission speed of the return communication, wherein the angular value comprises an angle between a reference direction and an axis, wherein the angular value and the first distance approximate a location of the transceiver.
  • a device comprising under an embodiment a base unit including at least three transceivers located on a printed circuit board assembly, wherein the at least three transceivers are communicatively coupled with at least one processor of the base unit, wherein the base unit comprises a clock that synchronizes communications of the at least three transceivers, wherein each transceiver of the at least three transceivers comprises an upper surface antenna extending from an upper surface of the printed circuit board assembly and a lower surface antenna extending from a lower surface of the printed circuit board assembly, wherein a location of each upper surface antenna on an upper surface of the printed circuit board assembly is mirrored by a location of the corresponding lower surface antenna on the lower surface of the printed circuit board assembly.
  • Each transceiver of the at least three transceivers is configured to transmit a communication to a transceiver remote to the base unit, wherein the at least one processor is configured to instruct a first transceiver of the at least three transceivers to transmit at least one communication to the remote transceiver.
  • Each transceiver of the at least three transceivers is configured to receive return communications from the remote transceiver in response to the at least one communication through at least one of the corresponding upper surface antenna and the corresponding lower surface antenna.
  • the at least one processor is configured to use information of the return communications to determine a first time of flight, wherein the first time of flight comprises the time elapsed between transmission of a return communication of the return communications and the receiving of the return communication by the first transceiver.
  • the at least one processor is configured to use the first time of flight to determine a first distance between the first transceiver and the remote transceiver.
  • the at least one processor is configured to use the clock to determine a time difference of arrival between the first transceiver receiving the return communication, a second transceiver of the at least three transceivers receiving the return communication, and a third transceiver of the at least three transceivers receiving the return communication, wherein the first transceiver, the second transceiver, and the third transceiver comprise a triangle.
  • the at least one processor is configured to determine an angular value using information of the time difference of arrival, the relative positioning of the first transceiver, the second transceiver, and the third transceiver, and signal transmission speed of the return communication, wherein the angular value comprises an angle between a reference direction and an axis, wherein the angular value and the first distance approximate a location of the remote transceiver.
  • the triangle comprises an equilateral triangle, under an embodiment.
  • the sides of the equilateral triangle are equal to or less than 20cm, under an embodiment.
  • the printed circuit board assembly of an embodiment occupies a plane approximately parallel to ground.
  • Each upper surface antenna extends 35 mm from the upper surface of the printed circuit board assembly, under an embodiment.
  • Each lower surface antenna extends 35 mm from the lower surface of the printed circuit board assembly, under an embodiment.
  • Each transceiver of the at least three transceivers is located between the corresponding upper surface antenna and the corresponding lower surface antenna, under an embodiment.
  • Each transceiver comprises a radio frequency switch (RF switch), wherein each RF switch comprises a radio frequency flag position (RF flag position), wherein the RF flag position comprises either an upper position or lower position, under an embodiment.
  • RF switch radio frequency switch
  • RF flag position radio frequency flag position
  • the receiving the return communications includes each transceiver receiving the return communications from the corresponding upper surface antenna when the corresponding RF flag position is set to the upper position, under an embodiment.
  • the receiving the return communications includes each transceiver receiving the return communications from the corresponding lower surface antenna when the corresponding RF flag position is set to the lower position, under an embodiment, under an embodiment.
  • the at least one processor is configured to monitor signal quality of the return communications received through the upper surface antenna and the corresponding lower surface antenna for each transceiver of the at least three transceivers, under an embodiment.
  • the at least one processor is configured to independently set the RF flag position for each transceiver of the at least three transceivers to the upper position when the signal quality of the return communications received through the corresponding upper surface antenna is greater than the signal quality of the return communications received through the corresponding lower surface antenna, under an embodiment.
  • the at least one processor is configured to independently set the RF flag position for each transceiver of the at least three transceivers to the lower position when the signal quality of the return communications received through the corresponding lower surface antenna is greater than the signal quality of the return communications received through the corresponding upper surface antenna, under an embodiment.
  • the at least one processor is configured to uniformly set all RF flag positions of all transceivers of the at least three transceivers to either the upper position or the lower position, under an embodiment.
  • the at least one processor is configured to toggle the RF flag position for all transceivers of the at least three transceivers when signal quality of the return communications received through currently selected antennas fall below a threshold value for a defined number of transceivers, under an embodiment.
  • the at least one processor is configured to determine the time difference of arrival using the difference in phase of a carrier signal of the return communication among the first transceiver, the second transceiver, and the third transceiver, under an embodiment.
  • the reference direction comprises a fixed unit vector originating at a vertex of the triangle and extending along a side of the triangle, under an embodiment.
  • the vertices of the triangle define a plane, wherein a plurality of quadrants partition the plane into radial segments extending from the base unit, under an embodiment.
  • the information of the time difference of arrival comprises an order of reception between the initial two transceivers of the first transceiver, the second transceiver, and the third transceiver receiving the return communication, under an embodiment.
  • the determining the angular value includes using the order of reception between the initial two transceivers to locate the remote transceiver in a quadrant of the plurality of quadrants.
  • the determining the angular value includes constructing a right triangle, wherein the initial two transceivers comprise vertices of the right triangle, wherein a first side of the right triangle is oriented in a direction of the remote transceiver in the quadrant, wherein a second side comprises a line between the initial two transceivers, under an embodiment.
  • the determining the angular value includes determining a first length of the first side using the signal transmission speed and the time difference of arrival between the initial two transceivers receiving the return communication, under an embodiment.
  • a second length comprises a length of the second side, under an embodiment.
  • the determining the angular value comprises determining the angular value using the first length, the second length, and information of the quadrant, under an embodiment.
  • the remote transceiver is communicatively coupled with a stimulus unit positioned in a collar worn by an animal, under an embodiment.
  • the at least one processor is configured to identify at least one instruction using the first distance and the angular value, under an embodiment.
  • the at least one instruction includes logging the first distance and the angular value, under an embodiment.
  • the identifying the at least one instruction includes transmitting the at least one instruction to the remote transceiver, under an embodiment.
  • the at least one instruction includes an instruction to apply a positive stimulus, under an embodiment.
  • the at least one instruction includes an instruction to apply a negative stimulus, under an embodiment.
  • a device comprising under an embodiment a base unit including a first transceiver, a second receiver, and a third receiver located on a printed circuit board assembly, wherein the first transceiver, the second receiver, and the third receiver are communicatively coupled with at least one processor of the base unit, wherein the base unit comprises a clock that synchronizes communications of the first transceiver, the second receiver, and the third receiver, wherein each of the first transceiver, the second receiver, and the third receiver comprises an upper surface antenna extending from an upper surface of the printed circuit board assembly and a lower surface antenna extending from a lower surface of the printed circuit board assembly, wherein a location of each upper surface antenna on an upper surface of the printed circuit board assembly is mirrored by a location of the corresponding lower surface antenna on the lower surface of the printed circuit board assembly.
  • the transceiver is configured to transmit a communication to a transceiver remote to the base unit, wherein the at least one processor is configured to instruct the first transceiver to transmit at least one communication to the remote transceiver.
  • the first transceiver, the second receiver, and the third receiver are configured to receive return communications from the remote transceiver in response to the at least one communication through at least one of the corresponding upper surface antenna and the corresponding lower surface antenna, wherein the first transceiver, the second receiver, and the third receiver comprise a triangle.
  • the at least one processor is configured to use information of the return communications to determine a first time of flight, wherein the first time of flight comprises the time elapsed between transmission of a return communication of the return communications and the receiving of the return communication by the first transceiver.
  • the at least one processor is configured to use the first time of flight to determine a first distance between the first transceiver and the remote transceiver.
  • the at least one processor is configured to use the clock to determine a time difference of arrival between the first transceiver receiving the return communication, the second receiver receiving the return communication, and the third receiver receiving the return communication.
  • the at least one processor is configured to determine an angular value using information of the time difference of arrival, the relative positioning of the first transceiver, the second receiver, and the third receiver, and signal transmission speed of the return communication, wherein the angular value comprises an angle between a reference direction and an axis, wherein the angular value and the first distance approximate a location of the remote transceiver.
  • Computer networks suitable for use with the embodiments described herein include local area networks (LAN), wide area networks (WAN), Internet, or other connection services and network variations such as the world wide web, the public internet, a private internet, a private computer network, a public network, a mobile network, a cellular network, a value-added network, and the like.
  • Computing devices coupled or connected to the network may be any microprocessor controlled device that permits access to the network, including terminal devices, such as personal computers, workstations, servers, mini computers, main-frame computers, laptop computers, mobile computers, palm top computers, hand held computers, mobile phones, TV set-top boxes, or combinations thereof.
  • the computer network may include one of more LANs, WANs, Internets, and computers.
  • the computers may serve as servers, clients, or a combination thereof.
  • the wireless pet containment system using a single base unit can be a component of a single system, multiple systems, and/or geographically separate systems.
  • the wireless pet containment system using a single base unit can also be a subcomponent or subsystem of a single system, multiple systems, and/or geographically separate systems.
  • the components of wireless pet containment system using a single base unit can be coupled to one or more other components (not shown) of a host system or a system coupled to the host system.
  • One or more components of the wireless pet containment system using a single base unit and/or a corresponding interface, system or application to which the wireless pet containment system using a single base unit is coupled or connected includes and/or runs under and/or in association with a processing system.
  • the processing system includes any collection of processor-based devices or computing devices operating together, or components of processing systems or devices, as is known in the art.
  • the processing system can include one or more of a portable computer, portable communication device operating in a communication network, and/or a network server.
  • the portable computer can be any of a number and/or combination of devices selected from among personal computers, personal digital assistants, portable computing devices, and portable communication devices, but is not so limited.
  • the processing system can include components within a larger computer system.
  • the processing system of an embodiment includes at least one processor and at least one memory device or subsystem.
  • the processing system can also include or be coupled to at least one database.
  • the term “processor” as generally used herein refers to any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASIC), etc.
  • the processor and memory can be monolithically integrated onto a single chip, distributed among a number of chips or components, and/or provided by some combination of algorithms.
  • the methods described herein can be implemented in one or more of software algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.
  • Communication paths couple the components and include any medium for communicating or transferring files among the components.
  • the communication paths include wireless connections, wired connections, and hybrid wireless/wired connections.
  • the communication paths also include couplings or connections to networks including local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), proprietary networks, interoffice or backend networks, and the Internet.
  • LANs local area networks
  • MANs metropolitan area networks
  • WANs wide area networks
  • proprietary networks interoffice or backend networks
  • the Internet and the Internet.
  • the communication paths include removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines, buses, and electronic mail messages.
  • USB Universal Serial Bus
  • aspects of the wireless pet containment system using a single base unit and corresponding systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs).
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • PAL programmable array logic
  • ASICs application specific integrated circuits
  • microcontrollers with memory such as electronically erasable programmable read only memory (EEPROM)
  • embedded microprocessors firmware, software, etc.
  • aspects of the wireless pet containment system using a single base unit and corresponding systems and methods may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types.
  • the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
  • MOSFET metal-oxide semiconductor field-effect transistor
  • CMOS complementary metal-oxide semiconductor
  • ECL emitter-coupled logic
  • polymer technologies e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures
  • mixed analog and digital etc
  • any system, method, and/or other components disclosed herein may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics.
  • Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof.
  • Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.).
  • data transfer protocols e.g., HTTP, FTP, SMTP, etc.
  • a processing entity e.g., one or more processors
  • processors within the computer system in conjunction with execution of one or more other computer programs.
  • the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention concerne un système de localisation sans fil d'animal qui identifie un emplacement d'un animal de compagnie se déplaçant à l'intérieur d'un environnement et suit/traite le comportement animal dans l'environnement à l'aide d'informations d'emplacement d'animal de compagnie. Le système de localisation (ou système de confinement) sans fil d'animal de compagnie peut empêcher l'accès à une zone à l'intérieur d'un environnement par l'application d'un stimulus négatif lorsqu'un animal entre dans un emplacement interdit. Le système peut permettre à l'animal d'accéder librement et sans entrave à d'autres parties de l'environnement. Par exemple, le système peut empêcher un stimulus défavorable lorsque l'animal se trouve dans des emplacements souhaités tels que des zones de litière pour animaux ou des zones de jeu d'animaux dédiées. Le système peut enregistrer un événement simplement afin de compiler des informations concernant le comportement de l'animal.
EP21870074.8A 2020-09-15 2021-09-14 Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base Pending EP4214546A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063078494P 2020-09-15 2020-09-15
US17/208,714 US11372077B2 (en) 2017-12-15 2021-03-22 Location based wireless pet containment system using single base unit
PCT/US2021/050322 WO2022060745A1 (fr) 2020-09-15 2021-09-14 Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base

Publications (2)

Publication Number Publication Date
EP4214546A1 true EP4214546A1 (fr) 2023-07-26
EP4214546A4 EP4214546A4 (fr) 2024-09-11

Family

ID=80775560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21870074.8A Pending EP4214546A4 (fr) 2020-09-15 2021-09-14 Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base

Country Status (5)

Country Link
EP (1) EP4214546A4 (fr)
CN (1) CN116324473A (fr)
AU (1) AU2021345038A1 (fr)
CA (1) CA3192717A1 (fr)
WO (1) WO2022060745A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327572B (en) * 1997-07-22 1999-06-02 Matsushita Communication Ind Telephone with multiple antenna configuration
JP2002290296A (ja) * 2001-03-27 2002-10-04 Matsushita Electric Ind Co Ltd 無線電話装置およびダイバーシティ受信方法
US20070011339A1 (en) * 2004-02-09 2007-01-11 Brown William W Internet pet tracking system
US7116988B2 (en) * 2004-03-16 2006-10-03 Airespace, Inc. Location of wireless nodes using signal strength weighting metric
US8588808B2 (en) * 2010-05-24 2013-11-19 Nice-Systems Ltd. Method and system for estimation of mobile station velocity in a cellular system based on geographical data
DE112017006442T5 (de) * 2016-12-21 2019-09-19 Intel Corporation Drahtlose kommunikationstechnologie, einrichtungen und verfahren
CN107040299A (zh) * 2017-04-14 2017-08-11 捷开通讯(深圳)有限公司 移动终端、天线结构及其切换方法
US10514439B2 (en) * 2017-12-15 2019-12-24 Radio Systems Corporation Location based wireless pet containment system using single base unit

Also Published As

Publication number Publication date
AU2021345038A1 (en) 2023-05-25
CN116324473A (zh) 2023-06-23
WO2022060745A1 (fr) 2022-03-24
EP4214546A4 (fr) 2024-09-11
CA3192717A1 (fr) 2022-03-24

Similar Documents

Publication Publication Date Title
US10955521B2 (en) Location based wireless pet containment system using single base unit
US12044791B2 (en) Location based wireless pet containment system using single base unit
US7313403B2 (en) Location positioning in wireless networks
TWI345641B (en) A method and system for locating a mobile radio receiver in a radio system with multiple transmitters
JP4111951B2 (ja) モバイルユニットの速度および位置を決定するための方法及びシステム
US9121923B2 (en) Interference detection, characterization and location in a wireless communications or broadcast system
US9002378B2 (en) Method and system for estimation of mobile station velocity in a cellular system based on geographical data
ES2607981T3 (es) Determinación de posición basada en áreas para terminales en una red inalámbrica
US7397782B2 (en) Directional transmissions to multiple wireless devices
US20220236367A1 (en) Location based wireless pet containment system using single base unit
Belloni et al. Angle-based indoor positioning system for open indoor environments
EP4214546A1 (fr) Système de confinement d'animal de compagnie sans fil fondé sur la localisation utilisant une seule unité de base
KR100831556B1 (ko) 무선 측위 시스템을 위한 비가시경로 오차 보정 방법
WO2023200556A1 (fr) Système sans fil de confinement d'animal de compagnie fondé sur l'emplacement utilisant une seule unité de base
Kamei et al. Study on the Optimization of Flight Paths for Fingerprint-Based Outdoor Localization Using UAV
CN210958805U (zh) 一种基站
Parthornratt et al. Improving accuracy of WiFi positioning system by using geographical information system (GIS)
Ermolayev et al. Estimation of the mobile user position in the cellular communication system in a multipath environment of signal propagation
Claro Sistema de Posicionamento Local Baseado em Redes Wi-Fi

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: G01S0013760000

Ipc: G01S0003040000

A4 Supplementary search report drawn up and despatched

Effective date: 20240813

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/76 20060101ALN20240807BHEP

Ipc: G01S 5/12 20060101ALN20240807BHEP

Ipc: G01S 3/50 20060101ALN20240807BHEP

Ipc: G01S 3/12 20060101ALN20240807BHEP

Ipc: G01S 13/87 20060101ALI20240807BHEP

Ipc: G01S 3/10 20060101ALI20240807BHEP

Ipc: G01S 3/04 20060101AFI20240807BHEP