EP4214122A1 - Station logistique pour drones - Google Patents

Station logistique pour drones

Info

Publication number
EP4214122A1
EP4214122A1 EP21786261.4A EP21786261A EP4214122A1 EP 4214122 A1 EP4214122 A1 EP 4214122A1 EP 21786261 A EP21786261 A EP 21786261A EP 4214122 A1 EP4214122 A1 EP 4214122A1
Authority
EP
European Patent Office
Prior art keywords
station
station according
drone
batteries
locking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21786261.4A
Other languages
German (de)
English (en)
Inventor
Krzysztof Krasnopolski
Loïc DESFAYES
Lucien MOSER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dpendent Drone Independent System Sarl
Original Assignee
Dpendent Drone Independent System Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dpendent Drone Independent System Sarl filed Critical Dpendent Drone Independent System Sarl
Publication of EP4214122A1 publication Critical patent/EP4214122A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations for handling aircraft for storing aircraft, e.g. in hangars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/99Means for retaining the UAV on the platform, e.g. dogs or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • B64F1/362Installations for supplying conditioned air to parked aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/92Portable platforms
    • B64U70/93Portable platforms for use on a land or nautical vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/97Means for guiding the UAV to a specific location on the platform, e.g. platform structures preventing landing off-centre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a station, preferably a mobile station, and the elements of such a station capable of accommodating several types of drones and performing several functions/actions on the drone and parts of the drone.
  • the system is notably capable of placing the drones in a defined position, of locking the drone in the station, of extracting the battery or batteries from the drone, of inserting a full battery or batteries in the drone and of charging the batteries extracted from independently.
  • the system makes it possible to load and/or unload various loads such as parcels, seeds, treatment liquids or any other load from the drone.
  • the station is preferably equipped with an intelligent battery charging system optimizing battery life and a programmable robot capable of handling any type of payload.
  • the invention also relates to a universal battery shell/cage system, easy to insert/uninsert, connect/disconnect, thus making the handling of the batteries possible by a robot and consequently an automated management and handling of said batteries.
  • the station can be used as an intermediate station in a network of several drones or in a system comprising one station per drone.
  • the station can be fixed or mobile, for example mounted on a vehicle.
  • the station can adapt to different drones, for example of different construction and/or of different size.
  • An object of the present invention is to improve the systems known from the state of the art.
  • Another object of the present invention is to propose a system and means allowing automated management of drones of several types, shapes and sizes.
  • Another object of the present invention is to propose means of production which are simple and reliable.
  • FIG. 1 illustrates an embodiment of the invention.
  • FIGS 2 to 6 illustrate parts of an embodiment of the invention.
  • Figure 7 illustrates a sensor used in embodiments of the invention.
  • Figure 8 illustrates a dome used in embodiments of the invention.
  • FIGS 8 to 15 illustrate batteries and their mounting in one embodiment of the invention.
  • Figure 16 illustrates a general view of the invention.
  • Figures 17 and 18 illustrate another embodiment of the invention.
  • FIGS. 19 to 23 illustrate an embodiment of batteries with a support and fixing means.
  • FIGS 24A to 24D illustrate one embodiment of fastening means according to the invention.
  • FIGS 25 and 26 illustrate centering means according to embodiments of the invention.
  • FIGS. 27A to 27F illustrate an embodiment according to the invention of means for retaining a drone.
  • FIGS. 28A to 28K illustrate an embodiment according to the invention of means allowing the orientation of a drone, for example to maintain its horizontality.
  • Figures 29 to 33 illustrate an embodiment according to the invention of means for refilling liquid in a drone.
  • the logistics station according to the invention is provided for flying electric vehicles, such as a drone, with at least one battery, the station being adaptable to different flying vehicles and comprising at least one landing zone having means for maintaining the flying vehicle, a robot intended to exchange the batteries of the flying vehicle and/or a charge of the flying vehicle and a tank/battery charger.
  • flying electric vehicles such as a drone
  • the station being adaptable to different flying vehicles and comprising at least one landing zone having means for maintaining the flying vehicle, a robot intended to exchange the batteries of the flying vehicle and/or a charge of the flying vehicle and a tank/battery charger.
  • the station includes a portion in the form of a circle to support the flying vehicle in the landing and take-off area.
  • the holding means comprise at least three locking systems. In some embodiments, the holding means comprise two plates that are movable relative to each other.
  • said circle and the holding means are fixed in the station or can move along one or more axes actuated by orientation means.
  • the orientation means comprise actuators or motors coupled to supports.
  • the locking means are moved according to the position of the circle.
  • the locking means when the hoop is in a high position, the locking means are in an open position and when the hoop is in a low position, the locking means are in a locked position.
  • the station comprises at least one battery storage and charging zone.
  • batteries are mounted in a cage with a universal attachment system.
  • the station includes a robot with at least one finger to move the batteries in the station.
  • the station comprises means for centering the flying vehicle.
  • the station includes a motion detection sensor.
  • the station includes a dome to maintain constant flight conditions during takeoff and landing.
  • the locking of the batteries is ensured by a guide and a locking system by spring and by a clip cooperating with the guide.
  • the station is mounted on a vehicle.
  • the station includes at least one station reservoir.
  • the station tank comprises at least one mixer and one pump associated with a gun.
  • the station includes a recuperator.
  • the station is combined with at least one drone or other equivalent vehicle.
  • the system according to the present invention comprises a logistics station 1 capable of accommodating several types of drones 12 or other equivalent flying vehicles as described and illustrated in detail in the present application.
  • the system is capable, by appropriate means, of placing said drones in a defined position, of locking the drones 12 in the station once said position has been reached, of extracting used and/or empty batteries (or accumulators), of insert the full batteries and charge the empty batteries that have been removed.
  • the system makes it possible to load and unload parcels, seeds, treatment liquids or any other load.
  • the station is equipped with an intelligent battery charging system that optimizes battery life and a programmable robot capable of handling any type of payload.
  • a universal battery shell/cage system easy to insert/uninsert, connect/disconnect thus making the manipulation of batteries possible by a robot.
  • the landing zone 1 preferably comprises a circle 10 on which are fixed three locking systems 11 illustrated in FIG. 1.
  • Each locking system 11 comprises for example guides (illustrated in the form of rollers) which can move and hold the arms of the drone.
  • Figure 1 illustrates the circular landing zone 10 with three open locking systems.
  • a drone 12 lands in the center of the circle 10 and on its arms 13, the systems 11 lock the arms 13 to hold the drone.
  • the position of the locking systems 11 corresponding to the position of the arms 13 of the drone 12 which is variable and therefore adapts to several types of drones.
  • the locking systems 11 are placed to receive a type of drone (for example with six arms as in FIG. 2) or having less than six arms or more than six arms.
  • three locking systems are used
  • the station is preferably adaptable to several drones (for example with three arms or more), the space under the drone is left free, the drone lands on its arms and is held stably in position, see figure 2 which illustrates the circular landing zone with a drone 12 locked.
  • the landing zone comprises guides 14 in the form of rollers (circled in figure 3 which illustrates guides for precision landing) making it possible to steer the drone
  • the guides 14 “pinch” the arm of the drone to be held.
  • the guides 14 are preferably free to rotate to allow adjustment of the position of the drone when the three locking systems close on the arm of the drone (FIG. 2).
  • Each of the locking systems 11 comprises for example 4 rollers 14 ensuring proper sliding of the drone 12 when it is locked, see in particular FIGS. 4 and 5. These rollers 14 are mobile and can approach each other to hold the arms of the drone, see Figures 1, 2, 4 and 5. In Figure 4 (or 1), they are "open” or far from each other while in Figures 2 and 5 they are “closed” or close to each other. each other.
  • FIG 4 illustrates the open rollers 14 seen from the side and Figure 5 illustrates the closed rollers seen from above.
  • the center of the landing zone is preferably empty, this keeps the passage free for the on-board equipment (packages, camera, detection tools, etc.) as illustrated in figure 6 which shows the landing zone free in the center.
  • the drone 12 can carry bulky payloads and still land on the station.
  • the station is equipped with motion detection sensors 15 to stop landing or take-off in the event of intrusion by a third party into the zone.
  • Figure 7 illustrates such a motion sensor 15.
  • An advantage of this feature is increased safety around the station to avoid an accident to people, for example, or damage to the drone.
  • a dome 16 may surround the station in order to maintain constant flight conditions during the descent of the drone 12.
  • the dome 16 is preferably equipped with a retractable roof 17 which opens and closes only during the landing / take-off phases to protect the equipment from bad weather and, for example, from external influences such as wind.
  • Figure 8 shows a diagram of a dome and a retractable roof. Advantages include the stabilization of wind disturbances during landing, protection against rain, protection against vandalism.
  • the station coordinates the drones 12 during the approach and waiting phases. It prioritizes drone landings based on the flight states and battery states of each drone and/or UAV (Unmanned Aerial Vehicle) or other criteria. It is therefore preferably associated with electronic means 76, see figure 281, such as one or more computers and means of communication such as a wireless network which determine the position of the drones and can organize a landing and/or take-off order and /or other drone actions, such as a control tower at an airport. Different criteria can be used such as: the state of the batteries, the urgency in relation to a load transported or to be transported, the weather and the conditions of the environment, etc.
  • UAV Unmanned Aerial Vehicle
  • the drones preferably communicate permanently with these electronic means to transmit status information (for example the position of the drone, the state of charge of the batteries etc.) and to receive commands (for example movement, landing, waiting etc. ).
  • This management can be automated and/or programmed and/or controlled by an operator, for example depending on the mission of the drone(s) and/or the action to be taken.
  • the management can be mixed, either partially automated, partially programmed and partially carried out by an operator.
  • the distribution of management can vary over time or circumstances: for example an operator can "take over" in the event of a problem or choose automated actions (for example for a take-off or landing etc.) or act by remote control.
  • An advantage of this realization is the centralization of flight data (battery status, %) of each drone and management of the UAV network by communicating with all the drones and vehicles concerned.
  • the battery charging system is intelligent and allows longer battery life.
  • the system optimizes the charge in particular in relation to the temperature and the state of the battery.
  • Other parameters can be implemented, for example the age of the battery, the number of charge cycles it has undergone.
  • An advantage of this way of doing things is an optimization of the battery life using an intelligent management system.
  • the zone for charging the batteries is made up of a “cartridge” 20 of batteries 21 that is entirely modular. If the customer wants to increase the capacity of the station because several drones 12 must be replenished, it suffices to add a “cartridge” itself comprising several batteries.
  • Batteries 21 can be attached to a hull/cage 22 forming a universal attachment system as shown in Figures 10-11 which show battery cages, batteries, fixed mounts and robot finger 31, Figure 12 which shows a fixed rack in a drone with batteries and cages and Figure 13 which shows storage with batteries and cages. It is these shells 22 which are placed in the drone 12 and in the battery storage 20. These shells 22 allow the fixing of batteries of different capacities available on the market.
  • This universal system easy to insert/uninsert, connect/disconnect, makes handling of the batteries 21 possible by a robot 30 for example (see FIG. 16).
  • An advantage of this system is that it is adaptable to all types of batteries, makes handling possible by a robot.
  • FIG. 14 which shows fixed reception plates 25 for a hull 22 with connectors 26 on the drone 12 for mounting the batteries
  • the locking of the hulls is ensured by guides and a locking system by spring as well as by the friction of the power connectors and by a clip which presses the male guide of the hull on the female guide of the battery reception module positioned under the drone.
  • a module 23 for receiving the battery 21 is used to accommodate the shells in the drones and in the storage and loading space.
  • These modules 23 are once again adaptable to several types of drone.
  • An advantage is the standardization of the position of the battery 21 of the drones 12.
  • FIG. 16 is a general illustration of an embodiment of the station according to the present invention comprising the elements described above with reference to the preceding figures.
  • the station notably comprises a landing zone with battery cartridges 20, a drone 12 and the robot 30 which is used to replace the batteries and load/unload the drone according to the principles of the present invention.
  • Reference 32 schematically illustrates a vehicle used to carry the station. This vehicle can be for example a truck, a trailer, a tracked vehicle, a tank such as a military tank etc. The principle of this construction applies to all the embodiments of the present invention as described in the present application.
  • FIG. 17 and 18 illustrate another embodiment of the invention with a
  • the landing zone 1 which comprises a circle 10 on which are fixed four locking systems 11.
  • the drone 12 lands in the center of the circle 10 and on its arms 13, the systems 11 lock the arms.
  • the position of the locking systems 11 corresponding to the position of the arms of the drone which is variable and therefore adapts to several types of drones.
  • FIGs 19 to 23 illustrate another embodiment of the batteries 21 and their support.
  • the batteries are fixed on a 22' hull/cage. It is these shells that are placed in the drone and in the battery storage. These shells allow the battery to be attached to different capacities available in the market.
  • This universal system easy to insert/uninsert, connect/disconnect, makes it possible to handle the batteries by a robot and horizontally.
  • this system comprises a battery 21 which is mounted in a shell 22', the latter being standard but adapted to the battery 21.
  • the wires 27 electrically connect the battery 21 to the contacts 27'.
  • Figure 20 illustrates batteries 30 mounted in a drone 12.
  • Figure 21 more specifically illustrates the shell 22' with the contact wires 27 to the battery 21.
  • Figure 22 illustrates the means used on the drone or in the storage/charging system to receive the battery 21 and its shell 22'.
  • These means comprise a support 28 and contacts 29' on a contact support 29 intended to come into contact with the contacts 27' of the shell 22' (illustrated in FIG. 21).
  • the assembly of the shell 22 'on the support 28 is done for example by sliding from left to right in Figure 22 and once the sliding is complete the contacts 27' of the shell 22' are in contact with the contacts 29 'of the drone 12.
  • the shell 22' comprises locking means illustrated in FIG. 23.
  • These locking means comprise for example an "L” clip 40 comprising at one end of the ramps 41.
  • These ramps 41 are intended to enter the openings 28' of the support 28 to lock the shell 22' in position.
  • the ramps 41 are held in the openings 28' by pressure springs 43.
  • the robot 30 will press the "L” 40 against the spring will move the ramps 41 into the openings 28'. As they have an inclined plane, everything will go up against the spring 43 and come out of the opening 28' which releases the lock and allows the extraction of the shell 22' by sliding (for example towards the left in figure 19).
  • FIGS. 24A to 24D illustrate another mode of execution of the drone 12 blocking means.
  • the blocking means do not block the arms of the drone but are located under the drone and hold and center the drone 12 by its feet and lock it in the good posture.
  • These means use in particular two sliding plates 50 which are moved apart from each other when the drone 12 lands and approach each other after landing to "pinch" the feet 12' of the drone 12.
  • FIGS. 24A and 24B illustrate plates 50 in the closed position and Figures 24C and 24D in the open position.
  • These plates 50 can also be used with the embodiment of FIG. 1 (for example) of the station 1 and form an alternative or a complement to the blocking means 11 of the embodiments. They are moved laterally for example by means of actuators and/or slideways and/or endless screws.
  • Elements are preferably added to the drone to allow complete locking and mooring, for example suitable supports or fasteners for their pinching by the plates 50.
  • This system can be used for multicopter drones with arms that are too short or inaccessible, but also for other types of VTOL drones (eg fixed wings or helicopters) and other UAVs.
  • VTOL drones eg fixed wings or helicopters
  • UAVs UAVs
  • Figures 25 and 26 illustrate drone centering means. They include in particular a centering bar 51 mounted on an actuator 52 able to move it to the right in figure 26. As the station illustrated in figure 25 comprises three of them distributed at 120° (for example), the movement of the bars 51 towards the center of the station will have the effect of centering the drone that is landed.
  • figure 25 it is the mode of execution of figures 27A to 27F which is illustrated with the rollers 64, the tie rods 61 and the actuators 62.
  • FIGS. 27, 27A to 27F illustrate one embodiment of a station according to the present invention.
  • This station has the characteristic in particular of an automatic raising and lowering of the level of the landing zone 1, namely of the circle 10, for the landing and takeoff of a drone for example.
  • the locking/docking systems 60 (for example in the form of rollers) close and correct the position of the drone when the area landing zone descends and opens as the landing zone rises to release the drone for takeoff.
  • FIGS. 27A to 27C illustrate the system in the closed state when the landing zone 1 is in the low position: in this position, the drone 12 is held by locking means 60 according to the principles of the present invention.
  • FIGS. 25, 27D to 27F illustrate the landing zone 1 in the high position, ie open: in this position the drone 12 is no longer maintained and can take off or land.
  • the passage from the high position to the low position and vice versa is carried out by actuators, such as cylinders as shown (three locking systems 60 have been shown, but there may be more).
  • the locking means 60 can be actuated directly by the movement of the landing zone, for example by tie rods 61 which cause the rollers 64 of the locking means 60 to move from an open position (FIG. 27F) to a closed position (FIG. 27C).
  • tie rods 61 which cause the rollers 64 of the locking means 60 to move from an open position (FIG. 27F) to a closed position (FIG. 27C).
  • FIGS. 27A, B, D, E illustrate the movement of the locking means.
  • the vertical movement of zone 1 can be achieved for example by mechanical, fluidic actuators 62, with guidance (for example on slides) or not.
  • Each of the locking systems 60 comprises for example three rollers 64 ensuring proper sliding of the drone 12 when it is locked, see in particular FIGS. 27A, B, D, E. These rollers 64 are mobile and can tilt to hold the arms drone, see Figures 27C and 27F. In Figures 27D, E and F they are "open” i.e. away from each other while in Figures 27A, B and C they are "closed” i.e. close together and holding the drone (Figure 27B).
  • FIGs 28A to 28K illustrate embodiments of a landing zone 1 whose level (or "attitude") relative to the terrain is controlled, preferably automatically, and can be modified as illustrated in the figures (leaning forward, backward, right or left etc., see Figures 28A to 28H).
  • a zone 1 is useful, for example, if the system is mounted on a vehicle 32 which moves over terrain that is not flat. It is thus possible to correct the position of zone 1 (circle 10) so that it remains permanently horizontal or essentially horizontal (or in another desired position) independently of the position and orientation of the carrier vehicle 32.
  • the adjustment can be made static (vehicle 32 stopped) or dynamic (vehicle 32 moving).
  • the setting can be done manually or automatically.
  • the means implemented are in particular two supports 70 of the zone (preferably with shock absorbers 71) linked to motors 72 and a support 73 attached to a fixed point 74 through a joint 75.
  • this construction makes it possible to move the landing zone in several directions relative to the support.
  • Figures 28J and 28K show construction details of the system (support 70, damper 71 and motor 72).
  • These adjustable supports 70 are also visible in FIGS. 1 and 6 and can be manually or automatically adjusted (for example with a controlled jack). Dampers may or may not be present.
  • a fixed point and an articulation similar to those of Figures 28A to 28K are also preferably present in the embodiment of Figures 1 to 6.
  • known means are used to determine the horizontal position or that desired (for example sensors) and the control can be done for example by electronic means (computer, calculator etc.), for example placed in a case (preferably waterproof).
  • FIG. 281, reference 76 These electronic means and their housing are for example illustrated in FIG. 281, reference 76. Although not specifically illustrated in all the figures, these means 76 are preferably present in all the embodiments of the present invention. More generally, all the elements of the station can be controlled (position, movement, etc.) by these electronic means, computers, computers, appropriate sensors in order to allow remote-controlled, semi-automatic or automatic operation of the station and of these parts and elements (cylinders, actuators etc.). Appropriate means of transmitting commands, information (data, measured values, etc.) are implemented: cables, transmission by waves, etc.
  • the robot 30 is for example formed of an arm comprising several degrees of freedom in rotation and allows so-called "pick and place” movements: grabbing a battery, extracting it from its support (on the drone 12 or in the tank 20 ) and replace it at its intended destination (for example in the reservoir 20 for its recharging if it comes from the drone 12, or the reverse if it comes from the reservoir 20).
  • Figures 29 to 33 illustrate an embodiment of the means for filling the tank of a drone, for example with a liquid.
  • These means illustrated in figure 29 comprise in particular a station tank 80 with a filler cap 81, a mixer 82 (which makes it possible to maintain movement in the liquid if necessary) and a pump 83.
  • This figure also shows wheels 84 which allow the tank to be moved to fill it.
  • the means further comprise a pipe 85 connected at one end to the pump 83 and at the other end to a gun 86. 86 pistol as described below.
  • the reservoir 80 is preferably located in the lower part 1' of the station 1 (see FIG. 30) and this part comprises for example doors 88, 88' which make it possible to bring out the reservoir 80 on its rollers 84 in order to fill it.
  • FIG 31 the filling of a tank 90 of a drone 12 is illustrated.
  • the gun 86 is brought by the robot 30 and introduced into the chute 91 of the reservoir 90 and the liquid from the reservoir of the station 80 introduced into the reservoir 90 of the drone 12.
  • Figure 32 illustrates station 1 of figure 30 to which a liquid recuperator 92 has been added which is useful for recovering liquids which would flow out during filling.
  • the recuperator 92 preferably surrounds the drone and seals the loading area.
  • FIG. 33 illustrates in detail an embodiment of the filling gun 86 of station 1.
  • the gun 86 is held in a support 93 which allows it to be manipulated by the robot 30 and the support further comprises actuating means.
  • actuating means are for example a motor 94 linked to a worm screw 95 which acts on an actuating means 96 articulated on an axis 97.
  • the rotation of the screw 95 will cause the actuating means 96 to tilt to the left or the right (depending on the direction of rotation of the screw) and the actuating means by tilting it to the right (in Figure 33) will press the trigger 98 of the gun 86 and allow the flow of liquid in the tank 90 of the drone 12.
  • One rotation in the other sense will release the trigger and interrupt the feed.
  • the materials used to manufacture the parts of the present invention are any suitable materials: metal, synthetic materials or combinations of materials. Everything is preferably managed by computer means such as one or more computers, information transmission means and wire or wireless controls (Wifi, Bluetooth® etc.).
  • the system for example as illustrated in FIG. 16 in all its embodiments can be mounted on a vehicle 32 (for example an all-terrain vehicle) or a trailer.
  • the use of the system can be military and/or civilian. It is also possible to envisage a system with several stations as described in the present application, identical or different (for example according to different embodiments).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Loading Or Unloading Of Vehicles (AREA)
  • Window Of Vehicle (AREA)

Abstract

La station de logistique pour drones est adaptable à des drones (12) différents et comprenant au moins une zone d'atterrissage ayant des moyens de maintien d'un drone, un robot (30) destiné à échanger les batteries du drone et/ou une charge du drone et un réservoir de batteries (20).

Description

STATION LOGfSTiQUE POUR DRONES
D e m a n d e s c o r r e s p o n d a n t e §
La présente demande revendique la priorité de la demande internationale antérieure N° PCT/IB2020/058619 déposée le 16 septembre 2020, le contenu de cette demande antérieure étant incorporé par référence en son entier dans la présente demande.
D o m a î n e t e c h n î q u e
La présente invention porte sur une station, de préférence une station mobile, et les éléments d'une telle station capable d'accueillir plusieurs types de drones et de réaliser plusieurs fonctions/actions sur le drone et des parties du drone. Le système est notamment capable de placer les drones dans une position définie, de verrouiller le drone dans la station, d'extraire la ou les batteries du drone, d'insérer une ou des batteries pleines dans le drone et de charger les batteries extraites de façon indépendante.
De plus le système permet de charger et/ou décharger des charges diverses comme des colis, graines, liquides de traitement ou tout autre chargement du drone.
La station est de préférence équipée d'un système de recharge de batteries intelligent optimisant la durée de vie des batteries et d'un robot programmable capable de manipuler tout type de charge-utile. L'invention porte également sur un système de coque/cage à batterie universel, facile à insérer/désinsérer, connecter/déconnecter rendant ainsi la manipulation des batteries possible par un robot et par conséquent une gestion et manipulation automatisée desdites batteries.
La station peut être utilisée en tant que station intermédiaire dans un réseau de plusieurs drones ou dans un système comprenant une station par drone. La station peut être fixe ou mobile, par exemple montée sur un véhicule. De préférence, la station peut s'adapter à différents drones, par exemple de construction différente et/ou de taille différente. Un but de la présente invention est d'améliorer les systèmes connus de l'état de la technique.
Un autre but de la présente invention est de proposer un système et des moyens permettant une gestion automatisée de drones de plusieurs types, formes et dimensions.
Un autre but de la présente invention est de proposer des moyens de réalisation qui soient simples et fiables.
D'autres buts et avantages de la présente invention découlent de la description qui suit de différents modes d'exécution de l'invention. Dans la présente description, on a décrit principalement l'application à un drone mais la présente invention peut s'utiliser avec d'autres véhicules volants capables d'atterrir sur la station décrite et d'en décoller comme un hélicoptère ou autre équivalent.
Modes d'exécution de l'invention:
Les figures annexées représentent de modes d'exécution illustratifs de la présente invention.
La figure 1 illustre un mode d'exécution de l'invention.
Les figures 2 à 6 illustrent des parties d'un mode d'exécution de l'invention.
La figure 7 illustre un capteur utilisé dans des modes d'exécution l'invention.
La figure 8 illustre un dôme utilisé dans des modes d'exécution l'invention.
Les figures 8 à 15 illustrent des batteries et leur fixation dans un mode d'exécution de l'invention.
La figure 16 illustre une vue générale de l'invention. Les figures 17 et 18 illustrent un autre mode d'exécution de l'invention.
Les figures 19 à 23 illustrent un mode d'exécution de batteries avec un support et des moyens de fixation.
Les figures 24A à 24D illustrent un mode d'exécution de moyens de fixation selon l'invention.
Les figures 25 et 26 illustrent des moyens de centrage selon des modes d'exécution de l'invention.
Les figures 27A à 27F illustrent un mode d'exécution selon l'invention de moyens de retenue d'un drone.
Les figures 28A à 28K illustrent un mode d'exécution selon l'invention de moyens permettant l'orientation d'un drone, par exemple pour maintenir son horizontalité.
Les figures 29 à 33 illustrent un mode d'exécution selon l'invention de moyens pour la recharge de liquide dans un drone.
Dans des modes d'exécution, la station de logistique selon l'invention est prévue pour véhicules électriques volant, comme un drone, avec au moins une batterie, la station étant adaptable à des véhicules volant différents et comprenant au moins une zone d'atterrissage ayant des moyens de maintien du véhicule volant, un robot destiné à échanger les batteries du véhicule volant et/ou une charge du véhicule volant et un réservoir/chargeur de batteries.
Dans des modes d'exécution, la station comprend une partie sous forme de cercle pour supporter le véhicule volant dans la zone d'atterrissage et de décollage.
Dans des modes d'exécution, les moyens de maintien comprennent au moins trois systèmes de verrouillage. Dans des modes d'exécution, les moyens de maintien comprennent deux plaques mobiles l'une par rapport à l'autre.
Dans des modes d'exécution, ledit cercle et les moyens de maintien sont fixes dans la station ou peuvent se déplacer selon un ou plusieurs axes actionnés par des moyens d'orientation.
Dans des modes d'exécution, les moyens d'orientation comprennent des actionneurs ou des moteurs couplés à des supports.
Dans des modes d'exécution, les moyens de verrouillage sont déplacés en fonction de la position du cercle.
Dans des modes d'exécution, lorsque le cercle est en une position haute, les moyens de verrouillage sont en une position ouverte et lorsque le cercle est en une position basse, les moyens de verrouillage sont en une position verrouillée.
Dans des modes d'exécution, la station comprend au moins une zone de stockage et chargement de batteries.
Dans des modes d'exécution, des batteries sont montées dans une cage avec un système d'attache universel.
Dans des modes d'exécution, la station comprend un robot avec au moins un doigt permettant de déplacer les batteries dans la station.
Dans des modes d'exécution, la station comprend des moyens de centrage du véhicule volant.
Dans des modes d'exécution, la station comprend un capteur de détection de mouvement.
Dans des modes d'exécution, la station comprend un dôme pour maintenir les conditions de vol constantes lors du décollage et atterrissage. Dans des modes d'exécution, le verrouillage des batteries est assuré par un guide et un système de verrouillage par ressort et par un clip coopérant avec le guide.
Dans des modes d'exécution, la station est montée sur un véhicule.
Dans des modes d'exécution, la station comprend au moins un réservoir de station.
Dans des modes d'exécution, le réservoir de station comprend au moins un mélangeur et une pompe associée à un pistolet.
Dans des modes d'exécution, la station comprend un récupérateur.
Dans des modes d'exécution, la station est combinée avec au moins un drone ou un autre véhicule équivalent.
Le système selon la présente invention comprend une station logistique 1 capable d'accueillir plusieurs types de drones 12 ou autres véhicules volants équivalents comme décrit et illustré en détail dans la présente demande. Le système est capable, par des moyens appropriés, de placer lesdits drones dans une position définie, de verrouiller les drones 12 dans la station une fois ladite position atteinte, d'extraire des batteries (ou des accumulateurs) usées et/ou vides, d'insérer les batteries pleines et de charger les batteries vides qui ont été extraites. De plus le système permet de charger, décharger des colis, graines, liquides de traitement ou tout autre chargement. La station est équipée d'un système de recharge de batteries intelligent optimisant la durée de vie des batteries et d'un robot programmable capable de manipuler tout type de charge-utile. Un système de coque/cage à batterie universel, facile à insérer/désinsérer, connecter/déconnecter rendant ainsi la manipulation des batteries possible par un robot.
La station selon la présente invention est notamment adaptable à plusieurs drones, et capable de manipuler tous types de charges utiles (liquides, solides etc.). Dans un mode d'exécution, la zone d'atterrissage 1 comprend de préférence un cercle 10 sur lequel sont fixés trois systèmes de verrouillage 11 illustrés dans la figure 1. Bien entendu, on peut prévoir un autre nombre de systèmes de verrouillage (p.ex. plus que trois). Chaque système 11 de verrouillage comprend par exemple des guides (illustrés sous forme de rouleaux) qui peuvent se déplacer et tenir les bras du drone. La figure 1 illustre la zone d'atterrissage 10 circulaire avec trois systèmes de verrouillage ouverts.
Comme illustré dans la figure 2, un drone 12 atterrit au centre du cercle 10 et sur ses bras 13, les systèmes 11 verrouillent les bras 13 pour tenir le drone. La position des systèmes de verrouillage 11 correspondant à la position des bras 13 du drone 12 qui est variable et s'adapte donc à plusieurs types de drones. De préférence, les systèmes de verrouillage 11 sont placés pour recevoir un type de drone (par exemple à six bras comme dans la figure 2) ou possédant moins de six bras ou plus de six bras. De préférence, on utilise trois systèmes de verrouillage
11 comme illustré.
La station est de préférence adaptable à plusieurs drones (par exemple à trois bras ou plus), l'espace sous le drone est laissé libre, le drone atterrit sur ses bras et est maintenu de façon stable en position, voir la figure 2 qui illustre la zone d'atterrissage circulaire avec un drone 12 verrouillé.
La zone d'atterrissage comprend des guides 14 sous forme de rouleaux (entourés dans la figure 3 qui illustre des guides pour atterrissage de précision) permettant de diriger le drone
12 dans la station et ainsi garantir une précision d'atterrissage au centre du système de verrouillage. Les guides 14 viennent "pincer" le bras du drone à tenir. Les guides 14 sont de préférence libres en rotation pour permettre l'ajustement de la position du drone lorsque les trois systèmes de verrouillage se ferment sur le bras du drone (figure 2).
Ce système permet une grande précision, (le GPS comprend une tolérance de plus ou moins 1 mètre réduit jusqu'à 5 centimètres) qui place le drone dans un position de référence qui est connue. Chacun des systèmes de verrouillage 11 comprend par exemple 4 rouleaux 14 assurant un glissement propre du drone 12 lorsqu'il est verrouillé, voir notamment les figures 4 et 5. Ces rouleaux 14 sont mobiles et peuvent se rapprocher les uns des autre pour tenir les bras du drone, voir les figures 1 , 2, 4 et 5. Dans la figure 4 (ou 1), ils sont "ouverts" soient éloignés les uns des autres tandis que dans les figures 2 et 5 ils sont "fermés" soit proches les uns des autres.
La figure 4 illustre les rouleaux 14 ouverts vus de profil et la figure 5 illustre les rouleaux fermés vus de dessus.
Le centre de la zone d'atterrissage est de préférence vide, cela permet de garder le passage libre pour le matériel embarqué (colis, caméra, outils de détection, etc...) comme illustré en figure 6 qui montre la zone d'atterrissage libre au centre.
En conséquence, le drone 12 peut transporter des charges utiles encombrantes et atterrir malgré tout sur la station.
Selon des modes d'exécution, la station est équipée de capteurs de détection de mouvement 15 pour stopper l'atterrissage ou le décollage en cas d'intrusion par un tiers dans la zone. La figure 7 illustre un tel capteur de mouvement 15.
Un avantage de cette caractéristique est une sécurité accrue autour de la station pour éviter un accident de personnes par exemple ou un endommagement du drone.
Dans des modes d'exécution, un dôme 16 peut entourer la station afin de maintenir les conditions de vol constante pendant la descente du drone 12. Le dôme 16 est de préférence équipé d'un toit rétractable 17 qui s'ouvre et se ferme uniquement pendant les phases d'atterrissage / décollage pour protéger le matériel des intempéries et par exemple d'influences extérieures comme du vent. La figure 8 illustre un schéma d'un dôme et d'un toit rétractable. Des avantages sont notamment la stabilisation des perturbations liées au vent pendant l'atterrissage, protection contre la pluie, protection contre vandalisme.
De préférence, la station coordonne les drones 12 pendant les phases d'approche et d'attente. Elle priorise les atterrissages des drones en fonction des états de vol et des états batterie de chaque drone et/ou UAV (Unmanned Aerial Vehicle) ou selon d'autres critères. Elle est donc de préférence associée à des moyens électroniques 76, voir figure 281, comme un ou plusieurs ordinateurs et des moyens de communication comme un réseau sans fil qui déterminent la position des drones et peut organiser un ordre d'atterrissage et/ou décollage et/ou d'autres actions de drones, à l'instar d'une tour de contrôle dans un aéroport. Différents critères peuvent être utilisés comme: l'état des batteries, l'urgence par rapport à une charge transportée ou à transporter, la météo et les conditions de l'environnement etc. Les drones communiquent de préférence en permanence avec ces moyens électroniques pour transmettre des informations d'état (par exemple la position du drone, l'état de charge des batteries etc.) et recevoir des commandes (par exemple déplacement, atterrissage, attente etc.). Cette gestion peut être automatisée et/ou programmée et/ou commandée par un opérateur par exemple en fonction de la mission du ou des drones et/ou de l'action à entreprendre. La gestion peut être mixte, soit partiellement automatisée, partiellement programmée et partiellement effectuée par un opérateur. La répartition de la gestion peut varier au cours du temps ou des circonstances: par exemple un opérateur peut "prendre la main" en cas de problème ou choisir des actions automatisées (par exemple pour un décollage ou atterrissage etc.) ou agir par télécommande.
Un avantage de cette réalisation est la centralisation des données de vol (état de la batterie, ...) de chaque drone et gestion du réseau d'UAV en communiquant avec tous les drones et véhicules concernés.
Dans des modes d'exécution de l'invention, le système de chargement des batteries est intelligent et permet une durée de vie plus long des batteries. A cet effet, le système optimise la charge notamment en rapport avec la température et l'état de la batterie. D'autres paramètres peuvent être mis en œuvre, par exemple l'âge de la batterie, le nombre de cycles de charge qu'elle a subi. Un avantage de cette façon de faire est une optimisation de la durée de vie de la batterie à l'aide d'un système de gestion intelligent.
Dans des modes d'exécution de l'invention illustrés dans la figure 9 qui montre une zone de stockage et de chargement des batteries, la zone de chargement des batteries est composée de « cartouche » 20 de batteries 21 entièrement modulable. Si le client veut augmenter la capacité de la station car plusieurs drones 12 doivent être réapprovisionné, il suffit d'ajouter une « cartouche » comprenant elle-même plusieurs batteries.
Un avantage de ces modes et la modularité totale du stockage des batteries 21, la possibilité d'avoir un nombre très imposant de batteries et de différents types, pour différents drones 12.
Les batteries 21 peuvent être fixées sur une coque/cage 22 formant un système d'attache universel comme illustré dans les figures 10 à 11 qui montrent des cages à batteries, des batteries, des supports fixes et un doigt de robot 31, la figure 12 qui montre un support fixe dans un drone avec batteries et cages et la figure 13 qui montre un stockage avec batteries et cages . Ce sont ces coques 22 qui sont placées dans le drone 12 et dans le stockage 20 batterie. Ces coques 22 permettent la fixation de batterie de différentes capacités disponibles sur le marché. Ce système universel, facile à insérer/désinsérer, connecter/déconnecter rend la manipulation des batteries 21 possible par un robot 30 par exemple (voir figure 16).
Un avantage de ce système est qu'il est adaptable sur tous les types de batteries, rend la manipulation possible par un robot.
Dans des modes d'exécution illustrés en figure 14 (qui montre des plaques 25 fixes de réception pour une coque 22 avec des connecteurs 26 sur le drone 12 pour le montage des batteries) par exemple, le verrouillage des coques est assuré par des guides et un système de verrouillage par ressort ainsi que par le frottement des connecteurs d'alimentation et par un clip qui appuie le guidage mâle de la coque sur le guidage femelle du module de réception de batterie positionné sous le drone. Un avantage de ce système adaptable à tous les types de batteries, contact de connexion d'alimentation simplifié et fiable.
Dans des modes d'exécution illustrés en figure 15 qui montre des cages à batteries compactes, un module 23 de réception batterie 21 est utilisé pour accueillir les coques dans les drones et dans l'espace de stockage et de chargement. Ces modules 23 sont une fois de plus adaptables à plusieurs types de drone.
Un avantage est la standardisation de la position de la batterie 21 des drones 12.
La figure 16 est une illustration générale d'un mode d'exécution de la station selon la présente invention comprenant les éléments décrits ci-dessus en référence aux figures précédentes. La station comprend notamment une zone d'atterrissage avec des cartouches de batteries 20, un drone 12 et le robot 30 qui est utilisé pour remplacer les batteries et charger/décharger le drone selon les principes de la présente invention. La référence 32 illustre schématiquement un véhicule utilisé pour porter la station. Ce véhicule peut être par exemple un camion, une remorque, un véhicule à chenilles, un char comme un char militaire etc. Le principe de cette construction s'applique à tous les modes d'exécution de la présente invention tels que décrits dans la présente demande.
Les figures 17 et 18 illustrent un autre mode d'exécution de l'invention avec une La zone d'atterrissage 1 qui comprend un cercle 10 sur lequel sont fixés quatre systèmes de verrouillage 11. Le drone 12 atterrit au centre du cercle 10 et sur ses bras 13, les systèmes 11 verrouillent les bras. La position des systèmes de verrouillage 11 correspondant à la position des bras du drone qui est variable et s'adapte donc à plusieurs types de drones. En fonction du nombre de bras des drones, il peut être préférable d'utiliser un système à quatre verrouillage 11 plutôt que trois comme décrit ci-dessus et illustré en figure 1 par exemple.
Les figures 19 à 23 illustrent un autre mode d'exécution des batteries 21 et de leur support. Les batteries sont fixées sur une coque/cage 22'. Ce sont ces coques qui sont placées dans le drone et dans le stockage batterie. Ces coques permettent la fixation de batterie de différentes capacités disponibles sur le marché. Ce système universel, facile à insérer/desinsérer, connecter/déconnecter rend la manipulation des batteries possible par un robot et de façon horizontale.
Spécifiquement, comme illustré dans la figure 19, ce système comprend une batterie 21 qui est montée dans une coque 22', cette dernière étant standard mais adaptée à la batterie 21. Les fils 27 connectent électriquement la batterie 21 aux contacts 27'. La figure 20 illustre des batteries 30 montées dans un drone 12.
La figure 21 illustre plus spécifiquement la coque 22' avec les fils 27 de contact à la batterie 21.
La figure 22 illustre les moyens utilisés sur le drone ou dans le système de stockage / charge pour recevoir la batterie 21 et sa coque 22'. Ces moyens comprennent un support 28 et des contacts 29' sur un support de contact 29 destinés à venir en contact avec les contacts 27' de la coque 22' (illustrés en figure 21). Le montage de la coque 22' sur le support 28 se fait par exemple par coulissement de gauche à droite dans la figure 22 et une fois le coulissement terminé les contacts 27' de la coque 22' sont en contact avec les contacts 29' du drone 12.
Afin de bloquer la coque 22' en position une fois montée (p.ex. par coulissement), la coque 22' comprend des moyens de verrouillage illustrés en figure 23. Ces moyens de verrouillage comprennent par exemple un clip en "L" 40 comprenant à une extrémité des rampes 41. Ces rampes 41 sont destinés à entre dans les ouvertures 28' du support 28 pour bloquer la coque 22' en position. Les rampes 41 sont maintenues dans les ouvertures 28' par des ressorts de pression 43. Pour retirer une coque 22' (et la batterie 21) du support 28, le robot 30 va appuyer sur le "L" 40 contre le ressort 42 ce qui va déplacer les rampes 41 dans les ouvertures 28'. Comme elles ont un plan incliné, le tout va remonter contre le ressort 43 et sortir des ouverture 28' ce qui libère le verrouillage et permet l'extraction de la coque 22' par coulissement (par exemple vers la gauche dans la figure 19).
Les figures 24A à 24D illustrent un autre mode d'exécution des moyens de blocage du drone 12. Dans ce mode, les moyens de blocage ne bloquent pas les bras du drone mais sont situés sous le drone et maintiennent et centrent le drone 12 par ses pieds et le verrouillent dans la bonne position. Ces moyens utilisent notamment deux plaques coulissantes 50 qui sont écartées l'une de l'autre lorsque le drone 12 atterrit et se rapprochent l'une de l'autre après atterrissage pour "pincer" les pieds 12' du drone 12. Les figures 24A et 24B illustrent les plaques 50 en position fermée et les figures 24C et 24D en position ouverte. Ces plaques 50 peuvent aussi être utilisée avec le mode d'exécution de la figure 1 (par exemple) de la station 1 et former une alternative ou un complément aux moyens de blocage 11 des modes d'exécution. Elles sont déplacées latéralement par exemple au moyen d' actionneurs et/ou de glissières et/ou de vis sans fin.
Des éléments sont de préférence ajoutés sur le drone pour permettre le verrouillage et l'amarrage complet, par exemple des supports ou attaches appropriés pour leur pincement par les plaques 50.
Ce système peut être utilisé pour des drones multicoptères avec des bras trop courts ou inaccessibles, mais également pour d'autre types de drones VTOL (ex. ailes fixes ou hélicoptères) et d'autre UAV.
Les figures 25 et 26 illustrent des moyens de centrage du drone. Ils comprennent notamment une barre de centrage 51 montée sur un actionneur 52 pouvant la déplacer vers la droite dans la figure 26. Comme la station illustrée en figure 25 en comporte trois répartis à 120° (par exemple), le déplacement des barres 51 vers le centre de la station va avoir pour effet de centrer le drone qui est posé.
Ces moyens de centrage sont utilisables dans tous les modes d'exécution de l'invention. Dans la figure 25, c'est le mode d'exécution des figures 27A à 27F qui est illustré avec les rouleaux 64, les tirants 61 et les actionneurs 62.
Les figures 25, 27A à 27F illustrent un mode d'exécution d'une station selon la présente invention. Cette station a pour caractéristique notamment une élévation et descente automatique du niveau de la zone d'atterrissage 1, à savoir du cercle 10, pour l'atterrissage et le décollage d'un drone par exemple. Les systèmes de verrouillage/amarrage 60 (par exemple sous forme de rouleaux) se ferment et corrigent la position du drone lorsque la zone d'atterrissage descend et s'ouvrent lorsque la zone d'atterrissage monte afin de libérer le drone pour le décollage. Les figures 27A à 27C illustrent le système à l'état fermé lorsque la zone d'atterrissage 1 est en position basse: dans cette position, le drone 12 est maintenu par des moyens de verrouillage 60 selon les principes de la présente invention. Les figures 25, 27D à 27F illustrent la zone d'atterrissage 1 en position haute, soit ouverte: dans cette position le drone 12 n'est plus maintenu et peut décoller ou atterrir. Le passage de la position haute à la position basse et inversement est réalisé par des actionneurs, comme des vérins comme illustré (on a représenté trois systèmes de verrouillage 60, mais il peut y en avoir plus). Les moyens de verrouillage 60 peuvent être actionnés directement par le mouvement de la zone d'atterrissage par exemple par des tirants 61 qui font déplacer des rouleaux 64 des moyens de verrouillage 60 d'une position ouverte (Figure 27F) à une position fermée (figure 27C). Alternativement, on peut faire appel à une commande indépendante des moyens de verrouillage 60 qui ne dépend pas directement de la position du cercle 10. La flèche des figures 27B et 27E illustrent le mouvement des moyens de verrouillage. Le mouvement vertical de la zone 1 peut être réalisé par exemple par des actionneurs 62 mécaniques, fluidiques, avec un guidage (par exemple sur des glissières) ou non. Chacun des systèmes de verrouillage 60 comprend par exemple trois rouleaux 64 assurant un glissement propre du drone 12 lorsqu'il est verrouillé, voir notamment les figures 27A, B, D, E. Ces rouleaux 64 sont mobiles et peuvent se basculer pour tenir les bras du drone, voir les figures 27C et 27F. Dans les figures 27D, E et F, ils sont "ouverts" soient éloignés les uns des autres tandis que dans les figures 27A, B et C ils sont "fermés" soit proches les uns des autres et maintiennent le drone (figure 27B).
Les figures 28A à 28K illustrent des modes d'exécution d'une zone d'atterrissage 1 dont le niveau (ou "l'assiette") par rapport au terrain est contrôlé, de préférence automatiquement, et peut être modifié comme illustré dans les figures (penché en avant, en arrière, à droite ou à gauche etc., voir les figures 28A à 28H). Une telle zone 1 est par exemple utile si le système est monté sur un véhicule 32 qui se déplace sur un terrain qui n'est pas plat. Il est ainsi possible de corriger la position de la zone 1 (cercle 10) afin qu'elle reste en permanence horizontale ou essentiellement horizontale (ou dans une autre position désirée) indépendamment de la position et de l'orientation du véhicule porteur 32. Le réglage peut se faire en statique (véhicule 32 arrêté) ou dynamique (véhicule 32 en mouvement). Le réglage peut se faire manuellement ou automatiquement. Les moyens mis en œuvre sont notamment deux supports 70 de la zone (de préférence avec des amortisseurs 71) liés à des moteurs 72 et un support 73 attaché à un point fixe 74 au travers d'une articulation 75. Comme on le voit sur ces figures, cette construction permet de déplacer la zone d'atterrissage dans plusieurs directions relativement au support. Les figures 28J et 28K montrent de détails de construction du système (support 70, amortisseur 71 et moteur 72). Ces supports 70 réglables sont aussi visibles dans les figures 1 et 6 et peuvent être à réglage manuel ou automatique (par exemple avec un vérin commandé). Des amortisseurs peuvent être présents ou non. Un point fixe et une articulation similaires à ceux des figures 28A à 28K sont également présents de préférence dans le mode d'exécution des figures 1 à 6.
Pour le réglage, on fait appel à des moyens connus pour déterminer la position horizontale ou celle désirée (par exemple des capteurs) et la commande peut se faire par exemple par des moyens électroniques (ordinateur, calculateur etc.), par exemple placés dans un boitier (de préférence étanche).
Ces moyens électroniques et leur boîtier sont par exemple illustrés dans la figure 281, référence 76. Bien que non spécifiquement illustrés dans toutes les figures, ces moyens 76 sont de préférence présents dans tous les modes d'exécution de la présente invention. De façon plus générale, tous les éléments de la station peuvent être commandés (position, déplacement etc.) par ces moyens électroniques, ordinateurs, calculateurs, capteurs appropriés afin de permettre un fonctionnement télécommandé, semi-automatique ou automatique de la station et de ces parties et éléments (vérins, actionneurs etc.). Des moyens de transmission des commandes, des informations (data, valeurs mesurées etc.) appropriés sont mis en œuvre: câbles, transmission par ondes etc. Le robot 30 est par exemple formé d'un bras comprenant plusieurs degrés de liberté en rotation et permet des mouvements dits de "pick and place": saisir une batterie, l'extraire de son support (sur le drone 12 ou dans le réservoir 20) et la replacer à sa destination prévue (par exemple dans le réservoir 20 pour sa recharge si elle vient du drone 12, ou l'inverse si elle vient du réservoir 20).
Les figures 29 à 33 illustrent un mode d'exécution des moyens pour remplir le réservoir d'un drone, par exemple avec un liquide. Ces moyens illustrés en figure 29 comprennent notamment un réservoir de station 80 avec un bouchon de remplissage 81, un mélangeur 82 (qui permet de maintenir du mouvement dans le liquide si nécessaire) et une pompe 83. On voit également dans cette figure des roulettes 84 qui permettent de déplacer le réservoir pour le remplir. Les moyens comprennent en outre un tuyau 85 branché à une extrémité à la pompe 83 et à une autre extrémité à un pistolet 86. Sur la figure 29, on aperçoit également le robot 30 qui sert à déplacer les batteries et est aussi utiliser pour manipuler le pistolet 86 comme décrit ci-dessous. Le réservoir 80 se trouve de préférence dans la partie inférieure l' de la station 1 (voir figure 30) et cette partie comprend par exemple des portes 88, 88' qui permettent de faire sortir le réservoir 80 sur ses roulettes 84 pour le remplir.
Sur la figure 30, on voit également le tuyau 85 qui sort d'une fente 87 de la partie inférieure 1' de la station 1. Dans cette figure 30, un drone 12 a atterri pour un ravitaillement en liquide (comme charge) et est tenu en position comme décrit ci-dessus selon les principes de la présente invention.
Dans la figure 31, le remplissage d'un réservoir 90 d'un drone 12 est illustré. A cet effet, le pistolet 86 est amené par le robot 30 et introduit dans la goulotte 91 du réservoir 90 et le liquide du réservoir de la station 80 introduit dans le réservoir 90 du drone 12.
La figure 32 illustre la station 1 de la figure 30 sur laquelle on a ajouté un récupérateur 92 de liquides qui est utile pour récupérer des liquides qui s'écouleraient lors du remplissage. Le récupérateur 92 de préférence entoure le drone et rend étanche la zone de chargement.
La figure 33 illustre en détail un mode d'exécution du pistolet 86 de remplissage de la station 1. Le pistolet 86 est maintenu dans un support 93 qui permet sa manipulation par le robot 30 et le support comprend en outre des moyens d'actionnement. Ces moyens sont par exemple un moteur 94 lié à une vis sans fin 95 qui agit sur un moyen d'actionnement 96 articulé sur un axe 97. La rotation de la vis 95 va faire basculer le moyen d'actionnement 96 vers la gauche ou la droite (en fonction du sens de rotation de la vis) et le moyen d'actionnement par son basculement vers la droite (dans la figure 33) va appuyer sur la gâchette 98 du pistolet 86 et permettre l'écoulement du liquide dans le réservoir 90 du drone 12. Une rotation dans l'autre sens va relâcher la gâchette et interrompre l'alimentation. Ces moyens permettent donc un fonctionnement entièrement automatique: l'amenée du pistolet 86 au réservoir 90 et son introduction dans la goulotte 91 par robot, l'appui sur la gâchette 98 pour permettre le passage du liquide (mis en pression par la pompe 83 du réservoir 80 (voir figure 29), et une fois le réservoir 90 du drone 12 remplit, l'arrêt de l'alimentation en liquide et le retrait du pistolet 86 par le robot 30 (et son rangement dans un endroit prédéterminé).
Les modes d'exécution décrits le sont à titre d'exemples illustratifs et ne doivent pas être considérés comme limitatifs. D'autres modes d'exécution peuvent faire appel à des moyens équivalents à ceux décrits par exemple. Les modes d'exécution peuvent également être combinés entre eux en fonction des circonstances, ou des moyens utilisés dans un mode peuvent être utilisés dans un autre mode. Par exemple, de nombreux modes d'exécution mentionnent l'utilisation d'un drone mais le principe de la présente invention peut s'appliquer à d'autres objets volants équivalents par exemple un hélicoptère et d'autres UAV qui permettent un décollage et atterrissage sur la station décrite et illustrée dans la présente demande.
Les matières utilisées pour fabriquer les parties de la présente invention sont toutes matières appropriées: métal, matières synthétiques ou combinaisons de matières. Le tout est de préférence géré par des moyens informatiques comme un ou plusieurs calculateurs, des moyens de transmission de l'information et des commandes par fil ou sans fil (Wifi, Bluetooth® etc.). Le système par exemple tel qu'illustré en figure 16 dans tous ses modes d'exécution peut être monté sur un véhicule 32 (par exemple un véhicule tous-terrains) ou une remorque. L'usage du système peut être militaire et/ou civil. On peut aussi envisager un système avec plusieurs stations telles que décrites dans la présente demande, identiques ou différentes (par exemple selon différents modes d'exécution).

Claims

Revendications
1. Station (1) de logistique pour véhicules électriques volant, comme un drone, avec au moins une batterie, ladite station étant adaptable à des véhicules volant (12) différents et comprenant au moins une zone d'atterrissage (10) ayant des moyens de maintien (11,14, 50, 60) du véhicule volant, un robot (30) destiné à échanger les batteries (21) du véhicule volant et/ou une charge du véhicule volant et un réservoir/chargeur (20) de batteries.
2. Station selon la revendication 1, ladite station comprenant un cercle (10) pour supporter le véhicule volant dans la zone d'atterrissage et de décollage.
3. Station selon la revendication 1 ou 2, dans laquelle les moyens de maintien comprennent au moins trois systèmes de verrouillage (11, 14, 60).
4. Station selon l'une des revendications, dans laquelle les moyens de maintien comprennent deux plaques (50) mobiles l'une par rapport à l'autre.
5. Station selon l'une des revendications précédentes, ledit cercle et les moyens de maintien étant fixes dans la station ou pouvant se déplacer selon un ou plusieurs axes actionnés par des moyens d'orientation (62, 70-74).
6. Station selon la revendication 4, dans laquelle lesdits moyens d'orientation comprennent des actionneurs (62) ou des moteurs (72) couplés à des supports (70).
7. Station selon l'une des revendications précédentes, dans laquelle lesdits moyens de verrouillage (60,64) sont déplacés en fonction de la position du cercle.
8. Station selon la revendication précédente, dans laquelle lorsque le cercle (10) est en une position haute, lesdits moyens de verrouillage (60,64) sont en une position ouverte et lorsque le cercle (10) est en une position basse, lesdits moyens de verrouillage (60,64) sont en une position verrouillée.
9. Station selon l'une des revendications précédentes comprenant au moins une zone (20) de stockage et chargement de batteries (21).
10. Station selon l'une des revendications précédentes, dans laquelle les batteries sont montées dans une cage (22, 22') avec un système d'attache universel.
11. Station selon l'une des revendications précédentes, comprenant un robot (30) avec au moins un doigt (31) permettant de déplacer les batteries dans la station.
12. Station selon l'une des revendications précédentes comprenant des moyens de centrage (51,52) du véhicule volant (12).
13. Station selon l'une des revendications précédentes, ladite station comprenant un capteur (15) de détection de mouvement.
14. Station selon l'une des revendications précédentes, comprenant un dôme (16) pour maintenir les conditions de vol constantes lors du décollage et atterrissage.
15. Station selon l'une des revendications précédentes, dans laquelle le verrouillage des batteries est assuré par un guide (28) et un système de verrouillage par ressort (42,43) et par un clip (40) coopérant avec le guide (28).
16. Station selon l'une des revendications précédentes, ladite station étant montée sur un véhicule (32).
17. Station selon l'une des revendications précédentes, ladite station comprenant au moins un réservoir de station (80).
18. Station selon la revendication précédente, dans laquelle le réservoir de station comprend au moins un mélangeur (82) et une pompe (83) associée à un pistolet (86).
19. Station selon l'une des revendications 17 ou 18, ladite station comprenant un récupérateur (92).
20. Station selon l'une des revendications précédentes, combinée avec au moins un drone (12).
19
EP21786261.4A 2020-09-16 2021-09-15 Station logistique pour drones Pending EP4214122A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IB2020058619 2020-09-16
PCT/IB2021/058399 WO2022058903A1 (fr) 2020-09-16 2021-09-15 Station logistique pour drones

Publications (1)

Publication Number Publication Date
EP4214122A1 true EP4214122A1 (fr) 2023-07-26

Family

ID=78073962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21786261.4A Pending EP4214122A1 (fr) 2020-09-16 2021-09-15 Station logistique pour drones

Country Status (5)

Country Link
US (1) US20230348121A1 (fr)
EP (1) EP4214122A1 (fr)
CN (1) CN116348379A (fr)
IL (1) IL301398A (fr)
WO (1) WO2022058903A1 (fr)

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123020A (en) * 1976-02-23 1978-10-31 Kazimierz Korsak VTOL launching and retrieval systems
US5039034A (en) * 1987-06-01 1991-08-13 Indal Technologies Inc. Apparatus for capturing, securing and traversing remotely piloted vehicles and methods therefor
US10443139B2 (en) * 2003-09-05 2019-10-15 Brilliant Light Power, Inc. Electrical power generation systems and methods regarding same
US8955800B2 (en) * 2011-06-29 2015-02-17 Aerovel Corporation Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft
US9387940B2 (en) * 2010-11-09 2016-07-12 Colorado Seminary Which Owns And Operates The University Of Denver Intelligent self-leveling docking system
US9513371B2 (en) * 2013-02-28 2016-12-06 Identified Technologies Corporation Ground survey and obstacle detection system
EP3878319A1 (fr) * 2014-01-02 2021-09-15 Valqari Holdings, Llc Aire d'atterrissage pour livraison de véhicule aérien sans pilote
US20170107001A1 (en) * 2014-03-23 2017-04-20 Robert Barnes Aircraft landing emergency carriage
US9561871B2 (en) * 2014-05-07 2017-02-07 Deere & Company UAV docking system and method
US9412279B2 (en) * 2014-05-20 2016-08-09 Verizon Patent And Licensing Inc. Unmanned aerial vehicle network-based recharging
US9499265B2 (en) * 2014-07-02 2016-11-22 Skycatch, Inc. Unmanned aerial vehicle landing interface
US10011352B1 (en) * 2014-09-12 2018-07-03 Working Drones, Inc. System, mobile base station and umbilical cabling and tethering (UCAT) assist system
EP3782913A1 (fr) * 2014-11-19 2021-02-24 SZ DJI Technology Co., Ltd. Mécanisme de positionnement, socle d'accueil d'engin volant sans pilote embarqué l'utilisant et procédé de réapprovisionnement d'engin volant sans pilote embarqué
US9527605B1 (en) * 2014-12-18 2016-12-27 Amazon Technologies, Inc. Multi-use unmanned aerial vehicle docking station
US9387928B1 (en) * 2014-12-18 2016-07-12 Amazon Technologies, Inc. Multi-use UAV docking station systems and methods
IL237130A0 (en) * 2015-02-05 2015-11-30 Ran Krauss Landing and loading system for an unmanned aircraft
WO2016130847A1 (fr) * 2015-02-11 2016-08-18 Aerovironment, Inc. Système de lancement et d'atterrissage de nacelle pour véhicules aériens sans pilote (uav) à atterrissage et décollage verticaux (vtol)
US10287034B2 (en) * 2015-03-02 2019-05-14 American Robotics, Inc. Drone aircraft landing and docking systems
WO2016172962A1 (fr) * 2015-04-30 2016-11-03 SZ DJI Technology Co., Ltd. Système et procédé d'atterrissage d'une plateforme mobile par l'intermédiaire d'un champ magnétique
US10633115B2 (en) * 2015-08-17 2020-04-28 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
AU2016321289B2 (en) * 2015-09-11 2020-12-24 American Robotics, Inc. Drone aircraft landing and docking systems
US20190002127A1 (en) * 2015-12-21 2019-01-03 Airscort Ltd. Autonomous docking station for drones
US10488512B1 (en) * 2016-04-08 2019-11-26 Olaeris, Inc. Landing guidance for remotely operated aerial vehicles using crossed radar beams
US10007272B2 (en) * 2016-08-04 2018-06-26 Echostar Technologies International Corporation Midair tethering of an unmanned aerial vehicle with a docking station
JP2020505268A (ja) * 2017-01-19 2020-02-20 ブイトラス,インク. 充電および交換を含む無人航空機の自動バッテリ保守、ならびに関連するシステムおよび方法
US11111033B1 (en) * 2017-05-12 2021-09-07 Phirst Technologies, Llc Unmanned aerial vehicle recharging system
US11279481B2 (en) * 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles
GB201812471D0 (en) * 2017-09-13 2018-09-12 Flirtey Holdings Inc Positioning mechanism
US11609581B2 (en) * 2017-11-29 2023-03-21 Ford Global Technologies, Llc UAV landing systems and methods
NO344274B1 (en) * 2018-01-17 2019-10-21 Griff Aviation As An unmanned aerial vehicle having rotating wing lift generating means, advantageously a multicopter with a unitary main fuselage and foldable rotor arms.
JP7266902B2 (ja) * 2018-02-05 2023-05-01 エイチ3 ダイナミックス ホールディングス プライベート リミテッド 無人機用の改良された充電を備えた着陸プラットフォーム
US11148805B2 (en) * 2018-04-10 2021-10-19 Government Of The United States, As Represented By The Secretary Of The Army Enclosure for an unmanned aerial system
FR3080838B1 (fr) * 2018-05-02 2021-10-08 Octopus Robots Dispositif mobile de support de drones
CN110673625B (zh) * 2018-07-02 2023-05-23 中光电智能机器人股份有限公司 无人机的监控系统、基地站及控制方法
US10919625B2 (en) * 2018-07-24 2021-02-16 The Boeing Company Reconfigurable unmanned aerial vehicles for subsurface sensor deployment
FR3086090B1 (fr) 2018-09-17 2022-01-14 Commissariat Energie Atomique Methode de traitement confidentiel de logs d'un systeme d'information
CN109502039A (zh) * 2018-11-30 2019-03-22 山东大学 一种车载无人机停机箱设备、自动更换电池方法和系统
US11498440B2 (en) * 2018-12-26 2022-11-15 Michael Steward Evans Vehicle traffic and charge management system using autonomous cluster networks of vehicle charging stations
CN111483386A (zh) * 2019-01-28 2020-08-04 中光电智能机器人股份有限公司 监控系统、基地站及其控制方法
US11636771B2 (en) * 2019-09-08 2023-04-25 Deere & Company Stackable housing containers and related systems
US11597291B1 (en) * 2019-10-17 2023-03-07 Dell Products L.P. Transferring power between a drone and a device during delivery
CN211139697U (zh) * 2019-11-29 2020-07-31 北京二郎神科技有限公司 无人机机库
US11958602B2 (en) * 2020-07-25 2024-04-16 Jianfei Ye Integrated engineering system that combines multiple drones and an electro-mechanical drone transportation system to achieve a new method of aviation transportation
CN215476898U (zh) * 2021-06-07 2022-01-11 上海峰飞航空科技有限公司 一种无人机运输箱
US11708000B2 (en) * 2021-10-31 2023-07-25 Beta Air, Llc System and method for recharging an electric vehicle
US20230348099A1 (en) * 2022-04-27 2023-11-02 Skydio, Inc. Base Stations For Unmanned Aerial Vehicles (UAVs)
US11685274B1 (en) * 2022-08-16 2023-06-27 Beta Air, Llc Connector for charging an electric aircraft and a method for its use

Also Published As

Publication number Publication date
IL301398A (en) 2023-05-01
CN116348379A (zh) 2023-06-27
WO2022058903A1 (fr) 2022-03-24
US20230348121A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11840152B2 (en) Survey migration system for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
US11851209B2 (en) Pod cover system for a vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)
US20210284355A1 (en) Pod operating system for a vertical take-off and landing (vtol) unmanned aerial vehicle (uav)
US9873524B2 (en) Power and communication interface for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
EP3177528B1 (fr) Plateforme d'atterrissage pour un véhicule aérien sans pilote
EP3210658B1 (fr) Drone muni de supports de drone relevables
US8899903B1 (en) Vehicle base station
EP3138172B1 (fr) Système de gestion de batterie
US20170225799A1 (en) Composition and process for applying hydrophobic coating to fibrous substrates
EP3241747A1 (fr) Dispositif de reception d'un drone et systeme de repartition de drones associe
EP3476733B1 (fr) Drone d'activites industrielles
US10613536B1 (en) Distributed automated mobile vehicle routing
WO2016198809A1 (fr) Dispositif de largage de drones, procédé de largage
FR3088620A1 (fr) Station d’accueil pour drone volant, notamment pour drone de livraison de colis
EP4214122A1 (fr) Station logistique pour drones
EP3891068B1 (fr) Système de guidage pour l'atterrissage d'un drone
EP3056435B1 (fr) Dispositif de maintien et libération d'un engin téléopéré
WO2022171934A1 (fr) Système d'atterrissage pour drone, conteneur et drone comprenant ledit système d'atterrissage
FR3141657A1 (fr) Coffre de stockage d’énergie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)