EP4185726A2 - Component for a timepiece or jewellery item made of cermet - Google Patents

Component for a timepiece or jewellery item made of cermet

Info

Publication number
EP4185726A2
EP4185726A2 EP21733442.4A EP21733442A EP4185726A2 EP 4185726 A2 EP4185726 A2 EP 4185726A2 EP 21733442 A EP21733442 A EP 21733442A EP 4185726 A2 EP4185726 A2 EP 4185726A2
Authority
EP
European Patent Office
Prior art keywords
carbide
phase
component according
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21733442.4A
Other languages
German (de)
French (fr)
Inventor
Bernard Bertheville
Yann Fallet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP4185726A2 publication Critical patent/EP4185726A2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a component in particular for a timepiece or piece of jewelry, made of a cermet-type material with a ceramic phase comprising carbides and with a metallic binder comprising a precious metal.
  • trim components are made of gold or a gold alloy.
  • Gold has the advantage of possessing great ductility as well as great malleability, which allows easy shaping. It is also endowed with a very high and characteristic metallic luster.
  • the different gold alloys can take on various hues ranging from white to red.
  • gold and its alloys have the disadvantage of having a low hardness which is at most 300 HV.
  • various ceramic composites have been developed in order to increase the hardness of gold. The manufacturing process most often involves infiltrating a high-hardness matrix with gold and applying very high pressures. The disadvantage of this method is that the accessible shapes remain limited to simple geometries, obtaining complex shapes requiring the use of additional machining methods.
  • cermets use a non-precious metal as a binder. These are often allergenic elements such as nickel or cobalt as disclosed in US 4,589,917, or iron-based alloys resulting in low corrosion resistance and high ferromagnetism.
  • the present invention proposes a component in particular for a timepiece or piece of jewelry made of a cermet material comprising a phase of carbides and a phase of a metallic binder chosen from silver, gold, platinum , palladium, ruthenium, osmium, rhodium and one of their alloys.
  • the metal binder phase is present in a weight percentage between 3 and 25% and the carbides phase is present in a weight percentage between 75 and 97%.
  • the cermet material thus developed has, after polishing, a metallic luster which can be comparable to that observed in stainless steels, particularly when the metallic binder is palladium.
  • These precious cermets have hardnesses between 700 and 1900 HV30 and they have sufficient tenacity for the production of trim parts.
  • they can be shaped by conventional powder metallurgy processes such as pressing or injection in order to obtain "near-net shape" parts.
  • the low content of precious binder makes it possible to obtain a cermet that retains the reflective and colorimetric characteristics of the carbide used, which is particularly important for trim and decorative components.
  • the present invention also relates to the process for manufacturing the component comprising the successive steps consisting in: a) producing a mixture comprising a powder of carbides and a powder of a metal binder chosen from silver, gold, platinum, palladium, ruthenium, osmium, rhodium and one of their alloys and optionally comprising an additive.
  • precious binders such as platinum or palladium makes it possible to densify these carbide-based cermets from much lower temperatures than those of said carbides alone and without resorting to sintering at high temperatures and under pressure, either from 1250°C with palladium and 1400°C with platinum.
  • the powders of the mixture preferably have a d50 of less than 20 ⁇ m, more preferably less than 10 ⁇ m and even more preferably less than 5 ⁇ m.
  • a small particle size the homogeneity of the mixture is improved and excellent coverage of the metallic binder on each carbide grain is guaranteed.
  • the final density is increased while increasing the mechanical properties such as hardness and toughness. after sintering. Also, reducing the particle size results in a high metallic luster, i.e. a high luminance value L*
  • FIG. 1 represents a timepiece comprising a middle part made with the cermet-type material according to the invention.
  • Figure 2 represents an electron microscopy image of the cermet type material for a composition according to the invention (80% Mo2C - 15% Au and 5% Cu).
  • FIG. 3 represents an electron microscopy image of the cermet type material for another composition according to the invention (80% TiC - 2% SiC - 18% Pt).
  • the present invention relates to a component, in particular for a timepiece or piece of jewelry, made of a cermet-type material comprising a majority phase of carbides and a minority phase of a metallic binder comprising a precious element such as silver, gold, platinum, palladium, ruthenium, osmium, rhodium or an alloy of one of these precious elements.
  • the metallic binder is chosen from silver, gold, platinum, palladium or an alloy of one of these precious elements.
  • the component according to the invention can form a decorative article such as a constituent element of watches, jewellery, bracelets, etc.
  • this component can be a covering part such as a middle part, a back, a bezel, a pusher, a bracelet link, a dial, a hand, a dial index, etc. he can it can also be a component of the movement such as an oscillating weight, a plate, etc.
  • a middle part 1 made with the cermet-type material according to the invention is represented in FIG. 1.
  • the cermet component is made by sintering from a mixture of carbide and metal powders.
  • the manufacturing process comprises the steps consisting of: a) Making a mixture with the different powders, possibly in a humid environment.
  • the powders of the mixture preferably have a d50 of less than 20 ⁇ m, more preferably less than 10 ⁇ m and even more preferably less than 5 ⁇ m.
  • the mixture can optionally be carried out in a grinder to obtain the desired d50.
  • the particle size is measured by laser diffraction in accordance with the ISO 13320: 2020 standard.
  • This mixture comprises by weight between 75 and 97%, advantageously between 78 and 97%, and more advantageously between 78 and 94%, of the carbide powder and between 3 and 25%, advantageously between 3 and 22%, and more advantageously between 6 and 22% of the metal powder.
  • the mixture may optionally comprise one or more additives in a percentage by weight for all the additives of less than or equal to 4%. In the presence of one or more additives, the latter are preferably present in a percentage for all the additives of between 1 and 3% by weight.
  • the mixture comprises the carbide powder in a percentage by weight of between 75 and 96%, the powder of the metal binder in a percentage by weight of between 3 and 24% and the additive or additives in a percentage by weight for all the additives comprised between 1 and 3%.
  • additives are intended to improve densification during sintering.
  • it may be a metal disilicide such as SbTi or SbZr.
  • the carbide powder comprises one or more carbides chosen from TiC, SiC, Mo2C, WC and NbC. More in particular, the carbide powder mainly comprises titanium carbide (TiC), tungsten carbide (WC) or molybdenum carbide (Mo2C).
  • TiC titanium carbide
  • WC tungsten carbide
  • Mo2C molybdenum carbide
  • carbides it may thus comprise Mo2C and TiC with the majority of Mo2C present. It may also comprise Mo2C and TiC with the TiC predominantly present. It may also comprise TiC and SiC with the TiC predominantly present.
  • the metal powder mainly comprises palladium, platinum, silver, gold, ruthenium, osmium, rhodium or an alloy of one of these elements. It can, except for impurities, consist entirely of platinum, palladium, ruthenium, osmium, rhodium or silver.
  • the gold is preferentially present in alloyed form with at least one element chosen from Cu, Ag, Pd, In. More preferentially, the gold alloy comprises gold alloyed with silver and copper (gold 3N yellow, 5N red gold) or palladium (white gold).
  • the metal powder can also comprise carbon in a percentage by weight of between 0.1 and 5% relative to the total weight of the mixture of powders. Indeed, during sintering, part of the Mo2C can be transformed into Mo resulting in a reduction in hardness.
  • the addition of carbon makes it possible to limit the formation of Mo and therefore to maintain the level of hardness.
  • the addition of carbon can be carried out in the carbide powder.
  • the carbide powder thus comprises carbon in a percentage by weight of between 0.1 and 5% relative to the total weight of the mixture of powders.
  • the mixture of powders may comprise by weight one of the following distributions: between 80 and 95% of TiC and between 5 and 20% of Pd or Pt, - between 75 and 95% of TiC and between 5 and 25% of an Au alloy,
  • a second mixture comprising the aforementioned mixture and an organic binder system (paraffin, polyethylene, etc.) can be produced.
  • an organic binder system paraffin, polyethylene, etc.
  • the blank thus obtained is cooled and polished. It can also be machined before polishing to obtain the desired component.
  • the component, which can also be described as an article, resulting from the manufacturing process comprises the carbide phase and the metallic phase in percentages by weight close to those of the starting powders.
  • the component, which can also be described as an article, resulting from the manufacturing process comprises the carbide phase and the metallic phase in percentages by weight close to those of the starting powders.
  • small variations in composition and percentages between the base powders and the material resulting from sintering cannot be ruled out following, for example, contamination or transformations during sintering, for example, of Mo2C into Mo. Therefore, in the final product resulting from the process, the mass percentages for the different phases must be understood as follows.
  • the carbide phase comprises the carbides as well as any elements derived from the basic carbide powder such as Mo for the example above.
  • the metallic phase it comprises the compounds of the starting metallic powder as well as a possible compound resulting from a decomposition or reaction of the metallic base powder. In the presence of additives in the mixture of powders, the latter can be found in the phase of carbides and/or in the metallic phase.
  • the component has a CIELAB colorimetric space (compliant with CIE n°15, ISO 7724/1, DIN 5033 Part 7, ASTM E-1164) with a luminance component L*, representative of the way the material reflects light, between 60 and 90, preferably between 65 and 85 and, more preferably between 70 and 85.
  • the ceramic material has an HV30 hardness of between 700 and 1900 depending on the types and percentages of the constituents. More specifically, it has an HV30 hardness of between 700 and 1300 when the carbide phase mainly comprises molybdenum carbide. An HV30 hardness of between 900 and 1600 when the carbide phase mainly comprises tungsten carbide and an HV30 hardness of between 700 and 1900 when the carbide phase mainly comprises titanium carbide.
  • the ceramic material has a KiC toughness of at least 2 MPa.m 1/2 with values possibly exceeding 20 MPa.m 1/2 .
  • the toughness is determined on the basis of measurements of the lengths of the cracks at the four extremities of the diagonals of the Vickers hardness indentation according to the formula: with P being the applied load (N), a being the half-diagonal (m) and / being the measured crack length (m).
  • Tables 1 to 3 below show various examples of cermets according to the invention.
  • the mixture of powders includes an additive to improve the densification. This additive is Si2Ti p resent in a weight percentage of 2%.
  • the cermets with a carbide phase mainly comprising TiC generally have a higher hardness than that of the cermets with a carbide phase mainly comprising Mo2C.
  • the hardnesses are thus comprised between 750 and 1800 HV30 for the cermets comprising TiC compared with values comprised in the range 750-1200 HV30 for the cermets comprising mainly Mo2C.
  • Sample 4 comprising TiC and an Au alloy has a lower hardness (761 HV30) attributed to a lower sintering time compared to sample 3 comprising TiC and an Au alloy (1209 HV30). Sample 4 also has a lower toughness compared to sample 3.
  • Cermets comprising Mo2C and Pd have extremely high toughness values which are greater than 10 MPa.m 1/2 for Pd contents greater than or equal to 8% (tests 6, 20, 21). For certain compositions, there is no crack propagation during the HV30 hardness measurements, a toughness value could therefore not be measured.
  • Cermets mainly comprising Mo2C have high L* luminance indices regardless of the type of precious binder used (Pt, Pd, Ag, Au-Cu) with values of around 80 against values in the 70 range. -75 for cermets mainly comprising TiC.
  • figure 2 represents an electron microscopy of a sample sintered from the mixture of powders comprising by weight 80% Mo2C, 15% Au and 5% Cu.
  • the carbide phase is formed of the dark gray zone composed of Mo2C and the medium gray zone rich in Mo. Part of the Mo2C is transformed into Mo during sintering with a consequent decrease in hardness.
  • the metallic AuCu phase is the white phase.
  • Figure 3 represents an electron microscopy of a sample sintered from the mixture of powders comprising by weight 80% TiC, 2% SiC and 18% Pt. There is the phase of carbides formed from the black and gray zones with the black zone rich in TiC and the gray zone comprising TiC and Pt. In white, there is the metallic phase.
  • the invention relates to the component made of a cermet material.
  • This component has been designed for applications in particular in the field of watchmaking and jewelery such as for example trim elements or the movement of a timepiece.
  • the component according to the invention cannot be limited to watchmaking.
  • this component can be applied in the field of tableware, cutlery, leather goods, jewelry or jewelry.

Abstract

The invention concerns component for a timepiece or a jewellery item, made of a cermet material comprising a carbide phase and a metal binder phase selected from among gold, platinum, palladium rhodium, osmium, ruthenium and one of the alloys thereof, characterised in that the metal binder phase is present in a percentage by weight between 3 and 25% and in that the carbide phase is present in a percentage by weight of between 75 and 97%. The present invention also relates to the method used for producing this component

Description

COMPOSANT POUR PIECE D'HORLOGERIE OU DE BIJOUTERIE EN COMPONENT FOR A WATCH OR JEWELRY PIECE IN
CERMET CERMET
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention se rapporte à un composant en particulier pour une pièce d’horlogerie ou de bijouterie, réalisé dans un matériau de type cermet avec une phase céramique comprenant des carbures et avec un liant métallique comprenant un métal précieux. The present invention relates to a component in particular for a timepiece or piece of jewelry, made of a cermet-type material with a ceramic phase comprising carbides and with a metallic binder comprising a precious metal.
ART ANTERIEUR PRIOR ART
De nombreux composants d’habillage sont réalisés en or ou dans un alliage d’or. L’or présente l’avantage de posséder une grande ductilité ainsi qu’une grande malléabilité, ce qui permet une mise en forme aisée. Il est de plus doté d’un éclat métallique très élevé et caractéristique. Par ailleurs, les différents alliages d’or peuvent prendre diverses teintes allant du blanc au rouge. L’or et ses alliages ont cependant le désavantage de présenter une dureté faible qui est au plus de 300 HV. A cet égard, divers composites céramiques ont été développés afin d’augmenter la dureté de l’or. Le procédé de fabrication consiste le plus souvent à infiltrer d’or une matrice de haute dureté et à appliquer des pressions très élevées. Le désavantage de ce procédé est que les formes accessibles restent limitées à des géométries simples, l’obtention de formes complexes nécessitant de recourir à des méthodes d’usinage supplémentaires. D’autres procédés tels que divulgués dans le document WO 2004/005561 consistent à utiliser l’or comme liant métallique dans un cermet obtenu par frittage. Le liant métallique en or est présent dans des proportions largement supérieures à 50% en poids. Dans ce cas, la dureté d’un tel cermet précieux est faible et inversement proportionnelle au pourcentage en poids d’or. Généralement, les cermets utilisent comme liant un métal non précieux. Il s’agit souvent d’éléments allergènes comme le nickel ou le cobalt comme divulgué dans le document US 4,589,917, ou d’alliages à base de fer entraînant une faible résistance à la corrosion et un fort ferromagnétisme. Many trim components are made of gold or a gold alloy. Gold has the advantage of possessing great ductility as well as great malleability, which allows easy shaping. It is also endowed with a very high and characteristic metallic luster. In addition, the different gold alloys can take on various hues ranging from white to red. However, gold and its alloys have the disadvantage of having a low hardness which is at most 300 HV. In this regard, various ceramic composites have been developed in order to increase the hardness of gold. The manufacturing process most often involves infiltrating a high-hardness matrix with gold and applying very high pressures. The disadvantage of this method is that the accessible shapes remain limited to simple geometries, obtaining complex shapes requiring the use of additional machining methods. Other processes as disclosed in document WO 2004/005561 consist in using gold as a metallic binder in a cermet obtained by sintering. The metallic gold binder is present in proportions well above 50% by weight. In this case, the hardness of such a precious cermet is low and inversely proportional to the percentage by weight of gold. Generally, cermets use a non-precious metal as a binder. These are often allergenic elements such as nickel or cobalt as disclosed in US 4,589,917, or iron-based alloys resulting in low corrosion resistance and high ferromagnetism.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
La présente invention a pour objet de pallier aux désavantages précités en proposant un cermet avec une composition optimisée pour remplir les critères suivants : The object of the present invention is to overcome the aforementioned disadvantages by proposing a cermet with a composition optimized to fulfill the following criteria:
- présenter un éclat métallique élevé, - have a high metallic luster,
- avoir une dureté minimum de 700 HV30, - have a minimum hardness of 700 HV30,
- s’affranchir de l’utilisation d’éléments allergènes tels que le nickel ou le cobalt, - avoid the use of allergenic elements such as nickel or cobalt,
- ne pas présenter de ferromagnétisme et être résistant à la corrosion saline. - not exhibit ferromagnetism and be resistant to saline corrosion.
A cette fin, la présente invention propose un composant notamment pour une pièce d’horlogerie ou de bijouterie réalisé dans un matériau cermet comportant une phase de carbures et une phase d’un liant métallique choisi parmi l’argent, l’or, le platine, le palladium, le ruthénium, l’osmium, le rhodium et un de leurs alliages. La phase du liant métallique est présente dans un pourcentage en poids compris entre 3 et 25% et la phase de carbures est présente dans un pourcentage en poids compris entre 75 et 97%. To this end, the present invention proposes a component in particular for a timepiece or piece of jewelry made of a cermet material comprising a phase of carbides and a phase of a metallic binder chosen from silver, gold, platinum , palladium, ruthenium, osmium, rhodium and one of their alloys. The metal binder phase is present in a weight percentage between 3 and 25% and the carbides phase is present in a weight percentage between 75 and 97%.
Le matériau cermet ainsi développé présente après polissage un éclat métallique pouvant être comparable à celui observé dans des aciers inoxydables, tout particulièrement quand le liant métallique est le palladium. Ces cermets précieux présentent des duretés comprises entre 700 et 1900 HV30 et ils possèdent des ténacités suffisantes pour la réalisation de pièces d’habillage. En outre, ils peuvent être mis en forme par des procédés classiques de métallurgie des poudres tels que le pressage ou l’injection afin d’obtenir des pièces "near-net shape". La faible teneur en liant précieux permet d’obtenir un cermet conservant les caractéristiques réflectives et colorimétriques du carbure utilisé, ce qui est particulièrement important pour des composants d’habillage et de décoration. The cermet material thus developed has, after polishing, a metallic luster which can be comparable to that observed in stainless steels, particularly when the metallic binder is palladium. These precious cermets have hardnesses between 700 and 1900 HV30 and they have sufficient tenacity for the production of trim parts. In addition, they can be shaped by conventional powder metallurgy processes such as pressing or injection in order to obtain "near-net shape" parts. The low content of precious binder makes it possible to obtain a cermet that retains the reflective and colorimetric characteristics of the carbide used, which is particularly important for trim and decorative components.
La présente invention se rapporte également au procédé de fabrication du composant comprenant les étapes successives consistant à : a) Réaliser un mélange comprenant une poudre de carbures et une poudre d’un liant métallique choisi parmi l’argent, l’or, le platine, le palladium, le ruthénium, l’osmium, le rhodium et un de leurs alliages et optionnellement comprenant un additif. b) Former une ébauche en conférant audit mélange la forme du composant, c) Fritter l’ébauche à une température comprise entre 1000 et 1900°C pendant une période comprise entre 30 minutes et 10 heures, le procédé étant caractérisé en ce que la poudre de carbures est présente dans un pourcentage en poids compris entre 75 et 97%, la poudre du liant métallique dans un pourcentage en poids compris entre 3 et 25% et l’additif dans un pourcentage en poids compris entre 0 et 4%. The present invention also relates to the process for manufacturing the component comprising the successive steps consisting in: a) producing a mixture comprising a powder of carbides and a powder of a metal binder chosen from silver, gold, platinum, palladium, ruthenium, osmium, rhodium and one of their alloys and optionally comprising an additive. b) Forming a blank by giving said mixture the shape of the component, c) Sintering the blank at a temperature of between 1000 and 1900°C for a period of between 30 minutes and 10 hours, the method being characterized in that the powder of carbides is present in a percentage by weight of between 75 and 97%, the powder of the metal binder in a percentage by weight of between 3 and 25% and the additive in a percentage by weight of between 0 and 4%.
L’utilisation de liants précieux tels que le platine ou le palladium permet de densifier ces cermets à base de carbures à partir de températures beaucoup plus basses que celles desdits carbures seuls et sans recourir à des frittages à hautes températures et sous pression, soit à partir de 1250°C avec le palladium et de 1400°C avec le platine. The use of precious binders such as platinum or palladium makes it possible to densify these carbide-based cermets from much lower temperatures than those of said carbides alone and without resorting to sintering at high temperatures and under pressure, either from 1250°C with palladium and 1400°C with platinum.
Les poudres du mélange ont préférentiellement un d50 inférieur à 20 pm, plus préférentiellement inférieur à 10 pm et encore plus préférentiellement inférieur à 5 pm. Avec une faible taille de particules, l’homogénéité du mélange est améliorée et on garantit un excellent recouvrement du liant métallique sur chaque grain de carbures. De plus, en diminuant la taille des carbures, on augmente la densité finale tout en augmentant les propriétés mécaniques telles que la dureté et la ténacité après frittage. En outre, réduire la taille des particules permet d’obtenir un éclat métallique élevé, c.à.d. une haute valeur de luminance L*The powders of the mixture preferably have a d50 of less than 20 μm, more preferably less than 10 μm and even more preferably less than 5 μm. With a small particle size, the homogeneity of the mixture is improved and excellent coverage of the metallic binder on each carbide grain is guaranteed. In addition, by decreasing the size of the carbides, the final density is increased while increasing the mechanical properties such as hardness and toughness. after sintering. Also, reducing the particle size results in a high metallic luster, i.e. a high luminance value L*
D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante d'un mode de réalisation préféré, présenté à titre d'exemple non limitatif en référence aux dessins annexés. Other characteristics and advantages of the present invention will appear in the following description of a preferred embodiment, presented by way of non-limiting example with reference to the appended drawings.
BREVE DESCRIPTION DE LA FIGURE BRIEF DESCRIPTION OF THE FIGURE
La figure 1 représente une pièce d’horlogerie comprenant une carrure réalisée avec le matériau de type cermet selon l’invention. FIG. 1 represents a timepiece comprising a middle part made with the cermet-type material according to the invention.
La figure 2 représente une image en microscopie électronique du matériau de type cermet pour une composition selon l’invention (80% Mo2C - 15% Au et 5% Cu). Figure 2 represents an electron microscopy image of the cermet type material for a composition according to the invention (80% Mo2C - 15% Au and 5% Cu).
La figure 3 représente une image en microscopie électronique du matériau de type cermet pour une autre composition selon l’invention (80% TiC - 2% SiC - 18% Pt). FIG. 3 represents an electron microscopy image of the cermet type material for another composition according to the invention (80% TiC - 2% SiC - 18% Pt).
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
La présente invention se rapporte à un composant notamment pour une pièce d’horlogerie ou de bijouterie réalisé dans un matériau de type cermet comprenant une phase majoritaire de carbures et une phase minoritaire d’un liant métallique comportant un élément précieux tel que l’argent, l’or, le platine, le palladium, le ruthénium, l’osmium, le rhodium ou un alliage d’un de ces éléments précieux. Préférentiellement, le liant métallique est choisi parmi l’argent, l’or, le platine, le palladium ou un alliage d’un de ces éléments précieux. Le composant selon l’invention peut former un article décoratif tel qu’un élément constitutif de montres, bijoux, bracelets, etc. Dans le domaine horloger, ce composant peut être une pièce d’habillage telle qu'une carrure, un fond, une lunette, un poussoir, un maillon de bracelet, un cadran, une aiguille, un index de cadran, etc. Il peut également s’agir d’un composant du mouvement tel qu’une masse oscillante, une platine, etc. A titre illustratif, une carrure 1 réalisée avec le matériau de type cermet selon l’invention est représentée à la figure 1. The present invention relates to a component, in particular for a timepiece or piece of jewelry, made of a cermet-type material comprising a majority phase of carbides and a minority phase of a metallic binder comprising a precious element such as silver, gold, platinum, palladium, ruthenium, osmium, rhodium or an alloy of one of these precious elements. Preferably, the metallic binder is chosen from silver, gold, platinum, palladium or an alloy of one of these precious elements. The component according to the invention can form a decorative article such as a constituent element of watches, jewellery, bracelets, etc. In the horological field, this component can be a covering part such as a middle part, a back, a bezel, a pusher, a bracelet link, a dial, a hand, a dial index, etc. he can it can also be a component of the movement such as an oscillating weight, a plate, etc. By way of illustration, a middle part 1 made with the cermet-type material according to the invention is represented in FIG. 1.
Le composant en cermet est réalisé par frittage partant d’un mélange des poudres de carbures et métallique. Le procédé de fabrication comporte les étapes consistant à: a) Réaliser un mélange avec les différentes poudres et ce éventuellement en milieu humide. Les poudres du mélange ont préférentiellement un d50 inférieur à 20 pm, plus préférentiellement inférieur à 10 pm et encore plus préférentiellement inférieur à 5 pm. Le mélange peut éventuellement être réalisé dans un broyeur pour obtenir le d50 souhaité. La granulométrie est mesurée par diffraction laser conformément à la norme ISO 13320 : 2020. The cermet component is made by sintering from a mixture of carbide and metal powders. The manufacturing process comprises the steps consisting of: a) Making a mixture with the different powders, possibly in a humid environment. The powders of the mixture preferably have a d50 of less than 20 μm, more preferably less than 10 μm and even more preferably less than 5 μm. The mixture can optionally be carried out in a grinder to obtain the desired d50. The particle size is measured by laser diffraction in accordance with the ISO 13320: 2020 standard.
Ce mélange comporte en poids entre 75 et 97%, avantageusement entre 78 et 97%, et plus avantageusement entre 78 et 94%, de la poudre de carbures et entre 3 et 25%, avantageusement entre 3 et 22%, et plus avantageusement entre 6 et 22% de la poudre métallique. Le mélange peut optionnellement comporter un ou plusieurs additifs dans un pourcentage en poids pour l’ensemble des additifs inférieur ou égal à 4%. En présence d’un ou plusieurs additifs, ces derniers sont préférentiellement présents dans un pourcentage pour l’ensemble des additifs compris entre 1 et 3% en poids. Plus précisément, en présence d’un ou plusieurs d’additifs, le mélange comporte la poudre de carbures dans un pourcentage en poids compris entre 75 et 96%, la poudre du liant métallique dans un pourcentage en poids compris entre 3 et 24% et le ou les additifs dans un pourcentage en poids pour l’ensemble des additifs compris entre 1 et 3%. Ces additifs ont pour objet d’améliorer la densification lors du frittage. Par exemple, il peut s’agir de di-silicide métallique tel que le SbTi ou le SbZr. This mixture comprises by weight between 75 and 97%, advantageously between 78 and 97%, and more advantageously between 78 and 94%, of the carbide powder and between 3 and 25%, advantageously between 3 and 22%, and more advantageously between 6 and 22% of the metal powder. The mixture may optionally comprise one or more additives in a percentage by weight for all the additives of less than or equal to 4%. In the presence of one or more additives, the latter are preferably present in a percentage for all the additives of between 1 and 3% by weight. More specifically, in the presence of one or more additives, the mixture comprises the carbide powder in a percentage by weight of between 75 and 96%, the powder of the metal binder in a percentage by weight of between 3 and 24% and the additive or additives in a percentage by weight for all the additives comprised between 1 and 3%. These additives are intended to improve densification during sintering. For example, it may be a metal disilicide such as SbTi or SbZr.
Préférentiellement, la poudre de carbures comporte un ou plusieurs carbures choisis parmi le TiC, le SiC, le Mo2C, le WC et le NbC. Plus particulièrement, la poudre de carbures comporte majoritairement du carbure de titane (TiC), du carbure de tungstène (WC) ou du carbure de molybdène (Mo2C). On entend par majoritairement que, lorsqu’il y a plusieurs types de carbures dans la poudre, le carbure de titane (TiC), le carbure de tungstène (WC) ou le carbure de molybdène (Mo2C) sont présents dans un pourcentage supérieur aux autres carbures. Elle peut ainsi comporter du Mo2C et du TiC avec le Mo2C présent majoritairement. Elle peut également comporter du Mo2C et du TiC avec le TiC présent majoritairement. Elle peut également comporter du TiC et du SiC avec le TiC présent majoritairement. En variante, elle peut, aux impuretés près, être constituée entièrement de TiC, de WC ou de Mo2C. La poudre métallique comporte majoritairement du palladium, du platine, de l’argent, de l’or, du ruthénium, de l’osmium, du rhodium ou un alliage d’un de ces éléments. Elle peut, aux impuretés près, être constituée entièrement de platine, de palladium, de ruthénium, d’osmium, de rhodium ou d’argent. L’or est préférentiellement présent sous forme alliée avec au moins un élément choisi parmi le Cu, Ag, Pd, In. Plus préférentiellement, l’alliage d’or comporte de l’or allié avec de l’argent et du cuivre (or jaune 3N, or rouge 5N) ou du palladium (or blanc). La poudre métallique peut également comporter du carbone dans un pourcentage en poids compris entre 0.1 et 5% par rapport au poids total du mélange de poudres. En effet, lors du frittage, une partie du Mo2C peut se transformer en Mo avec pour conséquence une diminution de la dureté. L’ajout de carbone permet de limiter la formation de Mo et donc de maintenir le niveau de dureté. En alternative, l'ajout de carbone peut être réalisé dans la poudre de carbures. La poudre de carbures comporte ainsi du carbone dans un pourcentage en poids compris entre 0.1 et 5% par rapport au poids total du mélange de poudres. Preferably, the carbide powder comprises one or more carbides chosen from TiC, SiC, Mo2C, WC and NbC. More in particular, the carbide powder mainly comprises titanium carbide (TiC), tungsten carbide (WC) or molybdenum carbide (Mo2C). By predominantly we mean that, when there are several types of carbides in the powder, titanium carbide (TiC), tungsten carbide (WC) or molybdenum carbide (Mo2C) are present in a greater percentage than the others. carbides. It may thus comprise Mo2C and TiC with the majority of Mo2C present. It may also comprise Mo2C and TiC with the TiC predominantly present. It may also comprise TiC and SiC with the TiC predominantly present. As a variant, it can, except for impurities, consist entirely of TiC, WC or Mo2C. The metal powder mainly comprises palladium, platinum, silver, gold, ruthenium, osmium, rhodium or an alloy of one of these elements. It can, except for impurities, consist entirely of platinum, palladium, ruthenium, osmium, rhodium or silver. The gold is preferentially present in alloyed form with at least one element chosen from Cu, Ag, Pd, In. More preferentially, the gold alloy comprises gold alloyed with silver and copper (gold 3N yellow, 5N red gold) or palladium (white gold). The metal powder can also comprise carbon in a percentage by weight of between 0.1 and 5% relative to the total weight of the mixture of powders. Indeed, during sintering, part of the Mo2C can be transformed into Mo resulting in a reduction in hardness. The addition of carbon makes it possible to limit the formation of Mo and therefore to maintain the level of hardness. Alternatively, the addition of carbon can be carried out in the carbide powder. The carbide powder thus comprises carbon in a percentage by weight of between 0.1 and 5% relative to the total weight of the mixture of powders.
A titre d'exemple, le mélange de poudres peut comporter en poids une des répartitions suivantes: entre 80 et 95% de TiC et entre 5 et 20% de Pd ou Pt, - entre 75 et 95% de TiC et entre 5 et 25% d’un alliage d’Au,By way of example, the mixture of powders may comprise by weight one of the following distributions: between 80 and 95% of TiC and between 5 and 20% of Pd or Pt, - between 75 and 95% of TiC and between 5 and 25% of an Au alloy,
- entre 50 et 70% de TiC, entre 5 et 30% de Mo2C, et entre 5 et 30% d’un alliage d’Au, de préférence entre 55 et 65% de TiC, entre 10 et 25% de Mo2C, et entre 5 et 25% d’un alliage d’Au,- between 50 and 70% TiC, between 5 and 30% Mo2C, and between 5 and 30% of an Au alloy, preferably between 55 and 65% TiC, between 10 and 25% Mo2C, and between 5 and 25% of an Au alloy,
- entre 70 et 85% de TiC, entre 5 et 10% de Mo2C, et entre 5 et 20% de Pd ou Pt, - between 70 and 85% TiC, between 5 and 10% Mo2C, and between 5 and 20% Pd or Pt,
- entre 75 et 85% de TiC, entre 2 et 10% de SiC, et entre 5 et 23% de Pd ou Pt, - between 75 and 85% TiC, between 2 and 10% SiC, and between 5 and 23% Pd or Pt,
- entre 80 et 97% de Mo2C et entre 3 et 20% de Pd, Pt, Ag ou d’un alliage d’Ag, - between 80 and 97% Mo2C and between 3 and 20% Pd, Pt, Ag or an alloy of Ag,
- entre 75 et 95% de Mo2C et entre 5 et 25% d’un alliage d’Au,- between 75 and 95% Mo2C and between 5 and 25% of an Au alloy,
- entre 75 et 95% de WC et entre 5 et 25% de Pd ou Pt, - between 75 and 95% of WC and between 5 and 25% of Pd or Pt,
- entre 80 et 95% de WC et entre 5 et 20% d’un alliage d’Au. Eventuellement, un deuxième mélange comprenant le mélange précité et un système de liant organique (paraffine, polyéthylène, etc.) peut être réalisé. b) Former une ébauche en conférant au mélange la forme du composant désiré, par exemple, par injection ou par pressage dans un moule. c) Fritter l’ébauche sous atmosphère inerte ou sous vide à une température comprise entre 1000 et 1900°C pendant une période comprise entre 30 minutes et 10 heures, de préférence entre 30 minutes et 5 heures. Cette étape peut être précédée d’une ou de plusieurs étapes de déliantage dans une gamme de températures comprise entre 60 et 800°C si le mélange comporte un système de liant organique. - between 80 and 95% WC and between 5 and 20% of an Au alloy. Optionally, a second mixture comprising the aforementioned mixture and an organic binder system (paraffin, polyethylene, etc.) can be produced. b) Forming a parison by shaping the mixture into the shape of the desired component, for example, by injection or pressing into a mould. c) Sinter the blank under an inert atmosphere or under vacuum at a temperature between 1000 and 1900°C for a period of between 30 minutes and 10 hours, preferably between 30 minutes and 5 hours. This step can be preceded by one or more debinding steps in a temperature range between 60 and 800°C if the mixture includes an organic binder system.
L’ébauche ainsi obtenue est refroidie et polie. Elle peut également être usinée avant polissage pour obtenir le composant désiré. Le composant, qu’on peut aussi qualifier d’article, issu du procédé de fabrication comporte la phase de carbures et la phase métallique dans des pourcentages en poids proches de ceux des poudres de départ. On ne peut cependant exclure des petites variations de compositions et de pourcentages entre les poudres de base et le matériau issu du frittage suite, par exemple, à des contaminations ou des transformations lors du frittage, par exemple, du Mo2C en Mo. Dès lors, dans le produit final issu du procédé, les pourcentages massiques pour les différentes phases doivent être compris comme suit. On distingue la phase de carbures de la phase métallique, aussi dite de liant métallique. La phase de carbures comporte les carbures ainsi que des éventuels éléments dérivés de la poudre de carbures de base tels que le Mo pour l’exemple ci-dessus. De même, pour la phase métallique, elle comporte les composés de la poudre métallique de départ ainsi qu’un éventuel composé issu d’une décomposition ou réaction de la poudre de base métallique. En présence d’additifs dans le mélange de poudres, ces derniers peuvent être retrouvés dans la phase de carbures et/ou dans la phase métallique. The blank thus obtained is cooled and polished. It can also be machined before polishing to obtain the desired component. The component, which can also be described as an article, resulting from the manufacturing process comprises the carbide phase and the metallic phase in percentages by weight close to those of the starting powders. However, small variations in composition and percentages between the base powders and the material resulting from sintering cannot be ruled out following, for example, contamination or transformations during sintering, for example, of Mo2C into Mo. Therefore, in the final product resulting from the process, the mass percentages for the different phases must be understood as follows. A distinction is made between the carbide phase and the metallic phase, also called the metallic binder phase. The carbide phase comprises the carbides as well as any elements derived from the basic carbide powder such as Mo for the example above. Similarly, for the metallic phase, it comprises the compounds of the starting metallic powder as well as a possible compound resulting from a decomposition or reaction of the metallic base powder. In the presence of additives in the mixture of powders, the latter can be found in the phase of carbides and/or in the metallic phase.
Le composant a un espace colorimétrique CIELAB (conforme aux normes CIE n°15, ISO 7724/1, DIN 5033 Teil 7, ASTM E-1164) avec une composante de luminance L*, représentative de la manière dont le matériau réfléchit la lumière, comprise entre 60 et 90, de préférence entre 65 et 85 et, plus préférentiellement entre 70 et 85. The component has a CIELAB colorimetric space (compliant with CIE n°15, ISO 7724/1, DIN 5033 Teil 7, ASTM E-1164) with a luminance component L*, representative of the way the material reflects light, between 60 and 90, preferably between 65 and 85 and, more preferably between 70 and 85.
Le matériau céramique a une dureté HV30 comprise entre 700 et 1900 en fonction des types et des pourcentages des constituants. Plus précisément, il a une dureté HV30 comprise entre 700 et 1300 lorsque la phase de carbures comporte majoritairement du carbure de molybdène. Une dureté HV30 comprise entre 900 et 1600 lorsque la phase de carbures comporte majoritairement du carbure de tungstène et une dureté HV30 comprise entre 700 et 1900 lorsque la phase de carbures comporte majoritairement du carbure de titane. Le matériau céramique a une ténacité KiC de minimum 2 MPa.m1/2 avec des valeurs pouvant excéder 20 MPa.m1/2. La ténacité est déterminée sur base des mesures des longueurs des fissures aux quatre extrémités des diagonales de l’empreinte de dureté Vickers selon la formule : avec P qui est la charge appliquée (N), a qui est la demi-diagonale (m) et / qui est la longueur de la fissure mesurée (m). The ceramic material has an HV30 hardness of between 700 and 1900 depending on the types and percentages of the constituents. More specifically, it has an HV30 hardness of between 700 and 1300 when the carbide phase mainly comprises molybdenum carbide. An HV30 hardness of between 900 and 1600 when the carbide phase mainly comprises tungsten carbide and an HV30 hardness of between 700 and 1900 when the carbide phase mainly comprises titanium carbide. The ceramic material has a KiC toughness of at least 2 MPa.m 1/2 with values possibly exceeding 20 MPa.m 1/2 . The toughness is determined on the basis of measurements of the lengths of the cracks at the four extremities of the diagonals of the Vickers hardness indentation according to the formula: with P being the applied load (N), a being the half-diagonal (m) and / being the measured crack length (m).
Les tableaux 1 à 3 ci-après reprennent différents exemples de cermets selon l'invention. Tables 1 to 3 below show various examples of cermets according to the invention.
27 mélanges de poudres ont été préparés dans un broyeur en présence d’un solvant. Les mélanges ont été réalisés sans liant. Ils ont été compactés sous forme de pastilles par pression uniaxiale et frittés sous vide ou sous une pression partielle d’argon comprise entre 5 et 100 mbar à une température qui est fonction de la composition des poudres. Après frittage, les échantillons ont été polis plan mécaniquement. 27 mixtures of powders were prepared in a grinder in the presence of a solvent. The mixtures were made without binder. They were compacted in the form of pellets by uniaxial pressure and sintered under vacuum or under a partial pressure of argon between 5 and 100 mbar at a temperature which depends on the composition of the powders. After sintering, the samples were plane polished mechanically.
Dans le tableau 1, il y a les essais n°1 à 9 avec une phase de carbures comprenant du TiC, du Mo2C ou du TiC et du Mo2C et avec une phase de liant comprenant du Pd, de l’Au ou un alliage d’Au. Pour l’essai 7, 0.5% de C est ajouté pour limiter la formation de Mo. In Table 1, there are tests Nos. 1 to 9 with a carbide phase comprising TiC, Mo2C or TiC and Mo2C and with a binder phase comprising Pd, Au or an alloy of 'At. For test 7, 0.5% of C is added to limit the formation of Mo.
Dans le tableau 2, il y a les essais n°11 à 18 avec une phase de carbures comprenant du TiC, du TiC et du SiC ou du TiC et du Mo2C et avec une phase de liant comprenant du Pt ou du Pd. A l’essai 16, le mélange de poudres comporte un additif pour améliorer la densification. Cet additif est du Si2Ti présent dans un pourcentage en poids de 2%. In Table 2, there are tests Nos. 11 to 18 with a carbide phase comprising TiC, TiC and SiC or TiC and Mo2C and with a binder phase comprising Pt or Pd. In test 16, the mixture of powders includes an additive to improve the densification. This additive is Si2Ti p resent in a weight percentage of 2%.
Dans le tableau 3, il y a les essais n°19 à 27 avec une phase de carbures comprenant du Mo2C ou du WC et avec une phase de liant comprenant du Pd, du Pt, de l’Ag, un alliage d’Ag ou un alliage d’Au. Des mesures de dureté HV30 ont été réalisées en surface des échantillons et la ténacité a été déterminée sur base des mesures de duretés comme décrit précédemment. In table 3, there are tests n°19 to 27 with a phase of carbides comprising Mo2C or WC and with a phase of binder comprising Pd, Pt, Ag, an alloy of Ag or an Au alloy. HV30 hardness measurements were carried out on the surface of the samples and the toughness was determined on the basis of the hardness measurements as described above.
Les valeurs colorimétriques Lab ont été mesurées sur les échantillons polis avec un spectrophotomètre KONICA MINOLTA CM-5 dans les conditions suivantes : mesures SCI (réflexion spéculaire incluse) et SCE (réflexion spéculaire excluse), inclinaison de 8°, zone de mesure MAV de 8 mm de diamètre. Lab colorimetric values were measured on the polished samples with a KONICA MINOLTA CM-5 spectrophotometer under the following conditions: SCI (specular reflection included) and SCE (specular reflection excluded) measurements, inclination of 8°, MAV measurement area of 8 mm in diameter.
Il ressort de ces essais que les cermets avec une phase de carbures comportant majoritairement du TiC présentent globalement une dureté supérieure à celle des cermets avec une phase de carbures comportant majoritairement du Mo2C. Les duretés sont ainsi comprises entre 750 et 1800 HV30 pour les cermets comprenant du TiC comparées à des valeurs comprises dans la fourchette 750-1200 HV30 pour les cermets comprenant majoritairement du Mo2C. L’échantillon 4 comportant du TiC et un alliage d’Au présente une dureté (761 HV30) plus faible attribuée à un temps de frittage inférieur comparé à l’échantillon 3 comportant du TiC et un alliage d’Au (1209 HV30). L’échantillon 4 présente par ailleurs une ténacité inférieure comparé à l’échantillon 3. It emerges from these tests that the cermets with a carbide phase mainly comprising TiC generally have a higher hardness than that of the cermets with a carbide phase mainly comprising Mo2C. The hardnesses are thus comprised between 750 and 1800 HV30 for the cermets comprising TiC compared with values comprised in the range 750-1200 HV30 for the cermets comprising mainly Mo2C. Sample 4 comprising TiC and an Au alloy has a lower hardness (761 HV30) attributed to a lower sintering time compared to sample 3 comprising TiC and an Au alloy (1209 HV30). Sample 4 also has a lower toughness compared to sample 3.
Les cermets comprenant du Mo2C et du Pd présentent des valeurs de ténacité extrêmement élevées qui sont supérieures à 10 MPa.m1/2 pour des teneurs en Pd supérieures ou égales à 8% (essais 6, 20, 21). Pour certaines compositions, il n’y a pas de propagations de fissures lors des mesures de dureté HV30, une valeur de ténacité n’a par conséquent pas pu être mesurée. Cermets comprising Mo2C and Pd have extremely high toughness values which are greater than 10 MPa.m 1/2 for Pd contents greater than or equal to 8% (tests 6, 20, 21). For certain compositions, there is no crack propagation during the HV30 hardness measurements, a toughness value could therefore not be measured.
Les cermets comprenant majoritairement du Mo2C présentent des indices de luminance L* élevés quel que soit le type de liant précieux utilisé (Pt, Pd, Ag, Au-Cu) avec des valeurs de l’ordre de 80 contre des valeurs dans la fourchette 70-75 pour les cermets comprenant majoritairement du TiC. Un cermet composé uniquement de carbures de tungstène, à hauteur de 80% massique, et de 20% de palladium comme liant métallique précieux, présente une dureté élevée (1472 HV30) et une bonne ténacité (6.3 MPa.m1/2) ce qui en fait un bon candidat pour la réalisation de pièces fonctionnelles comme une masse oscillante, compte tenu aussi de sa haute densité. Cermets mainly comprising Mo2C have high L* luminance indices regardless of the type of precious binder used (Pt, Pd, Ag, Au-Cu) with values of around 80 against values in the 70 range. -75 for cermets mainly comprising TiC. A cermet composed solely of tungsten carbides, up to 80% by weight, and 20% palladium as the precious metal binder, has a high hardness (1472 HV30) and good toughness (6.3 MPa.m 1/2 ) which makes it a good candidate for the production of functional parts such as an oscillating weight, also given its high density.
En termes de microstructures, la figure 2 représente une microscopie électronique d’un échantillon fritté à partir du mélange de poudres comprenant en poids 80% Mo2C, 15% Au et 5% Cu. La phase de carbures est formée de la zone en gris foncé composée de Mo2C et de la zone en gris moyen riche en Mo. Une partie du Mo2C s’est transformée en Mo lors du frittage avec pour conséquence une diminution de la dureté. La phase métallique AuCu est la phase en blanc. In terms of microstructures, figure 2 represents an electron microscopy of a sample sintered from the mixture of powders comprising by weight 80% Mo2C, 15% Au and 5% Cu. The carbide phase is formed of the dark gray zone composed of Mo2C and the medium gray zone rich in Mo. Part of the Mo2C is transformed into Mo during sintering with a consequent decrease in hardness. The metallic AuCu phase is the white phase.
La figure 3 représente une microscopie électronique d’un échantillon fritté à partir du mélange de poudres comprenant en poids 80% TiC, 2% SiC et 18% Pt. Il y a la phase de carbures formée des zones noire et grise avec la zone noire riche en TiC et la zone grise comprenant du TiC et du Pt. En blanc, il y a la phase métallique. Figure 3 represents an electron microscopy of a sample sintered from the mixture of powders comprising by weight 80% TiC, 2% SiC and 18% Pt. There is the phase of carbides formed from the black and gray zones with the black zone rich in TiC and the gray zone comprising TiC and Pt. In white, there is the metallic phase.
Comme expliqué ci-dessus, l’invention se rapporte au composant réalisé dans un matériau cermet. Ce composant a été imaginé pour des applications notamment dans le domaine de l’horlogerie et de la bijouterie comme par exemple des éléments d’habillage ou du mouvement d’une pièce d’horlogerie. Bien entendu, le composant selon l’invention ne saurait se limiter à l’horlogerie. Ainsi, à titre nullement limitatif, on peut également imaginer que ce composant puisse être appliquée dans le domaine des arts de la table, de la coutellerie, de la maroquinerie, de la bijouterie ou de la joaillerie. lO As explained above, the invention relates to the component made of a cermet material. This component has been designed for applications in particular in the field of watchmaking and jewelery such as for example trim elements or the movement of a timepiece. Of course, the component according to the invention cannot be limited to watchmaking. Thus, in no way limiting, one can also imagine that this component can be applied in the field of tableware, cutlery, leather goods, jewelry or jewelry. lO
IL HE

Claims

REVENDICATIONS
1. Composant non ferromagnétique exempt de nickel et de cobalt notamment pour pièce d’horlogerie ou de bijouterie réalisé dans un matériau cermet comportant une phase de carbures et une phase d’un liant formé de platine, caractérisé en ce que la phase du liant métallique est présente dans un pourcentage en poids compris entre 3 et 25% et en ce que la phase de carbures est présente dans un pourcentage en poids compris entre 75 et 97%. 1. Non-ferromagnetic component free of nickel and cobalt, in particular for a timepiece or piece of jewelery made of a cermet material comprising a phase of carbides and a phase of a binder formed from platinum, characterized in that the phase of the metallic binder is present in a percentage by weight of between 3 and 25% and in that the carbide phase is present in a percentage by weight of between 75 and 97%.
2. Composant selon la revendication 1 , caractérisé en ce que la phase du liant métallique est présente dans un pourcentage en poids compris entre 3 et 22% et en ce que la phase de carbures est présente dans un pourcentage en poids compris entre 78 et 97%. 2. Component according to claim 1, characterized in that the phase of the metal binder is present in a percentage by weight of between 3 and 22% and in that the phase of carbides is present in a percentage by weight of between 78 and 97 %.
3. Composant selon la revendication 1 ou 2, caractérisé en ce que la phase du liant métallique est présente dans un pourcentage en poids compris entre 6 et 22% et en ce que la phase de carbures est présente dans un pourcentage en poids compris entre 78 et 94%. 3. Component according to claim 1 or 2, characterized in that the metal binder phase is present in a percentage by weight of between 6 and 22% and in that the carbide phase is present in a percentage by weight of between 78 and 94%.
4. Composant selon l’une des revendications précédentes, caractérisé en ce que la phase de carbures comporte un ou plusieurs carbures choisis parmi le carbure de titane, le carbure de molybdène, le carbure de silicium et le carbure de tungstène et le carbure de niobium. 4. Component according to one of the preceding claims, characterized in that the carbide phase comprises one or more carbides chosen from titanium carbide, molybdenum carbide, silicon carbide and tungsten carbide and niobium carbide .
5. Composant selon l’une des revendications précédentes, caractérisé en ce que la phase de carbures comporte majoritairement du carbure de titane ou du carbure de molybdène ou du carbure de tungstène. 5. Component according to one of the preceding claims, characterized in that the carbide phase mainly comprises titanium carbide or molybdenum carbide or tungsten carbide.
6. Composant selon les revendications 4 ou 5, caractérisé en ce que la phase de carbures comporte majoritairement du carbure de titane et minoritairement du carbure de molybdène. 6. Component according to claims 4 or 5, characterized in that the carbide phase mainly comprises titanium carbide and a minority of molybdenum carbide.
7. Composant selon les revendications 4 ou 5, caractérisé en ce que la phase de carbures comporte majoritairement du carbure de titane et minoritairement du carbure de silicium. 7. Component according to claims 4 or 5, characterized in that the carbide phase mainly comprises titanium carbide and a minority of silicon carbide.
8. Composant selon les revendications 4 ou 5, caractérisé en ce que la phase de carbures comporte majoritairement du carbure de molybdène. 8. Component according to claims 4 or 5, characterized in that the carbide phase mainly comprises molybdenum carbide.
9. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a une dureté HV30 comprise entre 700 et 1900. 9. Component according to one of the preceding claims, characterized in that it has an HV30 hardness of between 700 and 1900.
10. Composant selon la revendication 5, caractérisé en ce qu’il a une dureté HV30 comprise entre 700 et 1300 lorsque la phase de carbures comporte majoritairement du carbure de molybdène. 10. Component according to claim 5, characterized in that it has an HV30 hardness of between 700 and 1300 when the carbide phase mainly comprises molybdenum carbide.
11. Composant selon la revendication 5, caractérisé en ce qu’il a une dureté HV30 comprise entre 1000 et 1900 lorsque la phase de carbures comporte majoritairement du carbure de titane et minoritairement du carbure de silicium. 11. Component according to claim 5, characterized in that it has an HV30 hardness of between 1000 and 1900 when the carbide phase mainly comprises titanium carbide and a minority of silicon carbide.
12. Composant selon la revendication 5, caractérisé en ce qu’il a une dureté HV30 comprise entre 900 et 1600 lorsque la phase de carbures comporte majoritairement du carbure de tungstène. 12. Component according to claim 5, characterized in that it has an HV30 hardness of between 900 and 1600 when the carbide phase mainly comprises tungsten carbide.
13. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a une ténacité Kic supérieure ou égale à 4 MPa.m1/2 lorsque la phase de carbure comporte majoritairement du carbure de molybdène et une phase d’un liant comportant de l’or et du cuivre. 13. Component according to one of the preceding claims, characterized in that it has a toughness Kic greater than or equal to 4 MPa.m1/2 when the carbide phase mainly comprises molybdenum carbide and a phase of a binder comprising gold and copper.
14. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a une ténacité KiC supérieure ou égale à 8 MPa.m1/2 lorsque la phase de carbure comporte majoritairement du carbure de molybdène et une phase d’un liant comportant du palladium. 14. Component according to one of the preceding claims, characterized in that it has a toughness KiC greater than or equal to 8 MPa.m1/2 when the carbide phase mainly comprises molybdenum carbide and a phase of a binder comprising palladium.
15. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a, dans un espace colorimétrique CIELAB, une composante L* comprise entre 60 et 90 et, de préférence, entre 65 et 85, et plus préférentiellement entre 70 et 85. 15. Component according to one of the preceding claims, characterized in that it has, in a CIELAB colorimetric space, an L* component of between 60 and 90 and, preferably, between 65 and 85, and more preferably between 70 and 85.
16. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a, dans un espace colorimétrique CIELAB, une composante L* comprise entre 77 et 85 lorsque la phase de carbure comporte majoritairement du carbure de molybdène. 16. Component according to one of the preceding claims, characterized in that it has, in a CIELAB colorimetric space, a L* component between 77 and 85 when the carbide phase mainly comprises molybdenum carbide.
17. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il s’agit d’un composant d’habillage ou du mouvement en horlogerie. 17. Component according to one of the preceding claims, characterized in that it is a covering component or the watch movement.
18. Composant non ferromagnétique exempt de nickel et de cobalt notamment pour pièce d’horlogerie ou de bijouterie réalisé dans un matériau cermet comportant une phase de carbures et une phase d’un liant métallique choisi parmi l’argent, l’or, le platine, le palladium, le rhodium, l’osmium, le ruthénium et un de leurs alliages, caractérisé en ce que la phase du liant métallique est présente dans un pourcentage en poids compris entre 6 et 25% et en ce que la phase de carbures est le carbure de molybdène et est présente dans un pourcentage en poids compris entre 75 et 94%. 18. Non-ferromagnetic component free of nickel and cobalt, in particular for a timepiece or piece of jewelery made of a cermet material comprising a phase of carbides and a phase of a metallic binder chosen from silver, gold, platinum , palladium, rhodium, osmium, ruthenium and one of their alloys, characterized in that the metal binder phase is present in a percentage by weight of between 6 and 25% and in that the carbide phase is molybdenum carbide and is present in a percentage by weight of between 75 and 94%.
19. Composant selon la revendication 15, caractérisé en ce que la phase du liant métallique est présente dans un pourcentage en poids compris entre 6 et 22% et en ce que la phase de carbures est présente dans un pourcentage en poids compris entre 78 et 94%. 19. Component according to claim 15, characterized in that the metal binder phase is present in a percentage by weight of between 6 and 22% and in that the carbide phase is present in a percentage by weight of between 78 and 94 %.
20. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a une dureté HV30 comprise entre 700 et 1900. 20. Component according to one of the preceding claims, characterized in that it has an HV30 hardness of between 700 and 1900.
21. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a une ténacité KiC supérieure ou égale à 2 MPa.m1/2 21. Component according to one of the preceding claims, characterized in that it has a KiC toughness greater than or equal to 2 MPa.m1/2
22. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il a, dans un espace colorimétrique CIELAB, une composante L* comprise entre 60 et 90 et, de préférence, entre 65 et 85, et plus préférentiellement entre 70 et 85. 22. Component according to one of the preceding claims, characterized in that it has, in a CIELAB colorimetric space, an L* component of between 60 and 90 and, preferably, between 65 and 85, and more preferably between 70 and 85.
23. Composant selon l’une des revendications précédentes, caractérisé en ce qu’il s’agit d’un composant d’habillage ou du mouvement en horlogerie. 23. Component according to one of the preceding claims, characterized in that it is a casing component or a watch movement.
EP21733442.4A 2020-07-22 2021-06-17 Component for a timepiece or jewellery item made of cermet Pending EP4185726A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20187228.0A EP3943630A1 (en) 2020-07-22 2020-07-22 Cermet component for watchmaking or jewellery
PCT/EP2021/066498 WO2022017697A2 (en) 2020-07-22 2021-06-17 Component for a timepiece or jewellery item made of cermet

Publications (1)

Publication Number Publication Date
EP4185726A2 true EP4185726A2 (en) 2023-05-31

Family

ID=71741713

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20187228.0A Withdrawn EP3943630A1 (en) 2020-07-22 2020-07-22 Cermet component for watchmaking or jewellery
EP21733442.4A Pending EP4185726A2 (en) 2020-07-22 2021-06-17 Component for a timepiece or jewellery item made of cermet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20187228.0A Withdrawn EP3943630A1 (en) 2020-07-22 2020-07-22 Cermet component for watchmaking or jewellery

Country Status (5)

Country Link
US (1) US20230250517A1 (en)
EP (2) EP3943630A1 (en)
JP (1) JP2023533821A (en)
CN (1) CN116134170A (en)
WO (1) WO2022017697A2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2180826A (en) * 1939-05-20 1939-11-21 Mallory & Co Inc P R Electric contact
GB828877A (en) * 1957-10-04 1960-02-24 Engelhard Ind Inc Improvements in or relating to spinerettes
GB1309634A (en) * 1969-03-10 1973-03-14 Production Tool Alloy Co Ltd Cutting tools
JPS5726136A (en) * 1980-07-24 1982-02-12 Chugai Electric Ind Co Ltd Sintered noble metallic alloy with wear resistance
JPS5913045A (en) * 1982-07-14 1984-01-23 Seiko Epson Corp External decorative parts for timepiece
JPS5916945A (en) * 1982-07-20 1984-01-28 Seiko Epson Corp Outer part of watch
JPS5916946A (en) * 1982-07-20 1984-01-28 Seiko Epson Corp Outer part of watch
JPS5950152A (en) * 1982-09-13 1984-03-23 Seiko Epson Corp External parts for timepiece
CH653204GA3 (en) * 1983-03-15 1985-12-31
JPS6029443A (en) 1983-07-28 1985-02-14 Kyocera Corp Golden sintered alloy for decoration
JPS60194044A (en) * 1984-03-13 1985-10-02 Seiko Epson Corp Sintered material for ornamental member
JPS62235440A (en) * 1986-04-02 1987-10-15 Seiko Epson Corp Sinterable material for ornamental member
US5015290A (en) * 1988-01-22 1991-05-14 The Dow Chemical Company Ductile Ni3 Al alloys as bonding agents for ceramic materials in cutting tools
FR2841804B1 (en) 2002-07-04 2005-02-18 Propension PROCESS FOR THE SYNTHESIS OF A METAL-CERAMIC COMPOSITE MATERIAL WITH REINFORCED HARDNESS AND MATERIAL OBTAINED THEREBY
US20060086441A1 (en) * 2004-10-27 2006-04-27 University Of Cincinnati Particle reinforced noble metal matrix composite and method of making same

Also Published As

Publication number Publication date
WO2022017697A3 (en) 2022-03-24
CN116134170A (en) 2023-05-16
US20230250517A1 (en) 2023-08-10
WO2022017697A2 (en) 2022-01-27
JP2023533821A (en) 2023-08-04
EP3943630A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CH717678A2 (en) Component for cermet timepieces or jewellery.
EP2546371B1 (en) 18-carat grey gold
CH665224A5 (en) PROCESS FOR THE PREPARATION OF A DECORATIVE SINTER ALLOY OF SILVER COLOR.
EP4185726A2 (en) Component for a timepiece or jewellery item made of cermet
EP0850900B1 (en) Zirconia based article, its use as wear resistant part of a wristwatch and method for its production
WO2022063462A1 (en) Ceramic article
EP3663273A1 (en) Ceramic decorative item
FR2499102A1 (en) NEW HARD COMPOSITIONS, PRECURSOR MIXTURES AND METHODS FOR THEIR PREPARATION
FR2725197A1 (en) SILVER FRITTE PRODUCT AND PROCESS FOR MAKING SAME
FR3121375A1 (en) Process for manufacturing precious metal parts based on SPS sintering and precious metal part thus obtained
EP4211515A1 (en) Decorative cermet article
CH717830A2 (en) Decorative cermet item.
EP3656245B1 (en) Gold based alloy comprising at least 990 per mille gold by weight, item of jewellery or watch comprising gold based alloy comprising at least 990 per mille gold by weight, and method of manufacturing said alloy
CH697241B1 (en) Article zirconia, its use as a clothing element resistant to wear a wristwatch, and method for obtaining such an article.
EP4166684A1 (en) Precious cermet item
CH715620A2 (en) Decorative ceramic item.
EP0947490B1 (en) The use of a zirconia based article as wear resistant part of a wristwatch and method for its production
EP3482850B1 (en) Moulding composition by powder metallurgy, especially for producing sintered solid cermet lining or decorative articles and said sintered solid cermet lining or decorative articles
FR2764906A1 (en) New eighteen and fourteen carat grey gold@ alloys
CH688196A5 (en) Article based sintered zirconia and method for obtaining such an article.
CH719052A9 (en) Item in precious cermet.
CH714312B1 (en) Powder metallurgy molding composition intended in particular for the manufacture of decorative or covering articles in sintered solid cermet and said decorative or covering particles in sintered solid cermet.
EP0739865A1 (en) Sintered zirconia-based article and process for its preparation
EP0717017B1 (en) Process for obtaining a zirconia-based article
CH714796B1 (en) Brown-colored article and its manufacturing process.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)