EP4186041B1 - Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur - Google Patents

Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur Download PDF

Info

Publication number
EP4186041B1
EP4186041B1 EP21740426.8A EP21740426A EP4186041B1 EP 4186041 B1 EP4186041 B1 EP 4186041B1 EP 21740426 A EP21740426 A EP 21740426A EP 4186041 B1 EP4186041 B1 EP 4186041B1
Authority
EP
European Patent Office
Prior art keywords
feature
substrate
vector
spectral
intensity values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21740426.8A
Other languages
German (de)
English (en)
Other versions
EP4186041A1 (fr
Inventor
Wolfgang Rauscher
Wolfgang Deckenbach
Julia DANHOF
Thomas Happ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP4186041A1 publication Critical patent/EP4186041A1/fr
Application granted granted Critical
Publication of EP4186041B1 publication Critical patent/EP4186041B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/2008Testing patterns thereon using pre-processing, e.g. de-blurring, averaging, normalisation or rotation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/2016Testing patterns thereon using feature extraction, e.g. segmentation, edge detection or Hough-transformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/205Matching spectral properties

Definitions

  • the invention relates to a sensor and a method for checking value documents, in particular banknotes, as well as a value document processing device.
  • luminescent features In order to protect valuable documents, such as banknotes, from counterfeiting, they can be provided with so-called luminescent features by inserting or applying luminescent substances into or onto a valuable document, which can be detected mechanically using sensors and whose presence and/or properties can be used to check authenticity.
  • a luminescence feature can be provided in the substrate of a value document, which is usually made of paper or a film, which delivers a signal in at least two spectral detection channels of a sensor.
  • a further luminescence feature can be provided locally, in particular by printing on the substrate, which delivers a signal in the same spectral detection channels, but usually with different spectral intensity ratios.
  • the spectral properties of the luminescent substances used vary in a non-negligible manner, e.g. between different production batches.
  • the spectral sensitivity varies from sensor to sensor and/or even within a Sensors, for example from measuring point to measuring point and/or track to track, vary. Reliable authenticity testing cannot therefore always be guaranteed.
  • US 2013/0181435 A1 discloses a method and a sensor for checking valuable documents. Spectrally resolved images of the reflection and luminescence of the valuable document are used. Among other things, the measured values are corrected for background.
  • a value document processing device for processing, in particular checking and/or counting and/or sorting and/or destroying, value documents, in particular banknotes, has a sensor according to the first aspect of the invention and a transport device which is designed to transport a value document towards the sensor and/or past the sensor and/or away from the sensor.
  • aspects of the invention are preferably based on the approach of determining a substrate intensity value and a feature intensity value for a large number of measurement points from the spectral vectors obtained when detecting the luminescence radiation using a predetermined substrate basis vector and a predetermined feature basis vector, and using the determined substrate and feature intensity values to determine a pure substrate mask which contains (only) those measurement points which are reliably outside the applied feature, and in particular not in the area of the edge of the value document or on the edge of the feature.
  • the pure substrate mask contains, for example, only those measurement points of the value document whose substrate intensity value is greater than or equal to a first threshold.
  • the intensities, the spectral properties and/or the decay behavior of the luminescence radiation emitted by the substrate or the feature can then be determined more precisely, even if the spatial distribution of the feature is not known or varies from one valuable document to the next.
  • an average substrate vector is determined from the spectral vectors of the measurement points contained in the pure substrate mask by combining the intensity values of these spectral vectors for each of the at least two spectral ranges, in particular by (spatial) averaging or (spatial) quantile formation, to form one intensity value each.
  • the average substrate vector obtained in this way represents the luminescence properties of the substrate, in particular the intensity values in the at least two spectral ranges and/or the spectral composition of the luminescence radiation, with greater accuracy and reliability.
  • a corrected feature intensity value and/or a corrected substrate intensity value with higher accuracy or reliability can be determined from the spectral vectors for a large number of measurement points.
  • the mean substrate vector or a vector derived from it e.g. by normalization, is preferably used instead of the originally specified substrate base vector.
  • a mean feature vector or a vector derived from it e.g. by normalization, can also be used instead of the originally specified feature base vector.
  • the corrected feature intensity values and/or corrected substrate intensity values obtained in this way can then be used when checking, in particular authenticating, the value document.
  • a spectral signature of the substrate and/or a spectral signature of the feature can be determined, by which a spectral composition of the luminescence radiation emitted by the substrate or feature is characterized.
  • the spectral signature of the substrate is preferably given by the average substrate vector itself, a vector derived from it, for example by normalization, or a scalar signature value calculated from it.
  • the spectral signature of the feature is preferably given by an average feature vector, a vector derived from it, for example by normalization, or a scalar value calculated from it. The spectral signature of the substrate or feature obtained in this way can then be used to check, in particular authenticate, the value document.
  • a temporal behavior of the luminescence radiation emitted by the substrate and/or feature is determined using measuring points contained in the pure substrate mask.
  • the luminescence of the value document is excited by means of electromagnetic radiation, in particular by an electromagnetic excitation pulse.
  • the luminescence radiation is recorded for a large number of measuring points at two or more points in time, with two or more intensity values being assigned to each measuring point, which characterize the intensity of the luminescence radiation recorded at the two or more points in time at the respective measuring point.
  • the luminescence radiation emitted by the value document to be checked is recorded in a time-resolved manner at the measuring points on the value document in one or more of the spectral ranges.
  • the intensity values can be the intensity values obtained in a specific spectral range or can be intensity values combined from two or more spectral ranges.
  • substrate values obtained for each of the points in time from the measurement points contained in the pure substrate mask can be combined to form an average substrate value - e.g. by spatial averaging - and the value document can be checked using the average substrate values of the various points in time, in particular with regard to authenticity.
  • the temporal behavior of the luminescence radiation emitted by the substrate is determined using the average substrate values of the various points in time and the value document is checked using a characteristic luminescence time constant of the substrate, which is determined from the determined temporal behavior.
  • a background can be determined which is subtracted from the luminescence radiation emanating from the feature and recorded in a time-resolved manner or from the feature values.
  • the background-corrected feature values of the measuring points contained in the feature mask obtained for each of the points in time can be combined - e.g. by spatial averaging - to form an average corrected feature value and the valuable document can be checked using the average corrected feature values of the various points in time, in particular with regard to authenticity.
  • the temporal behavior of the luminescence radiation emitted by the feature is determined. and the value document is checked using a characteristic luminescence time constant of the feature, which is determined from the determined temporal behavior.
  • intensity values or the substrate values or the background-corrected feature values of different measuring points for each of the points in time are summarized that are recorded at the same point in time relative to the respective luminescence excitation at the respective measuring point, e.g. at a specific point in time after the end of the electromagnetic excitation pulse radiated for the respective measuring point.
  • the temporal progression, particularly in the form of decay curves, of the luminescence radiation emitted by the substrate and feature alone can be determined and used in the testing, particularly authenticity testing, of the value document.
  • this enables a more precise determination of the luminescence intensities, the spectral signature or the decay behavior of the substrate or feature, so that a more reliable testing of value documents, particularly banknotes, is possible.
  • a sheet-shaped substrate in the sense of the present disclosure can be, for example, paper, a film or a so-called hybrid paper composed of different materials.
  • the substrate is preferably provided with a luminescence feature, which is also referred to below as a "substrate feature” or “paper feature” and which, when excited by means of electromagnetic radiation, such as ultraviolet (UV) Radiation, infrared (IR) radiation or visible light, luminescence radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or visible light, is emitted.
  • the excitation takes place with visible or IR radiation
  • the emission of the substrate feature is preferably in the IR spectral range.
  • the substrate feature can be present in the volume of the substrate or applied as a large-area coating.
  • the substrate feature does not necessarily have to be contained in the entire surface of the substrate. Rather, it is possible that parts of the substrate, such as windows or hologram foils (such as a so-called LEAD strip), are completely without any measurable lumin
  • the feature applied to the substrate can be a feature printed on the substrate of the value document, which has one or more luminescent substances applied to a partial surface of the substrate by means of a printing process, which emit luminescence radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or visible light, when excited by electromagnetic radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or visible light.
  • the feature applied to the substrate is applied to a partial surface of the substrate, i.e. only in a spatially limited area of the substrate, so that in the remaining areas of the substrate only the luminescence of the substrate (the substrate feature) contributes to the luminescence radiation detected by the detection device.
  • the feature applied to the substrate is also referred to below as a "printed feature".
  • the excitation takes place with visible or IR radiation
  • the emission of the printing feature is preferably in the IR spectral range.
  • the detection device can be, for example, a spatially resolving detector, such as a line camera or a camera with a two-dimensional detector surface.
  • the spatially resolving detector can also be designed as a single-track sensor or a multi-track sensor, which spatially resolves the luminescence radiation emitted by the value document along one or more tracks, which together produce a one- or two-dimensional measurement data set.
  • the invention can also be applied to just one or individual lines or tracks of a measurement data set by considering an n-track sensor as n 1-track sensors with different track positions. This can be advantageous if not only different feature batches, but also different batches per track must be compensated in the sensor hardware.
  • the detection device preferably has at least two of the spatially resolving detectors, by means of which the intensity of the detected luminescence radiation can be detected for each measuring point in at least two different spectral ranges or spectral channels.
  • spectral range and “spectral channel” are also used synonymously.
  • the intensities or intensity values of the luminescence radiation detected in the respective spectral channels are also referred to below as “channel intensities”.
  • the intensity spectra obtained for each measuring point are understood as spectral vectors, the components of which are given by the channel intensities.
  • vector can be understood in both a narrow and a broad sense, depending on the context.
  • a vector in the narrow sense can be an element a vector space or, in a broader sense, an n-tuple of real numbers with n ⁇ 2, where n corresponds to the number of spectral channels.
  • the expected paper feature and the expected print feature have different, i.e. linearly independent, reference intensity spectra.
  • These reference intensity spectra can be understood as reference basis vectors of the vector space of the spectral vectors.
  • the reference basis vector of the paper feature is also referred to as the "substrate basis vector” and the reference basis vector of the print feature is also referred to as the "feature basis vector”.
  • the above-mentioned calculation of the paper and print intensities, which in connection with the present disclosure are also referred to as "substrate intensity values" or “feature intensity values”, from the measured channel intensities can therefore be understood as a basis transformation of the respective measured spectral vector into the basis of the reference basis vectors.
  • the evaluation device is set up to correct the predetermined substrate base vector using the average substrate vector, whereby a corrected substrate base vector is obtained, which is also referred to below as a "post-adapted base vector" for the substrate or paper feature.
  • a corrected substrate base vector is obtained, which is also referred to below as a "post-adapted base vector" for the substrate or paper feature.
  • it can be provided to compare the average substrate vector with the predetermined substrate base vector using a predetermined comparison criterion and to correct the predetermined substrate base vector using the average substrate vector or to replace it with the average substrate vector, in particular only if the comparison criterion is met, and/or to classify the value document as a value document to be rejected if the comparison criterion is not met.
  • the Comparing the mean substrate vector with the specified substrate basis vector represents a plausibility check, the passing of which is a prerequisite for subsequent adaptation of the substrate basis vector using the mean substrate vector. This ensures that the substrate basis vector is improved or not worsened by subsequent adaptation and thus provides more accurate results when recalculating corrected substrate and/or feature intensity values using the subsequently adapted substrate basis vector.
  • the evaluation device is set up to determine a feature mask based on the feature intensity values, which contains those, in particular only those, measurement points that correspond to locations lying on the feature.
  • the feature mask contains, for example, all measurement points whose feature intensity value is greater than or equal to a second threshold.
  • the evaluation device is set up to subtract the mean substrate vector from the spectral vectors of the measurement points contained in the feature mask, whereby background-corrected spectral vectors of the measurement points contained in the feature mask are obtained, and to determine a mean feature vector from the background-corrected spectral vectors of the measurement points contained in the feature mask, which contains at least two intensity values, each of which is obtained by combining, in particular by (spatial) averaging, the intensity values contained in the background-corrected spectral vectors for each of the at least two spectral ranges.
  • the mean feature vector obtained in this way indicates the luminescence properties of the feature (applied to the substrate), in particular the intensity values in the at least two spectral ranges and/or the spectral composition of the luminescence radiation emitted by the feature, with higher accuracy and reliability.
  • the evaluation device is set up to correct the predetermined feature base vector using the average feature vector or to replace the predetermined feature base vector with the average feature vector, whereby a corrected feature base vector is obtained, which is also referred to below as a "post-adapted base vector" for the feature or print feature.
  • the post-adaptation improves the accuracy of the feature base vector, so that even more reliable results can be achieved when corrected substrate and/or feature intensity values are recalculated using the post-adapted feature base vector.
  • the evaluation device is configured to compare the intensity values of the average substrate vector with one or more predetermined substrate intensity values and/or to compare the intensity values of the average feature vector with one or more predetermined feature intensity values in order to check the value document, in particular with regard to authenticity.
  • the evaluation device is designed to determine the corrected substrate intensity values and corrected feature intensity values using the corrected substrate basis vector and the, in particular corrected, feature basis vector from the spectral vectors.
  • the determination of the corrected substrate intensity values and corrected feature intensity values for a plurality of measuring points takes place preferably analogous to the calculation of the substrate and feature intensity values from the spectral vectors obtained when detecting the luminescence radiation, whereby the corrected substrate basis vector is used instead of the specified substrate basis vector.
  • the corrected feature basis vector can also be used instead of the specified feature basis vector. In both cases, paper or print intensities are obtained with significantly higher reliability.
  • the evaluation device is set up to check the value document using the corrected substrate intensity values and/or corrected feature intensity values, in particular with regard to authenticity, in particular by comparing the corrected substrate intensity values of one or more measuring points or the corrected feature intensity values of one or more measuring points with one or more predetermined substrate intensity values or one or more predetermined feature intensity values.
  • the corrected substrate or feature intensity values By using the corrected substrate or feature intensity values during the check, a significantly more reliable test result can be achieved, for example with regard to distinguishing between a genuine or counterfeit value document.
  • the evaluation device can further preferably be set up to determine a, in particular scalar, signature value of the substrate from the at least two intensity values of the mean substrate vector when determining the spectral signature of the substrate and/or to determine a, in particular scalar, signature value of the feature from the at least two intensity values of the mean feature vector when determining the spectral signature of the feature.
  • the Signature value the spectral form of the measured luminescence radiation regardless of its absolute intensity.
  • the value document can then be checked using the signature value of the substrate and/or the signature value of the feature, in particular with regard to authenticity, in particular by comparing the signature value of the substrate and/or the signature value of the feature with a predetermined comparison value of the substrate or predetermined comparison value of the feature.
  • the value document when checking the value document, it can be checked whether the at least two intensity values of the mean substrate vector, in particular all of them, are above a threshold value and/or whether the at least two intensity values of the mean feature vector, in particular all of them, are above a (same or a different) threshold value.
  • a threshold value e.g., a threshold value
  • the signature value of the substrate and/or the signature value of the feature deviates from a specific substrate reference signature value or feature reference signature value or not.
  • it can be checked whether the spectral signature, in particular the signature value, of the feature and the spectral signature, in particular the signature value, of the substrate are different from one another.
  • the value document can only be assigned the test result "genuine" if all intensity values of the mean substrate vector and all intensity values of the mean feature vector are above a threshold value and the signature value of the feature and the signature value of the substrate are different from one another.
  • the specification of the above-mentioned reference signature values can be omitted.
  • the detection device detects the luminescence radiation emitted by the value document to be checked in a time-resolved manner in two or more spectral channels, whereby a multiplicity of measurement points are obtained, to which two or more intensity values are assigned for each spectral channel, which characterize the intensity of the luminescence radiation detected at the two or more points in time in this spectral channel.
  • the evaluation device is preferably set up to combine the intensity values of the measurement points contained in the pure substrate mask obtained for each of the points in time to form an average substrate value, in particular by (spatial) averaging, whereby an average substrate value is obtained for each of the points in time.
  • an average substrate value for this spectral channel can be determined for several spectral channels, or several spectral channels can be combined, for example by averaging.
  • the temporal behavior of the substrate can be determined with greater reliability, in particular in the form of a (possibly spectrally resolved) decay curve, which in the context of the present disclosure is also referred to as a "paper decay curve” or "average paper decay curve”.
  • the evaluation device for determining the temporal behavior of the luminescence radiation emitted by the feature is designed to determine a background value based on the intensity values of the measurement points contained in the pure substrate mask obtained for each of the points in time, in particular for several spectral channels, in each case, in particular by quantile formation, wherein for each of the points in time and if necessary, a background value is obtained for each of several spectral channels.
  • the evaluation device is also set up to subtract the background value obtained for each of the time points and, if necessary, spectral channel from the intensity values of the measurement points contained in the feature mask obtained for each of the time points, wherein a corrected feature value of the measurement points contained in the feature mask is obtained for each of the time points and spectral channels, and to combine the corrected feature values of the measurement points contained in the feature mask obtained for each of the time points and spectral channels into an average corrected feature value, in particular by (spatial) averaging, wherein an average corrected feature value is obtained for each of the time points and in particular for each of the spectral channels.
  • the background values obtained for the various time points reflect the temporal course of a background of the detected luminescence radiation and are therefore also referred to in connection with the present disclosure as a (if necessary spectrally resolved) "background decay curve".
  • the mean corrected feature values of the measurement points contained in the feature mask obtained for the different points in time reflect the temporal behavior of the luminescence radiation corrected with respect to the background, averaged (spatially) over the measurement points in the area of the feature, which in the context of the present disclosure is also referred to as the "feature decay curve” or "pressure decay curve", which may be present for different spectral channels.
  • the evaluation device can be set up to combine the intensity values of the measurement points contained in the feature mask obtained for each of the points in time and in particular for each of the spectral channels to form an average substrate feature value, in particular by (spatial) averaging, whereby an average substrate feature value is obtained for each of the points in time and, if applicable, spectral channels.
  • the average substrate feature values obtained for the various points in time thus reflect the temporal behavior of the luminescence radiation recorded in the area of the feature, i.e.
  • the average substrate values obtained for the points in time (“average paper decay curve") are subtracted from the average substrate feature values obtained for the corresponding points in time (“average combined decay curve"), whereby an average feature value is obtained for each of the points in time and, in particular, for each of the spectral channels.
  • the mean feature values obtained in this way at the different points in time thus represent a mean decay curve for the pure (print) feature, i.e. without influences from the underlying substrate, which may be available for different spectral channels.
  • the mean paper decay curve and/or the mean decay curve of the pure (print) feature are used to check the value document, in particular to check its authenticity. For this purpose, for example, several spectral channels can be used individually or combined, in particular averaged.
  • Reference basis vectors for the paper and print characteristics are preferably stored in the sensor. Using these basis vectors, paper and print intensities are determined from the channel intensities at each measurement point by solving linear (e.g. 2x2) equation systems. This corresponds to a basis transformation. This calculation is subject to inaccuracies due to batch-specific fluctuations in the luminescence spectra, but is sufficient to find pure paper areas, i.e. areas that are not disturbed by printing.
  • the stored reference basis vectors can be, for example, learned basis vectors, i.e. based on a number of previous calculations (on adaptation patterns or real value documents, in particular banknotes)
  • the sensor learns average reference basis vectors for the paper (substrate) and the print feature track by track with respect to batch variations.
  • the pure paper mask is defined as all measurement points whose paper intensity is greater than or equal to a threshold and whose print intensity is below a second threshold. However, this would lead to distortions due to measurement points at the edge of the print area that are just below the threshold for the print intensity but still do not correspond to a pure spectrum of the paper feature. To avoid this, the edge of the print area in the pure paper mask is preferably avoided as follows: The pure paper mask is defined as all measurement points whose paper intensity is greater than or equal to a threshold and for which the print intensity of all measurement points in a neighborhood, e.g. a 3x3 neighborhood, is below a second threshold.
  • the set of measurement points in the pure paper mask is also referred to as the "pure paper area” and the set of measurement points in the print mask is also referred to as the "feature print area”.
  • the measured values (intensity values) from the pure paper area are combined into one, e.g. by averaging. This results in a mean spectral vector for the pure paper area, the mean measured paper vector (mean substrate vector).
  • the algorithm does not allow any paper characteristics to pass through. It tolerates and corrects batch variations in the paper characteristics, but only if the measured paper characteristic matches the stored reference relatively well.
  • Post-adaptation of the paper basis vector Generating a post-adapted basis vector for the paper feature (corrected substrate basis vector) using the mean measured paper vector (mean substrate vector).
  • the mean measured paper vector can be used directly, or a vector of a different magnitude (e.g. normalized or while maintaining other parameters) in the direction of the mean measured paper vector, or a (weighted) average between the specified or stored reference basis vector and the mean measured paper vector.
  • Other calculations and boundary conditions are also possible.
  • the previously stored reference basis vector for the paper feature can be replaced by the post-adapted basis vector or a calculation of the two vectors. This results in a learning effect and an ever better adaptation of the reference basis vector to the actual paper feature.
  • Post-adaptation of the feature base vector e.g. the print base vector: Generate a post-adapted base vector for the print feature (corrected feature base vector) from the measured values from the feature print area. To do this, for each measuring point from the feature print area, the average measured paper vector (average substrate vector) is subtracted from the measured values in order to obtain background-corrected measured values (background-corrected spectral vectors). The background-corrected measured values from the feature print area are combined into one value for each spectral channel, e.g. by averaging.
  • Calculation of the paper and print intensities using the adapted basis vectors Determination of the paper and print intensities from the channel intensities at each measurement point (as in the first calculation) by solving linear (2x2) equation systems, only this time the adapted basis vectors are used instead of the specified or stored reference basis vectors of the substrate or feature.
  • the spectral paper signature corresponds to the mean measured paper vector (mean substrate vector), which can be determined in the manner already described above.
  • the mean measured paper vector is calculated in different ways depending on the expected banknote design.
  • the average measured paper vector can preferably be determined by arithmetic averaging of the individual measurements (spectral vectors) per channel.
  • a channel-wise quantile value e.g. 80% quantile
  • a quantile or quantile value is a key figure p of a sample lying between 0 and 1 or 0% and 100%, which divides the sample in such a way that a proportion of p in the sample is smaller than the empirical p-quantile and a proportion of 1 - p or 100% - p in the sample is larger than the p-quantile. For example, if a sample of channel-wise intensity values is given, the 80% quantile corresponds to the intensity value I 80 for which 80% of the intensity values in the sample are smaller than the intensity value I 80 and 20% are larger than the intensity value I 80 .
  • Determination of the spectral pressure signature The average measured paper vector calculated as described above is subtracted from all measured spectral vectors in the characteristic pressure range. In this way, background-corrected spectral vectors are obtained for the characteristic pressure range. The background-corrected measured values obtained for each spectral channel from the characteristic pressure range are combined into one value, e.g. by averaging, so that an average background-corrected spectral vector is obtained for the characteristic pressure range. which in the context of the present disclosure is also referred to as the mean measured pressure vector or mean feature vector.
  • This measure for the spectral signature, the signature value can then be compared with a reference value or with corresponding thresholds for authenticity testing.
  • each measuring point and each spectral channel there may be not just a single intensity value, but a series of two or more measured values over time (e.g. a decay curve that is sampled at a finite number of points in time).
  • the background subtraction method described above can also be applied to a temporal series of measured values by applying it to the individual elements of the series. For example, the mean value (or a quantile value) of several series is obtained by calculating the mean value (or the quantile value) for each element over the several series.
  • values can be determined from the paper decay curve and/or the print decay curve which characterize the decay behavior of the luminescent paper or print feature and can be compared with predetermined comparison values, for example, to check the value document.
  • Figure 1 shows a schematic representation of an example of a value document processing device 1 with an input device 9, for example a so-called input compartment, for receiving a stack 10 of value documents 2, in particular banknotes, which are individually removed from the stack 10 by means of a separating device (not shown) and transported along a transport path 6 by means of a transport device 4.
  • the transport device 4 has transport belts which are guided over several transport rollers 4a-4c (only shown schematically), and switches 5a-c.
  • a sensor for checking the value documents 2 which has at least one detection device 3 which is designed to detect electromagnetic radiation emanating from a value document 2 to be checked in a spatially resolved manner in at least two different spectral channels or spectral ranges.
  • the value documents 2 each have a sheet-shaped substrate, which is usually made of paper, a film or a so-called hybrid paper and which is provided with a luminescent feature over its entire surface, for example, so that it can be excited to emit luminescent radiation, for example by irradiation with electromagnetic excitation radiation.
  • a further luminescent feature is applied locally to a partial surface of the substrate, in particular printed on, which is also referred to as a "printed feature" or "feature” and can also be excited to emit luminescent radiation.
  • an irradiation device 8 is provided, e.g. an IR light source, which is designed to irradiate the value document 2 to be checked with electromagnetic excitation radiation, so that the substrate and the feature applied or printed thereon can be excited to emit luminescence radiation.
  • an irradiation device 8 e.g. an IR light source, which is designed to irradiate the value document 2 to be checked with electromagnetic excitation radiation, so that the substrate and the feature applied or printed thereon can be excited to emit luminescence radiation.
  • the luminescence radiation detected by the detection device 3 in a spatially resolved manner thus provides signals for each measuring point in the at least two different spectral channels, which represent a measure of the spectral intensities of the detected luminescence radiation.
  • different spectral intensity ratios are generally obtained than for the area of the applied or printed feature.
  • the detection device 3 can be any type of sensor system for the spatially resolved detection of the luminescence radiation emanating from the value document 2 in the visible and/or non-visible (eg ultraviolet and/or infrared) spectral range, such as a camera or a single-track or multi-track sensor.
  • further sensors such as ultrasonic, magnetic and/or capacitive sensors, can be provided in the value document processing device 1 for detecting further properties of the value documents 2.
  • the value document 2 is checked in an evaluation device 7, for example with regard to authenticity, contamination and/or condition, and output to one of several output compartments 11a-d depending on the result of the check.
  • the switches 5a-c are controlled or actuated accordingly by the evaluation device 7 and/or a control device.
  • the evaluation device 7 is preferably designed as a computer and/or the evaluation device 7 has a processor for data processing and a memory for storing data.
  • Figure 2 shows an example of intensity distributions of the luminescence radiation emitted by a banknote in two different spectral channels K0 (top) and K1 (bottom).
  • the numbers indicate the measured intensities I0, I1 or at least a measure of the intensities I0, I1 at the respective measuring point in the respective spectral channel.
  • stripes of zero measurements can be seen on the left and right edges, which correspond to measurements outside the banknote, whereas luminescence intensities were measured in both spectral channels at all measuring points inside the banknote.
  • the coefficients mentioned or the corresponding reference basis vectors can be stored in the evaluation device 7. They were determined, for example, in previous measurements and can be readjusted if necessary by means of machine learning.
  • the two equations given above for I0 and I1 represent a 2x2 system of equations that can be easily resolved according to the intensities I P and I D for the paper (substrate) or print feature. This applies accordingly for more than two spectral channels and/or more than two different luminescence features, whereby the number of spectral channels preferably corresponds to the number of different luminescence features.
  • the paper and print intensities for each measuring point are calculated from the measured intensities I0 and I1 using stored reference basis vectors (0.9397, 0.3420) for the paper feature and (0.4848, 0.8746) for the print feature.
  • Figure 3 illustrates the resulting distributions of paper intensity (bottom) and print intensity (top) as 2D distributions.
  • the print intensity shows falsified negative values, which is attributed to the fact that the spectral signatures, ie the spectral composition of the emitted luminescence radiation, of the actually present feature substances deviate from the reference basis vectors used, so that the calculation of the intensities is subject to errors. Therefore, the intensity distributions are calculated from Fig.3 only used to determine a paper mask and a print mask.
  • the pressure mask is calculated as follows: All measuring points with a pressure intensity ⁇ 10 are set to "1" in the pressure mask, the remaining measuring points to "0". The resulting pressure mask is shown in Figure 4 (below).
  • those measuring points receive the value "1" in whose 3x3 environment at least one measuring point in the print mask has the value "1". This closes holes in the print mask and avoids edge measuring points with a small but measurable contribution of the print feature.
  • the extended print mask obtained is in Figure 5 (above).
  • a pure paper mask corresponds to the paper mask minus the extended print mask and is shown in Figure 5 (below) shown.
  • a mean measured paper vector (65.44, 21.26) is obtained.
  • the normalized mean measured paper vector (0.9511, 0.3090) serves as a post-adapted basis vector for the paper feature.
  • the paper and print intensity can now be calculated again for each measurement point.
  • Figure 6 shows the resulting paper intensities (below) and print intensities (above). As can be seen, no more falsified, negative values occur - as in Figure 3 This shows that the (re)calculation of the paper and print intensities using the adapted basis vectors enables a higher accuracy of the intensity determination.
  • Figure 7 shows an example of the recorded luminescence intensities of a banknote in two spectral channels K0 and K1 as a scatter plot. Each point and each circle corresponds to a measurement point, the ordinate shows the intensity in channel K1 and the abscissa the intensity in channel K0.
  • the spectral vectors shown as points correspond to the pure paper characteristics. They all fall on a straight line through the origin and differ only in their magnitude, for example due to absorbing overprints.
  • spectral vectors are also very similar in terms of magnitude and almost coincide at approx. (80, 170). These spectral vectors correspond to the undisturbed paper feature. There are also spectral vectors shown as circles that do not lie on the mentioned origin line. They correspond to measurement points in the feature printing area, where the paper and the printing feature contribute to the recorded intensity of the luminescence radiation. Typically, these measurement points lie on a second line that intersects the first line at the point of the undisturbed paper feature. This illustrates that the luminescence in the feature printing area is made up of the (undisturbed) luminescence of the paper feature and the luminescence of the printing feature. The intensity of the printing feature can vary depending on the print design (color distribution and thickness).
  • the mean measured paper vector is calculated as described above, which corresponds to the cluster of measurement points of the undisturbed paper feature.
  • the mean measured paper vector is then subtracted from all spectral vectors from the feature print area, which results in Figure 7 as indicated by the arrows.
  • the background-corrected measured values then lie on a straight line through the origin, as Figure 8 This line through the origin corresponds to the spectral signature of the print feature, in this example approximately (230, 50).
  • the pure paper area and the feature print area are first determined as described above.
  • more than one decay curve can be available for each measurement point, e.g. decay curves for several spectral channels.
  • the decay curves of all measurement points in the pure paper area are offset against each other (e.g. by averaging) to obtain an average paper decay curve.
  • each spectral channel is treated separately.
  • the decay curves of all measurement points in the feature print area are offset against each other (e.g. by averaging) to obtain an average combined decay curve for each spectral channel.
  • Figure 9 shows an intensity-time diagram (in arbitrary units) with the mean paper decay curve of a spectral channel ("paper”, squares) and the mean combined decay curve ("paper + print", circles) of the same spectral channel for an example banknote.
  • the mean decay curve of the spectral channel for the pure print feature (“print”, checks) is obtained, which can be further evaluated and/or used when checking the banknote.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Claims (15)

  1. Capteur de vérification de documents de valeur (2), notamment de billets de banque, qui comportent chacun un substrat luminescent en forme de feuille et un élément caractéristique luminescent appliqué sur une partie de la surface du substrat, ledit capteur comprenant :
    un module de détection (3) qui est conçu pour détecter, avec une résolution locale, un rayonnement de luminescence émis par un document de valeur (2) à vérifier dans au moins deux domaines spectraux différents (K0, K1), un grand nombre de points de mesure étant obtenus, qui sont chacun associés à un vecteur spectral (I0, I1) qui contient au moins deux valeurs d'intensité (I0, I1) qui caractérisent l'intensité du rayonnement de luminescence détecté au point de mesure respectif dans les au moins deux domaines spectraux (K0, K1) et
    un module d'évaluation (7), caractérisé en ce que le module d'évaluation est conçu pour
    a) déterminer une valeur d'intensité de substrat et une valeur d'intensité d'élément caractéristique à partir des vecteurs spectraux (I0, I1) à l'aide d'un vecteur de base de substrat spécifié (b0,P, b1,P) et d'un vecteur de base d'élément caractéristique spécifié (b0,D, b1,D) pour un grand nombre de points de mesure, le vecteur de base de substrat (b0,P, b1,P) et le vecteur de base d'élément caractéristique (b0,D, b1,D) contenant chacun au moins deux valeurs d'intensité (b0,P, b1,P respectivement b0,D, b1,D) qui caractérisent l'intensité attendue du rayonnement de luminescence émis par le substrat respectivement l'élément caractéristique dans les au moins deux domaines spectraux (K0, Kl),
    b) déterminer sur la base des valeurs d'intensité de substrat et des valeurs d'intensité d'élément caractéristique un masque de substrat pur qui contient les points de mesure qui correspondent à des emplacements sur le document de valeur (2) qui sont situés à l'extérieur de l'élément caractéristique, et c1) déterminer à partir des vecteurs spectraux (I0, I1) des points de mesure contenus dans le masque de substrat pur un vecteur substrat moyen qui contient au moins deux valeurs d'intensité qui sont chacune obtenues par combinaison, notamment par moyennage ou formation de quantile, des valeurs d'intensité (I0, I1) contenues dans les vecteurs spectraux (I0, I1) pour chacun des au moins deux domaines spectraux (K0, K1), et
    i) déterminer une valeur d'intensité d'élément caractéristique corrigée et/ou une valeur d'intensité de substrat corrigée à partir des vecteurs spectraux (I0, I1) pour un grand nombre de points de mesure à l'aide du vecteur de substrat moyen et vérifier, notamment en ce qui concerne l'authenticité, le document de valeur sur la base des valeurs d'intensité d'élément caractéristique corrigées et/ou sur la base des valeurs d'intensité de support corrigées et/ou
    ii) déterminer une signature spectrale du substrat et/ou une signature spectrale de l'élément caractéristique qui caractérisent une composition spectrale du rayonnement de luminescence émis par le substrat ou l'élément caractéristique, à l'aide du vecteur de substrat moyen et vérifier, notamment en ce qui concerne l'authenticité, le document de valeur sur la base de la signature spectrale du substrat et/ou de l'élément caractéristique,
    et/ou
    c2) déterminer un comportement dans le temps du rayonnement de luminescence émis par le substrat et/ou l'élément caractéristique à l'aide de points de mesure contenus dans le masque de substrat pur et vérifier, notamment en ce qui concerne l'authenticité, le document de valeur sur la base du comportement dans le temps du rayonnement de luminescence émis par le substrat et/ou l'élément caractéristique.
  2. Capteur selon la revendication 1, le module d'évaluation (7) étant conçu pour corriger le vecteur de base de substrat spécifié (b0,P, b1,P) à l'aide du vecteur de substrat moyen ou pour remplacer le vecteur de base de substrat spécifié par le vecteur de substrat moyen, un vecteur de base de substrat corrigé étant ainsi obtenu.
  3. Capteur selon la revendication 1 ou 2, le module d'évaluation (7) étant conçu pour comparer le vecteur de substrat moyen au vecteur de base de substrat spécifié (b0,P, b1,P) sur la base d'un critère de comparaison spécifié et,
    - si le critère de comparaison est rempli, corriger le vecteur de base de substrat (b0,P, b1,P) à l'aide du vecteur de substrat moyen ou remplacer le vecteur de base de substrat par le vecteur de substrat moyen, et/ou
    - si le critère de comparaison n'est pas rempli, classer le document de valeur comme document de valeur (2) à rejeter.
  4. Capteur selon l'une des revendications précédentes, le module d'évaluation (7) étant conçu pour
    - déterminer sur la base des valeurs d'intensité d'élément caractéristique un masque d'élément caractéristique qui contient les points de mesure qui correspondent à des emplacements situés sur l'élément caractéristique,
    - soustraire le vecteur de substrat moyen des vecteurs spectraux (I0, I1) des points de mesure contenus dans le masque d'élément caractéristique, des vecteurs spectraux, corrigés en termes de fond, des points de mesure contenus dans le masque d'élément caractéristique étant ainsi obtenus, et
    - déterminer à partir des vecteurs spectraux, corrigés en termes de fond, des points de mesure contenus dans le masque d'élément caractéristique un vecteur d'élément caractéristique moyen qui contient au moins deux valeurs d'intensité qui sont chacune obtenues par combinaison, notamment moyennage, des valeurs d'intensité, contenues dans les vecteurs spectraux corrigés en termes de fond, pour chacun des au moins deux domaines spectraux.
  5. Capteur selon la revendication 4, le module d'évaluation (7) étant conçu pour corriger le vecteur de base d'élément caractéristique spécifié (b0,D, b1,D) à l'aide du vecteur d'élément caractéristique moyen ou pour remplacer le vecteur de base d'élément caractéristique spécifié par le vecteur d'élément caractéristique moyen, un vecteur de base d'élément de caractéristique corrigé étant ainsi obtenu.
  6. Capteur selon l'une des revendications 2 à 5,
    le module d'évaluation (7) étant conçu pour déterminer les valeurs d'intensité de substrat corrigées et les valeurs d'intensité d'élément caractéristique corrigées à l'aide du vecteur de base de substrat corrigé et du vecteur de base d'élément caractéristique, notamment corrigé, à partir des vecteurs spectraux (I0, I1).
  7. Capteur selon l'une des revendications précédentes,
    le module d'évaluation (7) étant conçu pour vérifier, notamment en ce qui concerne l'authenticité, le document de valeur (2),
    - comparer les valeurs d'intensité de substrat corrigées d'un ou plusieurs points de mesure ou les valeurs d'intensité du vecteur substrat moyen avec une ou plusieurs valeurs d'intensité de substrat spécifiées et/ou
    - comparer les valeurs d'intensité d'élément caractéristique corrigées d'un ou plusieurs points de mesure ou les valeurs d'intensité du vecteur d'élément caractéristique moyen à une ou plusieurs valeurs d'intensité d'élément caractéristique spécifiées.
  8. Capteur selon l'une des revendications précédentes, le module d'évaluation (7) étant conçu pour
    - lors de la détermination de la signature spectrale du substrat, déterminer une valeur de signature, notamment scalaire, du substrat à partir des au moins deux valeurs d'intensité du vecteur de substrat moyen et/ou
    - lors de la détermination de la signature spectrale de l'élément caractéristique, déterminer une valeur de signature, notamment scalaire, de l'élément caractéristique à partir des au moins deux valeurs d'intensité du vecteur d'élément caractéristique moyen,
    le module d'évaluation (7) étant notamment conçu pour vérifier, en particulier en ce qui concerne l'authenticité, le document de valeur (7) sur la base de la signature spectrale du substrat et/ou pour comparer sur la base de la signature spectrale de l'élément caractéristique la valeur de signature du substrat et/ou de la valeur de signature de l'élément caractéristique à chaque fois à une ou plusieurs valeurs de comparaison spécifiées du substrat ou à une ou plusieurs valeurs de comparaison spécifiées de l'élément caractéristique.
  9. Capteur selon la revendication 8, lors de la vérification, le document de valeur étant associé au résultat de vérification « authentique » si les au moins deux valeurs d'intensité du vecteur de substrat moyen sont supérieures à une valeur seuil et les au moins deux valeurs d'intensité du vecteur d'élément caractéristique moyen sont supérieures à celle-ci ou supérieures à une autre valeur seuil, et la valeur de signature de l'élément caractéristique et la valeur de signature du substrat étant différentes l'une de l'autre.
  10. Capteur selon l'une des revendications précédentes, le module de détection (3) étant conçu pour détecter le rayonnement de luminescence émis par le document de valeur (2) à vérifier pour un grand nombre de points de mesure à deux instants ou plus, deux valeurs d'intensité ou plus étant associées au point de mesure respectif, lesquelles valeurs caractérisent l'intensité du rayonnement de luminescence détecté au point de mesure respectif aux deux instants ou plus.
  11. Capteur selon la revendication 10, le module d'évaluation (7) étant conçu pour
    - déterminer une valeur de fond sur la base des valeurs d'intensité, obtenues à chaque fois pour l'un des instants, des points de mesure contenus dans le masque de substrat pur, notamment par formation de quantile, une valeur de fond étant obtenue pour deux instants ou plus, et
    - déterminer sur la base des valeurs d'intensité d'élément caractéristique, un masque d'élément caractéristique qui contient les points de mesure qui correspondent à des emplacements situés sur l'élément caractéristique, et
    - soustraire des valeurs d'intensité des points de mesure contenus dans le masque d'élément caractéristique obtenu pour l'un des instants la valeur de fond obtenue pour cet instant, une valeur d'élément caractéristique corrigé des points de mesure contenus dans le masque d'élément caractéristique étant ainsi obtenue pour deux instants ou plus, et
    - combiner, notamment par moyennage, les valeurs d'élément caractéristique corrigées, obtenues à chaque fois pour l'un des instants, des points de mesure contenus dans le masque d'élément caractéristique pour former une valeur d'élément caractéristique corrigée moyenne, une valeur d'élément caractéristique corrigée moyenne étant ainsi obtenue pour deux instants ou plus, et
    - vérifier, notamment en ce qui concerne l'authenticité, le document de valeur à l'aide des valeurs d'élément caractéristique corrigées moyennes de deux instants ou plus.
  12. Capteur selon la revendication 10 ou 11, le module d'évaluation (7) étant conçu pour
    - déterminer une valeur de substrat moyenne afin de déterminer le comportement dans le temps du rayonnement de luminescence émis par le substrat pour deux instants ou plus ou pour chacun des instants, la valeur de substrat moyenne respective de l'instant respectif étant obtenue par combinaison, notamment moyennage, des valeurs d'intensité des points de mesure contenus dans le masque de substrat pur, et
    - vérifier, notamment en ce qui concerne l'authenticité, le document de valeur à l'aide des valeurs de substrat moyennes de deux instants ou plus.
  13. Capteur selon la revendication 12, le module d'évaluation (7) étant conçu pour
    - déterminer sur la base des valeurs d'intensité d'élément caractéristique un masque d'élément caractéristique qui contient les points de mesure qui correspondent à des emplacements situés sur l'élément caractéristique, et
    - combiner, notamment par moyennage, les valeurs d'intensité, obtenues à chaque fois pour l'un des instants, des points de mesure contenus dans le masque d'élément caractéristique pour former une valeur d'élément caractéristique de substrat moyenne, une valeur d'élément caractéristique de substrat moyenne étant ainsi obtenue pour plusieurs des instants, et
    - soustraire les valeurs de substrat moyennes obtenues pour les instants des valeurs d'élément caractéristique de substrat moyennes obtenues pour les instants, une valeur d'élément caractéristique moyenne étant ainsi obtenue pour plusieurs instants, et
    - vérifier, notamment en ce qui concerne l'authenticité, le document de valeur sur la base des valeurs d'élément caractéristique moyennes de deux instants ou plus.
  14. Dispositif de traitement de documents de valeur (1) destiné à traiter, notamment vérifier et/ou compter et/ou trier et/ou détruire, des documents de valeur (2), notamment des billets de banque, ledit dispositif comprenant un capteur selon l'une des revendications précédentes et un module de transport (4) qui est conçu pour amener un document de valeur (2) au capteur et/ou le faire passer devant le capteur et/ou l'éloigner du capteur.
  15. Procédé de vérification de documents de valeur (2), notamment de billets de banque, qui comportent chacun un substrat luminescent en forme de feuille et un élément caractéristique luminescent appliqué sur une partie de la surface du substrat, un rayonnement luminescent émis par un document de valeur à vérifier étant détecté avec résolution locale dans au moins deux domaines spectraux différents (K0, K1), un grand nombre de points de mesure étant obtenus qui sont chacun associés à un vecteur spectral (I0, I1) qui contient au moins deux valeurs d'intensité (I0, I1) qui caractérisent l'intensité du rayonnement de luminescence détecté au point de mesure respectif dans les au moins deux domaines spectraux (K0, K1), caractérisé en ce que
    a) une valeur d'intensité de substrat et une valeur d'intensité d'élément caractéristique sont déterminées à partir des vecteurs spectraux (I0, I1) à l'aide d'un vecteur de base de substrat spécifié (b0,P, b1,P) et d'un vecteur de base d'élément caractéristiques spécifié (b0,D, b1,D) pour un grand nombre de points de mesure, le vecteur de base de substrat (b0,P, b1,P) et le vecteur de base d'élément caractéristique (b0,D, b1,D) contenant chacun au moins deux valeurs d'intensité (b0,P, b1,P respectivement b0,D, b1,D) qui caractérisent l'intensité attendue du rayonnement de luminescence émis par le substrat, respectivement l'élément caractéristique, dans les au moins deux domaines spectraux (K0, K1),
    b) un masque de substrat pur étant déterminé sur la base des valeurs d'intensité de substrat et des valeurs d'intensité d'élément caractéristique, lequel masque contient les points de mesure qui correspondent à des emplacements sur le document de valeur (2) qui sont situés à l'extérieur de l'élément caractéristique, et c1) un vecteur de substrat moyen étant déterminé à partir des vecteurs spectraux (I0, I1) des points de mesure contenus dans le masque de substrat pur, lequel vecteur de substrat moyen contient au moins deux valeurs d'intensité qui sont chacune obtenues par combinaison, notamment par moyennage ou formation de quantile, des vecteurs spectraux (I0, I1) contenant des valeurs d'intensité (I0, I1) pour chacun des au moins deux domaines spectraux (K0, K1), et
    i) une valeur d'intensité d'élément caractéristique corrigée et/ou une valeur d'intensité de substrat corrigée étant déterminée à partir des vecteurs spectraux (I0, I1) pour un grand nombre de points de mesure à l'aide du vecteur de substrat moyen et le document de valeur étant vérifié, notamment en ce qui concerne l'authenticité, sur la base des valeurs d'intensité d'élément caractéristique corrigées et/ou sur la base des valeurs d'intensité de support corrigées et/ou
    ii) une signature spectrale du substrat et/ou de l'élément caractéristique qui caractérise une composition spectrale du rayonnement de luminescence émis par le substrat ou l'élément caractéristique, étant déterminée à l'aide du vecteur de substrat moyen et le document de valeur étant vérifié, notamment en ce qui concerne l'authenticité, sur la base de la signature spectrale du substrat et/ou de l'élément caractéristique,
    et/ou
    c2) un comportement dans le temps du rayonnement de luminescence émis par le substrat et/ou l'élément caractéristique étant déterminé à l'aide de points de mesure contenus dans le masque de substrat pur et le document de valeur étant vérifié, notamment en ce qui concerne l'authenticité, sur la base du comportement dans le temps du rayonnement de luminescence émis par le substrat et/ou l'élément caractéristique.
EP21740426.8A 2020-07-23 2021-07-08 Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur Active EP4186041B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004470.0A DE102020004470A1 (de) 2020-07-23 2020-07-23 Sensor und Verfahren zur Prüfung von Wertdokumenten, insbesondere Banknoten, sowie Wertdokumentbearbeitungsvorrichtung
PCT/EP2021/025251 WO2022017641A1 (fr) 2020-07-23 2021-07-08 Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur

Publications (2)

Publication Number Publication Date
EP4186041A1 EP4186041A1 (fr) 2023-05-31
EP4186041B1 true EP4186041B1 (fr) 2024-04-17

Family

ID=76891004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740426.8A Active EP4186041B1 (fr) 2020-07-23 2021-07-08 Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur

Country Status (4)

Country Link
US (1) US20230274599A1 (fr)
EP (1) EP4186041B1 (fr)
DE (1) DE102020004470A1 (fr)
WO (1) WO2022017641A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479363B1 (fr) * 2016-06-30 2020-03-25 Sicpa Holding SA Système et procédé pour l'imagerie d'un objet et générer une mesure de l'authenticité de l'objet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048874A1 (en) 2011-08-31 2013-02-28 Honeywell International Inc. Articles with confounded emission characteristics and methods and apparatus for their authentication
US20130181435A1 (en) * 2012-01-17 2013-07-18 Ecole Polytechnique Federale De Lausanne (Epfl) Synthesis of authenticable halftone images with non-luminescent halftones illuminated by a luminescent emissive layer
CN110598699B (zh) * 2019-09-16 2023-01-24 华中科技大学 一种基于多光谱图像的防伪票据鉴伪系统和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479363B1 (fr) * 2016-06-30 2020-03-25 Sicpa Holding SA Système et procédé pour l'imagerie d'un objet et générer une mesure de l'authenticité de l'objet

Also Published As

Publication number Publication date
US20230274599A1 (en) 2023-08-31
WO2022017641A1 (fr) 2022-01-27
EP4186041A1 (fr) 2023-05-31
DE102020004470A1 (de) 2022-01-27

Similar Documents

Publication Publication Date Title
DE2824849C2 (de) Verfahren und Vorrichtung zur Feststellung des Zustandes und/oder der Echtheit von Blattgut
EP2795589B1 (fr) Procédé et dispositif de contrôle d'un élément de sécurité d'un document de valeur
DE102010021803A1 (de) Vorrichtung zur Echtheitsprüfung von Wertdokumenten
DE102007019107A1 (de) Verfahren und Vorrichtung zur Prüfung von Wertdokumenten
DE102013015224A1 (de) Verfahren und Vorrichtung zum Prüfen von Wertdokumenten auf Irregularitäten
EP3443542B1 (fr) Dispositif et procédé de vérification de documents de valeur, en particulier des billets de banque, et système de traitement de documents de valeur
EP1872338A1 (fr) Dispositif et procede pour controler des documents de valeur
DE102011121912A1 (de) Verfahren und Vorrichtung zur Untersuchung eines Wertdokuments
EP3400584B1 (fr) Vérification de l'intégrité d'un document de valeur
EP2997553B1 (fr) Dispositif et procédé de contrôle de documents de valeur, en particulier de billets de banque, ainsi que système de traitement de documents de valeur
EP4186041B1 (fr) Capteur et procédé de vérification de documents de valeur, en particulier de billets de banque, et appareil de traitement de documents de valeur
EP3050032B1 (fr) PROCÉDÉ DE TEST DES DOCUMENTS DE VALEUR EN POLYMÈRE AVEC FENÊTRE TRANSPARENTE
ET DISPOSITIF METTANT EN OEUVRE DU PROCEDE
EP3210195B1 (fr) Dispositif et procédé de vérification de documents de valeur, en particulier des billets de banque, et système de traitement de documents de valeur
DE102009057348A1 (de) Verfahren und Vorrichtung zur Prüfung von Banknoten
EP2920769B1 (fr) L'appareil et methode pour evaluer les documents de valeur
EP3503047B1 (fr) Dispositif de détection d'une caractéristique de sécurité magnétique d'un document de valeur et procédé de compensation de la valeur de mesure pour la détection d'une caractéristique de sécurité magnétique d'un document de valeur
EP1567991B1 (fr) Procede et dispositif permettant de verifier des documents de valeur
DE102022002581A1 (de) Sensor und Verfahren zum Prüfen von Wertdokumenten mit mindestens einem reflektierenden Sicherheitselement
EP3455830A1 (fr) Dispositif et procédé de vérification en temps réel d'un élément de sécurité
DE102021003334A1 (de) Sensor zur Prüfung der Lumineszenz von Wertdokumenten
WO2015036121A1 (fr) Procédé de contrôle d'un document de valeur
DE102020002587A1 (de) Verfahren und Vorrichtung zum Prüfen eines Substrats mit einem Lumineszenzstoff
EP4295333A1 (fr) Capteur pour le contrôle de la luminescence de documents de valeur
DE102020004284A1 (de) Verfahren und Vorrichtung zum Prüfen von Wertdokumenten und Verfahren und Vorrichtung zum Erzeugen von Prüfparametern zur Verwendung bei einem Verfahren zum Prüfen von Wertdokumenten
DE102004045170A1 (de) Verfahren und Vorrichtung für die Messung der Dicke von Banknoten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003408

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN