EP4204667A1 - Elektrische durchführung - Google Patents

Elektrische durchführung

Info

Publication number
EP4204667A1
EP4204667A1 EP21755414.6A EP21755414A EP4204667A1 EP 4204667 A1 EP4204667 A1 EP 4204667A1 EP 21755414 A EP21755414 A EP 21755414A EP 4204667 A1 EP4204667 A1 EP 4204667A1
Authority
EP
European Patent Office
Prior art keywords
inner conductor
outer tube
current
layer
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21755414.6A
Other languages
English (en)
French (fr)
Inventor
Peter Hirth
Stefan Ahlers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP4204667A1 publication Critical patent/EP4204667A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a current bushing for an electrically heatable catalytic converter, the catalytic converter having at least one electrical conductor in its interior, which can be electrically contacted by means of the current bushing, with a central electrically conductive inner conductor, which is routed from the interior of the catalytic converter through its outer housing wall , with an electrical insulation layer which surrounds the electrically conductive inner conductor on its radial outer surface, and with a metallic outer tube in which the electrically conductive inner conductor and the electrical insulation layer is accommodated.
  • Electrically heatable catalysts are known in the prior art. These usually have a current-carrying conductor which is connected to a voltage source via an electrical contact. Since the catalytic converters are designed to be gas-tight on the outside, there are special electrical feedthroughs that are routed through the outer casing of the catalytic converter and are contacted with the heating conductor inside.
  • the electrical feedthrough regularly consists of an electrical conductor which is embedded in an electrically non-conductive medium, for example a ceramic.
  • the non-conductive material can in turn be surrounded by a metal sleeve, which can be permanently connected to the metal jacket of the catalytic converter by means of a joining technique and is resistant to mechanical loads.
  • the electrical feedthrough thus regularly has a central current conductor, for example a bolt, a ceramic insulation and a metallic outer sleeve.
  • a particular disadvantage of the current feedthroughs known in the prior art is that due to the material connection between the current-carrying bolt and the components to be electrically contacted inside the catalytic converter, there is a high thermal load on the outer region of the current feedthrough.
  • the thermal load is caused either by convection of the exhaust gas energy on the current bushing or by heating the heating conductor itself, which is in direct material connection with the current bushing. If the thermal loads are too high, the insulation of the electrical supply line or the connecting means between the supply line and the current bushing can be damaged, particularly in the contact area of the current bushing in the outer area.
  • the magnesium oxide that is often used is highly hydrophilic and can therefore be washed out of the insulation layer.
  • the insulating effect is deteriorated and, on the other hand, the durability of the bushing is also reduced, since the structural integrity of the bushing is endangered by the overgrowth of the insulating layer.
  • One exemplary embodiment of the invention relates to a current bushing for an electrically heatable catalytic converter, the catalytic converter having at least one electrical conductor in its interior, which can be electrically contacted by means of the current bushing, with a central electrically conductive inner conductor, which emerges from the interior of the catalytic converter through its outer housing wall is guided, with an electrical insulation layer which surrounds the electrically conductive inner conductor on its radial outer surface, and with a metallic outer tube in which the electrically conductive inner conductor and the electrical insulation layer is accommodated.
  • the inner conductor is thus effectively electrically insulated from the outer tube, which surrounds the insulating layer, by the insulating layer which surrounds it.
  • the inner conductor and/or the outer tube is of conical design.
  • conical means in particular that the elements taper or widen conically along their main axial extension. A form fit can thus be produced between the inner conductor and the outer tube, which is conducive to stability.
  • the outer tube can, for example, form a conical sleeve into which the inner conductor, which is also conical, is inserted. Because of the conical design, the inner conductor can only be inserted into the outer tube until insertion is limited by the positive fit. By applying a force component to the inner conductor when plugging in, a frictional connection between the two elements can also be achieved. This tension or the occurrence of the frictional connection between the inner conductor and the outer tube is additionally reinforced by the insulating layer arranged between them.
  • the insulation layer is arranged between the inner conductor and the outer tube and is formed from a non-metallic material.
  • the insulation layer is preferably formed from an oxidic material.
  • oxidic materials, such as are preferably used for electrical insulation have specific thermal expansion coefficients that differ from the thermal expansion coefficients of the inner conductor and/or the outer tube by about ⁇ 3 ppm/K. They particularly preferably have a difference of ⁇ 2 ppm/K. The difference is very particularly preferably ⁇ 1 ppm/K.
  • a preferred exemplary embodiment is characterized in that the oxidic material of the insulation layer is non-porous ceramic.
  • Porosity is the ratio of the pore volume to the total volume, which includes the volume of the pores and the volume of the solid.
  • the porosity is preferably given in percent. The lower the porosity, the lower the probability that diffusion processes will occur.
  • An extreme value for porosity is 0% porosity. Such low porosity can be approximately achieved with materials such as aluminum oxide (AI2O3) or enamel. A porosity of less than 1% is particularly preferred.
  • the oxidic material of the insulation layer is a porous ceramic, the ceramic being treated with an additional substance as a pore filler.
  • a substance can also be applied as a surface sealer. It is characteristic of a pore filler that the substance has an average particle size that is below the average pore size in order to fill up the pores created by the porosity.
  • Pore fillers can preferably consist of oxidic, non-electrically conductive ceramics, such as silicon oxide (SiC) or aluminum oxide (AI2O3). The pore size varies with the ceramic used, so the preferred ideal particle size should be matched to the ceramic used.
  • a surface sealer can be made from the same materials as, for example, a
  • pore fillers in contrast to a pore filler, the Surface sealer to seal the surface and create a closed edge layer.
  • a sintering treatment preferably follows after the application of the surface sealer.
  • the minimum particle size of a surface sealant is larger than the average pore size of the ceramic.
  • a further preferred property of a surface sealer is the change in surface property from hydrophilic to hydrophobic, as a result of which wetting of the surface with water can be prevented.
  • Ceramics with a higher porosity are to be preferred in particular when the materials have very different coefficients of thermal expansion, since the pores have a certain elasticity, which can compensate for the differences in the coefficients of thermal expansion.
  • a ceramic adhesive is arranged between the inner conductor and the insulating layer and/or between the insulating layer and the outer tube.
  • a ceramic adhesive is particularly advantageous in order to create a good and durable connection between the inner conductor and the outer tube. Ceramic adhesives have the particular advantage that they bond very well to the ceramic insulation layer.
  • the insulation layer has a longer extension in the axial direction of the current feedthrough than the outer tube at the end lying inside the catalytic converter and/or at the end lying outside the catalytic converter.
  • the outer tube is prestressed in relation to the inner conductor by using a thermal joining process.
  • a bias voltage in particular, the stability of the electrical implementation to be improved.
  • the inner conductor is better connected to the outer tube because an additional frictional connection is created.
  • the electrical feedthrough is therefore more robust, in particular with regard to the mechanical and thermal loads that occur during operation.
  • the insulation layer is constructed in multiple layers in the radial direction of the current feedthrough, with the individual layers being formed from materials with different coefficients of thermal expansion.
  • the individual layers being formed from materials with different coefficients of thermal expansion.
  • an approximation of the coefficients of thermal expansion between the metallic materials of the inner conductor and the outer tube with the ceramic material of the electrical insulation layer can be achieved in a particularly advantageous manner.
  • an attempt is made to keep the difference between the thermal expansion coefficients between directly adjacent layers as small as possible. In particular, this minimizes the risk of damage due to stresses in the electrical feedthrough that can be caused by thermal loads.
  • the layer of insulation has at least a first layer, which produces the electrical insulation between the inner conductor and the outer tube, with the layers arranged between this first layer and the inner conductor and/or the outer tube having a coefficient of thermal expansion of between the coefficient of thermal expansion of the first layer and the coefficient of thermal expansion of the inner conductor and/or the outer tube.
  • the respective coefficient of thermal expansion of the layers adjacent to the electrically insulating layer is preferably between the coefficient of thermal expansion of the electrically insulating layer itself and the respective coefficient of thermal expansion of the inner conductor or the outer tube. In this way, an attempt is made to keep the differences between the thermal expansion coefficients of the individual layers as small as possible and to produce a uniform progression of the coefficients of thermal expansion in the radial direction of the electrical feedthrough. This is to reduce stresses due to thermal loads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft eine Stromdurchführung für einen elektrisch beheizbaren Katalysator, wobei der Katalysator zumindest einen elektrischen Leiter in seinem Inneren aufweist, welcher mittels der Stromdurchführung elektrisch kontaktierbar ist, mit einem zentralen elektrisch leitfähigen Innenleiter, welcher aus dem Inneren des Katalysator durch dessen äußere Gehäusewandung geführt ist, mit einer elektrischen Isolationsschicht, welche den elektrisch leitfähigen Innenleiter an seiner radialen Außenfläche umgibt, und mit einem metallischen Außenrohr, in welchem der elektrisch leitfähige Innenleiter und die elektrische Isolationsschicht aufgenommen ist.

Description

Beschreibung
Elektrische Durchführung
Technisches Gebiet
Die Erfindung betrifft eine Stromdurchführung für einen elektrisch beheizbaren Katalysator, wobei der Katalysator zumindest einen elektrischen Leiter in seinem Inneren aufweist, welcher mittels der Stromdurchführung elektrisch kontaktierbar ist, mit einem zentralen elektrisch leitfähigen Innenleiter, welcher aus dem Inneren des Katalysator durch dessen äußere Gehäusewandung geführt ist, mit einer elektrischen Isolationsschicht, welche den elektrisch leitfähigen Innenleiter an seiner radialen Außenfläche umgibt, und mit einem metallischen Außenrohr, in welchem der elektrisch leitfähige Innenleiter und die elektrische Isolationsschicht aufgenommen ist.
Stand der Technik
Im Stand der Technik sind elektrisch beheizbare Katalysatoren bekannt. Diese weisen in der Regel einen stromdurchflossenen Leiter auf, der über eine elektrische Kontaktierung mit einer Spannungsquelle verbunden ist. Da die Katalysatoren nach außen hin gasdicht ausgeführt sind gibt es spezielle elektrische Durchführungen, die durch den Außenmantel des Katalysators geführt werden und mit dem Heizleiter im Inneren kontaktiert werden.
Die elektrische Durchführung besteht dabei regelmäßig aus einem elektrischen Leiter, der in einem elektrisch nichtleitenden Medium, beispielsweise einer Keramik, eingebettet ist. Der nicht leitende Werkstoff kann wiederrum von einer Metallhülse umgeben sein, die mittels einer Fügetechnik dauerhaft und resistent gegen mechanische Belastungen mit dem metallischen Mantel des Katalysators verbunden werden kann. Die elektrische Durchführung, wie sie im Stand der Technik bekannt ist, weist somit regelmäßig einen zentralen Stromleiter, beispielsweise einen Bolzen, eine keramische Isolation und eine metallische Außenhülse auf.
Nachteilig an den im Stand der Technik bekannten Stromdurchführungen ist insbesondere, dass aufgrund der stoffschlüssigen Verbindung zwischen dem stromführenden Bolzen und den elektrisch zu kontaktierenden Bauelementen im Inneren des Katalysators, eine hohe thermische Belastung am äußeren Bereich der Stromdurchführung auftritt. Die thermische Belastung entsteht entweder durch Konvektion der Abgasenergie auf die Stromdurchführung oder durch das Beheizen des Heizleiters selbst, der in direkter stoffschlüssiger Verbindung mit der Stromdurchführung steht. Bei zu hohen thermischen Belastungen kann es insbesondere an dem Kontaktbereich der Stromdurchführung im äußeren Bereich zu Beschädigungen der Isolation der elektrischen Zuleitung oder dem Verbindungsmittel zwischen der Zuleitung und der Stromdurchführung kommen.
Darüber hinaus ist es nachteilig, dass das oftmals verwendet Magnesiumoxid stark hydrophil ist und somit aus der Isolationsschicht ausgewaschen werden kann. Dadurch wird einerseits die Isolationswirkung verschlechtert und andererseits auch die Dauerhaltbarkeit der Durchführung reduziert, da durch das Auswachsen der Isolationsschicht die strukturelle Integrität der Durchführung gefährdet wird. Auch ist es nachteilig, dass mit den bisher bekannten elektrischen Durchführungen ein Verhindern von Überschlägen zwischen den durch die Isolationsschicht getrennten Bereichen nicht im ausreichenden Maße möglich ist. Insbesondere ist es nicht möglich einen Überstand der Isolationsschicht über die zu isolierenden Elemente hinaus zu erzeugen, welcher einen elektrischen Überschlag wirkungsvoll verhindert.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung eine elektrische Stromdurchführung für einen elektrisch beheizbaren Katalysator zu schaffen, welche dauerhaltbar ist, und insbesondere elektrische Überschläge verhindert. Die Aufgabe hinsichtlich der elektrischen Stromdurchführung wird durch eine elektrische Stromdurchführung mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft eine Stromdurchführung für einen elektrisch beheizbaren Katalysator, wobei der Katalysator zumindest einen elektrischen Leiter in seinem Inneren aufweist, welcher mittels der Stromdurchführung elektrisch kontaktierbar ist, mit einem zentralen elektrisch leitfähigen Innenleiter, welcher aus dem Inneren des Katalysator durch dessen äußere Gehäusewandung geführt ist, mit einer elektrischen Isolationsschicht, welche den elektrisch leitfähigen Innenleiter an seiner radialen Außenfläche umgibt, und mit einem metallischen Außenrohr, in welchem der elektrisch leitfähige Innenleiter und die elektrische Isolationsschicht aufgenommen ist. Der Innenleiter ist somit wirkungsvoll durch die Isolationsschicht, welche diesen umgibt, gegenüber dem Außenrohr, welches die Isolationsschicht umgibt, elektrisch isoliert.
Besonders vorteilhaft ist es, wenn der Innenleiter und/oder das Außenrohr konisch ausgebildet ist. Konisch meint hier insbesondere, dass die Elemente entlang ihrer axialen Haupterstreckung sich konisch verjüngen beziehungsweise erweitern. Es kann somit ein Formschluss zwischen dem Innenleiter und dem Außenrohr erzeugt werden, welcher der Stabilität zuträglich ist. Das Außenrohr kann beispielsweise eine konische Hülse ausbilden, in welche der ebenfalls konische Innenleiter eingesteckt wird. Aufgrund der konischen Ausgestaltung kann der Innenleiter nur soweit in das Außenrohr eingesteckt werden, bis das Einstecken durch den Formschluss begrenzt wird. Durch das Aufbringen einer Kraftkomponente auf den Innenleiter beim Einstecken kann zusätzlich ein Kraftschluss zwischen den beiden Elementen erreicht werden. Diese Verspannung beziehungsweise das Auftreten des Kraftschlusses zwischen dem Innenleiter und dem Außenrohr wird durch die dazwischen angeordnete Isolationsschicht zusätzlich verstärkt.
Auch ist es vorteilhaft, wenn die Isolationsschicht zwischen dem Innenleiter und dem Außenrohr angeordnet ist und aus einem nichtmetallischen Material gebildet ist. Die Isolationsschicht ist bevorzugt aus einem oxidischen Material gebildet. Ein wesentlicher Vorteil eines oxidischen Materials, wie beispielsweise einer Keramik, ist, dass die elektrischen Isolationseigenschaften sehr gut sind. Darüber hinaus weißen oxidische Materialien, wie sie für die elektrische Isolation bevorzugt genutzt werden, spezifische Wärmeausdehnungskoeffizienten auf, die im Vergleich zu den Wärmeausdehnungskoeffizienten des Innenleiters und/oder des Außenrohrs eine Differenz von etwa < 3 ppm/K aufweisen. Besonders bevorzugt weisen sie eine Differenz von < 2 ppm/K auf. Ganz besonders bevorzugt beträgt die Differenz < 1 ppm/K.
Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass das oxidische Material der Isolationsschicht eine unporöse Keramik ist. Die Porosität ist das Verhältnis des Porenvolumen zum Gesamtvolumen, welches das Volumen der Poren und das Volumen des Feststoffes umfasst. Bevorzugt wird die Porosität in Prozent angegeben. Je geringer die Porosität ist, desto geringer ist die Wahrscheinlichkeit, dass Diffusionsprozesse auftreten. Ein extremer Wert für die Porosität ist eine Porosität von 0%. Eine solch niedrige Porosität lässt sich annähernd beispielsweise bei Werkstoffen wie Aluminiumoxid (AI2O3) oder Email erreichen. Eine Porosität von unter 1 % ist besonders bevorzugt.
Auch ist es zu bevorzugen, wenn das oxidische Material der Isolationsschicht eine poröse Keramik ist, wobei die Keramik mit einem zusätzlichen Stoff als Porenfüller behandelt ist. Alternativ oder zusätzlich kann auch ein Stoff als Oberflächenversiegler aufgetragen werden. Charakteristisch für einen Porenfüller ist, dass der Stoff eine mittlere Partikelgröße aufweist, die unterhalb der mittleren Porengröße liegt, um die durch die Porosität entstandenen Poren aufzufüllen. Porenfüller können bevorzugt aus oxidischen nicht elektrisch leitenden Keramiken, wie beispielsweise Siliziumoxid (SiC ) oder Aluminiumoxid (AI2O3), bestehen. Die Porengröße variiert je nach der verwendeten Keramik, so dass die bevorzugte ideale Partikelgröße an die verwendete Keramik anzupassen ist.
Ein Oberflächenversiegler kann aus denselben Materialien wie beispielsweise ein
Porenfüller bestehen, im Unterschied zu einem Porenfüller dient der Oberflächenversiegler zum Verschluss der Oberfläche und zur Erzeugung einer geschlossenen Randschicht. Hierfür folgt bevorzugt eine Sinterbehandlung nach dem Aufbringen des Oberflächenversieglers. Die minimale Partikelgröße ist bei einem Oberflächenversiegler größer als die mittlere Porengröße der Keramik.
Eine weitere bevorzugte Eigenschaft eines Oberflächenversieglers ist die Veränderung der Oberflächeneigenschaft von hydrophil zu hydrophob, wodurch ein Benetzen der Oberfläche mit Wasser unterbunden werden kann.
Keramiken mit höherer Porosität sind insbesondere dann zu bevorzugen, wenn stark unterschiedliche Wärmeausdehnungskoeffizienten der Materialien vorliegen, da die Poren eine gewisse Elastizität aufweisen, welche die Differenzen in den Wärmeausdehnungskoeffizienten ausgeglichen werden können.
Darüber hinaus ist es vorteilhaft, wenn zwischen dem Innenleiter und der Isolationsschicht und/oder zwischen der Isolationsschicht und dem Außenrohr ein keramischer Kleber angeordnet ist. Ein keramischer Kleber ist insbesondere vorteilhaft, um eine gute und dauerhaltbare Verbindung zwischen dem Innenleiter und dem Außenrohr zu erzeugen. Keramische Kleber haben insbesondere den Vorteil, dass diese sich sehr gut mit der keramischen Isolationsschicht verbinden.
Weiterhin ist es vorteilhaft, wenn die Isolationsschicht an dem im Inneren des Katalysators liegenden Ende und/oder an dem außerhalb des Katalysators liegenden Endes eine in axialer Richtung der Stromdurchführung längere Erstreckung aufweist als das Außenrohr. Durch das Erzeugen eines axialen Überstands der Isolationsschicht über das Außenrohr hinaus, wird effektiv die Strecke, welche beim Auftreten eines elektrischen Überschlages überwunden werden müsste deutlich erhöht. Dadurch wird das System insbesondere für den Einsatz mit höheren Betriebsspannungen robuster.
Auch ist es zweckmäßig, wenn das Außenrohr gegenüber dem Innenleiter durch die Anwendung eines thermischen Fügeverfahrens vorgespannt ist. Durch das Erzeugen einer Vorspannung kann insbesondere die Stabilität der elektrischen Durchführung verbessert werden. Der Innenleiter ist dadurch besser mit dem Außenrohr verbunden da ein zusätzlicher Kraftschluss erzeugt wird. Somit ist die elektrische Durchführung insbesondere gegenüber den im Betrieb auftretenden mechanischen und thermischen Belastungen robuster.
Darüber hinaus ist es vorteilhaft, wenn die Isolationsschicht in radialer Richtung des Stromdurchführung mehrlagig aufgebaut ist, wobei die einzelnen Lagen durch Materialien unterschiedlicher Wärmeausdehnungskoeffizienten gebildet sind. Hierdurch kann insbesondere vorteilhaft eine Annäherung der Wärmeausdehnungskoeffizienten zwischen den metallischen Werkstoffen des Innenleiters und des Außenrohres mit dem keramischen Werkstoff der elektrischen Isolationsschicht erreicht werden. Insbesondere wird versucht die Differenz zwischen den Wärmeausdehnungskoeffizienten zwischen direkt benachbarten Lagen möglichst gering zu halten. Hierdurch wird insbesondere das Risiko einer Beschädigung aufgrund von Spannungen in der elektrischen Durchführung, die durch thermische Belastungen verursacht werden können, zu minimieren.
Weiterhin ist es zweckmäßig, wenn die Isolationssicht zumindest eine erste Lage aufweist, welche die elektrische Isolation zwischen dem Innenleiter und dem Außenrohr erzeugt, wobei die zwischen dieser ersten Lage und dem Innenleiter und/oder dem Außenrohr angeordneten Lagen einen Wärmeausdehnungskoeffizienten aufweisen, welcher vom Betrag zwischen dem Wärmeausdehnungskoeffizienten der ersten Lage und dem Wärmeausdehnungskoeffizienten des Innenleiters und/oder des Außenrohrs liegt.
Es kann nur eine einzelne Lage elektrisch isolierend wirken, es können jedoch auch mehrere Lagen diese Funktion übernehmen. Der jeweilige Wärmeausdehnungskoeffizient, der zu der elektrisch isolierenden Lage benachbarten Lagen, liegt bevorzugt zwischen dem Wärmeausdehnungskoeffizient der elektrisch isolierenden Lage selbst und dem jeweiligen Wärmeausdehnungskoeffizienten des Innenleiters beziehungsweise des Außenrohrs. So wird versucht die Differenzen zwischen den Wärmeausdehnungskoeffizienten der einzelnen Lagen möglichst gering zu halten und einen gleichmäßigen Verlauf der Wärmeausdehnungskoeffizienten in radialer Richtung der elektrischen Durchführung zu erzeugen. Dies soll Spannungen infolge von thermischen Belastungen reduzieren. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen beschrieben.

Claims

8 Patentansprüche
1. Stromdurchführung für einen elektrisch beheizbaren Katalysator, wobei der Katalysator zumindest einen elektrischen Leiter in seinem Inneren aufweist, welcher mittels der Stromdurchführung elektrisch kontaktierbar ist, mit einem zentralen elektrisch leitfähigen Innenleiter, welcher aus dem Inneren des Katalysator durch dessen äußere Gehäusewandung geführt ist, mit einer elektrischen Isolationsschicht, welche den elektrisch leitfähigen Innenleiter an seiner radialen Außenfläche umgibt, und mit einem metallischen Außenrohr, in welchem der elektrisch leitfähige Innenleiter und die elektrische Isolationsschicht aufgenommen ist.
2. Stromdurchführung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Innenleiter und/oder das Außenrohr konisch ausgebildet ist.
3. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationsschicht zwischen dem Innenleiter und dem Außenrohr angeordnet ist und aus einem nichtmetallischen Material gebildet ist.
4. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das oxidische Material der Isolationsschicht eine unporöse Keramik ist.
5. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das oxidische Material der Isolationsschicht eine poröse Keramik ist, wobei die Keramik mit einem zusätzlichen Stoff als Porenfüller behandelt ist.
6. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zwischen dem 9
Innenleiter und der Isolationsschicht und/oder zwischen der Isolationsschicht und dem Außenrohr ein keramischer Kleber angeordnet ist. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationsschicht an dem im Inneren des Katalysators liegenden Ende und/oder an dem außerhalb des Katalysators liegenden Endes eine in axialer Richtung der Stromdurchführung längere Erstreckung aufweist als das Außenrohr. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Außenrohr gegenüber dem Innenleiter durch die Anwendung eines thermischen Fügeverfahrens vorgespannt ist. Stromdurchführung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationsschicht in radialer Richtung des Stromdurchführung mehrlagig aufgebaut ist, wobei die einzelnen Lagen durch Materialien unterschiedlicher Wärmeausdehnungskoeffizienten gebildet sind. Stromdurchführung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationssicht zumindest eine erste Lage aufweist, welche die elektrische Isolation zwischen dem Innenleiter und dem Außenrohr erzeugt, wobei die zwischen dieser ersten Lage und dem Innenleiter und/oder dem Außenrohr angeordneten Lagen einen Wärmeausdehnungskoeffizienten aufweisen, welcher vom Betrag zwischen dem Wärmeausdehnungskoeffizienten der ersten Lage und dem Wärmeausdehnungskoeffizienten des Innenleiters und/oder des Außenrohrs liegt.
EP21755414.6A 2020-08-28 2021-08-02 Elektrische durchführung Withdrawn EP4204667A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020210889.7A DE102020210889A1 (de) 2020-08-28 2020-08-28 Elektrische Durchführung
PCT/EP2021/071542 WO2022043006A1 (de) 2020-08-28 2021-08-02 Elektrische durchführung

Publications (1)

Publication Number Publication Date
EP4204667A1 true EP4204667A1 (de) 2023-07-05

Family

ID=77358227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21755414.6A Withdrawn EP4204667A1 (de) 2020-08-28 2021-08-02 Elektrische durchführung

Country Status (5)

Country Link
US (1) US12000320B2 (de)
EP (1) EP4204667A1 (de)
CN (1) CN115885095A (de)
DE (1) DE102020210889A1 (de)
WO (1) WO2022043006A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209264B3 (de) * 2021-08-24 2023-01-05 Vitesco Technologies GmbH Elektrische Durchführung mit poröser Keramikschicht und einem Porenfüller
DE102021211205A1 (de) * 2021-10-05 2023-04-06 Vitesco Technologies GmbH Elektrische Durchführung und Verfahren zur Herstellung dieser

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2257968C3 (de) * 1972-11-27 1980-11-13 Degussa Ag, 6000 Frankfurt Vorrichtung zur Reinigung der Abgase von Dieselmotoren
US4449362A (en) * 1981-12-02 1984-05-22 Robertshaw Controls Company Exhaust system for an internal combustion engine, burn-off unit and methods therefor
US5053603A (en) * 1989-03-30 1991-10-01 Donaldson Company, Inc. Electrical resistance heater
US5271906A (en) * 1991-10-28 1993-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus using catalytic converter with hydrocarbon absorbent
DE4209195A1 (de) 1992-03-18 1993-09-23 Mannesmann Ag Katalysator fuer heterogene katalyse
US5582805A (en) * 1992-12-21 1996-12-10 Toyota Jidosha Kabushiki Kaisha Electrically heated catalytic apparatus
DE9321388U1 (de) * 1993-02-08 1997-10-30 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Elektrisch isolierende gasdichte Durchführung mindestens eines elektrischen Leiters durch einen metallischen Mantel
JPH07238825A (ja) * 1994-02-25 1995-09-12 Toyota Motor Corp 電気ヒータ付触媒装置
JP3494498B2 (ja) * 1995-04-17 2004-02-09 日本碍子株式会社 電極構造および通電発熱式ヒーター
JP3405993B2 (ja) * 1995-05-30 2003-05-12 新日本製鐵株式会社 内燃機関の排気浄化装置
JP3702531B2 (ja) * 1996-05-14 2005-10-05 トヨタ自動車株式会社 高温被加熱体の電極の構造とその製造方法
DE10321105A1 (de) * 2003-05-09 2004-12-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Regeneration einer Partikelfalle
CN102782773B (zh) * 2010-10-01 2015-12-02 古河电气工业株式会社 绝缘电线
US20170011820A1 (en) * 2015-07-10 2017-01-12 General Electric Company Insulated windings and methods of making thereof

Also Published As

Publication number Publication date
WO2022043006A1 (de) 2022-03-03
DE102020210889A1 (de) 2022-03-03
US12000320B2 (en) 2024-06-04
US20230313720A1 (en) 2023-10-05
CN115885095A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
EP4204667A1 (de) Elektrische durchführung
DE102016209282A1 (de) Elektrischer Anschluss, insbesondere für einen elektrisch beheizbaren Wabenkörper
EP3689104A1 (de) Hochtemperaturbauteil und verfahren zur herstellung
DE2350287A1 (de) Anschlusselement fuer hochspannungskabel
DE102012204052A1 (de) Hochspannungsdurchführung mit leitenden Einlagen für Gleichspannung und Verfahren zu ihrer Herstellung
EP2191699B1 (de) Hochspannungsisolatoranordnung und ionenbeschleunigeranordnung mit einer solchen hochspannungsisolatoranordnung
DE2448497A1 (de) Roentgenroehre und vorrichtung mit einer roentgenroehre
EP0151797A2 (de) Hochspannungsisolator
EP0457081B1 (de) Isolator
DE102016214752A1 (de) Verfahren zur Herstellung eines keramischen Isolators
DE102014004284B4 (de) Hochspannungsdurchführung
DE102007042217B4 (de) Verfahren zur Herstellung von porösen Keramiken, die so hergestellte Keramik und ihre Verwendung
EP0810705B1 (de) Isolator
WO2002009247A1 (de) Zündkerze für einen verbrennungsmotor und verfahren zur herstellung einer zündkerze
EP2923423B1 (de) Fluiddichte leitungsdurchführung
WO2020008058A1 (de) Verbindungsmuffe
EP3469617B1 (de) Keramikisolator für vakuumschaltröhren
DE102020206293A1 (de) Elektrische Durchführung
DE2624325A1 (de) Hochspannungsdurchfuehrung
EP1295067A1 (de) Glühstiftkerze
DE102022207399B4 (de) Elektrisch isolierende Durchführung
DE10313847A1 (de) Keramische Formkörper mit sprunghaftem Strukturgradienten und Verfahren zu ihrer Herstellung
DE102016217625A1 (de) Hochspannungsbauteil und Vorrichtung mit einem Hochspannungsbauteil
CH698181B1 (de) Kabelendverschluss.
DE524966C (de) Verfahren zur Herstellung witterungsbestaendiger Hochspannungsisolatoren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231017