EP4211387A1 - Bottom wall of a liquefied gas storage tank - Google Patents

Bottom wall of a liquefied gas storage tank

Info

Publication number
EP4211387A1
EP4211387A1 EP21782788.0A EP21782788A EP4211387A1 EP 4211387 A1 EP4211387 A1 EP 4211387A1 EP 21782788 A EP21782788 A EP 21782788A EP 4211387 A1 EP4211387 A1 EP 4211387A1
Authority
EP
European Patent Office
Prior art keywords
blocks
polymer foam
density
heat
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21782788.0A
Other languages
German (de)
French (fr)
Inventor
Camille GOURMELEN
Thomas KRUMNOW
Erwan MICHAUT
Fabien PESQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4211387A1 publication Critical patent/EP4211387A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms

Definitions

  • the present invention relates to the field of tanks capable of containing a liquefied gas. More particularly, the invention relates to a bottom wall of a tank, for example of a gravity platform, for storing a liquefied gas, such as for example liquefied natural gas (LNG).
  • a liquefied gas such as for example liquefied natural gas (LNG).
  • Gravity platforms are generally an offshore structure used in the context of oil or gas exploitation. These works often have a concrete base structure, we then speak of SGB (concrete gravity structure) or GBS (from the English “Gravity Based Structure”); we also speak of SGS (Steel Gravity Structure) for a base structure made of steel, to which the invention also applies.
  • SGB concrete gravity structure
  • GBS from the English “Gravity Based Structure”
  • SGS Step Gravity Structure
  • Gravity platforms can fulfill the functions of a dyke, storage, reception platform for a liquefaction plant and loading dock in the context of the exploitation of a liquefied gas such as for example liquefied natural gas. or ethane.
  • a liquefied gas such as for example liquefied natural gas. or ethane.
  • the storage tanks of gravity platforms deserve to be optimized for the storage of liquefied gas. On the one hand, they do not offer sufficient thermal insulation between the walls of the tank and the concrete base structure of the gravity platform to efficiently store a liquefied gas. On the other hand, gravity platform tanks have a much larger volume than ship's tanks and offer only limited or even insufficient resistance to operating loads and accidental loads involved in loading or unloading. from the tank with liquefied gas.
  • the present invention aims to overcome at least one of the aforementioned drawbacks and also to lead to other advantages by proposing a new type of wall for a tank for storing and/or transporting liquefied gas, in particular for a gravity platform. .
  • a second objective of the invention is to obtain optimum efficiency in pumping the liquefied gas from the bottom of the reservoir by minimizing the level of residual liquefied gas.
  • a third objective of the invention is to minimize manufacturing costs while limiting the complexity of manufacturing such a tank.
  • the present invention thus proposes a tank for transporting and/or storing a liquefied gas, comprising a plurality of walls which each comprise, in a direction of thickness of the wall, a thermally insulating barrier and at least one sealed membrane resting against the thermally insulating barrier and intended to be in contact with the liquefied gas inside the tank, the thermally insulating barrier comprising a plurality of heat-insulating self-supporting panels which each comprise a block of polymer foam and at least one plate, a wall bottom of the plurality of walls comprises at least a first portion at least partially surrounding a second portion of the bottom wall, the second portion comprising at least one sump.
  • the polymer foam blocks of the second portion have a higher density than a density of the polymer foam blocks of the first portion.
  • the entourage of the second portion of the bottom wall at least partly by the first portion of the bottom wall is seen in projection in a plane perpendicular to the direction of thickness of the bottom wall.
  • the tank for transporting and/or storing a liquefied gas comprises a bottom wall which comprises at least one sump.
  • the sump is a housing intended to accommodate a suction member of a pump to suck the liquefied gas contained in the tank.
  • the sump is therefore a portion of the bottom wall, and therefore of the vessel, which is particularly stressed during vessel operation.
  • the insulated self-supporting panel can support the weight of an object placed above it, for example liquefied natural gas, without significantly deforming and within the limits of its mechanical resistance.
  • the first portion of the bottom wall develops along a main extension plane perpendicular to the thickness direction of the bottom wall.
  • the second portion of the bottom wall comprises a first part which extends in a main plane of extension perpendicular to the direction of thickness of the bottom wall, and a second part which extends from an outline of the first part to the first portion.
  • the sump has the shape of a cylinder with a square base or a circular section.
  • the second portion of the bottom wall comprises a plurality of sumps.
  • the bottom wall comprises a plurality of second portions.
  • the plurality of walls comprises a top wall and side walls connecting the bottom wall to the top wall, a density of the polymer foam blocks of the heat-insulating self-supporting panels decreasing from the bottom wall to the top wall .
  • the density of the polymer foam blocks of the heat-insulating self-supporting panels of the first portion is substantially equal to the density of the polymer foam blocks of the heat-insulating self-supporting panels of the side walls and is substantially equal to the density of the polymer foam blocks of the heat-insulating self-supporting panels of the upper wall. It should be understood here, as well as in all that follows, by “substantially”, that the manufacturing tolerances, as well as any assembly tolerances, must be taken into account.
  • the tank comprises a first zone formed by the bottom wall and by a lower part of the side walls, as well as a second zone formed by the upper wall and by an upper part of the side walls, and in which the density of the polymer foam blocks of the heat-insulating self-supporting panels of the first zone is greater than the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second zone.
  • the tank comprises at least a third zone interposed between the first zone and the second zone and in which the density of the blocks of polymer foam of the heat-insulating self-supporting panels of the third zone is between the density of the blocks of polymer foam of the self-supporting heat-insulating panels of the first zone and the density of blocks of polymer foam of the self-supporting heat-insulating panels of the second zone.
  • the tank comprises a plurality of third zones, the third zones being stacked in a direction going from the bottom wall to the upper wall, the polymer foam blocks of the heat-insulating self-supporting panels of a third zone of the plurality of third zones having a substantially identical density, and the density of the polymer foam blocks of the heat-insulating self-supporting panels of the plurality of third zones decreasing in the direction going from the bottom wall to the top wall.
  • the tank comprises at least two third zones which are stacked in a direction going from the bottom wall to the top wall.
  • the tank can comprise as many third zones as necessary, for example to accommodate the different tank sizes.
  • the zone tank can comprise four, five or six third zones.
  • the density of the polymer foam blocks of the heat-insulating self-supporting panels is homogeneous within the same third zone and the density of the Polymer foam blocks of self-supporting heat-insulating panels is different from a third zone to another third zone.
  • the tank comprises three third zones.
  • the tank comprises three zones: the first zone, the second zone and the three third zones.
  • the density of the polymer foam blocks of the heat-insulating self-porous panels of the third zone closest to the bottom wall is greater than the density of the polymer foam blocks of the heat-insulating self-porring panels of the third zone la closer to the upper wall.
  • the waterproof membrane is a primary waterproof membrane and the thermally insulating barrier is a primary thermally insulating barrier, in which the bottom wall comprises a secondary waterproof membrane and a secondary thermally insulating barrier which comprises a plurality of blocks heat-insulating self-poring units comprising blocks of polymer foam and at least one plate, the secondary waterproof membrane rests against the secondary thermally insulating barrier, the primary thermally insulating barrier rests against the secondary waterproof membrane and the primary waterproof membrane rests against the primary thermally insulating barrier.
  • self-porring block that the heat-insulating self-porring block can support the weight of an object placed above it, for example liquefied natural gas, without significantly deforming er within the limit of its mechanical resistance.
  • the blocks of polymer foam of the heat-insulating self-porous blocks of the first portion, of the side walls and of the upper wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the first portion.
  • the polymer foam blocks and the polymer foam blocks within the same wall or the same portion have a substantially equal density
  • st than the polymer foam blocks of the first portion, of the side walls and of the upper wall have a substantially equal density
  • the polymer foam blocks of the first portion, of the side walls and of the upper wall have a substantially equal density
  • the blocks of polymer foam of the heat-insulating self-porous blocks of the second portion of the bottom wall have a higher density than the blocks of polymer foam of the heat-insulating self-porring blocks of the first portion of the bottom wall.
  • the blocks of polymer foam of the heat-insulating self-porous blocks of the first portion of the bottom wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the first portion of the wall background.
  • the blocks of polymer foam of the heat-insulating self-porous blocks of the second portion of the bottom wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the second portion of the wall background.
  • the density of the polymer foam blocks of the heat-insulating self-porous blocks of the first portion is substantially equal to the density of the polymer foam blocks of the heat-insulating self-porring blocks of the side walls and is substantially equal to the density of the paving blocks of polymer foam from the heat-insulating self-porous blocks of the upper wall.
  • the density of the polymer foam blocks of the heat-insulating self-porous panels of the first portion of the bottom wall is less than or equal to 110 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second portion of the bottom wall is greater than or equal to 115 kg/m 3 .
  • the plurality of walls comprises a top wall and side walls connecting the bottom wall to the top wall, and in which the top wall and the side walls each comprise a secondary waterproof membrane and a secondary thermally insulating barrier which comprises a plurality of heat-insulating self-supporting blocks comprising blocks of polymer foam and at least one plate, the secondary waterproof membrane rests against the secondary thermally insulating barrier, the primary thermally insulating barrier rests against the secondary waterproof membrane and the primary waterproof membrane rests against the primary thermally insulating barrier, a density of the polymer foam blocks of the heat-insulating self-supporting blocks decreasing from the bottom wall to the upper wall.
  • the tank comprises a first zone formed by the bottom wall and by a lower part of the side walls, as well as a second zone formed by the upper wall and by an upper part of the side walls, and in which the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first zone is greater than the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second zone.
  • the tank comprises at least a third zone interposed between the first zone and the second zone and in which the density of the blocks of polymer foam of the heat-insulating self-supporting blocks of the third zone is between the density of the blocks of polymer foam of the insulated self-supporting blocks of the first zone and the density of the polymer foam blocks of the insulated self-supporting blocks of the second zone.
  • the tank comprises a plurality of third zones, the third zones being stacked in a direction going from the bottom wall to the upper wall, the polymer foam blocks of the heat-insulating self-supporting blocks of a third zone of the plurality of third zones having a density substantially identical, and the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the plurality of third zones decreasing in the direction going from the bottom wall to the top wall.
  • the tank comprises at least two third zones which are stacked in a direction going from the bottom wall to the top wall.
  • the tank can comprise as many third zones as necessary, for example to accommodate the different tank sizes.
  • the zone tank can comprise four, five or six third zones.
  • the density of the polymer foam blocks of the self-supporting heat-insulating blocks is homogeneous within the same third zone and the density of the polymer foam blocks of the self-supporting heat-insulating blocks is different from one third zone to another third zone. .
  • the tank comprises three third zones.
  • the tank comprises three zones: the first zone, the second zone and the three third zones.
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone closest to the bottom wall is greater than the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone la closer to the upper wall.
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first portion of the bottom wall is less than or equal to 110 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second portion of the bottom wall is greater than or equal to 115 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first zone is greater than 70 kg/m 3 .
  • the density of polymer foam blocks of the heat-insulating self-supporting panels of the first zone is greater than 70 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second zone is less than 70 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second zone is less than 70 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting panels of the third zone is between 65 kg/m 3 and 90 kg/m 3 .
  • the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone is between 65 kg/m 3 and 90 kg/m 3 .
  • At least one insulated self-supporting panel comprises a polymer foam block composed of rigid polyurethane and a wood plywood plate surmounting the polymer foam block. It is understood that one or more or all of the insulated self-supporting panels comprise a polymer foam block composed of rigid polyurethane and a wood plywood plate on which the polymer foam block rests.
  • At least one heat-insulating self-supporting block comprises a polymer foam pad composed of rigid polyurethane and a wooden plywood plate surmounting the polymer foam pad. It is understood that one or more or all of the heat-insulating self-supporting blocks comprise a polymer foam pad composed of rigid polyurethane and a wood plywood panel on which the polymer foam pad rests.
  • the invention also relates to a gravity platform, in particular for the storage of a liquefied gas, comprising a storage tank for a liquefied gas according to one or more preceding characteristics and a suction member of a pump configured to discharge the liquefied gas contained inside the tank from the sump.
  • the gravity platform comprises a loading and/or unloading tower equipped with at least one pumping device which opens into the sump.
  • the tank comprises a supporting structure of the tank, the supporting structure being made of concrete.
  • the invention also proposes a transfer system for a liquefied gas, the system comprising a gravity platform according to one or more preceding characteristics, insulated pipes arranged so as to connect the tank installed in the supporting structure of the gravity platform to a ship and a pump to drive a flow of liquefied gas product through the insulated pipes from the tank of the gravity platform to the ship.
  • the invention further offers a method for loading or unloading a gravity platform according to one or more of the preceding characteristics, in which a liquefied gas is routed through insulated pipes from the tank of a gravity platform to a ship.
  • Figure 1 is a schematic perspective view of a liquefied gas storage tank for a gravity platform comprising a bottom wall according to the invention
  • Figure 2 is a schematic perspective view of a section along a transverse and vertical plane of the tank of Figure 1;
  • Figure 3 is a schematic view of a structure of a wall of the vessel of Figure 1, in a thickness direction of the wall, in a first embodiment;
  • FIG. 4 is a schematic view of a sump of the bottom wall of figure 1 according to a vertical cross-sectional plane;
  • FIG. 5 is a schematic view of a structure of a wall of the vessel of figure 1, in a thickness direction of the wall, in a second embodiment
  • FIG. 6 is a schematic representation of an LNG tank and a gravity loading/unloading platform comprising the tank according to the invention.
  • a direction of a longitudinal axis L, a direction of a transverse axis T, and a direction of a vertical axis V are represented by a rrihedron (L, V, T) in the figures.
  • a horizontal plane as being a plane perpendicular to the vertical axis
  • a longitudinal plane as being a plane perpendicular to the transverse axis
  • a transverse plane as being a plane perpendicular to the longitudinal axis.
  • the gravity platform 1 comprises a concrete base structure 3 forming a support structure for a sealed and thermally insulating tank 21 for the transport and/or storage of a liquefied gas.
  • base structure and “bearing structure” are used interchangeably and designated by the same reference numeral.
  • a liquefied gas is a substance or a mixture of substances which is in gaseous form under normal conditions of temperature and pressure.
  • a liquefied gas can for example be a liquefied petroleum gas, a liquefied natural gas or an alkane such as ethane.
  • the base structure 3 comprises a double bottom partition 5, an upper partition 9 and double side partitions 7 connecting the double bottom partition 5 to the upper partition 9.
  • Each double partition 5, 7 comprises an external partition 11 and an internal partition 13 made of concrete.
  • the internal partitions 13 and the upper partition 9 define the general shape of the tank 21.
  • the external partitions 11 and the internal partitions 13 are connected to each other by spacers 15 of concrete.
  • ballast compartments 17 are arranged between the internal partition 13 and the outer bulkhead 11 of the double bottom bulkhead 5.
  • the ballast compartments 17 are filled with seawater when the gravity platform 1 is at the place of its operation so as to immerse the gravity platform 1 by ballasting As a result, the gravity platform 1 partly rests on a seabed.
  • the tank 21 comprises a plurality of walls 23, 25, 27 which are each arranged against an internal partition 13 and the upper partition 9 of the base structure 3.
  • the tank 21 comprises an upper wall 23 arranged on one side internal wall of the upper partition 9 and a bottom wall 27 disposed on an internal face of the internal partition 13.
  • the upper wall 23 and the bottom wall 27 extend in a main plane substantially parallel to the horizontal plane as defined above.
  • the upper wall 23 is substantially parallel and not intersecting with the bottom wall 27.
  • the upper wall 23 and the bottom wall 27 are connected to each other by side walls 25 arranged on an internal face of the other internal partitions 13.
  • the side walls 25 each extend in a plane substantially perpendicular to the plane horizontal from one end of the bottom wall 27 to one end of the upper wall 23.
  • the tank 21 has the general shape of a rectangular parallelepiped.
  • the bottom wall 27 comprises at least a first portion 29 surrounding at least partly a second portion 31 of the bottom wall 27.
  • the first portion 29 surrounds a plurality of second portions 31.
  • FIG. 4 schematically represents a second portion 31 of the plurality of second portions 31.
  • the second portion 31 of the bottom wall 27 is therefore surrounded by the first portion 29, according to the cutting plane 200 visible in FIG. 1.
  • the second portion 31 comprises a sump 33 surrounded by a bearing 35 which extends from one edge of the sump 33 to the first portion 29.
  • the sump 33 is intended to accommodate a suction member of a pump (not shown) to suck or pour the liquefied gas.
  • the sump 33 comprises a bottom 38 in which there is for example a guide device 79 configured to receive a loading and/or unloading tower (not shown) for the liquefied gas contained in the tank 21.
  • the bottom 38 may be devoid of such a guide device.
  • the second portion comprises a plurality of sumps.
  • the first portion 29 of the bottom wall 27 develops in the main plane of extension of the bottom wall 27. More particularly, with reference to Figure 4, the landing 35 extends in the main plane of extension of the bottom wall 27.
  • the sump 33 has the shape of a right cylinder with a square base delimited by side walls 37 which extend in a plane perpendicular to the plane of extension of the bottom wall 27.
  • an inlet 39 of the sump 33 that is to say an opening through which the liquefied gas present in the tank 21 can reach the interior of the sump 33, is arranged so as to be flush with the first portion 29 of the bottom wall 27.
  • the first portion 29 and the second portions 31 are continuously connected in order to form the bottom wall 27.
  • the first portion 29, the bearings 35 and the sumps 33 are connected so that the bottom wall 27 has continuous thermal insulation and continuous sealing.
  • each wall 23, 25, 27 comprises, in a direction of thickness E of the wall 23, 25, 27, a secondary insulating thermal barrier 41 retained at the respective partition of the base structure 3, a secondary waterproof membrane 51 resting against the secondary insulating thermal barrier 41, a primary insulating thermal barrier 61 resting against the secondary waterproof membrane 51 and a primary waterproof membrane 71 intended to be in contact with the liquefied natural gas contained in the tank 21 resting against the primary insulating thermal barrier 61.
  • the secondary rhermiquemenr insulating barriers 41 of the walls 23, 25, 27 of the tank 21 communicate with each other so as to form, between the base structure 3 and the secondary sealed membrane 51, a continuous and sealed secondary rhermiquemenr insulating space.
  • the primary thermally insulating barriers 61 of the walls 23, 25, 27 of the tank 21 communicate with each other so as to form, between the secondary sealed membrane 51 and the primary sealed membrane 71, a continuous and sealed primary thermally insulating space. .
  • the secondary insulating thermal barrier 41 comprises a plurality of heat-insulating self-porrying blocks 43.
  • the heat-insulating self-porrying blocks 43 substantially have the shape of a rectangular parallelepiped.
  • the heat-insulating self-porous blocks 43 can have other shapes such as for example a parallelepiped shape, in particular with a square base or a rectangular base, or a right prism shape with a hexagonal base.
  • the self-poring heat-insulating blocks 43 are juxtaposed in parallel rows.
  • the heat-insulating self-porring blocks 43 of the plurality of heat-insulating self-porring blocks 43 may comprise a corner structure arranged at the junction 34 between the bearing 35 and the sump 33.
  • the corner structure has two sides respectively parallel to the extension plane of the landing 35 st to the plane extension of the side walls 37. The two sides form a dihedral angle of 45° or 90°.
  • the heat-insulated self-supporting blocks 43 each comprise a block of heat-insulated polymer foam 45 resting on an outer rigid plate 47 .
  • the outer rigid plate 47 is, for example, a plywood plate.
  • the outer rigid plate 47 is glued to said pad of heat-insulating polymer foam 45.
  • the heat-insulating polymer foam may in particular be a foam based on rigid polyurethane. Glass fibers can be embedded in the polyurethane foam to reinforce the mechanical strength of the polymer foam and reduce the coefficient of thermal expansion of the polymer foam.
  • the outer rigid plate 47 is composed of at least one composite material.
  • the heat-insulating self-supporting blocks 43 have a thickness of between 100mm and 350mm, preferably between 150mm and 300mm, the thickness of the heat-insulating self-supporting blocks 43 being measured parallel to the thickness direction E of the wall 23, 25, 27.
  • the density blocks of heat-insulating polymer foam 45 varies from one heat-insulating self-supporting block 43 to another depending on their arrangement in the tank 21 so as to optimize the mechanical strength and the production costs. The variation in the density of the blocks of heat-insulating polymer foam 45 will be detailed below.
  • the internal face of the internal partitions 13 and the internal face of the upper partition 9 may have significant deviations from the theoretical surface provided for the base structure due, for example, to manufacturing inaccuracies. These differences are made up for by resting the heat-insulating self-supporting blocks 43 against the base structure by means of polymerizable resin sausages 40.
  • the heat-insulating self-supporting blocks 43 are anchored to the internal partitions 13 and to the upper partition 9 using of studs, not shown, welded to the internal face of the internal partitions 13.
  • the secondary waterproof membrane 51 comprises a plurality of rigid waterproof sheets 53 made from a 0.07 mm thick aluminum sheet sandwiched between two fabrics of glass fibers impregnated with a polyamide resin.
  • Tablecloths Rigid seals 53 are glued to the blocks of polymer foam 45 of the heat-insulating self-supporting blocks 43, for example using a two-component polyurethane glue.
  • a flexible impermeable sheet 55 is placed glued to adjacent peripheral edges of two contiguous rigid impermeable plies 53 .
  • the flexible waterproof sheet 55 is made of a composite material comprising three layers: the two outer layers are fiberglass fabrics and the intermediate layer is a thin metal sheet, for example an aluminum sheet with a thickness of about 0.1mm. This metal sheet ensures the continuity of the secondary waterproof membrane.
  • the primary thermally insulating barrier 61 comprises a plurality of heat-insulating self-supporting panels 63 of substantially rectangular parallelepipedic shape.
  • the heat-insulating self-supporting panels 63 can have other shapes such as a cubic shape, for example.
  • the heat-insulating self-supporting panels 63 are offset from the heat-insulating self-supporting blocks 43 of the secondary thermally insulating barrier 41 such that each heat-insulating self-supporting panel 63 extends over at least two blocks. insulated self-supporting 43.
  • Each heat-insulating self-supporting panel 63 has a block of heat-insulating polymer foam 65, for example based on rigid polyurethane.
  • a first side of the block of polymer foam 65 is glued to the secondary waterproof membrane 51 and a second side, opposite the first side, is covered with an internal rigid plate 69.
  • the internal rigid plate 69 of the insulated self-supporting panel 63 is for example made of plywood. Glass fibers can be embedded in the polymer foam to reinforce it to reinforce the mechanical strength of the polymer foam and reduce the coefficient of thermal expansion of the polymer foam.
  • the internal rigid plate 69 is composed of at least one composite material.
  • the heat-insulating self-supporting panels 63 have a thickness of between 100mm and 200mm, preferably between 100mm and 150mm, the thickness of the self-supporting heat-insulating panels 63 being measured parallel to the direction of thickness E of the wall 23, 25, 27.
  • the heat-insulating self-supporting panels 63 are arranged differently compared to the first embodiment.
  • the elements of the tank are identical to the elements of the first embodiment and only the arrangement of the heat-insulating self-supporting panels 63 with respect to the heat-insulating self-supporting blocks 43 has changed.
  • part of the heat-insulating self-supporting panels 63 is glued to a central part of the heat-insulating self-supporting blocks 43 in prefabrication. This part of the heat-insulating self-supporting panels 63 comes to cover a part of the secondary waterproof membrane 51. Another part of the heat-insulating self-supporting panels 63 is glued on a periphery of the heat-insulating self-supporting blocks 43. The other part of the heat-insulating self-supporting panels 63 then extends on at least two heat-insulating self-supporting blocks 43.
  • the primary thermally insulating barrier 61 may also comprise corner reinforcements 62 which are used to fill any spaces between the heat-insulating self-supporting panels 63 and the primary waterproof membrane 71, in particular at the junction 34 between the bearing 35 and the sump 33.
  • the corner reinforcements 62 are for example paving stones of solid wood or plywood.
  • the primary waterproof membrane 71 comprises a plurality of metal sheets which are welded to each other.
  • the primary sealed membrane 71 has undulations 75 on the metal sheets which allow it to deform under the effect of the thermal and mechanical stresses generated by the liquefied gas in the tank 21.
  • the primary sealed membrane 71 comprises two series of corrugations 75 perpendicular to each other. The corrugations 75 project towards the inside of the tank 21.
  • the internal rigid plate 69 of each heat-insulating self-supporting panel 63 is equipped with metal plates (not shown) for anchoring the corrugated metal sheets of the waterproof membrane. primary 71.
  • the assembly plates can be assembled together, for example, by welding.
  • the blocks of polymer foam 45 of the heat-insulating self-porous blocks 43 and/or the polymer foam blocks 65 of the heat-insulating self-porring panels 63 may have a different density, depending on their location in the tank 21. This makes it possible to reinforce the places of the tank 21 undergoing high mechanical stresses while minimizing the manufacturing costs of a tank connection.
  • the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the second portion 31 of the bottom wall 27 is greater than the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the first portion 29 of the bottom wall 27.
  • the density of the blocks of polymer foam 45 of the sump 33 st of the bearing 35 and the density of the blocks of polymer foam 65 of the sump 33 st of the bearing 35 are substantially equal to 130 kg/m 3 . Therefore the density of the blocks of polymer foam 45 of the second portion 31 is substantially equal to the density of the blocks of polymer foam 65 of the second portion 31.
  • the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the first portion 29 is equal to 90 kg/m 3 . It is understood that the density of the blocks of polymer foam 45 of the first portion 29 is substantially equal to the density of the blocks of polymer foam 65 of the first portion 29.
  • the blocks of polymer foam 45 of the first portion 29 have a different density from the density of the blocks of polymer foam 65 of the first portion 29.
  • the blocks of polymer foam 45 of the second portion 31 have a density different from the density of the blocks of polymer foam 65 of the second portion 31.
  • the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 decreases in a direction going from the bottom wall 27 to the upper wall 23.
  • the density of the blocks of polymer foams 45 of the heat-insulating self-porous blocks 43 decreases in a direction going from the bottom wall 27 to the upper wall 23.
  • the tank 21 comprises a first zone 81, a second zone 83 and at least a third zone 85.
  • the first zone 81 comprises the bottom wall 27 and a lower part of the side walls 25.
  • the second zone 83 comprises the wall 23 and an upper part of the side walls 25.
  • the third zone 85 comprises a central part of the side walls 25. In this context, the third zone 85 is sandwiched between the first zone 81 and the second zone 83.
  • the blocks of polymer foam 45 and the blocks of polymer foam 65 of the first zone 81 have a density greater than or equal to 90 kg/m 3 .
  • the blocks of polymer foam 45 and the blocks of polymer foam 65 of the lower part of the side walls 25 have a density substantially equal to 90 kg/m 3 .
  • the blocks of polymer foam 45 and the blocks of polymer foam 65 of the first portion 29 have a density substantially equal to 90 kg/m 3 .
  • the blocks of polymer foam 45 and the blocks of polymer foam 65 of the second portion 31 have a density substantially equal to 130 kg/m 3 .
  • the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the second zone 83 are substantially equal to 65 kg/m 3 .
  • the density of the blocks of polymer foam 45 of the second zone 83 and the density of the blocks of polymer foam 65 of the second zone 83 are therefore less than 70 kg/m 3 .
  • the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the third zone 85 are substantially equal to 75 kg/m 3 .
  • the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the third zone 85 are therefore clearly between 65 kg/m 3 and 90 kg/m 3 .
  • the density of the polymer foam blocks 45 of the third zone 85 is between the values of the density of the blocks of polymer foam 45 of the second zone 83 and the value of the density of the blocks of polymer foam 45 of the first zone 81.
  • the density of the blocks of polymer foam 65 of the third zone 85 is between the values of the density of the blocks of polymer foam 65 of the second zone 83 and the value of the density of the blocks of polymer foam 65 of the first zone 81.
  • the tank comprises a plurality of third zones 85 sandwiched between the first zone 81 and the second zone 83.
  • the third zones 85 are then stacked in a direction going from the bottom wall 27 to the wall upper 23.
  • the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 is homogeneous within the same third zone 85.
  • the density of the polymer foam blocks 65 of the self-poring panels insulation 63 is therefore different from a third zone to another third zone.
  • the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 of the third zone 85 closest to the bottom wall 27 is greater than the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 of the third zone 85 closest to the top wall 23.
  • the blocks of polymer foam 45 of the heat-insulating self-poring blocks 43 of a third zone of the plurality of third zones 85 having a substantially identical density.
  • the density of the blocks of polymer foam 45 of the heat-insulating self-porous blocks 43 is homogeneous within the same third zone 85.
  • the density of the polymer foam blocks 45 of the heat-insulating self-supporting blocks 43 of the plurality of third zones 85 decreasing in a direction going from the bottom wall 27 to the upper wall 23.
  • the density of the polymer foam blocks 45 of the self-supporting blocks thermal insulation 43 is therefore different from a third zone to another third zone.
  • the density of the polymer foam blocks 45 of the heat-insulating self-porous blocks 43 of the third zone 85 closest to the bottom wall 27 is greater than the density of the polymer foam blocks 45 of the heat-insulating self-porous blocks 43 of the third zone 85 closest to the top wall 23.
  • tank 21 comprises three third zones 85, thus tank 21 comprises five zones 81, 83, 85.
  • FIG. 6 shows the transport and/or storage tank 21 of generally parallelepipedic shape mounted in the base structure 3 of a gravity platform 1.
  • the gravity platforms 1 are generally offshore structures used in the context of exploration of oil or gas. These works often have a concrete base structure, we then speak of SGB (concrete gravity structure) or GBS (from the English “Gravity Based Structure”); we also speak of SGS (Steel Gravity Structure) for a base structure made of steel, to which the invention also applies.
  • the gravity platforms 1 can fulfill the functions of a dyke, storage, reception platform for a liquefaction plant and loading dock at the same time in the context of the exploitation of a liquefied gas such as for example natural gas liquefied or erhane.
  • the wall of the tank 21 comprises a primary waterproof membrane intended to be in contact with the LNG contained in the tank 21, a secondary waterproof membrane arranged between the primary waterproof barrier and the base structure 3 of the gravity platform 1, and two barriers thermal insulation arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the base structure 3.
  • loading/unloading pipes 103 arranged on the upper deck of a ship LNG carrier 100 can be connected, by means of appropriate connectors, to the gravity platform 1 to transfer an LNG cargo from or to the tank 21.
  • FIG. 6 represents the gravity platform 1 comprising a loading and unloading station 105, an underwater pipe 107 and a gravity platform 1.
  • the loading and unloading station 105 is a fixed offshore installation comprising a mobile arm 111 and a tower 113 which supports the mobile arm 111.
  • the mobile arm 111 carries a bundle of insulated flexible pipes 115 which can be connected to the loading/unloading pipes 103.
  • the orientable mobile arm 111 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 113.
  • the loading and unloading station 105 allows the loading and unloading of at least one tank 22 of the LNG carrier 100 from or to the gravity platform 1
  • the tank 22 of the LNG carrier 100 can be a tank according to the invention.
  • the gravity platform 1 comprises at least one liquefied gas storage tank 21 according to the invention and connecting pipes 109 connected by the underwater pipe 107 to the loading or unloading station 105.
  • the underwater pipe 107 allows the transfer of the liquefied gas between the loading or unloading station 105 and the gravity platform 1 over a long distance, for example 5 km, which makes it possible to keep the LNG tanker 100 at a great distance from the coast during the loading and unloading.
  • pumps on board the LNG carrier 100 and/or pumps fitted to the gravity platform 1 and/or pumps fitted to the loading and unloading station 105 are used.
  • the invention thus makes it possible to simply produce a tank 21 for storing and/or transporting liquefied gas for a gravity platform 1 having increased mechanical strength, in particular at the level of a sump 33 provided in a bottom wall 27 of the tank 21 by using blocks of polymer foam 45 of heat-insulating self-supporting blocks 43 and polymer foam blocks 65 of heat-insulating self-supporting panels 63 of different density within the bottom wall 27. variation of the density of the blocks of polymer foam 45 of the heat-insulating self-supporting blocks 43 and by the variation of the polymer foam blocks 65 of the heat-insulating self-supporting panels 63 according to a height of the tank 21, it is possible to minimize the manufacturing costs of the vessel 21.
  • the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a tank (21) for transporting and/or storing a liquefied gas. The tank comprises a plurality of walls, each comprising, in a direction of the thickness of the wall, a thermally insulating barrier and at least one leak-tight membrane that rests against the thermally insulating barrier and is intended to be in contact with the liquefied gas inside the tank (21), the thermally insulating barrier comprising a plurality of self-supporting heat-insulating panels which each comprise a block of polymer foam and at least one plate, a bottom wall (27) of the plurality of walls comprises at least one first portion (29) at least partially surrounding a second portion (31) of the bottom wall (27), the second portion (31) comprising at least one drain, characterized in that the blocks of polymer foam of the second portion (31) have a density greater than a density of the polymer foam blocks of the first portion (29).

Description

DESCRIPTION DESCRIPTION
Titre de l'invention : Paroi de fond d’une cuve de stockage de gaz liquéfié Title of the invention: Bottom wall of a liquefied gas storage tank
La présente invention se rapporte au domaine des cuves aptes à contenir un gaz liquéfié. Plus particulièrement, l’invention concerne une paroi de fond d’une cuve, par exemple d’une plateforme gravitaire, pour le stockage d’un gaz liquéfié, comme par exemple du gaz naturel liquéfié (GNL). The present invention relates to the field of tanks capable of containing a liquefied gas. More particularly, the invention relates to a bottom wall of a tank, for example of a gravity platform, for storing a liquefied gas, such as for example liquefied natural gas (LNG).
Les plateformes gravitaires sont en général une structure offshore utilisée dans le cadre d’exploitation du pétrole ou de gaz. Ces ouvrages ont souvent une structure de base en béton, on parle alors de SGB (structure gravitaire en béton) ou GBS (de l’anglais « Gravity Based Structure ») ; on parle également de SGS (Steel Gravity Structure) pour une structure de base réalisée en acier, auquel l’invention s’applique également. Gravity platforms are generally an offshore structure used in the context of oil or gas exploitation. These works often have a concrete base structure, we then speak of SGB (concrete gravity structure) or GBS (from the English “Gravity Based Structure”); we also speak of SGS (Steel Gravity Structure) for a base structure made of steel, to which the invention also applies.
Les plateformes gravitaires peuvent remplir à la fois des fonctions de digue, de stockage, de plateforme d’accueil pour une usine de liquéfaction et de quai de chargement dans le cadre d’une exploitation d’un gaz liquéfié comme par exemple le gaz naturel liquéfié ou l’éthane. Gravity platforms can fulfill the functions of a dyke, storage, reception platform for a liquefaction plant and loading dock in the context of the exploitation of a liquefied gas such as for example liquefied natural gas. or ethane.
Les cuves de stockage des plateformes gravitaires méritent d’être optimisées pour le stockage d’un gaz liquéfié. D’une part, elles n’offrent pas d’isolation thermique suffisante entre les parois de la cuve et la structure de base en béton de la plateforme gravitaire pour stocker efficacement un gaz liquéfié. D’autre part, les cuves de plateforme gravitaire présentent un volume bien plus important que les cuves de navire et n’offrent qu’une résistance limitée, voire insuffisante, aux charges de fonctionnement et aux charges accidentelles qu’impliquent le chargement ou le déchargement de la cuve avec du gaz liquéfié. The storage tanks of gravity platforms deserve to be optimized for the storage of liquefied gas. On the one hand, they do not offer sufficient thermal insulation between the walls of the tank and the concrete base structure of the gravity platform to efficiently store a liquefied gas. On the other hand, gravity platform tanks have a much larger volume than ship's tanks and offer only limited or even insufficient resistance to operating loads and accidental loads involved in loading or unloading. from the tank with liquefied gas.
La présente invention a pour objectif de palier au moins un des inconvénients précités et de conduire en outre à d’autres avantages en proposant un nouveau type de paroi pour une cuve de stockage et/ou de transport de gaz liquéfié, notamment pour une plateforme gravitaire. Un deuxième objectif de l’invention est d’obtenir une efficacité optimale du pompage du gaz liquéfié au fond du réservoir en minimisant le niveau de gaz liquéfié résiduel.The present invention aims to overcome at least one of the aforementioned drawbacks and also to lead to other advantages by proposing a new type of wall for a tank for storing and/or transporting liquefied gas, in particular for a gravity platform. . A second objective of the invention is to obtain optimum efficiency in pumping the liquefied gas from the bottom of the reservoir by minimizing the level of residual liquefied gas.
Un troisième objectif de l’invention est de minimiser les coûts de fabrication tout en limitant la complexité de la fabrication d’une telle cuve. A third objective of the invention is to minimize manufacturing costs while limiting the complexity of manufacturing such a tank.
La présente invention propose ainsi une cuve de transport et/ou de stockage d’un gaz liquéfié, comprenant une pluralité de parois qui comportent chacune, selon une direction d’épaisseur de la paroi, une barrière thermiquement isolante et au moins une membrane étanche reposant contre la barrière thermiquement isolante et destinée à être en contact avec le gaz liquéfié à l’intérieur de la cuve, la barrière thermiquement isolante comprenant une pluralité de panneaux autoporteurs calorifuges lesquels comprennent chacun un bloc de mousse polymère et au moins une plaque, une paroi de fond de la pluralité de parois comprend au moins une première portion entourant au moins en partie une deuxième portion de la paroi de fond, la deuxième portion comportant au moins un puisard. Les blocs de mousse polymère de la deuxième portion présentent une masse volumique supérieure à une masse volumique des blocs de mousse polymère de la première portion. The present invention thus proposes a tank for transporting and/or storing a liquefied gas, comprising a plurality of walls which each comprise, in a direction of thickness of the wall, a thermally insulating barrier and at least one sealed membrane resting against the thermally insulating barrier and intended to be in contact with the liquefied gas inside the tank, the thermally insulating barrier comprising a plurality of heat-insulating self-supporting panels which each comprise a block of polymer foam and at least one plate, a wall bottom of the plurality of walls comprises at least a first portion at least partially surrounding a second portion of the bottom wall, the second portion comprising at least one sump. The polymer foam blocks of the second portion have a higher density than a density of the polymer foam blocks of the first portion.
L’entourage de la deuxième portion de la paroi de fond au moins en partie par la première portion de la paroi de fond est vue en projection dans un plan perpendiculaire à la direction d’épaisseur de la paroi de fond. The entourage of the second portion of the bottom wall at least partly by the first portion of the bottom wall is seen in projection in a plane perpendicular to the direction of thickness of the bottom wall.
En d’autres termes, la cuve de transport et/ou de stockage d’un gaz liquéfié, comprend une paroi de fond qui comporte au moins un puisard. Le puisard est un logement destiné à accueillir un organe d’aspiration d’une pompe pour aspirer le gaz liquéfié contenu dans la cuve. Le puisard est par conséquent une portion de la paroi de fond, et donc de la cuve, particulièrement sollicitée lors de l’exploitation de cuve. Ainsi en augmentant la masse volumique des blocs de mousse de polymère des panneaux autoporteurs calorifuges dans la portion comportant le puisard par rapport au reste de la paroi de fond, l’isolation thermique est améliorée ainsi que la résistante mécanique de la paroi. Il faut entendre ici, ainsi que dans la suite de la demande, par « panneau autoporteur » que le panneau autoporteur calorifuge peut supporter le poids d’un objet placé au-dessus de lui, par exemple du gaz naturel liquéfié, sans se déformer notablement et dans la limite de sa résistance mécanique. In other words, the tank for transporting and/or storing a liquefied gas comprises a bottom wall which comprises at least one sump. The sump is a housing intended to accommodate a suction member of a pump to suck the liquefied gas contained in the tank. The sump is therefore a portion of the bottom wall, and therefore of the vessel, which is particularly stressed during vessel operation. Thus, by increasing the density of the polymer foam blocks of the heat-insulated self-supporting panels in the portion comprising the sump relative to the rest of the bottom wall, the thermal insulation is improved as well as the mechanical strength of the wall. It is to be understood here, as well as in the remainder of the application, by "self-supporting panel" that the insulated self-supporting panel can support the weight of an object placed above it, for example liquefied natural gas, without significantly deforming and within the limits of its mechanical resistance.
Selon un mode de réalisation, la première portion de la paroi de fond se développe selon un plan principal d’extension perpendiculaire à la direction d’épaisseur de la paroi de fond. According to one embodiment, the first portion of the bottom wall develops along a main extension plane perpendicular to the thickness direction of the bottom wall.
Selon un mode de réalisation, la deuxième portion de la paroi de fond comprend une première partie qui s’étend dans un plan principal d’extension perpendiculaire à la direction d’épaisseur de la paroi de fond, et une deuxième partie qui s’étend depuis un contour de la première partie jusqu’à la première portion. According to one embodiment, the second portion of the bottom wall comprises a first part which extends in a main plane of extension perpendicular to the direction of thickness of the bottom wall, and a second part which extends from an outline of the first part to the first portion.
Selon un mode de réalisation, le puisard présente une forme de cylindre à base carrée ou de section circulaire. According to one embodiment, the sump has the shape of a cylinder with a square base or a circular section.
Selon un mode de réalisation, la deuxième portion de la paroi de fond comprend une pluralité de puisards. According to one embodiment, the second portion of the bottom wall comprises a plurality of sumps.
Selon un mode de réalisation, la paroi de fond comprend une pluralité de deuxièmes portions. According to one embodiment, the bottom wall comprises a plurality of second portions.
Selon un mode de réalisation, la pluralité de parois comprend une paroi supérieure et des paroi latérales reliant la paroi de fond à la paroi supérieure, une masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges diminuant de la paroi de fond à la paroi supérieure. According to one embodiment, the plurality of walls comprises a top wall and side walls connecting the bottom wall to the top wall, a density of the polymer foam blocks of the heat-insulating self-supporting panels decreasing from the bottom wall to the top wall .
Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la première portion est sensiblement égale à la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges des parois latérales et est sensiblement égale à la masse volumique des blocs de mousse polymères des panneaux autoporteurs calorifuges de la paroi supérieure. Il faut entendre ici, ainsi que dans tout ce qui suit, par « sensiblement », que les tolérances de fabrication, ainsi que d’éventuelles tolérances d’assemblage, doivent être prises en compte. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting panels of the first portion is substantially equal to the density of the polymer foam blocks of the heat-insulating self-supporting panels of the side walls and is substantially equal to the density of the polymer foam blocks of the heat-insulating self-supporting panels of the upper wall. It should be understood here, as well as in all that follows, by “substantially”, that the manufacturing tolerances, as well as any assembly tolerances, must be taken into account.
Selon un mode de réalisation, la cuve comprend une première zone formée par la paroi de fond et par une partie inférieure des parois latérales, ainsi qu’une deuxième zone formée par la paroi supérieure et par une partie supérieure des parois latérales, et dans laquelle la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la première zone est supérieure à la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la deuxième zone. According to one embodiment, the tank comprises a first zone formed by the bottom wall and by a lower part of the side walls, as well as a second zone formed by the upper wall and by an upper part of the side walls, and in which the density of the polymer foam blocks of the heat-insulating self-supporting panels of the first zone is greater than the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second zone.
Selon un mode de réalisation, la cuve comprend au moins une troisième zone intercalée entre la première zone et la deuxième zone et dans laquelle la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la troisième zone est comprise entre la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la première zone et la masse volumique blocs de mousse polymère des panneaux autoporteurs calorifuges de la deuxième zone. According to one embodiment, the tank comprises at least a third zone interposed between the first zone and the second zone and in which the density of the blocks of polymer foam of the heat-insulating self-supporting panels of the third zone is between the density of the blocks of polymer foam of the self-supporting heat-insulating panels of the first zone and the density of blocks of polymer foam of the self-supporting heat-insulating panels of the second zone.
Selon un mode de réalisation, la cuve comprend une pluralité de troisième zones, les troisième zones étant empilées selon une direction allant de la paroi de fond à la paroi supérieure, les blocs de mousse polymère des panneaux autoporteurs calorifuges d’une troisième zone de la pluralité de troisième zones présentant une masse volumique sensiblement identique, et la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la pluralité de troisième zones diminuant selon la direction allant de la paroi de fond à la paroi supérieure. Autrement dit, la cuve comprend au moins deux troisième zones qui sont empilées selon une direction allant de la paroi de fond à la paroi supérieure. Ainsi la cuve peut comprendre autant de troisième zones que nécessaire comme par exemple pour s’accommoder des différentes tailles de cuve. Par exemple, la cuve zone peut comprendre quatre, cinq ou six troisième zones. De plus, la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges est homogène au sein d’une même troisième zone et la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges est différente d’une troisième zone à une autre troisième zone. According to one embodiment, the tank comprises a plurality of third zones, the third zones being stacked in a direction going from the bottom wall to the upper wall, the polymer foam blocks of the heat-insulating self-supporting panels of a third zone of the plurality of third zones having a substantially identical density, and the density of the polymer foam blocks of the heat-insulating self-supporting panels of the plurality of third zones decreasing in the direction going from the bottom wall to the top wall. In other words, the tank comprises at least two third zones which are stacked in a direction going from the bottom wall to the top wall. Thus the tank can comprise as many third zones as necessary, for example to accommodate the different tank sizes. For example, the zone tank can comprise four, five or six third zones. In addition, the density of the polymer foam blocks of the heat-insulating self-supporting panels is homogeneous within the same third zone and the density of the Polymer foam blocks of self-supporting heat-insulating panels is different from a third zone to another third zone.
Selon un mode de réalisation, la cuve comprend trois troisième zones. Ainsi la cuve comprend trois zones : la première zone, la deuxième zone et les trois troisième zones.According to one embodiment, the tank comprises three third zones. Thus the tank comprises three zones: the first zone, the second zone and the three third zones.
Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la troisième zone la plus proche de la paroi de fond est supérieure à la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la troisième zone la plus proche de la paroi de supérieure.According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-porous panels of the third zone closest to the bottom wall is greater than the density of the polymer foam blocks of the heat-insulating self-porring panels of the third zone la closer to the upper wall.
Selon un mode de réalisation, la membrane étanche est une membrane étanche primaire er la barrière rhermiquemenr isolante est une barrière rhermiquemenr isolante primaire, er dans laquelle la paroi de fond comprend une membrane étanche secondaire er une barrière rhermiquemenr isolante secondaire qui comporte une pluralité de blocs autoporreurs calorifuges comprenant des pavés de mousse polymère er au moins une plaque, la membrane étanche secondaire repose contre la barrière rhermiquemenr isolante secondaire, la barrière rhermiquemenr isolante primaire repose contre la membrane étanche secondaire er la membrane étanche primaire repose contre la barrière rhermiquemenr isolante primaire. According to one embodiment, the waterproof membrane is a primary waterproof membrane and the thermally insulating barrier is a primary thermally insulating barrier, in which the bottom wall comprises a secondary waterproof membrane and a secondary thermally insulating barrier which comprises a plurality of blocks heat-insulating self-poring units comprising blocks of polymer foam and at least one plate, the secondary waterproof membrane rests against the secondary thermally insulating barrier, the primary thermally insulating barrier rests against the secondary waterproof membrane and the primary waterproof membrane rests against the primary thermally insulating barrier.
Il faut entendre ici, ainsi que dans la suite de la demande, par « bloc autoporreur » que le bloc autoporreur calorifuge peur supporter le poids d’un objet placé au-dessus de lui, par exemple du gaz naturel liquéfié, sans se déformer notablement er dans la limite de sa résistance mécanique. It should be understood here, as well as in the remainder of the application, by "self-porring block" that the heat-insulating self-porring block can support the weight of an object placed above it, for example liquefied natural gas, without significantly deforming er within the limit of its mechanical resistance.
Selon un mode de réalisation, les pavés de mousse polymère des blocs autoporreurs calorifuges de la première portion, des parois latérales er de la paroi supérieure présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la première portion, des parois latérales er de la paroi supérieure er dans laquelle les pavés de mousse polymère des blocs autoporreurs calorifuges de la deuxième portion présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la deuxième portion. Dans ce contexte, on comprend que les pavés de mousse polymère er les blocs de mousse polymère au sein d’une même paroi ou d’une même portion présentent une masse volumique sensiblement égale, er que les pavés de mousse polymère de la première portion, des parois latérales er de la paroi supérieure présentent une masse volumique sensiblement égales, er que les blocs de mousse polymère de la première portion, des parois latérales er de la paroi supérieure présentent une masse volumique sensiblement égale. According to one embodiment, the blocks of polymer foam of the heat-insulating self-porous blocks of the first portion, of the side walls and of the upper wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the first portion. portion, of the side walls er of the upper wall er in which the blocks of polymer foam of the heat-insulating self-porring blocks of the second portion have a density substantially equal to the density of the polymer foam blocks of the heat-insulating self-porring panels of the second portion. In this context, we understands that the polymer foam blocks and the polymer foam blocks within the same wall or the same portion have a substantially equal density, st than the polymer foam blocks of the first portion, of the side walls and of the upper wall have a substantially equal density, and the polymer foam blocks of the first portion, of the side walls and of the upper wall have a substantially equal density.
Selon un mode de réalisation, les pavés de mousse polymère des blocs autoporreurs calorifuges de la deuxième portion de la paroi de fond présentent une masse volumique supérieure aux pavés de mousse polymère des blocs autoporreurs calorifuges de la première portion de la paroi de fond. According to one embodiment, the blocks of polymer foam of the heat-insulating self-porous blocks of the second portion of the bottom wall have a higher density than the blocks of polymer foam of the heat-insulating self-porring blocks of the first portion of the bottom wall.
Selon un mode de réalisation, les pavés de mousse polymère des blocs autoporreurs calorifuges de la première portion de la paroi de fond présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la première portion de la paroi de fond. According to one embodiment, the blocks of polymer foam of the heat-insulating self-porous blocks of the first portion of the bottom wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the first portion of the wall background.
Selon un mode de réalisation, les pavés de mousse polymère des blocs autoporreurs calorifuges de la deuxième portion de la paroi de fond présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la deuxième portion de la paroi de fond. According to one embodiment, the blocks of polymer foam of the heat-insulating self-porous blocks of the second portion of the bottom wall have a density substantially equal to the density of the blocks of polymer foam of the heat-insulating self-porring panels of the second portion of the wall background.
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporreurs calorifuges de la première portion est sensiblement égale à la masse volumique des pavés de mousse polymère des blocs autoporreurs calorifuges des parois latérales er est sensiblement égale à la masse volumique des pavés de mousse polymères des blocs autoporreurs calorifuges de la paroi supérieure. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-porous blocks of the first portion is substantially equal to the density of the polymer foam blocks of the heat-insulating self-porring blocks of the side walls and is substantially equal to the density of the paving blocks of polymer foam from the heat-insulating self-porous blocks of the upper wall.
Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporreurs calorifuges de la première portion de la paroi de fond est inférieure ou égale à 110kg/m3. Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la deuxième portion de la paroi de fond est supérieure ou égale à 115kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-porous panels of the first portion of the bottom wall is less than or equal to 110 kg/m 3 . According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second portion of the bottom wall is greater than or equal to 115 kg/m 3 .
Selon un mode de réalisation, la pluralité de parois comprend une paroi supérieure et des parois latérales reliant la paroi de fond à la paroi supérieure, et dans laquelle la paroi supérieure et les parois latérales comprennent chacune une membrane étanche secondaire et une barrière thermiquement isolante secondaire qui comporte une pluralité de blocs autoporteurs calorifuges comprenant des pavés de mousse polymère et au moins une plaque, la membrane étanche secondaire repose contre la barrière thermiquement isolante secondaire, la barrière thermiquement isolante primaire repose contre la membrane étanche secondaire et la membrane étanche primaire repose contre la barrière thermiquement isolante primaire, une masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges diminuant de la paroi de fond à la paroi supérieure.According to one embodiment, the plurality of walls comprises a top wall and side walls connecting the bottom wall to the top wall, and in which the top wall and the side walls each comprise a secondary waterproof membrane and a secondary thermally insulating barrier which comprises a plurality of heat-insulating self-supporting blocks comprising blocks of polymer foam and at least one plate, the secondary waterproof membrane rests against the secondary thermally insulating barrier, the primary thermally insulating barrier rests against the secondary waterproof membrane and the primary waterproof membrane rests against the primary thermally insulating barrier, a density of the polymer foam blocks of the heat-insulating self-supporting blocks decreasing from the bottom wall to the upper wall.
Selon un mode de réalisation, la cuve comprend une première zone formée par la paroi de fond et par une partie inférieure des parois latérales, ainsi qu’une deuxième zone formée par la paroi supérieure et par une partie supérieure des parois latérales, et dans laquelle la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la première zone est supérieure à la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la deuxième zone. According to one embodiment, the tank comprises a first zone formed by the bottom wall and by a lower part of the side walls, as well as a second zone formed by the upper wall and by an upper part of the side walls, and in which the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first zone is greater than the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second zone.
Selon un mode de réalisation, la cuve comprend au moins une troisième zone intercalée entre la première zone et la deuxième zone et dans laquelle la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la troisième zone est comprise entre la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la première zone et la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la deuxième zone. According to one embodiment, the tank comprises at least a third zone interposed between the first zone and the second zone and in which the density of the blocks of polymer foam of the heat-insulating self-supporting blocks of the third zone is between the density of the blocks of polymer foam of the insulated self-supporting blocks of the first zone and the density of the polymer foam blocks of the insulated self-supporting blocks of the second zone.
Selon un mode de réalisation, la cuve comprend une pluralité de troisième zones, les troisième zones étant empilées selon une direction allant de la paroi de fond à la paroi supérieure, les pavés de mousse polymère des blocs autoporteurs calorifuges d’une troisième zone de la pluralité de troisième zones présentant une masse volumique sensiblement identique, et la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la pluralité de troisième zones diminuant selon la direction allant de la paroi de fond à la paroi supérieure. Autrement dit, la cuve comprend au moins deux troisième zones qui sont empilées selon une direction allant de la paroi de fond à la paroi supérieure. Ainsi la cuve peut comprendre autant de troisième zones que nécessaire comme par exemple pour s’accommoder des différentes tailles de cuve. Par exemple, la cuve zone peut comprendre quatre, cinq ou six troisième zones. De plus, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges est homogène au sein d’une même troisième zone et la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges est différente d’une troisième zone à une autre troisième zone. According to one embodiment, the tank comprises a plurality of third zones, the third zones being stacked in a direction going from the bottom wall to the upper wall, the polymer foam blocks of the heat-insulating self-supporting blocks of a third zone of the plurality of third zones having a density substantially identical, and the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the plurality of third zones decreasing in the direction going from the bottom wall to the top wall. In other words, the tank comprises at least two third zones which are stacked in a direction going from the bottom wall to the top wall. Thus the tank can comprise as many third zones as necessary, for example to accommodate the different tank sizes. For example, the zone tank can comprise four, five or six third zones. In addition, the density of the polymer foam blocks of the self-supporting heat-insulating blocks is homogeneous within the same third zone and the density of the polymer foam blocks of the self-supporting heat-insulating blocks is different from one third zone to another third zone. .
Selon un mode de réalisation, la cuve comprend trois troisième zones. Ainsi la cuve comprend trois zones : la première zone, la deuxième zone et les trois troisième zones.According to one embodiment, the tank comprises three third zones. Thus the tank comprises three zones: the first zone, the second zone and the three third zones.
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la troisième zone la plus proche de la paroi de fond est supérieure à la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la troisième zone la plus proche de la paroi de supérieure. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone closest to the bottom wall is greater than the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone la closer to the upper wall.
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la première portion de la paroi de fond est inférieure ou égale à 1 lOkg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first portion of the bottom wall is less than or equal to 110 kg/m 3 .
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la deuxième portion de la paroi de fond est supérieure ou égale à 115kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second portion of the bottom wall is greater than or equal to 115 kg/m 3 .
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la première zone est supérieure à 70kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the first zone is greater than 70 kg/m 3 .
Selon un mode de réalisation, la masse volumique de blocs de mousse polymère des panneaux autoporteurs calorifuges de la première zone est supérieure à 70kg/m3. Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la deuxième zone est inférieure à 70kg/m3. According to one embodiment, the density of polymer foam blocks of the heat-insulating self-supporting panels of the first zone is greater than 70 kg/m 3 . According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the second zone is less than 70 kg/m 3 .
Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la deuxième zone est inférieure à 70kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting panels of the second zone is less than 70 kg/m 3 .
Selon un mode de réalisation, la masse volumique des blocs de mousse polymère des panneaux autoporteurs calorifuges de la troisième zone est comprise entre 65kg/m3 et 90kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting panels of the third zone is between 65 kg/m 3 and 90 kg/m 3 .
Selon un mode de réalisation, la masse volumique des pavés de mousse polymère des blocs autoporteurs calorifuges de la troisième zone est comprise entre 65kg/m3 et 90kg/m3. According to one embodiment, the density of the polymer foam blocks of the heat-insulating self-supporting blocks of the third zone is between 65 kg/m 3 and 90 kg/m 3 .
Il faut comprendre ici, ainsi que dans tout ce qui suit, qu’il faut prendre en compte d’éventuelles tolérances de fabrication par rapport aux valeurs numériques données aux masses volumiques des blocs de mousse polymère des panneaux autoporteurs calorifuges et des pavés de mousse polymère des blocs autoporteurs calorifuges. Ainsi on pourra prendre une tolérance de +/- 5 kg/m3 par rapport à la valeur donnée à la masse volumique. It should be understood here, as well as in all that follows, that it is necessary to take into account possible manufacturing tolerances with respect to the numerical values given to the densities of the polymer foam blocks of the heat-insulating self-supporting panels and of the polymer foam blocks. heat-insulating self-supporting blocks. Thus, a tolerance of +/- 5 kg/m 3 can be taken with respect to the value given to the density.
Selon un mode de réalisation, au moins un panneau autoporteur calorifuge comprend un bloc de mousse polymère composée de polyuréthane rigide et une plaque de contreplaqué de bois surmontant le bloc de mousse polymère. On comprend qu’un ou plusieurs ou la totalité des panneaux autoporteurs calorifuges comprennent un bloc de mousse polymère composé de polyuréthane rigide et une plaque de contreplaqué de bois sur lequel repose le bloc de mousse polymère. According to one embodiment, at least one insulated self-supporting panel comprises a polymer foam block composed of rigid polyurethane and a wood plywood plate surmounting the polymer foam block. It is understood that one or more or all of the insulated self-supporting panels comprise a polymer foam block composed of rigid polyurethane and a wood plywood plate on which the polymer foam block rests.
Selon un mode de réalisation, au moins un bloc autoporteur calorifuge comprend un pavé de mousse de polymère composée de polyuréthane rigide et une plaque de contreplaqué de bois surmontant le pavé de mousse polymère. On comprend qu’un ou plusieurs ou la totalité des blocs autoporteurs calorifuges comprennent un pavé de mousse polymère composé de polyuréthane rigide et un panneau de contreplaqué de bois sur lequel repose le pavé de mousse polymère. L’invention a par ailleurs pour objet une plateforme gravitaire, notamment pour le stockage d’un gaz liquéfié, comprenant une cuve de stockage d’un gaz liquéfié selon une ou plusieurs caractéristiques précédente(s) et un organe d’aspiration d’une pompe configurée pour décharger le gaz liquéfié contenu à l’intérieur de la cuve depuis le puisard. Autrement dit, la plateforme gravitaire comprend une tour de chargement et/ou déchargement équipée d’au moins un organe de pompage qui débouche dans le puisard.According to one embodiment, at least one heat-insulating self-supporting block comprises a polymer foam pad composed of rigid polyurethane and a wooden plywood plate surmounting the polymer foam pad. It is understood that one or more or all of the heat-insulating self-supporting blocks comprise a polymer foam pad composed of rigid polyurethane and a wood plywood panel on which the polymer foam pad rests. The invention also relates to a gravity platform, in particular for the storage of a liquefied gas, comprising a storage tank for a liquefied gas according to one or more preceding characteristics and a suction member of a pump configured to discharge the liquefied gas contained inside the tank from the sump. In other words, the gravity platform comprises a loading and/or unloading tower equipped with at least one pumping device which opens into the sump.
Selon un mode de réalisation, la cuve comprend une structure porteuse de la cuve, la structure porteuse étant composée de béton. According to one embodiment, the tank comprises a supporting structure of the tank, the supporting structure being made of concrete.
L’invention propose d’autre part un système de transfert pour un gaz liquéfié, le système comportant une plateforme gravitaire selon une ou plusieurs caractéristiques précédentes, des canalisations isolées agencées de manière à relier la cuve installée dans la structure porteuse de la plateforme gravitaire à un navire et une pompe pour entrainer un flux de produit gaz liquéfié à travers les canalisations isolées depuis la cuve de la plateforme gravitaire vers le navire. The invention also proposes a transfer system for a liquefied gas, the system comprising a gravity platform according to one or more preceding characteristics, insulated pipes arranged so as to connect the tank installed in the supporting structure of the gravity platform to a ship and a pump to drive a flow of liquefied gas product through the insulated pipes from the tank of the gravity platform to the ship.
L’invention offre en outre un procédé de chargement ou déchargement d’une plateforme gravitaire selon une ou des caractéristiques précédentes, dans lequel on achemine un gaz liquéfié à travers des canalisations isolées depuis la cuve d’une plateforme gravitaire vers un navire. The invention further offers a method for loading or unloading a gravity platform according to one or more of the preceding characteristics, in which a liquefied gas is routed through insulated pipes from the tank of a gravity platform to a ship.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : Other characteristics and advantages of the invention will become apparent through the description which follows on the one hand, and several embodiments given by way of indication and not limiting with reference to the appended diagrammatic drawings on the other hand, on which :
[fig 1] La figure 1 est une vue schématique en perspective d’une cuve de stockage de gaz liquéfié pour une plateforme gravitaire comprenant une paroi de fond selon l’invention ; [fig 1] Figure 1 is a schematic perspective view of a liquefied gas storage tank for a gravity platform comprising a bottom wall according to the invention;
[fig 2] la figure 2 est une vue schématique en perspective d’une coupe selon un plan transversal et vertical de la cuve de la figure 1 ; [fig 3] la figure 3 est une vue schématique d’une structure d’une paroi de la cuve de la figure 1, selon une direction d’épaisseur de la paroi, dans un premier mode de réalisation ; [Fig 2] Figure 2 is a schematic perspective view of a section along a transverse and vertical plane of the tank of Figure 1; [Fig 3] Figure 3 is a schematic view of a structure of a wall of the vessel of Figure 1, in a thickness direction of the wall, in a first embodiment;
[fig 4] la figure 4 est une vue schématique d’un puisard de la paroi de fond de la figure 1 selon un plan de coupe transversal er vertical ; [fig 4] figure 4 is a schematic view of a sump of the bottom wall of figure 1 according to a vertical cross-sectional plane;
[fig 5] la figure 5 est une vue schématique d’une structure d’une paroi de la cuve de la figure 1, selon une direction d’épaisseur de la paroi, dans un deuxième mode de réalisation ; [fig 5] figure 5 is a schematic view of a structure of a wall of the vessel of figure 1, in a thickness direction of the wall, in a second embodiment;
[fig 6] la figure 6 est une représentation schématique d'une cuve de navire méthanier et d'une plateforme graviraire de chargemen r/déchargemenr comprenant la cuve selon l’invenrion. [fig 6] Figure 6 is a schematic representation of an LNG tank and a gravity loading/unloading platform comprising the tank according to the invention.
Il faut tour d’abord noter que si les figures exposent l’invenrion de manière déraillée pour sa mise en œuvre, elles peuvent bien entendu servir à mieux définir l’invenrion le cas échéant. Il est également à noter que, sur l’ensemble des figures, les éléments similaires er/ou remplissant la même fonction sont indiqués par la même numérotation.It should first be noted that if the figures expose the invention in a derailed way for its implementation, they can of course serve to better define the invention if necessary. It should also be noted that, in all the figures, similar elements and/or fulfilling the same function are indicated by the same numbering.
Dans la description qui va suivre, une direction d’un axe longitudinal L, une direction d’un axe transversal T, et une direction d’un axe vertical V sont représentées par un rrièdre (L, V, T) sur les figures. On définir un plan horizontal comme étant un plan perpendiculaire à l’axe vertical, un plan longitudinal comme étant un plan perpendiculaire à l’axe transversal, et un plan transversal comme étant un plan perpendiculaire à l’axe longitudinal. In the following description, a direction of a longitudinal axis L, a direction of a transverse axis T, and a direction of a vertical axis V are represented by a rrihedron (L, V, T) in the figures. We define a horizontal plane as being a plane perpendicular to the vertical axis, a longitudinal plane as being a plane perpendicular to the transverse axis, and a transverse plane as being a plane perpendicular to the longitudinal axis.
Les termes « externe » er « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'inrérieur er à l'extérieur de la cuve.The terms "external" and "internal" are used to define the relative position of one element with respect to another, with reference to the inside and outside of the tank.
Dans le mode de réalisation illustré sur la figure 1, la plateforme graviraire 1 comprend une structure de base 3 en béton formant une structure porteuse d’une cuve 21 étanche er rhermiquemenr isolante pour le transport er/ou le stockage d’un gaz liquéfié. Par la suite « structure de base » er « structure porteuse » sont utilisées indifféremment er désignées par la même référence numérale. Un gaz liquéfié est une substance ou un mélange de substances qui se présente sous forme gazeuse dans les conditions normales de température et de pression. Un gaz liquéfié peut être par exemple un gaz de pétrole liquéfié, un gaz naturel liquéfié ou un alcane tel que l’éthane. In the embodiment illustrated in FIG. 1, the gravity platform 1 comprises a concrete base structure 3 forming a support structure for a sealed and thermally insulating tank 21 for the transport and/or storage of a liquefied gas. Thereafter “base structure” and “bearing structure” are used interchangeably and designated by the same reference numeral. A liquefied gas is a substance or a mixture of substances which is in gaseous form under normal conditions of temperature and pressure. A liquefied gas can for example be a liquefied petroleum gas, a liquefied natural gas or an alkane such as ethane.
En référence à la figure 1 et à la figure 2, la structure de base 3 comprend une double cloison de fond 5, une cloison supérieure 9 et des doubles cloisons latérales 7 reliant la double cloison de fond 5 à la cloison supérieure 9. Chaque double cloison 5, 7 comporte une cloison externe 11 et une cloison interne 13 composées de béton. Les cloisons internes 13 et la cloison supérieure 9 définissent la forme générale de la cuve 21. Les cloisons externes 11 et les cloisons internes 13 sont reliées les unes aux autres par des entretoises 15 de béton. With reference to FIG. 1 and FIG. 2, the base structure 3 comprises a double bottom partition 5, an upper partition 9 and double side partitions 7 connecting the double bottom partition 5 to the upper partition 9. Each double partition 5, 7 comprises an external partition 11 and an internal partition 13 made of concrete. The internal partitions 13 and the upper partition 9 define the general shape of the tank 21. The external partitions 11 and the internal partitions 13 are connected to each other by spacers 15 of concrete.
Comme illustré sur la figure 2 qui est une vue en coupe de la cuve 21 selon le plan de coupe 150, une partie inférieure de la structure de base 3 comporte des compartiments de ballast 17. Les compartiments de ballast 17 sont ménagés entre la cloison interne 13 et la cloison externe 11 de la double cloison de fond 5. Les compartiments de ballast 17 sont remplis d’eau de mer lorsque la plateforme gravitaire 1 se trouve à l’endroit de son exploitation de manière à immerger par ballastage la plateforme gravitaire 1. Il en résulte que la plateforme gravitaire 1 repose en partie sur un fond de la mer. As illustrated in Figure 2 which is a sectional view of the tank 21 along the section plane 150, a lower part of the base structure 3 includes ballast compartments 17. The ballast compartments 17 are arranged between the internal partition 13 and the outer bulkhead 11 of the double bottom bulkhead 5. The ballast compartments 17 are filled with seawater when the gravity platform 1 is at the place of its operation so as to immerse the gravity platform 1 by ballasting As a result, the gravity platform 1 partly rests on a seabed.
La cuve 21 comporte une pluralité de parois 23, 25, 27 qui sont, chacune, disposées contre une cloison interne 13 et la cloison supérieure 9 de la structure de base 3. Ainsi, la cuve 21 comprend une paroi supérieure 23 disposée sur une face interne de la cloison supérieure 9 et une paroi de fond 27 disposée sur une face interne de la cloison interne 13. La paroi supérieure 23 et la paroi de fond 27 s’étendent dans un plan principal sensiblement parallèle au plan horizontal tel que défini auparavant. La paroi supérieure 23 est sensiblement parallèle et non sécante à la paroi de fond 27. The tank 21 comprises a plurality of walls 23, 25, 27 which are each arranged against an internal partition 13 and the upper partition 9 of the base structure 3. Thus, the tank 21 comprises an upper wall 23 arranged on one side internal wall of the upper partition 9 and a bottom wall 27 disposed on an internal face of the internal partition 13. The upper wall 23 and the bottom wall 27 extend in a main plane substantially parallel to the horizontal plane as defined above. The upper wall 23 is substantially parallel and not intersecting with the bottom wall 27.
La paroi supérieure 23 et la paroi de fond 27 sont reliées l’une à l’autre par des parois latérales 25 disposée sur une face interne des autres cloisons internes 13. Les parois latérales 25 s’étendent chacune dans un plan sensiblement perpendiculaire au plan horizontal depuis une extrémité de la paroi de fond 27 jusqu’à une extrémité de la paroi supérieure 23. La cuve 21 présente une forme générale de parallélépipède rectangle.The upper wall 23 and the bottom wall 27 are connected to each other by side walls 25 arranged on an internal face of the other internal partitions 13. The side walls 25 each extend in a plane substantially perpendicular to the plane horizontal from one end of the bottom wall 27 to one end of the upper wall 23. The tank 21 has the general shape of a rectangular parallelepiped.
En référence à la figure 1 , la paroi de fond 27 comprend au moins une première portion 29 entourant au moins en partie une deuxième portion 31 de la paroi de fond 27. Dans le mode de réalisation illustré sur la figure 1, la première portion 29 entoure une pluralité de deuxièmes portions 31. Referring to Figure 1, the bottom wall 27 comprises at least a first portion 29 surrounding at least partly a second portion 31 of the bottom wall 27. In the embodiment illustrated in Figure 1, the first portion 29 surrounds a plurality of second portions 31.
La figure 4 représente schématiquement une deuxième portion 31 de la pluralité de deuxième portions 31. La deuxième portion 31 de la paroi de fond 27 est donc entouré par la première portion 29, selon le plan de coupe 200 visible sur la figure 1. La deuxième portion 31 comprend un puisard 33 entouré d’un palier 35 qui s’étend depuis un bord du puisard 33 jusqu’à la première portion 29. Le puisard 33 est destiné à accueillir un organe d’aspiration d’une pompe (non représenté) pour aspirer ou verser le gaz liquéfié. Le puisards 33 comporte un fond 38 dans lequel se trouve par exemple un dispositif de guidage 79 configuré pour recevoir une tour de chargement et/ou de déchargement (non représentée) du gaz liquéfié contenu dans la cuve 21. De manière alternative, le fond 38 peut être dépourvu d’un tel dispositif de guidage. FIG. 4 schematically represents a second portion 31 of the plurality of second portions 31. The second portion 31 of the bottom wall 27 is therefore surrounded by the first portion 29, according to the cutting plane 200 visible in FIG. 1. The second portion 31 comprises a sump 33 surrounded by a bearing 35 which extends from one edge of the sump 33 to the first portion 29. The sump 33 is intended to accommodate a suction member of a pump (not shown) to suck or pour the liquefied gas. The sump 33 comprises a bottom 38 in which there is for example a guide device 79 configured to receive a loading and/or unloading tower (not shown) for the liquefied gas contained in the tank 21. Alternatively, the bottom 38 may be devoid of such a guide device.
Dans un mode de réalisation non représenté, la deuxième portion comprend une pluralité de puisards. In an embodiment not shown, the second portion comprises a plurality of sumps.
En référence à la figure 1 et à la figure 4, la première portion 29 de la paroi de fond 27 se développe dans le plan principal d’extension de la paroi de fond 27. Plus particulièrement, en se référant à la figure 4, le palier 35 s’étend dans le plan principal d’extension de la paroi de fond 27. Le puisard 33 présente une forme de cylindre droit à base carré délimité par des murets latéraux 37 qui s’étendent dans un plan perpendiculaire au plan d’extension de la paroi de fond 27. Ainsi, une entrée 39 du puisard 33, c’est-à-dire une ouverture par laquelle le gaz liquéfié présent dans la cuve 21 peut rejoindre l’intérieur du puisard 33, est ménagée de manière à être à fleur de la première portion 29 de la paroi de fond 27. Referring to Figure 1 and Figure 4, the first portion 29 of the bottom wall 27 develops in the main plane of extension of the bottom wall 27. More particularly, with reference to Figure 4, the landing 35 extends in the main plane of extension of the bottom wall 27. The sump 33 has the shape of a right cylinder with a square base delimited by side walls 37 which extend in a plane perpendicular to the plane of extension of the bottom wall 27. Thus, an inlet 39 of the sump 33, that is to say an opening through which the liquefied gas present in the tank 21 can reach the interior of the sump 33, is arranged so as to be flush with the first portion 29 of the bottom wall 27.
La première portion 29 et les deuxièmes portions 31 sont raccordées de manière continue afin de former la paroi de fond 27. En d’autres termes, la première portion 29, les paliers 35 et les puisards 33 sont reliés de manière à ce que la paroi de fond 27 présente une isolation thermique continue et une étanchéité continue. The first portion 29 and the second portions 31 are continuously connected in order to form the bottom wall 27. In other words, the first portion 29, the bearings 35 and the sumps 33 are connected so that the bottom wall 27 has continuous thermal insulation and continuous sealing.
En référence à la figure 3 er à la figure 4, chaque paroi 23, 25, 27 comprend, selon une direction d’épaisseur E de la paroi 23, 25, 27, une barrière rhermiquemenr isolante secondaire 41 retenue à la cloison respective de la structure de base 3, une membrane étanche secondaire 51 reposant contre la barrière rhermiquemenr isolante secondaire 41 , une barrière rhermiquemenr isolante primaire 61 reposant contre la membrane étanche secondaire 51 er une membrane étanche primaire 71 destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve 21 er reposant contre la barrière rhermiquemenr isolante primaire 61. With reference to FIG. 3 and FIG. 4, each wall 23, 25, 27 comprises, in a direction of thickness E of the wall 23, 25, 27, a secondary insulating thermal barrier 41 retained at the respective partition of the base structure 3, a secondary waterproof membrane 51 resting against the secondary insulating thermal barrier 41, a primary insulating thermal barrier 61 resting against the secondary waterproof membrane 51 and a primary waterproof membrane 71 intended to be in contact with the liquefied natural gas contained in the tank 21 resting against the primary insulating thermal barrier 61.
Les barrières rhermiquemenr isolantes secondaires 41 des parois 23, 25, 27 de cuve 21 communiquent les unes avec les autres de manière à former, entre la structure de base 3 er la membrane étanche secondaire 51 , un espace rhermiquemenr isolant secondaire continu er étanche. De même, les barrières rhermiquemenr isolantes primaires 61 des parois 23, 25, 27 de cuve 21 communiquent les unes avec les autres de manière à former, entre la membrane étanche secondaire 51 er la membrane étanche primaire 71 un espace rhermiquemenr isolant primaire continu er étanche. The secondary rhermiquemenr insulating barriers 41 of the walls 23, 25, 27 of the tank 21 communicate with each other so as to form, between the base structure 3 and the secondary sealed membrane 51, a continuous and sealed secondary rhermiquemenr insulating space. Similarly, the primary thermally insulating barriers 61 of the walls 23, 25, 27 of the tank 21 communicate with each other so as to form, between the secondary sealed membrane 51 and the primary sealed membrane 71, a continuous and sealed primary thermally insulating space. .
En référence à la figure 3 er à la figure 4, la barrière rhermiquemenr isolante secondaire 41 comporte une pluralité de blocs autoporreurs calorifuges 43. Les blocs autoporreurs calorifuges 43 présentent sensiblement une forme de parallélépipède rectangle. Les blocs autoporreurs calorifuges 43 peuvent présenter d’autres formes comme par exemple une forme de parallélépipède, notamment à base carrée ou à base rectangulaire, ou une forme de prisme droit à base hexagonale. Les blocs autoporreurs calorifuges 43 sont juxtaposés selon des rangées parallèles. With reference to FIG. 3 and FIG. 4, the secondary insulating thermal barrier 41 comprises a plurality of heat-insulating self-porrying blocks 43. The heat-insulating self-porrying blocks 43 substantially have the shape of a rectangular parallelepiped. The heat-insulating self-porous blocks 43 can have other shapes such as for example a parallelepiped shape, in particular with a square base or a rectangular base, or a right prism shape with a hexagonal base. The self-poring heat-insulating blocks 43 are juxtaposed in parallel rows.
Dans un mode de réalisation non représenté, les blocs autoporreurs calorifuges 43 de la pluralité de blocs autoporreurs calorifuges 43 peuvent comporter une structure d'angle disposée à la jonction 34 entre le palier 35 er le puisard 33. La structure d’angle présente deux pans respectivement parallèles au plan d’extension du palier 35 er au plan d’extension des murets latéraux 37. Les deux pans forment un angle dièdre de 45° ou de 90°. In an embodiment not shown, the heat-insulating self-porring blocks 43 of the plurality of heat-insulating self-porring blocks 43 may comprise a corner structure arranged at the junction 34 between the bearing 35 and the sump 33. The corner structure has two sides respectively parallel to the extension plane of the landing 35 st to the plane extension of the side walls 37. The two sides form a dihedral angle of 45° or 90°.
Les blocs autoporteurs calorifuges 43 comportent chacun un pavé de mousse polymère 45 calorifuge reposant sur une plaque 47 rigide externe. La plaque 47 rigide externe est, par exemple, une plaque de bois contreplaqué. La plaque rigide externe 47est collée sur ledit pavé de mousse polymère 45 calorifuge. La mousse polymère calorifuge peut notamment être une mousse à base de polyuréthane rigide. Des fibres de verre peuvent être noyées dans la mousse de polyuréthane pour renforcer la tenue mécanique de la mousse polymère et réduire le coefficient de dilatation thermique de la mousse polymère. Dans un mode de réalisation non représenté, la plaque 47 rigide externe est composée d’au moins un matériau composite. The heat-insulated self-supporting blocks 43 each comprise a block of heat-insulated polymer foam 45 resting on an outer rigid plate 47 . The outer rigid plate 47 is, for example, a plywood plate. The outer rigid plate 47 is glued to said pad of heat-insulating polymer foam 45. The heat-insulating polymer foam may in particular be a foam based on rigid polyurethane. Glass fibers can be embedded in the polyurethane foam to reinforce the mechanical strength of the polymer foam and reduce the coefficient of thermal expansion of the polymer foam. In an embodiment not shown, the outer rigid plate 47 is composed of at least one composite material.
Les blocs autoporteurs calorifuges 43 présentent une épaisseur comprise entre 100mm et 350mm, préférentiellement entre 150mm et 300mm, l’épaisseur des blocs autoporteurs calorifuges 43 étant mesurée parallèlement à la direction d’épaisseur E de la paroi 23, 25, 27. La masse volumique des pavés de mousse polymère 45 calorifuge varie d’un bloc autoporteur calorifuge 43 à un autre selon leur disposition dans la cuve 21 de manière d’optimiser la résistance mécanique et les coûts de production. La variation de la masse volumique des pavés de mousse polymère 45 calorifuge sera détaillée ci-après. The heat-insulating self-supporting blocks 43 have a thickness of between 100mm and 350mm, preferably between 150mm and 300mm, the thickness of the heat-insulating self-supporting blocks 43 being measured parallel to the thickness direction E of the wall 23, 25, 27. The density blocks of heat-insulating polymer foam 45 varies from one heat-insulating self-supporting block 43 to another depending on their arrangement in the tank 21 so as to optimize the mechanical strength and the production costs. The variation in the density of the blocks of heat-insulating polymer foam 45 will be detailed below.
La face interne des cloisons internes 13 et la face interne de la cloison supérieure 9 peuvent présenter des écarts importants par rapport à la surface théorique prévue pour la structure de base en raison par exemple d’imprécisions de fabrication. Ces écarts sont rattrapés en mettant en appui les blocs autoporteurs calorifuges 43 contre la structure de base par l’intermédiaire de boudins de résine polymérisable 40. Les blocs autoporteurs calorifuges 43 sont ancrés aux cloisons internes 13 et à la cloison supérieure 9 à l’aide de goujons, non illustrés, soudés sur la face interne des cloisons internes 13. The internal face of the internal partitions 13 and the internal face of the upper partition 9 may have significant deviations from the theoretical surface provided for the base structure due, for example, to manufacturing inaccuracies. These differences are made up for by resting the heat-insulating self-supporting blocks 43 against the base structure by means of polymerizable resin sausages 40. The heat-insulating self-supporting blocks 43 are anchored to the internal partitions 13 and to the upper partition 9 using of studs, not shown, welded to the internal face of the internal partitions 13.
La membrane étanche secondaire 51 comprend une pluralité de nappes étanches rigides 53 faites à partir d’une feuille en aluminium de 0,07mm d’épaisseur prise en sandwich entre deux tissus de fibres de verre imprégnés d’une résine de polyamide. Les nappes étanches rigides 53 sont collées aux pavés de mousse polymère 45 des blocs autoporteurs calorifuges 43, par exemple à l’aide d’une colle polyuréthane bi-composante. The secondary waterproof membrane 51 comprises a plurality of rigid waterproof sheets 53 made from a 0.07 mm thick aluminum sheet sandwiched between two fabrics of glass fibers impregnated with a polyamide resin. Tablecloths Rigid seals 53 are glued to the blocks of polymer foam 45 of the heat-insulating self-supporting blocks 43, for example using a two-component polyurethane glue.
Pour conférer une certaine souplesse à la membrane secondaire et assurer la continuité de celle-ci entre deux nappes étanches rigides 53 contigües, on met en place une nappe étanche souple 55 collées sur des rebords périphériques voisins de deux nappes étanches rigides 53 contigües. La nappe étanche souple 55 est constituée d’un matériau composite comportant trois couches : les deux couches externes sont des tissus en fibre de verre et la couche intermédiaire est une feuille métallique mince, par exemple une feuille d’aluminium d’une épaisseur d’environ 0,1mm. Cette feuille métallique assure la continuité de la membrane étanche secondaire. To impart a certain flexibility to the secondary membrane and to ensure the continuity of the latter between two contiguous rigid impermeable sheets 53, a flexible impermeable sheet 55 is placed glued to adjacent peripheral edges of two contiguous rigid impermeable plies 53 . The flexible waterproof sheet 55 is made of a composite material comprising three layers: the two outer layers are fiberglass fabrics and the intermediate layer is a thin metal sheet, for example an aluminum sheet with a thickness of about 0.1mm. This metal sheet ensures the continuity of the secondary waterproof membrane.
La barrière thermiquement isolante primaire 61 comporte une pluralité de panneaux autoporteurs calorifuges 63 de forme sensiblement parallélépipédique rectangle. Les panneaux autoporteurs calorifuges 63 peuvent présenter d’autres formes comme par exemple une forme cubique. Dans un premier mode de réalisation représenté sur la figure 3, les panneaux autoporteurs calorifuges 63 sont décalés par rapport aux blocs autoporteurs calorifuges 43 de la barrière thermiquement isolante secondaire 41 de telle sorte que chaque panneau autoporteur calorifuge 63 s'étend sur au moins deux blocs autoporteurs calorifuges 43. The primary thermally insulating barrier 61 comprises a plurality of heat-insulating self-supporting panels 63 of substantially rectangular parallelepipedic shape. The heat-insulating self-supporting panels 63 can have other shapes such as a cubic shape, for example. In a first embodiment shown in Figure 3, the heat-insulating self-supporting panels 63 are offset from the heat-insulating self-supporting blocks 43 of the secondary thermally insulating barrier 41 such that each heat-insulating self-supporting panel 63 extends over at least two blocks. insulated self-supporting 43.
Chaque panneau autoporteur calorifuge 63 présente un bloc de mousse polymère 65 calorifuge, par exemple à base de polyuréthane rigide. Un premier côté du bloc de mousse polymère 65 est collé à la membrane étanche secondaire 51 et un deuxième côté, opposé au premier côté, est revêtu d’une plaque 69 rigide interne. La plaque 69 rigide interne du panneau autoporteur calorifuge 63 est par exemple en bois contreplaqué. Des fibres de verre peuvent être noyées dans la mousse polymère pour la renforcer pour renforcer la tenue mécanique de la mousse polymère et réduire le coefficient de dilatation thermique de la mousse polymère. Dans un mode de réalisation non représenté, la plaque 69 rigide interne est composée d’au moins un matériau composite.Each heat-insulating self-supporting panel 63 has a block of heat-insulating polymer foam 65, for example based on rigid polyurethane. A first side of the block of polymer foam 65 is glued to the secondary waterproof membrane 51 and a second side, opposite the first side, is covered with an internal rigid plate 69. The internal rigid plate 69 of the insulated self-supporting panel 63 is for example made of plywood. Glass fibers can be embedded in the polymer foam to reinforce it to reinforce the mechanical strength of the polymer foam and reduce the coefficient of thermal expansion of the polymer foam. In an embodiment not shown, the internal rigid plate 69 is composed of at least one composite material.
Les panneaux autoporteurs calorifuges 63 présentent une épaisseur comprise entre 100mm et 200mm, préférentiellement entre 100mm et 150mm, l’épaisseur des panneaux autoporteurs calorifuges 63 étant mesurée parallèlement à la direction d’épaisseur E de la paroi 23, 25, 27. The heat-insulating self-supporting panels 63 have a thickness of between 100mm and 200mm, preferably between 100mm and 150mm, the thickness of the self-supporting heat-insulating panels 63 being measured parallel to the direction of thickness E of the wall 23, 25, 27.
Dans un deuxième mode de réalisation représenté sur la figure 5, les panneaux autoporteurs calorifuges 63 sont agencés différemment par comparaison au premier mode de réalisation. En d’autres mots, dans le deuxième mode de réalisation les éléments de la cuve sont identiques aux éléments du premier mode de réalisation et seul la disposition des panneaux autoporteurs calorifuges 63 par rapport aux blocs autoporteurs calorifuges 43 a changé. In a second embodiment shown in Figure 5, the heat-insulating self-supporting panels 63 are arranged differently compared to the first embodiment. In other words, in the second embodiment, the elements of the tank are identical to the elements of the first embodiment and only the arrangement of the heat-insulating self-supporting panels 63 with respect to the heat-insulating self-supporting blocks 43 has changed.
Ainsi, une partie des panneaux autoporteurs calorifuges 63 est collée sur une partie centrale des blocs autoporteurs calorifuges 43 en préfabrication. Cette partie des panneaux autoporteurs calorifuges 63 vient recouvrir une partie de la membrane étanche secondaire 51. Une autre partie des panneaux autoporteurs calorifuges 63 est collée sur une périphérie des blocs autoporteurs calorifuges 43. L’autre partie des panneaux autoporteurs calorifuges 63 s’étend alors sur au moins deux blocs autoporteurs calorifuges 43. Thus, part of the heat-insulating self-supporting panels 63 is glued to a central part of the heat-insulating self-supporting blocks 43 in prefabrication. This part of the heat-insulating self-supporting panels 63 comes to cover a part of the secondary waterproof membrane 51. Another part of the heat-insulating self-supporting panels 63 is glued on a periphery of the heat-insulating self-supporting blocks 43. The other part of the heat-insulating self-supporting panels 63 then extends on at least two heat-insulating self-supporting blocks 43.
Comme illustré sur la figure 4, la barrière thermiquement isolante primaire 61 peut comporter en outre des renforts d’angle 62 qui sont utilisés pour remplir d’éventuels espaces entre les panneaux autoporteurs calorifuges 63 et la membrane étanche primaire 71 notamment à la jonction 34 entre le palier 35 et le puisard 33. Les renforts d’angle 62 sont par exemple des pavés de bois de massif ou de contreplaqué. As illustrated in FIG. 4, the primary thermally insulating barrier 61 may also comprise corner reinforcements 62 which are used to fill any spaces between the heat-insulating self-supporting panels 63 and the primary waterproof membrane 71, in particular at the junction 34 between the bearing 35 and the sump 33. The corner reinforcements 62 are for example paving stones of solid wood or plywood.
La membrane étanche primaire 71 comporte une pluralité de tôles métalliques qui sont soudées les unes aux autres. Dans le mode de réalisation illustré sur la figure 3 et sur la figure 4, la membrane étanche primaire 71 présente des ondulations 75 sur les tôles métalliques qui lui permettent de se déformer sous l’effet des sollicitations thermiques et mécaniques générées par le gaz liquéfié dans la cuve 21. La membrane étanche primaire 71 comporte deux séries d’ondulations 75 perpendiculaires l’une à l’autre. Les ondulations 75 font saillie vers l'intérieur de la cuve 21. La plaque 69 rigide interne de chaque panneau autoporteur calorifuge 63 est équipée de platines métalliques (non représentées) pour l'ancrage des tôles métalliques ondulées de la membrane étanche primaire 71. Les plaques d’assemblage peuvent être assemblées entre elles, par exemple, par soudage. The primary waterproof membrane 71 comprises a plurality of metal sheets which are welded to each other. In the embodiment illustrated in Figure 3 and in Figure 4, the primary sealed membrane 71 has undulations 75 on the metal sheets which allow it to deform under the effect of the thermal and mechanical stresses generated by the liquefied gas in the tank 21. The primary sealed membrane 71 comprises two series of corrugations 75 perpendicular to each other. The corrugations 75 project towards the inside of the tank 21. The internal rigid plate 69 of each heat-insulating self-supporting panel 63 is equipped with metal plates (not shown) for anchoring the corrugated metal sheets of the waterproof membrane. primary 71. The assembly plates can be assembled together, for example, by welding.
Selon leur emplacement dans la cuve, les pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 er/ou les blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 peuvent présenter une masse volumique différente, selon leur emplacement dans la cuve 21. Cela permet de renforcer les endroits de la cuve 21 subissant de fortes contraintes mécaniques tour en minimisant les coûts de fabrication d’une relie cuve. Depending on their location in the tank, the blocks of polymer foam 45 of the heat-insulating self-porous blocks 43 and/or the polymer foam blocks 65 of the heat-insulating self-porring panels 63 may have a different density, depending on their location in the tank 21. This makes it possible to reinforce the places of the tank 21 undergoing high mechanical stresses while minimizing the manufacturing costs of a tank connection.
Ainsi la masse volumique des pavés de mousse polymère 45 et la masse volumique des blocs de mousse polymère 65 de la deuxième portion 31 de la paroi de fond 27 est supérieure à la masse volumique des pavés de mousse polymère 45 et la masse volumique des blocs de mousse polymère 65 de la première portion 29 de la paroi de fond 27.Thus the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the second portion 31 of the bottom wall 27 is greater than the density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the first portion 29 of the bottom wall 27.
Dans le mode de réalisation illustré sur les figures, la masse volumique des pavés de mousse polymère 45 du puisard 33 er du palier 35 er la masse volumique des blocs de mousse polymère 65 du puisard 33 er du palier 35 sont sensiblement égales à 130kg/m3. Donc la masse volumique des pavés de mousse polymère 45 de la deuxième portion 31 est sensiblement égale à la masse volumique des blocs de mousse polymère 65 de la deuxième portion 31. La masse volumique des pavés de mousse polymère 45 er la masse volumique des blocs de mousse polymère 65 de la première portion 29 est égale à 90kg/m3. On comprend que la masse volumique des pavés de mousse polymère 45 de la première portion 29 est sensiblement égale à la masse volumique des blocs de mousse polymère 65 de la première portion 29. In the embodiment illustrated in the figures, the density of the blocks of polymer foam 45 of the sump 33 st of the bearing 35 and the density of the blocks of polymer foam 65 of the sump 33 st of the bearing 35 are substantially equal to 130 kg/m 3 . Therefore the density of the blocks of polymer foam 45 of the second portion 31 is substantially equal to the density of the blocks of polymer foam 65 of the second portion 31. The density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the first portion 29 is equal to 90 kg/m 3 . It is understood that the density of the blocks of polymer foam 45 of the first portion 29 is substantially equal to the density of the blocks of polymer foam 65 of the first portion 29.
Dans un mode de réalisation non représentée, les pavés de mousse polymère 45 de la première portion 29 présentent une masse volumique différente de la masse volumique des blocs de mousse polymère 65 de la première portion 29. Dans un mode de réalisation non représenté, les pavés de mousse polymère 45 de la deuxième portion 31 présentent une masse volumique différente de la masse volumique des blocs de mousse polymère 65 de la deuxième portion 31. En référence à la figure 2 er à la figure 4, la masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 diminue selon une direction allant de la paroi de fond 27 à la paroi supérieure 23. De plus, la masse volumique des pavés de mousses polymères 45 des blocs autoporreurs calorifuges 43 diminue selon une direction allant de la paroi de fond 27 à la paroi supérieure 23. In an embodiment not shown, the blocks of polymer foam 45 of the first portion 29 have a different density from the density of the blocks of polymer foam 65 of the first portion 29. In an embodiment not shown, the blocks of polymer foam 45 of the second portion 31 have a density different from the density of the blocks of polymer foam 65 of the second portion 31. With reference to FIG. 2 and FIG. 4, the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 decreases in a direction going from the bottom wall 27 to the upper wall 23. In addition, the density of the blocks of polymer foams 45 of the heat-insulating self-porous blocks 43 decreases in a direction going from the bottom wall 27 to the upper wall 23.
Plus précisément, la cuve 21 comprend une première zone 81, une deuxième zone 83 er au moins une troisième zone 85. La première zone 81 comprend la paroi de fond 27 er une partie inférieure des parois latérales 25. La deuxième zone 83 comprend la paroi supérieure 23 er une partie supérieure des parois latérales 25. La troisième zone 85 comprend une partie centrale des paroi latérales 25. Dans ce contexte, la troisième zone 85 est prise en sandwich entre la première zone 81 er la deuxième zone 83. More precisely, the tank 21 comprises a first zone 81, a second zone 83 and at least a third zone 85. The first zone 81 comprises the bottom wall 27 and a lower part of the side walls 25. The second zone 83 comprises the wall 23 and an upper part of the side walls 25. The third zone 85 comprises a central part of the side walls 25. In this context, the third zone 85 is sandwiched between the first zone 81 and the second zone 83.
Les pavés de mousse polymère 45 er les blocs de mousse polymère 65 de la première zone 81 présentent une masse volumique supérieure ou égale à 90kg/m3. Les pavés de mousse polymère 45 er les blocs de mousse polymère 65 de la partie inférieure des paroi latérales 25 présentent une masse volumique sensiblement égale à 90kg/m3. Comme décrit précédemment, les pavés de mousse polymère 45 er les blocs de mousse polymère 65 de la première portion 29 ont une masse volumique sensiblement égale à 90kg/m3. Les pavés de mousse polymère 45 er les blocs de mousse polymère 65 de la deuxième portion 31 ont une masse volumique sensiblement égale à 130kg/m3. The blocks of polymer foam 45 and the blocks of polymer foam 65 of the first zone 81 have a density greater than or equal to 90 kg/m 3 . The blocks of polymer foam 45 and the blocks of polymer foam 65 of the lower part of the side walls 25 have a density substantially equal to 90 kg/m 3 . As described above, the blocks of polymer foam 45 and the blocks of polymer foam 65 of the first portion 29 have a density substantially equal to 90 kg/m 3 . The blocks of polymer foam 45 and the blocks of polymer foam 65 of the second portion 31 have a density substantially equal to 130 kg/m 3 .
La masse volumique des pavés de mousse polymère 45 er la masse volumique des blocs de mousse polymère 65 de la deuxième zone 83 sont sensiblement égales à 65kg/m3. La masse volumique des pavés de mousse polymère 45 de la deuxième zone 83 er la masse volumique des blocs de mousse polymère 65 de la deuxième zone 83 sont donc inférieures à 70kg/m3. The density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the second zone 83 are substantially equal to 65 kg/m 3 . The density of the blocks of polymer foam 45 of the second zone 83 and the density of the blocks of polymer foam 65 of the second zone 83 are therefore less than 70 kg/m 3 .
La masse volumique des pavés de mousse polymère 45 er la masse volumique des blocs de mousse polymère 65 de la troisième zone 85 sont sensiblement égales 75kg/m3. La masse volumique des pavés de mousse polymère 45 er la masse volumique des blocs de mousse polymère 65 de la troisième zone 85 sont donc bien comprise entre 65kg/m3 er 90kg/m3. Autrement dit, la masse volumique des pavés de mousse polymère 45 de la troisième zone 85 est comprise entre les valeurs de la masse volumique des pavés de mousse polymère 45 de la deuxième zone 83 et la valeur de la masse volumique des pavés de mousse polymère 45 de la première zone 81. De plus, la masse volumique des blocs de mousse polymère 65 de la troisième zone 85 est comprise entre les valeurs de la masse volumique des blocs de mousse polymère 65 de la deuxième zone 83 et la valeur de la masse volumique des blocs de mousse polymère 65 de la première zone 81. The density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the third zone 85 are substantially equal to 75 kg/m 3 . The density of the blocks of polymer foam 45 and the density of the blocks of polymer foam 65 of the third zone 85 are therefore clearly between 65 kg/m 3 and 90 kg/m 3 . In other words, the density of the polymer foam blocks 45 of the third zone 85 is between the values of the density of the blocks of polymer foam 45 of the second zone 83 and the value of the density of the blocks of polymer foam 45 of the first zone 81. In addition, the density of the blocks of polymer foam 65 of the third zone 85 is between the values of the density of the blocks of polymer foam 65 of the second zone 83 and the value of the density of the blocks of polymer foam 65 of the first zone 81.
Dans mode de réalisation non représenté, la cuve comprend une pluralité de troisième zones 85 prises en sandwich entre la première zone 81 et la deuxième zone 83. Les troisième zones 85 sont alors empilées selon une direction allant de la paroi de fond 27 à la paroi supérieure 23. In an embodiment not shown, the tank comprises a plurality of third zones 85 sandwiched between the first zone 81 and the second zone 83. The third zones 85 are then stacked in a direction going from the bottom wall 27 to the wall upper 23.
Les blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 d’une troisième zone de la pluralité de troisième zones 85 présentant une masse volumique sensiblement identique. Autrement dit, la masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 est homogène au sein d’une même troisième zone 85. The polymer foam blocks 65 of the heat-insulating self-porous panels 63 of a third zone of the plurality of third zones 85 having a substantially identical density. In other words, the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 is homogeneous within the same third zone 85.
La masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 de la pluralité de troisième zones 85 diminuant selon une direction allant de la paroi de fond 27 à la paroi supérieure 23. La masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 est donc différente d’une troisième zone à une autre troisième zone. La masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 de la troisième zone 85 la plus proche de la paroi de fond 27 est supérieure à la masse volumique des blocs de mousse polymère 65 des panneaux autoporreurs calorifuges 63 de la troisième zone 85 la plus proche de la paroi de supérieure 23. The density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 of the plurality of third zones 85 decreasing in a direction going from the bottom wall 27 to the upper wall 23. The density of the polymer foam blocks 65 of the self-poring panels insulation 63 is therefore different from a third zone to another third zone. The density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 of the third zone 85 closest to the bottom wall 27 is greater than the density of the polymer foam blocks 65 of the heat-insulating self-porous panels 63 of the third zone 85 closest to the top wall 23.
Dans ce mode de réalisation non représenté, les pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 d’une troisième zone de la pluralité de troisième zones 85 présentant une masse volumique sensiblement identique. Autrement dit, la masse volumique des pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 est homogène au sein d’une même troisième zone 85. La masse volumique des pavés de mousse polymère 45 des blocs autoporteurs calorifuges 43 de la pluralité de troisième zones 85 diminuant selon une direction allant de la paroi de fond 27 à la paroi supérieure 23. La masse volumique des pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 est donc différente d’une troisième zone à une autre troisième zone. La masse volumique des pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 de la troisième zone 85 la plus proche de la paroi de fond 27 est supérieure à la masse volumique des pavés de mousse polymère 45 des blocs autoporreurs calorifuges 43 de la troisième zone 85 la plus proche de la paroi de supérieure 23. In this embodiment, not shown, the blocks of polymer foam 45 of the heat-insulating self-poring blocks 43 of a third zone of the plurality of third zones 85 having a substantially identical density. In other words, the density of the blocks of polymer foam 45 of the heat-insulating self-porous blocks 43 is homogeneous within the same third zone 85. The density of the polymer foam blocks 45 of the heat-insulating self-supporting blocks 43 of the plurality of third zones 85 decreasing in a direction going from the bottom wall 27 to the upper wall 23. The density of the polymer foam blocks 45 of the self-supporting blocks thermal insulation 43 is therefore different from a third zone to another third zone. The density of the polymer foam blocks 45 of the heat-insulating self-porous blocks 43 of the third zone 85 closest to the bottom wall 27 is greater than the density of the polymer foam blocks 45 of the heat-insulating self-porous blocks 43 of the third zone 85 closest to the top wall 23.
De manière préférentielle, la cuve 21 comprend trois troisième zones 85, ainsi la cuve 21 comporte cinq zones 81, 83, 85. Preferably, tank 21 comprises three third zones 85, thus tank 21 comprises five zones 81, 83, 85.
La figure 6 montre la cuve 21 de transport er/ou de stockage de forme générale parallélépipédique montée dans la structure de base 3 d’une plateforme graviraire 1. Les plateformes graviraires 1 sont en général des structures offshore utilisée dans le cadre d’exploirarion de pétrole ou de gaz. Ces ouvrages ont souvent une structure de base en béton, on parle alors de SGB (structure graviraire en béton) ou GBS (de l’anglais « Gravity Based Structure ») ; on parle également de SGS (Steel Gravity Structure) pour une structure de base réalisée en acier, auquel l’invention s’applique également. FIG. 6 shows the transport and/or storage tank 21 of generally parallelepipedic shape mounted in the base structure 3 of a gravity platform 1. The gravity platforms 1 are generally offshore structures used in the context of exploration of oil or gas. These works often have a concrete base structure, we then speak of SGB (concrete gravity structure) or GBS (from the English "Gravity Based Structure"); we also speak of SGS (Steel Gravity Structure) for a base structure made of steel, to which the invention also applies.
Les plateformes graviraires 1 peuvent remplir à la fois des fonctions de digue, de stockage, de plateforme d’accueil pour une usine de liquéfaction et de quai de chargement dans le cadre d’une exploitation d’un gaz liquéfié comme par exemple le gaz naturel liquéfié ou l’érhane. The gravity platforms 1 can fulfill the functions of a dyke, storage, reception platform for a liquefaction plant and loading dock at the same time in the context of the exploitation of a liquefied gas such as for example natural gas liquefied or erhane.
La paroi de la cuve 21 comporte une membrane étanche primaire destinée à être en contact avec le GNL contenu dans la cuve 21 , une membrane étanche secondaire agencée entre la barrière étanche primaire et la structure de base 3 de la plateforme graviraire 1 , er deux barrières rhermiquemenr isolante agencées respectivement entre la barrière étanche primaire er la barrière étanche secondaire er entre la barrière étanche secondaire er la structure de base 3. De manière connue en soi, des canalisations de chargemen r/déchargemenr 103 disposées sur le ponr supérieur d’un navire méthanier 100 peuvent être raccordées, au moyen de connecteurs appropriées, à la plateforme gravitaire 1 pour transférer une cargaison de GNL depuis ou vers la cuve 21. The wall of the tank 21 comprises a primary waterproof membrane intended to be in contact with the LNG contained in the tank 21, a secondary waterproof membrane arranged between the primary waterproof barrier and the base structure 3 of the gravity platform 1, and two barriers thermal insulation arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the base structure 3. In a manner known per se, loading/unloading pipes 103 arranged on the upper deck of a ship LNG carrier 100 can be connected, by means of appropriate connectors, to the gravity platform 1 to transfer an LNG cargo from or to the tank 21.
La figure 6 représente la plateforme gravitaire 1 comportant un poste de chargement et de déchargement 105, une conduite sous-marine 107 et une plateforme gravitaire 1. Le poste de chargement et de déchargement 105 est une installation fixe off-shore comportant un bras mobile 111 et une tour 113 qui supporte le bras mobile 111. Le bras mobile 111 porte un faisceau de tuyaux flexibles isolés 115 pouvant se connecter aux canalisations de chargement/ déchargement 103. Le bras mobile 111 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 113. Le poste de chargement et de déchargement 105 permet le chargement et le déchargement d’au moins une cuve 22 du navire méthanier 100 depuis ou vers la plateforme gravitaire 1. La cuve 22 du navire méthanier 100 peut être une cuve conforme à l’invention. La plateforme gravitaire 1 comporte au moins une cuve 21 de stockage de gaz liquéfié selon l’invention et des conduites de liaison 109 reliées par la conduite sous-marine 107 au poste de chargement ou de déchargement 105. La conduite sous-marine 107 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 105 et la plateforme gravitaire 1 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 100 à grande distance de la côte pendant les opérations de chargement et de déchargement. Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire méthanier 100 et/ou des pompes équipant la plateforme gravitaire 1 et/ou des pompes équipant le poste de chargement et de déchargement 105. FIG. 6 represents the gravity platform 1 comprising a loading and unloading station 105, an underwater pipe 107 and a gravity platform 1. The loading and unloading station 105 is a fixed offshore installation comprising a mobile arm 111 and a tower 113 which supports the mobile arm 111. The mobile arm 111 carries a bundle of insulated flexible pipes 115 which can be connected to the loading/unloading pipes 103. The orientable mobile arm 111 adapts to all sizes of LNG carriers. A connecting pipe, not shown, extends inside the tower 113. The loading and unloading station 105 allows the loading and unloading of at least one tank 22 of the LNG carrier 100 from or to the gravity platform 1 The tank 22 of the LNG carrier 100 can be a tank according to the invention. The gravity platform 1 comprises at least one liquefied gas storage tank 21 according to the invention and connecting pipes 109 connected by the underwater pipe 107 to the loading or unloading station 105. The underwater pipe 107 allows the transfer of the liquefied gas between the loading or unloading station 105 and the gravity platform 1 over a long distance, for example 5 km, which makes it possible to keep the LNG tanker 100 at a great distance from the coast during the loading and unloading. To generate the pressure necessary for the transfer of the liquefied gas, pumps on board the LNG carrier 100 and/or pumps fitted to the gravity platform 1 and/or pumps fitted to the loading and unloading station 105 are used.
L'invention permet ainsi de réaliser simplement une cuve 21 de stockage et/ou de transport de gaz liquéfié pour une plateforme gravitaire 1 présentant une résistance mécanique accrue notamment au niveau d’un puisard 33 prévu dans une paroi de fond 27 de la cuve 21 en utilisant des pavés de mousse polymère 45 de blocs autoporteurs calorifuges 43 et des blocs de mousse polymère 65 des panneaux autoporteurs calorifuges 63 de masse volumique différente au sein de la paroi de fond 27. De plus, par la variation de la masse volumique des pavés de mousse polymère 45 des blocs autoporteurs calorifuges 43 et par la variation des blocs de mousse polymère 65 des panneaux autoporteurs calorifuges 63 selon une hauteur de la cuve 21, il est possible de minimiser les coûts de fabrication de la cuve 21. Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. The invention thus makes it possible to simply produce a tank 21 for storing and/or transporting liquefied gas for a gravity platform 1 having increased mechanical strength, in particular at the level of a sump 33 provided in a bottom wall 27 of the tank 21 by using blocks of polymer foam 45 of heat-insulating self-supporting blocks 43 and polymer foam blocks 65 of heat-insulating self-supporting panels 63 of different density within the bottom wall 27. variation of the density of the blocks of polymer foam 45 of the heat-insulating self-supporting blocks 43 and by the variation of the polymer foam blocks 65 of the heat-insulating self-supporting panels 63 according to a height of the tank 21, it is possible to minimize the manufacturing costs of the vessel 21. Of course, the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Claims

24 24
REVENDICATIONS
1- Cuve (21) de transport et/ou de stockage d’un gaz liquéfié, comprenant une pluralité de parois (23, 25, 27) qui comportent chacune, selon une direction d’épaisseur (E) de la paroi, une barrière thermiquement isolante (61) et au moins une membrane étanche (71) reposant contre la barrière thermiquement isolante (61) et destinée à être en contact avec le gaz liquéfié à l’intérieur de la cuve (21), la barrière thermiquement isolante (61) comprenant une pluralité de panneaux autoporteurs calorifuges (63) lesquels comprennent chacun un bloc de mousse polymère (65) et au moins une plaque (69), une paroi de fond (27) de la pluralité de parois (23, 25, 27) comprend au moins une première portion (29) entourant au moins en partie une deuxième portion (31) de la paroi de fond (27), la deuxième portion (31) comportant au moins un puisard (33), caractérisé en ce que les blocs de mousse polymère (65) de la deuxième portion (31) présentent une masse volumique supérieure à une masse volumique des blocs de mousse polymère (65) de la première portion (29). 1- Vessel (21) for transporting and/or storing a liquefied gas, comprising a plurality of walls (23, 25, 27) which each comprise, in a direction of thickness (E) of the wall, a barrier thermally insulating (61) and at least one sealed membrane (71) resting against the thermally insulating barrier (61) and intended to be in contact with the liquefied gas inside the tank (21), the thermally insulating barrier (61 ) comprising a plurality of heat-insulating self-supporting panels (63) which each comprise a polymer foam block (65) and at least one plate (69), a bottom wall (27) of the plurality of walls (23, 25, 27) comprises at least a first portion (29) at least partially surrounding a second portion (31) of the bottom wall (27), the second portion (31) comprising at least one sump (33), characterized in that the blocks of polymer foam (65) of the second portion (31) have a density greater than a density of the bl ocs of polymer foam (65) of the first portion (29).
2- Cuve (21) selon la revendication précédente, dans laquelle la pluralité de parois (23, 25, 27) comprend une paroi supérieure (23) et des paroi latérales (25) reliant la paroi de fond (27) à la paroi supérieure (23), la masse volumique des blocs de mousse polymère (65) des panneaux autoporteurs calorifuges (63) diminuant de la paroi de fond (27) à la paroi supérieure (23). 2- tank (21) according to the preceding claim, wherein the plurality of walls (23, 25, 27) comprises an upper wall (23) and side walls (25) connecting the bottom wall (27) to the upper wall (23), the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63) decreasing from the bottom wall (27) to the top wall (23).
3- Cuve (21) selon la revendication 1, dans laquelle la pluralité de parois (23, 25, 27) comprend une paroi supérieure (23) et des paroi latérales (25) reliant la paroi de fond (27) à la paroi supérieure (23), la masse volumique des blocs de mousse polymère (65) des panneaux autoporteurs calorifuges (63) de la première portion (29) étant sensiblement égale à la masse volumique des blocs de mousse polymère (65) des panneaux autoporteurs calorifuges (63) des parois latérales (25) et sensiblement égale à la masse volumique des blocs de mousse polymères (65) des panneaux autoporteurs calorifuges (63) de la paroi supérieure (23). 3- tank (21) according to claim 1, wherein the plurality of walls (23, 25, 27) comprises an upper wall (23) and side walls (25) connecting the bottom wall (27) to the upper wall (23), the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63) of the first portion (29) being substantially equal to the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63 ) of the side walls (25) and substantially equal to the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63) of the upper wall (23).
4- Cuve (21) selon la revendication 2, comprenant une première zone (81) formée par la paroi de fond (27) et par une partie inférieure des parois latérales (25), ainsi qu’une deuxième zone (83) formée par la paroi supérieure (23) er par une partie supérieure des parois latérales (25), er dans laquelle la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la première zone (81) est supérieure à la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la deuxième zone (83). 4- tank (21) according to claim 2, comprising a first zone (81) formed by the bottom wall (27) and by a lower part of the side walls (25), as well a second zone (83) formed by the upper wall (23) and by an upper part of the side walls (25), in which the density of the blocks of polymer foam (65) of the heat-insulating self-porous panels (63) of the first zone (81) is greater than the density of the polymer foam blocks (65) of the heat-insulating self-porous panels (63) of the second zone (83).
5- Cuve (21) selon la revendication précédente, comprenant au moins une troisième zone (85) intercalée entre la première zone (81) er la deuxième zone (83) er dans laquelle la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la troisième zone (85) est comprise entre la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la première zone (81) er la masse volumique blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la deuxième zone (83). 5- tank (21) according to the preceding claim, comprising at least a third zone (85) interposed between the first zone (81) and the second zone (83) in which the density of the polymer foam blocks (65) of the heat-insulating self-porous panels (63) of the third zone (85) is between the density of the polymer foam blocks (65) of the heat-insulating self-porous panels (63) of the first zone (81) and the density of the polymer foam blocks ( 65) heat-insulating self-poring panels (63) of the second zone (83).
6- Cuve (21) selon la revendication précédente, comprenant une pluralité de troisième zones (85), les troisième zones (85) étant empilées selon une direction allant de la paroi de fond (27) à la paroi supérieure (23), les blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) d’une troisième zone (85) de la pluralité de troisième zones (85) présentant une masse volumique sensiblement identique, er la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la pluralité de troisième zones (85) diminuant selon la direction allant de la paroi de fond (27) à la paroi supérieure (23). 6- Tank (21) according to the preceding claim, comprising a plurality of third zones (85), the third zones (85) being stacked in a direction extending from the bottom wall (27) to the upper wall (23), the polymer foam blocks (65) of the heat-insulating self-porous panels (63) of a third zone (85) of the plurality of third zones (85) having a substantially identical density, er the density of the polymer foam blocks (65) heat-insulating self-porous panels (63) of the plurality of third zones (85) decreasing in the direction going from the bottom wall (27) to the top wall (23).
7- Cuve (21) selon l’une quelconque des revendications précédentes, dans laquelle la membrane étanche (71) est une membrane étanche primaire (71) er la barrière rhermiquemenr isolante (61) est une barrière rhermiquemenr isolante primaire (61), er dans laquelle la paroi de fond (27) comprend une membrane étanche secondaire (51) er une barrière rhermiquemenr isolante secondaire (41) qui comporte une pluralité de blocs autoporreurs calorifuges (43) comprenant des pavés de mousse polymère (45) er au moins une plaque (47), la membrane étanche secondaire (51) repose contre la barrière rhermiquemenr isolante secondaire (41), la barrière rhermiquemenr isolante primaire (61) repose contre la membrane étanche secondaire (51) et la membrane étanche primaire (71) repose contre la barrière rhermiquemenr isolante primaire (61). 7- tank (21) according to any one of the preceding claims, wherein the waterproof membrane (71) is a primary waterproof membrane (71) and the thermally insulating barrier (61) is a primary thermally insulating barrier (61), wherein the bottom wall (27) comprises a secondary watertight membrane (51) and a secondary thermally insulating barrier (41) which comprises a plurality of heat-insulating self-porous blocks (43) comprising blocks of polymer foam (45) and at least one plate (47), the secondary waterproof membrane (51) rests against the secondary thermally insulating barrier (41), the primary thermally insulating barrier (61) rests against the secondary waterproof membrane (51) and the primary waterproof membrane (71) rests against the primary insulating thermal barrier (61).
8- Cuve (21) selon la revendication précédente, dans laquelle les pavés de mousse polymère (45) des blocs autoporreurs calorifuges (43) de la deuxième portion (31) de la paroi de fond (27) présentent une masse volumique supérieure aux pavés de mousse polymère (45) des blocs autoporreurs calorifuges (43) de la première portion (29) de la paroi de fond (27). 8. Tank (21) according to the preceding claim, in which the blocks of polymer foam (45) of the self-insulating blocks (43) of the second portion (31) of the bottom wall (27) have a higher density than the blocks of polymer foam (45) of the heat-insulating self-poring blocks (43) of the first portion (29) of the bottom wall (27).
9- Cuve (21) selon l’une quelconque des revendications 7 à 8, dans laquelle les pavés de mousse polymère (45) des blocs autoporreurs calorifuges (43) de la deuxième portion (31) de la paroi de fond (27) présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère (65) des panneaux autoporreurs calorifuges (63) de la deuxième portion (31) de la paroi de fond (27).9- Tank (21) according to any one of claims 7 to 8, wherein the blocks of polymer foam (45) of the heat-insulating autoporreurs blocks (43) of the second portion (31) of the bottom wall (27) have a density substantially equal to the density of the polymer foam blocks (65) of the heat-insulating self-poring panels (63) of the second portion (31) of the bottom wall (27).
10- Cuve (21) selon l’une quelconque des revendications 7 à 9, dans laquelle la masse volumique des pavés de mousse polymère (45) des blocs autoporreurs calorifuges (43) de la première portion (29) de la paroi de fond (27) est inférieure ou égale à10- tank (21) according to any one of claims 7 to 9, wherein the density of the polymer foam blocks (45) of the heat-insulating self-poring blocks (43) of the first portion (29) of the bottom wall ( 27) is less than or equal to
110kg/m3 et la masse volumique des pavés de mousse polymère (45) des blocs autoporreurs calorifuges (43) de la deuxième portion (31) de la paroi de fond (27) est supérieure ou égale à 115kg/m3. 110 kg/m 3 and the density of the polymer foam blocks (45) of the heat-insulating self-poring blocks (43) of the second portion (31) of the bottom wall (27) is greater than or equal to 115 kg/m 3 .
11- Cuve selon l’une quelconque des revendications 7 à 10, dans laquelle la pluralité de parois (23, 25, 27) comprend une paroi supérieure (23) er des paroi latérales (25) reliant la paroi de fond (27) à la paroi supérieure (23), er dans laquelle la paroi supérieure (23) er les parois latérales (25) comprennent chacune une membrane étanche secondaire (51) er une barrière rhermiquemenr isolante secondaire (41) qui comporte une pluralité de blocs autoporreurs calorifuges (43) comprenant des pavés de mousse polymère (45) er au moins une plaque (47), la membrane étanche secondaire (51) repose contre la barrière rhermiquemenr isolante secondaire (41), la barrière rhermiquemenr isolante primaire (61) repose contre la membrane étanche secondaire (51) er la membrane étanche primaire (71) repose contre la barrière rhermiquemenr isolante primaire (61), la masse volumique des pavés de mousse polymère (45) des blocs 27 autoporteurs calorifuges (43) diminuant de la paroi de fond (27) à la paroi supérieure (23). 11- Tank according to any one of claims 7 to 10, wherein the plurality of walls (23, 25, 27) comprises an upper wall (23) and side walls (25) connecting the bottom wall (27) to the upper wall (23), in which the upper wall (23) and the side walls (25) each comprise a secondary waterproof membrane (51) and a secondary thermally insulating barrier (41) which comprises a plurality of heat-insulating self-porous blocks ( 43) comprising blocks of polymer foam (45) and at least one plate (47), the secondary waterproof membrane (51) rests against the secondary thermal insulating barrier (41), the primary thermal insulating barrier (61) rests against the secondary waterproof (51) er the primary waterproof membrane (71) rests against the primary insulating thermal barrier (61), the density of the polymer foam blocks (45) of the blocks 27 self-supporting thermal insulation (43) decreasing from the bottom wall (27) to the upper wall (23).
12- Cuve (21) selon l’une quelconque des revendications 7 à 11, dans laquelle les pavés de mousse polymère (45) des blocs autoporteurs calorifuges (43) de la première portion (29), des parois latérales (25) et de la paroi supérieure (23) présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère (65) des panneaux autoporteurs calorifuges (63) de la première portion (29), des parois latérales (25) et de la paroi supérieure (23) et dans laquelle les pavés de mousse polymère (45) des blocs autoporteurs calorifuges (43) de la deuxième portion (31) présentent une masse volumique sensiblement égale à la masse volumique des blocs de mousse polymère (65) des panneaux autoporteurs calorifuges (63) de la deuxième portion (31). 12- tank (21) according to any one of claims 7 to 11, wherein the blocks of polymer foam (45) of the heat-insulating self-supporting blocks (43) of the first portion (29), of the side walls (25) and of the top wall (23) has a density substantially equal to the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63) of the first portion (29), of the side walls (25) and of the top wall (23) and in which the blocks of polymer foam (45) of the heat-insulating self-supporting blocks (43) of the second portion (31) have a density substantially equal to the density of the polymer foam blocks (65) of the heat-insulating self-supporting panels (63) of the second portion (31).
13- Cuve (21) selon l’une quelconque des revendications précédentes, dans laquelle la paroi de fond (27) comprend une pluralité de deuxièmes portions (31). 13- tank (21) according to any one of the preceding claims, wherein the bottom wall (27) comprises a plurality of second portions (31).
14- Plateforme gravitaire (1) comprenant une cuve (21) de stockage d’un gaz liquéfié selon l’une quelconque des revendications précédentes et un organe d’aspiration d’une pompe configurée pour décharger le gaz liquéfié contenu à l’intérieur de la cuve depuis le puisard (33). 14- gravity platform (1) comprising a tank (21) for storing a liquefied gas according to any one of the preceding claims and a suction member of a pump configured to discharge the liquefied gas contained inside the tank from the sump (33).
15- Plateforme gravitaire (1) selon la revendication précédente, comprenant une structure porteuse (3) de la cuve (21), la structure porteuse étant composé de béton.15- gravity platform (1) according to the preceding claim, comprising a supporting structure (3) of the tank (21), the supporting structure being composed of concrete.
16- Système de transfert pour un gaz liquéfié, le système comportant une plateforme gravitaire (1) selon l’une quelconque des revendications 14 à 15, des canalisations isolées (103, 107, 109, 115) agencées de manière à relier la cuve (21) installée dans la structure porteuse (3) de la plateforme gravitaire (1) à un navire (100) et une pompe pour entrainer un flux de gaz liquéfié à travers les canalisations isolées (103, 107, 109, 115) depuis la cuve (21) de la plateforme gravitaire (1) vers le navire (100). 16- transfer system for a liquefied gas, the system comprising a gravity platform (1) according to any one of claims 14 to 15, insulated pipes (103, 107, 109, 115) arranged to connect the tank ( 21) installed in the supporting structure (3) of the gravity platform (1) to a ship (100) and a pump to drive a flow of liquefied gas through the insulated pipes (103, 107, 109, 115) from the tank (21) from the gravity platform (1) to the ship (100).
17- Procédé de chargement ou déchargement d’une plateforme gravitaire (1) selon l’une quelconque des revendications 14 à 15, dans lequel on achemine un gaz liquéfié à 28 travers des canalisations isolées (103, 107, 109, 115) depuis la cuve (21) de la plateforme gravitaire (1) vers un navire (100). 17- A method of loading or unloading a gravity platform (1) according to any one of claims 14 to 15, in which a liquefied gas is conveyed to 28 through insulated pipes (103, 107, 109, 115) from the tank (21) of the gravity platform (1) to a ship (100).
EP21782788.0A 2020-09-11 2021-09-08 Bottom wall of a liquefied gas storage tank Pending EP4211387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009209A FR3114137B1 (en) 2020-09-11 2020-09-11 Bottom wall of a liquefied gas storage tank
PCT/FR2021/051543 WO2022053763A1 (en) 2020-09-11 2021-09-08 Bottom wall of a liquefied gas storage tank

Publications (1)

Publication Number Publication Date
EP4211387A1 true EP4211387A1 (en) 2023-07-19

Family

ID=74183251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21782788.0A Pending EP4211387A1 (en) 2020-09-11 2021-09-08 Bottom wall of a liquefied gas storage tank

Country Status (7)

Country Link
US (1) US20230324006A1 (en)
EP (1) EP4211387A1 (en)
CN (1) CN116249856A (en)
CA (1) CA3188006A1 (en)
FR (1) FR3114137B1 (en)
MX (1) MX2023002808A (en)
WO (1) WO2022053763A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117068325B (en) * 2023-10-13 2024-02-09 沪东中华造船(集团)有限公司 Self-adaptive adjustment method for cold deformation of insulating module of thin-film enclosure system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215473B1 (en) * 2010-06-07 2012-12-26 삼성중공업 주식회사 Insulation structure of Cargo hold
FR3072758B1 (en) * 2017-10-20 2019-11-01 Gaztransport Et Technigaz SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES

Also Published As

Publication number Publication date
MX2023002808A (en) 2023-03-16
CA3188006A1 (en) 2022-03-17
CN116249856A (en) 2023-06-09
WO2022053763A1 (en) 2022-03-17
FR3114137A1 (en) 2022-03-18
FR3114137B1 (en) 2023-03-03
US20230324006A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
EP3164636B1 (en) Sealed and insulating tank disposed in a floating double hull
EP2739895B1 (en) Sealed, thermally-insulating vessel
EP3250849B1 (en) Apparatus for storing and transporting a cryogenic fluid on-board a ship
WO2014096600A1 (en) Sealed, thermally insulating vessel
EP3679289B1 (en) Sealed and thermally insulating tank with anti-convective filling element
EP3114387B1 (en) Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner
WO2019155154A1 (en) Facility for storing and transporting a liquefied gas
FR2978749A1 (en) INSULATING BLOCK FOR THE MANUFACTURE OF A TANK WALL
FR3072760B1 (en) SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
WO2012123656A1 (en) Insulating block for producing a tight wall of a tank
EP3596383A1 (en) Thermally insulating sealed tank comprising a reinforcing insulating plug
WO2021186049A1 (en) Sealed and thermally insulating tank
EP4211387A1 (en) Bottom wall of a liquefied gas storage tank
EP4269863A1 (en) Vessel wall having a through-duct
FR3110669A1 (en) Storage facility for liquefied gas
EP4179248A1 (en) Guiding structure for a tower for loading/unloading a tank intended for storing and/or transporting liquefied gas
WO2023001678A1 (en) Storage installation for liquefied gas
WO2023066613A1 (en) Sealed and insulating tank for storing and/or transporting a liquefied gas
WO2023067026A1 (en) Sealed and thermally insulating tank
WO2023036769A1 (en) Storage facility for liquefied gas
WO2023227551A1 (en) Sealed and thermally insulating tank integrated into a load-bearing structure
WO2023025501A1 (en) Storage facility for liquefied gas
FR3135126A1 (en) Tank wall crossed by a sealed fluid evacuation pipe
FR3129456A1 (en) Watertight and thermally insulated tank
FR3103024A1 (en) Sealed and thermally insulating tank

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)