EP4180379B1 - Système et procédé de déplacement vertical de poids - Google Patents

Système et procédé de déplacement vertical de poids Download PDF

Info

Publication number
EP4180379B1
EP4180379B1 EP21383022.7A EP21383022A EP4180379B1 EP 4180379 B1 EP4180379 B1 EP 4180379B1 EP 21383022 A EP21383022 A EP 21383022A EP 4180379 B1 EP4180379 B1 EP 4180379B1
Authority
EP
European Patent Office
Prior art keywords
mass
cable
masses
vertical displacement
displacement space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21383022.7A
Other languages
German (de)
English (en)
Other versions
EP4180379A1 (fr
Inventor
Miguel Hoyos Irisarri
Gerardo López Roibás
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norvento Tecnologia SLU
Original Assignee
Norvento Tecnologia SLU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norvento Tecnologia SLU filed Critical Norvento Tecnologia SLU
Priority to EP21383022.7A priority Critical patent/EP4180379B1/fr
Priority to PCT/EP2022/081575 priority patent/WO2023084007A1/fr
Publication of EP4180379A1 publication Critical patent/EP4180379A1/fr
Application granted granted Critical
Publication of EP4180379B1 publication Critical patent/EP4180379B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/008Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • B66B11/009Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave with separate traction and suspension ropes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment

Definitions

  • the present invention relates to a system and method for vertically displacing masses that can be applied to generation and storage of energy, as well as for extracting material from a mine.
  • the system of the invention comprises a drive assembly, cable loops, coupling assemblies, masses and assemblies for deflection of the cable loops.
  • SU1016253 discloses a mine hoist for people and equipment.
  • the lifting installation includes a lifting machine 1, traction ropes 2, idler pulleys 3, a stand 4 with clips 5 and roller guides 6, a counterweight 7 with roller guides, balancing ropes 8, a winch placed on the surface, consisting of paired friction drive pulleys 9, two packet-belt traction circuits 10 and deflecting pulleys 11-13.
  • the masses may weigh as much as several hundred tons and be displaced through vertical shafts that may be hundreds of metres deep, even reaching depths of 2000 or 3000 metres. Consequently, there are difficulties associated with the vertical displacement of such heavy masses that travel such profound vertical distances.
  • rack refers to a toothed rail.
  • “friction pulley”, also referred to as “Koepe pulley”, refers to a special type of large diameter pulley. It is commonly used in mine extraction shafts. It allows a load hanging from one of the cable strands to be vertically displaced without requiring a counterweight on the other, preventing the cable from slipping thanks to the adhesion between the extraction cable and the throat or channel of the pulley, which is increased by covering said throat with hard wood or with another material of high friction coefficient, such as rubber or leather.
  • speed reducer also referred to as “reduction gearbox” refers to one or several pairs of gears mounted in a compact body, which adapt the speed and mechanical power of a machine whose movement is generated by a motor. In this way, the engine speed is adapted to the speed necessary for the correct operation of the machine.
  • the technical problem to be solved consists of providing a more efficient system and method for vertically displacing masses because it solves, among others, the following partial problems: (i) avoiding unsteadiness in the displacement of the masses and potential collisions between the masses and the walls of the vertical displacement space due to oscillations, (ii) improving the efficiency and performance of the vertical displacement of the masses, and (iii) improving the efficiency and performance of the displacement of the masses from the vertical displacement space to the storage position and vice versa.
  • the invention combines features that solve such partial problems.
  • the system of the invention comprises assemblies for deflecting the cables that displace the masses.
  • the masses are always displaced substantially centred in the vertical displacement space, with ample and uniform clearance to the walls of the vertical displacement space, thus avoiding unsteadiness in the displacement of the masses and increasing safety in the face of potential collisions between the masses and the walls of the vertical displacement space due to oscillations.
  • the system of the invention further comprises robust, reliable coupling assemblies of the masses to the cables, without comprising drivers or moving parts therein nor in the masses to which they are coupled. Both with the system of the invention that comprises said coupling assemblies, as well as in the method carried out with the system of the invention, the masses are coupled to the cables quickly and automatically, and stability is ensured in the displacement of the masses.
  • the system of the invention further comprises means for displacing the masses from the vertical displacement space to their storage position and vice versa, consisting of tracks and wagons that are quickly and automatically displaced on said tracks.
  • the system of the invention can be used in the energy sector, for generating and storing energy.
  • the system generates energy when lowering the masses and is recharged by raising the masses.
  • the system of the invention can also be used in the mining sector, to extract material from a mine.
  • the present invention provides a system for vertically displacing masses, comprising:
  • each cable loop consists of a first and a second portion of cable, without physical division between the cable portions.
  • the first portion of cable is defined by the portion of cable of each cable loop disposed between the drive pulley and the transfer pulley, and the second portion of cable is defined by the remaining portion of each cable loop disposed between the drive pulley and the transfer pulley.
  • said assemblies for deflecting cable loops comprise means for linearly displacing the deflector pulleys.
  • said means for linearly displacing the deflector pulleys are selected from the group consisting of a carriage, a rack, a linear actuator and one or more tracks.
  • the drive pulley is disposed in a lower position with respect to the position of the upper assembly for deflecting cable loops, said assemblies for deflecting the cable loops comprising means for linearly displacing the deflector pulleys and the system further comprises fixed pulleys.
  • the upper assembly for deflecting cable loops comprises a swing arm that displaces said upper assembly for deflecting cable loops between a first position and a second position.
  • the drive pulley is a friction pulley.
  • the coupling of the drive pulley and the bi-directional rotary machine may be direct or via a speed reducer.
  • the bi-directional rotary machine is an electric motor.
  • the bi-directional rotary machine is an electric machine capable of operating as a motor or as a generator.
  • the system of the invention has a plurality of bi-directional rotary machines, at least one of which is an electrical generator and at least one of which is an electric motor.
  • the bi-directional rotary machine is connected to the power grid via an electronic power converter equipped with a control device.
  • the system of the invention comprises a braking system. Said braking system makes it possible to halt the system of the invention in emergency situations.
  • the coupling assemblies comprise upper couplings and lower couplings and the masses comprise a few holes and a few upper supports, wherein additionally, when the coupling assemblies are coupled to the masses, the upper supports rest on the upper couplings, said upper couplings and the lower couplings being radially confined in the holes, wherein in addition, the upper supports and the masses comprise slots through which the masses are horizontally displaced with respect to the portions of cable, in the direction opposite to that of the other portion of cable, when the coupling assemblies are not coupled to the masses.
  • said upper supports may be disposed on, or integrated into, the masses.
  • the coupling assemblies comprise upper couplings and lower couplings and the masses comprise upper supports and lower supports, disposed on the exterior thereof, comprising a vertical hole wherein, when the coupling assemblies are coupled to the masses, the upper supports rest on the upper couplings and radially confine said upper supports in their hole, and wherein the lower supports radially confine the lower couplings in their hole, wherein the upper supports and the lower supports comprise slots through which the masses are horizontally displaced with respect to the portions of cable, in the opposite direction to the other portion of cable, when the coupling assemblies are not coupled to the masses.
  • the system of the invention comprises means for the extraction of the masses, consisting of a few wagons that are displaced on a few tracks, disposed in at least one substantially horizontal gallery on each side of the vertical displacement space or on the surface of the ground, wherein platforms for storage of the masses are disposed in said gallery or on said surface of the ground.
  • the means for extraction of the masses comprises a wagon which in turn comprises an overhang extending linearly over a few wheels located at one of the ends of said wagon such that, when said wheels rest at the end of one of the tracks, the masses rest on a platform disposed on said overhang, and where said wagon further comprises a counterweight at the end of the wagon opposite the overhang.
  • the means for extraction of the masses comprises a wagon configured to be able to simultaneously have at least one of its axles on each one of the tracks, wherein said wagon comprises a platform upon which the masses rest that is displaced along said wagon via linear displacement means.
  • the system of the invention comprises a wagon configured so that the end of the wagon can rest on the opposite side of the vertical displacement space to that on which the wagon is located, by means of an element that rests on a platform disposed on said side of the shaft, wherein said wagon comprises a platform upon which the masses rest that is displaced along said wagon via linear displacement means.
  • said linear displacement means is selected from the group consisting of a carriage, a rack, a linear actuator, a track and a plurality of tracks.
  • system of the invention comprises a retractable or swing bridge for communicating the tracks on both sides of the vertical displacement space.
  • the wagons comprise a platform comprising lifting means, upon which the masses rest.
  • said lifting means is a hydraulic thruster, a plurality of hydraulic thrusters, a spindle actuator driven by a motor, and a plurality of spindle actuators each driven by a motor.
  • the wagons comprise slots.
  • the at least one gallery comprises supports for the storage of the masses.
  • a portion of said tracks is disposed on a number of bridge beams.
  • the tracks may be continuous or discontinuous.
  • the system of the invention comprises a system for monitoring and controlling the operation of the various elements, comprising sensors and communication and control devices.
  • Said system for monitoring and controlling synchronizes the movement of the wagons with the vertical displacement of the masses and ensures the correct positioning of the wagons for the masses to be attached to the cables of the system of the inventionfor the masses to be released from the cables of the system of the invention, for the masses to be unloaded in their storage position and for the masses to be collected from the storage position.
  • the monitoring and control system has limit switches, position sensors, an industrial computer or PLC that captures these signals and automatically sends the corresponding commands to the different systems.
  • system of the invention has a Supervisory Control and Data Acquisition system (SCADA), which allows its correct operation to be monitored and certain operating instructions to be modified. All this makes it possible for the system of the invention to operate automatically, without direct intervention of operators, and in a very quick and reliable way, without compromising safety.
  • SCADA Supervisory Control and Data Acquisition system
  • said system for monitoring and controlling comprises a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the system and method of the invention allows the manoeuvres of insertion of the masses into the vertical displacement space and their attachment to the cables, as well as their uncoupling and extraction upon reaching the destination level to be carried out with great rapidity.
  • these manoeuvres make the system of the invention unable to deliver energy continuously and constantly.
  • the system of the invention can be hybridized with an auxiliary energy storage system (consisting, for example, of batteries with their corresponding charger), which can be recharged with a fraction of the power generated by the system of the invention during the descent of the masses and which is discharged during these transitions to maintain the overall power delivered constant.
  • the system of the invention comprises an energy storage device.
  • the lower level transfer pulley is coupled to an electrical generator (directly or via a reduction gearbox), which can be connected to produce the energy required to power the equipment installed at said lower level: wagons and system for monitoring and controlling, which may in turn have rechargeable energy storage devices.
  • the masses consist of containers that can accommodate a granular material or a liquid.
  • the containers can be taken to their storage position when filled with this material, or unloaded into tanks disposed for this purpose, from which, subsequently, the containers would be refilled, before performing the reverse vertical displacement.
  • Conveyor belts or other means of continuous displacement may be used to displace the containers from their emptying position to their filling position.
  • the present invention also provides a method for vertically displacing masses between a starting level and a destination level, carried out with the system of the invention, comprising:
  • the method of the invention which is performed with the system of the invention, comprises:
  • the method of the invention which is carried out with the system of the invention, comprises:
  • the masses are raised to store potential energy by means of the bi-directional rotary machine of the drive assembly acting as a motor, and/or when the masses descend, the bi-directional rotary machine, acting as a generator, produces energy.
  • the masses are displaced to extract material from a mine.
  • Figures 1 to 5 schematically show the system and method for vertically displacing masses, according to various embodiments of the invention.
  • Figure 1 shows a scale overview, with the cross-section of a vertical displacement space 100 of a depth of several hundred metres.
  • the vertical displacement space 100 may be the shaft of a disused mine or may have been bored for the purpose.
  • the masses are displaced one by one from the lower level of the vertical displacement space to the upper level of the vertical displacement space, or vice versa, by a plurality of cable loops 260, 260' disposed on parallel planes, as also seen in details A and B of said figure, and driven and guided by a series of elements that are grouped into an upper assembly 200 and a lower assembly 210, which are not shown in details A and B of said figure but which will be shown in detail in the subsequent figures.
  • Figures 2 to 7 show enlargements of detail A, corresponding to the upper level of the vertical displacement space and/or detail B, corresponding to the lower level of the vertical displacement space. These details are shown in views according to a longitudinal cross-section of the vertical displacement space and the corresponding three-dimensional view. All of these portray the system according to an embodiment of the invention, which includes two cable loops, operating to raise masses from the lower level of the vertical displacement space to the upper level. However, the system according to an embodiment of the invention is reversible and likewise serves to lower the masses from the upper level of the vertical displacement space to the lower level. Figures 2 to 7 would describe the operation of the system for lowering masses by simply changing the direction shown by the arrows.
  • each of the cable loops 260 and 260' shown in Figure 1 consists of a first and a second portion of cable, with no physical division between the portions of cable.
  • the first portion of cable 260a is defined by the portion of cable of each cable loop disposed between the drive pulley 221 and the transfer pulley 241
  • the second portion of cable 260b is defined by the remaining portion of cable of each cable loop disposed between the drive pulley 221 and the transfer pulley 241.
  • the first portion of cable 260a' is defined by the portion of cable of each cable loop disposed between the drive pulley 221 and the transfer pulley 241
  • the second portion of cable 260b' is defined by the remaining portion of cable of each cable loop disposed between the drive pulley 221 and the transfer pulley 241.
  • Each of these loops in turn bears an assembly of couplings on the portion of cable at each side of the loop, 261a on the portion of cable 260a and 261b on the portion of cable 260b of the cable loop 260; 261 a' on the portion of cable 260a' and 261 b' on the portion of cable 260b' of the loop 260', such that, when the pair of coupling assemblies 261a and 261a' is at the upper level of the vertical displacement space, the pair of coupling assemblies 261b and 261 b' on the other side of the pulley is at the lower level of the vertical displacement space.
  • FIGS 2 and 3 the upper assembly 200 of the system according to an embodiment of the invention is included.
  • This upper assembly 200 consists of a load-bearing structure 202 that is anchored on a foundation 201 and at whose upper part a drive assembly 220 is disposed, wherein a drive pulley 221, such as a friction pulley or Koepe pulley, is integrated, which moves the cable loops, driven by a bi-directional rotary machine 223, which can operate as a motor to raise the masses and also operate as a generator and generate energy when the masses descend in the application of the system of the invention to the energy sector.
  • a drive pulley 221 such as a friction pulley or Koepe pulley
  • the coupling between the two may be direct or via a speed reducer (not shown in the figures).
  • the bi-directional rotary machine 223 may be connected to the power grid by means of an electronic power converter, equipped with a control device (not shown in the figures).
  • the drive assembly 220 has a braking system (not shown in the figures), in order to be able to halt it in emergency situations.
  • the upper assembly for deflecting 230 is disposed, comprising deflector pulleys 231, which are displaced by means of a deflector 232 along a number of beams 233 in solidarity with the load-bearing structure 202.
  • the lower assembly 210 includes the transfer assembly 240 equipped with a transfer pulley 241 that rotates, pulled by the cable loops, maintaining certain tension therein, limiting the oscillations of the mass.
  • the lower assembly for deflecting 250 is located, equipped with a few deflector pulleys 251 joined to a trolley 252 that travels along a few beams 253.
  • This lower assembly for deflecting 250 is equivalent to the upper assembly for deflecting 230, both moving in coordination, such that the cables remain vertical throughout the vertical displacement space.
  • Both the transfer assembly 240 and the lower assembly for deflecting 250 have a beam, which may be common or independent for each assembly (242, 253, respectively), that anchors said assemblies to the walls of the chamber 104.
  • the upper assembly for deflecting 230 and the lower assembly for deflecting 250 have their deflectors 232 and 252 in the appropriate position for the cables that guide the deflector pulleys 231 and 251 to transfer the mass 300a centrally in the vertical displacement space, by means of the coupling assemblies 261a and 261a', since the portions of cable 260a and 260a' run through the centre of said displacement space. Meanwhile, the other pair of coupling assemblies 261b and 261b' are free of load and move downward, following the path close to the wall 103 defined by the portion of cable 260b and 260b', respectively. In this way, the mass maintains ample and uniform clearance to the walls of the vertical displacement space, which avoids unsteadiness and potential collisions due to oscillations.
  • the deflectors 232 and 252 displace the transfer pulleys 231 and 251 to the position shown in Figures 4 and 5 , wherein the other portions of cable 260b and 260b' become those located in the central plane of the vertical displacement space.
  • This allows the next mass to be transferred 300b to be coupled by means of the coupling assemblies 261b and 261b' and, when the drive pulley 221 begins to rotate in the opposite direction to that of the first displacement, this mass 300b is raised centrally in the vertical displacement space.
  • the system allows the masses to be transferred successively and continuously from one level to the opposite level, with a path always centred in the vertical displacement space, and in such a way that all displacements of the cable are used to transfer a mass.
  • one pair of coupling assemblies 261a and 261a' and the other pair of coupling assemblies 261b and 261b' are alternately employed, of which the pair carrying the mass is always centred in the vertical displacement space. This is achieved thanks to changing the position of the transfer pulleys 231 and 251 at the end of each travel path, after which the direction of rotation of the drive pulley 221 is reversed.
  • FIG 6 an enlarged detail A of Figure 1 according to an alternative embodiment of the system of the invention is shown, wherein the drive pulley 221 is located on the ground to one side of the vertical displacement space, in a disposition similar to that commonly used in mining facilities.
  • This configuration includes an additional assembly of deflector pulleys 203 at the upper level of the vertical displacement space which, unlike the deflector pulleys 231, remain fixed, since their function is to transfer the cables arriving from the drive pulley 221 to the deflector pulleys 231.
  • FIG. 7 another alternative embodiment of the system of the invention is shown, wherein the drive pulley 221 is also located on the ground to one side of the vertical displacement space, but the need for the additional assembly of deflector pulleys 203 is avoided, and the turret-like structure supporting all the pulleys disposed over the vertical of the vertical displacement space is dispensed with, using instead a forked swing arm 234, on which a single set of deflector pulleys 231 is disposed, capable of bringing one or another portion of the cable to the position centred in the vertical displacement space by means of adjustment of the angle of the arm, regulatable by means of actuators 235 or other equivalent elements.
  • This swing arm may be anchored to the ground by means of a foundation 201 for each of its joints, by means of a foundation common to both joints or by means of a single foundation that serves as an anchor both for said joints and for the drive assembly 220.
  • the system according to an embodiment of the invention further comprises coupling assemblies which, together with a specific design of the masses, allows the automatic coupling and uncoupling and releasing of said masses at the ends of their vertical travel path to be carried out, without the need for intervention by operators, and in a rapid manner, which is particularly important for the application of storage of energy, to minimize the impact of transitions in which the flow of energy delivered (or consumed, during the recharge of the installation) is affected.
  • the system according to this embodiment is very robust and reliable, since for the coupling and uncoupling of the masses it is not necessary to use drives or moving parts in the coupling assemblies nor in the masses, guaranteeing the safety of operations and minimizing the possibility of failures.
  • each portion of cable 260a and 260a' has a coupling assembly 261a and 261a', which in turn consists of an upper element 262 and 262' and a lower element 272 and 272'.
  • the upper and lower element of each coupling assembly may form part of a single component or be manufactured independently and then installed on the cable at the appropriate distance.
  • the coupling assemblies 261b and 261b' of the other portions of cable 260b and 260b' are identical to those described.
  • the mass 300a has holes 301 and 301' for each coupling assembly, through which it can be inserted and over which are located a few upper supports 362 and 362', which can be independent items or be included in a single support disposed over the mass or even replaced by a narrowing of the holes in the upper part of the mass itself.
  • the upper supports block the holes of the mass 301 and 301', except for the gap necessary for the cable to pass through.
  • the mass 300b has a few holes 301 and 301' and a few upper supports 362 and 362' identical to those described.
  • FIGS 9A to 9C the sequence of insertion and coupling of the mass 300a is shown by means of cross-sectional and plan views, wherein, in addition to the involvement of the coupling assembly described, an extraction means is used, which enables the insertion and extraction of the masses in the vertical displacement space.
  • said extraction means shall consist of a platform capable of being horizontally displaced between the vertical displacement space and a space adjacent to the same, at least one extraction means being disposed at the starting level and another at the destination level of mass displacement.
  • the sequence for the mass 300b is defined by the same figures, by simply rotating the plan views 180°.
  • the portions of cable 260a and 260a' are inserted and displaced along slots 303 and 303' executed in the mass (and in its supports) in the direction of the insertion movement, shown in the plan view, and which are sufficiently wide to allow the passage of the cable, but not that of the couplings.
  • the insertion movement continues until the mass is in the coupling position, centred in the vertical displacement space.
  • the mass 300b has identical slots 303 and 303', but when inserted into the vertical displacement space, this occurs rotated by 180°, such that its slots are oriented with their open end towards the portions of cable 260a and 260a'. Therefore, the masses 300a and 300b will be inserted into the vertical displacement space from opposite sides.
  • the cables begin their ascent, so that the couplings are inserted into the holes of the mass 300, 301' until they reach their coupling position and, as the ascent continues, the upper coupling draws the mass upwards, as shown in Figure 9C , and it is then possible to remove the extraction means whereon the mass was resting.
  • the uncoupling of a mass 300a requires that it be at a higher level than the extraction means 500, as may be seen in Figure 9D .
  • the mass 300a will already be higher than the extraction means 500 throughout the entire vertical displacement, but in the event that the destination level is the higher level, it will be necessary that the mass that is ascending should continue to rise until it reaches a sufficient height above the extraction means.
  • the extraction means 500 is inserted into the vertical displacement space, as may be seen in Figure 9D , and the mass 300a begins to descend, coupled to the portions of cable 260a and 260a' by means of the couplings 262, 262', 272 and 272', approaching the extraction means 500.
  • the mass 300b since it will have been inserted into the vertical displacement space rotated 180° with respect to the position of the mass 300a shown in Figure 9F , will have the opening of its slots inverted, so the masses 300a and 300b will be extracted from the vertical displacement space towards opposite sides.
  • FIG 11A an embodiment of the invention is shown wherein a hole in the mass is not employed rather, as may be seen in the cross-sectional view of this figure, the upper supports 362 and 362', which engage with the upper couplings 262 and 262', are elements disposed on the exterior of the mass 300a, and there are additionally lower supports 372 and 372', also disposed on the exterior of the mass, to engage with the lower couplings 272 and 272'.
  • the upper and lower supports may be fixed to the mass independently or in combination, or indeed form part of a structure that is in turn fixed on the mass.
  • the slots in the mass are substituted by slots 303 and 303' in the supports themselves, which can also incorporate grooved elements, which have the function of facilitating the guiding of the cable to the lifting position.
  • This embodiment has the advantage that, in order to insert or extract the mass, it is sufficient that the couplings are below their corresponding support, as is observed in Figure 11B , without the need that all of them have to come to be below the mass, which makes the coupling/uncoupling operation faster.
  • Another advantage is that, by maximizing the distance between cables, stability is improved in the face of any tendency of the mass to rotate around a vertical axis (see Figure 10D ).
  • the extraction means at the starting level and at the destination level are configured in a more complex way than that shown in Figures 9A to 9F , with the aim of making their use possible not only for the insertion and extraction of the masses, but also for the loading, transport and unloading thereof.
  • these extraction means will be shown together with other elements necessary to carry out all these tasks.
  • the embodiments for the lower level of the vertical displacement space are described first, and the embodiments for the upper level of the vertical displacement space and their particularities and differences with respect to those of the lower level are shown subsequently.
  • Figure 13A A few details of these galleries and of the lower part of the space of vertical displacement are shown in Figure 13A , and are also shown in the three-dimensional view in Figure 13B .
  • One or more motorized wagons 510a and 510b are displaced along the tracks, which can access the vertical of the vertical displacement space to alternately receive the masses 300a and 300b that descend through the vertical displacement space and subsequently transfer them along the corresponding gallery until they are unloaded in their position on a lower level structure for storage of masses 610a and 610b.
  • the wagons 510a and 510b are identical, although they are positioned on the tracks so that their slots are oriented oppositely, always open towards the vertical displacement space.
  • the wagon 510a performs the operations of extraction, transport and unloading, and loading, transporting and insertion of the masses 300a, on the track 410a disposed in the gallery 110a
  • the wagon 510b performs the operations of extraction, transport and unloading, and loading, transporting and insertion of the masses 300b, on the track 410b disposed in the gallery 110b.
  • the wagon will be narrower than the separation between cables, making these slots unnecessary.
  • the wagons are capable of both unloading the mass at the lower level structure for storage of masses, and loading the same therefrom.
  • Figures 14A to 14C the method of extraction, transporting, and unloading the mass 300a at the lower level structure for storage of masses 610a, carried out by the wagon 510a, according to a preferred embodiment is observed.
  • the procedure of extracting, transporting and unloading the mass 300b at the lower level structure for storage of masses 610b by the wagon 510b would be the same.
  • the wagon is shown in elevation and in a profile cross-section, in different working positions.
  • the wagons have a platform 554, which is narrower than the space between the coupling assemblies 261a and 261a', and which can be lifted by a few thrusters 553 or an equivalent system.
  • the wagon 510a is positioned on the bridge beams 430 and with its raised platform 554 collects a mass 300a which, when lowered, rests on the platform 554, while the coupling assemblies 261a and 261a', which attached it to the cables, continue to descend, passing through the holes disposed in the chassis 551 of the wagon 510a, as is appreciated from section A of this figure.
  • the slots in other embodiments, wherein the wagon is narrower than the gap between couplings, these holes are not necessary.
  • the wagon 510a is transferring the mass 300a along the gallery, thanks to the rotation of its wheels 552 along the track 410a.
  • the wagon runs through the interior of the gantries 621 of the lower level structure for storage of masses 610a, maintaining its platform 554 elevated to prevent the mass from interfering with the support beams 623, as is appreciated from section B of this figure.
  • the wagon 510a When it arrives at its destination, the wagon 510a halts and the thrusters 553 lower the platform 554 until the mass 300a rests on the support beams 623 in its storage position, as is seen in section C of Figure 14C . These support beams rest on brackets 622, solidary to the gantries 621. Once the mass is resting on said support beams, the wagon can now return to the vertical displacement space, maintaining the platform in its lowered position.
  • the movement of the wagons and their platforms can be achieved by electric motors integrated in the wagon, which would be powered via a third rail system, equivalent to that used in some railway or underground railway lines, or indeed by equipping the wagon with batteries that would be charged at a charging point located at a certain point of the track, to which the wagon would move when not working.
  • Another alternative for moving the wagon would be to use a system of external cables and pulleys, similar to the procedure used in funicular railways.
  • FIG. 15A to 15D The sequence of uncoupling, extraction, transport and unloading of the masses at the lower level of the vertical displacement space is shown in Figures 15A to 15D .
  • the arrows indicate the movements of the elements with the system of the invention operating to disengage the masses that descend via the cables and to take them to their storage position. If the order of the figures and the direction of the arrows are reversed, the sequence of loading, transport, insertion and coupling of the masses at the lower level is obtained, wherein the masses will be taken from their storage position to the vertical displacement space, where they are coupled for lifting.
  • the first wagon 510a already has the mass 300a resting thereon, while its couplings continue to descend to a position in which they do not interfere with the removal of the wagon loaded with the mass. Meanwhile, the second wagon 510b unloads the mass 300b into the lower level structure for storage of masses.
  • the first wagon 510a begins to be displaced to take its mass 300a to its storage position, while the second wagon 510b, already freed from its load, returns toward the vertical of the vertical displacement space to collect the next mass to descend to the lower level of the vertical displacement space.
  • the masses 300a and 300b have to be inserted into and extracted from the vertical displacement space on opposite sides, so it is necessary for the tracks 400a and 400b, on which the wagons 500a, 500b will be displaced, to be disposed on opposite sides of the vertical displacement space, as shown in Figure 16A .
  • the tracks are on bridge beams 420 in the part of their travel path that crosses the vertical displacement space.
  • the upper level structures for storage of masses 600a and 600b are also shown, disposed on the corresponding side of the vertical displacement space.
  • the galleries can be advantageous for the galleries to have a small incline, the level being in this case slightly higher at the ends opposite to the vertical displacement space. In this way, when the installation is working in discharge mode, additional energy to that of the vertical displacement is generated in the passage of the masses through the galleries from their storage position until they are coupled for their descent down the vertical displacement space,. On the contrary, when the installation is being recharged, the energy consumption will increase due to the movement of the masses from the vertical displacement space to their storage position.
  • the masses that rise to the upper level of the vertical displacement space have to continue to ascend to a level slightly higher than that of their removal, in order to be able to subsequently uncouple them in their downward movement.
  • the masses must make a short upward movement to engage them, prior to proceeding with their descent to the lower level of the vertical displacement space.
  • the transport and unloading of the masses on the upper level structures for storage of masses 600a and 600b, and the loading and transport of the masses from said structures will be carried out in the same way as at the lower level, as described in Figures 14A, 14B and 14C , thus incorporating in said structures and in the wagons employed the same elements as their lower level counterparts.
  • the structures for storage of masses and/or the wagons may have geometric differences or additional elements with respect to those of the upper level, as a consequence of the fact that, at the upper level, the masses in their vertical movement must cross the section of the vertical displacement space located at the level of the tracks, which implies a difficulty so that the masses do not interfere with the tracks nor with the bridge beams.
  • FIG 17A interference is avoided by employing a mass 300a with a reduced width, while a track with a very large separation between rails is utilised, such that the mass can be accommodated between the bridge beams.
  • the cables run through the space that is between the rails, and the masses and wagons have to be slotted for their extraction.
  • Figure 16B shows this solution in a three-dimensional view.
  • the track is interrupted in its passage through the vertical displacement space, therefore a track with standard separation can be employed.
  • the mass can be wider and the cables are further apart, being carried on the outside of the mass by means of artificial supports equivalent to those shown in Figures 11A and 11B , so therefore neither the mass nor the wagons have to be slotted.
  • a conventional wagon cannot be located on the vertical of the vertical displacement space for collecting or delivering masses to the system.
  • the masses can be transferred from the vertical of the vertical displacement space to the wagons and vice versa by means of a bridge crane or other auxiliary equipment.
  • Another option is to have a retractable or swing bridge that is deployed to bridge the gap on the vertical of the displacement space, enabling conventional wagons to be placed in the position necessary for the coupling or uncoupling of the masses, and that folds back after completing these manoeuvres, thus preventing interference in the vertical displacement of the masses.
  • Figures 18A to 18D the sequence of uncoupling, extraction, transport and unloading of the masses at the upper level of the vertical displacement space is shown, using a configuration such as that shown in Figure 17A .
  • the arrows indicate the movements of the elements with the system operating to uncouple the masses that ascend via the cables and to take them to their storage position. If the sequence and direction of the arrows are reversed, the sequence of loading, transport, insertion and coupling of the masses at the upper level is obtained, with the system operating to move the masses from their storage position to the vertical displacement space, where they are coupled for their descent towards the lower level.
  • the wagon 500a on the right-hand track travels into the vertical displacement space to collect the mass 300a that ascends through the vertical displacement space, and which, thanks to the large separation between rails, can pass between the bridge beams without interference.
  • the wagon 500b on the left-hand track is taking the mass 300b, that has previously been raised, to its storage position.
  • FIG 19 a special wagon, according to an embodiment of the system of the invention, is shown, that can be employed with a configuration such as that of the embodiment shown in Figure 17B , being able to collect and deliver masses on the vertical of the vertical displacement space, despite the track being interrupted in this section.
  • the wagon 520 is considerably longer than conventional wagons, as it has an overhang ahead of the wheels closest to the vertical displacement space, at the end of which the platform 554 is located. In this way, the wagon can collect the masses on its platform on the vertical of the vertical displacement space, even though the track 400a is interrupted in this space.
  • the wagon incorporates a counterweight 521 of sufficient weight.
  • the wagon does not require slots nor holes to be able to extract the masses from the vertical displacement space.
  • FIG 21 a special wagon according to another embodiment of the invention is shown, which can be employed with a configuration such as that shown in the embodiment of Figure 17B , which is capable of collecting and delivering masses at the vertical of the vertical displacement space, even though the track is interrputed in this section.
  • the wagon 530 is longer than a conventional one.
  • the platform 554 is mounted on a trolley 531 that can be displaced between one end of the wagon and the other.
  • the arrangement of the wagon wheels enables it to approach the vertical displacement space and cross it, although certain pairs of wheels remain temporarily in the air, since those that do rest on the track 400a or 400b give it sufficient stability.
  • the front wheels could be replaced by support elements, so that the rest of the wheels of the wagon are indeed always kept on a section of track, while these support elements would reach the other side of the vertical displacement space, and could rest on a surface prepared for this purpose, adjacent to the vertical displacement space.
  • the wagon could only carry masses along one of the tracks 400a or 400b, it being necessary to use at least one such wagon on each.
  • the separation between cables means that this wagon does not need slots or holes to be able to extract the masses from the vertical displacement space.
  • the trolley returns to its initial position at the end of the wagon, at which time the wagon can begin its movement towards the storage area, as may be seen in Figure 22F , taking advantage of the weight of the mass to increase its stability while the wheels that are over the vertical displacement space remain in the air.
  • the mass transport and unloading manoeuvre is performed at the corresponding upper level structure for the storage of masses, which is not detailed in this sequence of figures, since it is equivalent to that of conventional wagons, shown in previous figures.
  • the successive displacement of masses is performed alternating between one mass 300a and another 300b, so that the masses 300a are displaced vertically by means of the first portions of cable 260a and 260a' and, horizontally, according to the level considered, by the tracks 400a and 410a, located on the side of the vertical displacement space closest to said portions of cable, and subsequently unloaded into the corresponding storage structures 600a and 610a.
  • the masses 300b are always displaced vertically by the second portions of cable 260b and 260b' and, horizontally, according to the level considered, along the tracks 400b and 410b, located on the side of the vertical displacement space closest to said portions of cable, and then unloaded onto the corresponding storage structures 600b and 610b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
  • Warehouses Or Storage Devices (AREA)

Claims (15)

  1. Système pour déplacer verticalement des masses, comprenant :
    (a) un ensemble d'entraînement (220) comprenant au moins une machine rotative bidirectionnelle (223) entraînant au moins une poulie d'entraînement (221), ledit ensemble d'entraînement étant situé à un niveau supérieur d'un espace de déplacement vertical (100) ;
    (b) une pluralité de boucles de câble (260, 260') reliant l'ensemble d'entraînement (220) à un ensemble de transfert (240) comprenant au moins une poulie de transfert (241), ledit ensemble de transfert (240) étant situé à un niveau inférieur de ladite verticale espace de déplacement (100), dans lequel ledit ensemble de transfert (240) maintient une tension dans les boucles de câble (260, 260'), dans lequel la partie de câble de chaque boucle de câble (260, 260') disposée entre la poulie d'entraînement (221) et la poulie de transfert (241) définit une première partie de câble (260a) et la partie restante de câble de chaque boucle de câble (260, 260') disposée entre la poulie d'entraînement (221) et la poulie de transfert (241) définit une deuxième partie de câble (260b) ;
    (c) chaque partie de câble (260a, 260b) comprend une pluralité d'ensembles de couplage (261a, 261b, 261a', 261b') ;
    (d) une pluralité de masses (300a, 300b) qui sont fixées au moyen desdits ensembles de couplage (261a, 261b, 261a', 261b') aux parties de câble (260a, 260b) devant être déplacées à travers l'espace de déplacement vertical ;
    (e) un ensemble supérieur pour dévier les boucles de câble (230) comprenant une pluralité de poulies déflectrices supérieures (231) et un ensemble inférieur pour dévier les boucles de câble (250) comprenant une pluralité de poulies déflectrices inférieures (251), dans lequel lesdits ensembles pour dévier les boucles de câble (230, 250) sont déplaçables entre deux positions, une première position dans laquelle la première partie du câble (260a) est sensiblement centrée dans l'espace de déplacement vertical (100), et une deuxième position dans laquelle la deuxième partie du câble (260b) est sensiblement centrée, dans l'espace de déplacement vertical (100).
  2. Système selon la revendication 1, dans lequel lesdits ensembles pour boucles de câble de déflexion (230, 250) comprennent des moyens pour déplacer linéairement les poulies de déflexion (231, 251).
  3. Système selon la revendication 1 ou 2, dans lequel l'ensemble supérieur pour dévier les boucles de câble (230) comprend un bras oscillant (234) qui déplace ledit ensemble supérieur pour dévier les boucles de câble (230) entre ladite première position et ladite seconde position.
  4. Système selon l'une quelconque des revendications 1 à 3, dans lequel les ensembles d'accouplement (261a, 261a', 261b, 261b') comprennent des accouplements supérieurs (262, 262') et des accouplements inférieurs (272, 272') et les masses (300a, 300b) comprennent quelques trous (301, 301') et quelques supports supérieurs (362, 362'), dans lesquels en outre, lorsque les ensembles de couplage (261a, 261a', 261b, 261b') sont couplés aux masses (300a, 300b), les supports supérieurs (362, 362') reposent sur les raccords supérieurs (262, 262'), lesdits raccords supérieurs (262, 262') et inférieurs (272, 272') étant confinés radialement dans les trous (301, 301'), dans lequel en outre, les supports supérieurs (362, 362') et les masses (300, 300b) comprennent des fentes (303, 303') à travers lesquelles les masses se déplacent horizontalement par rapport aux portions de câble (260a, 260a', 260b, 260b'), dans le sens opposé à celui de l'autre portion de câble (260b, 260b', 260a, 260a'), lorsque les ensembles de couplage (261a, 261a', 261b, 261b') ne sont pas couplés aux masses (300a, 300b).
  5. Système selon l'une quelconque des revendications 1 à 3, dans lequel les ensembles d'accouplement (261a, 261a', 261b, 261b') comprennent des accouplements supérieurs (262, 262') et des accouplements inférieurs (272, 272') et les masses (300a, 300b) comprennent des supports supérieurs (362, 362') et des supports inférieurs (372, 372'), disposés à l'extérieur de ceux-ci, comprenant un trou vertical dans lequel, lorsque les ensembles de couplage (261a, 261a', 261b, 261b') sont couplés aux masses (300a, 300b), les supports supérieurs (362, 362') reposent sur les accouplements supérieurs (262, 262') et confinent radialement lesdits supports supérieurs (362, 362') dans leur trou ; et dans lequel les supports inférieurs (372, 372') confinent radialement les accouplements inférieurs (272, 272') dans leur trou, dans lequel les supports supérieurs (362, 362') et les supports inférieurs (372, 372') comprennent des fentes (303, 303') à travers lequel les masses (300a, 300b) se déplacent horizontalement par rapport aux portions de câble (260a, 260a', 260b, 260b'), dans une direction opposée à celle de l'autre portion de câble (260b, 260b ', 260a, 260a'), lorsque les ensembles de couplage (261a, 261a', 261b, 261b') ne sont pas couplés aux masses (300a, 300b).
  6. Système selon l'une des revendications 1 à 5, comprenant des moyens d'extraction des masses (500) constitués de quelques wagons (500a, 500b, 520, 530, 510a, 510b) déplacés sur quelques voies (400a, 400b, 410a, 410b), disposées dans au moins une galerie sensiblement horizontale (110a, 110b) de chaque côté de l'espace de déplacement vertical (100) ou à la surface du sol, dans laquelle des plateformes (600a, 600b, 610a, 610b) pour les stockages des masses sont disposés dans ladite galerie ou sur ladite surface du sol.
  7. Système selon l'une des revendications 1 à 6, dans lequel les moyens d'extraction des masses (500) comprennent un wagon (520) qui comprend lui-même un porte-à-faux s'étendant linéairement sur quelques roues situées à l'une des extrémités dudit wagon (520), de telle sorte que, lorsque lesdites roues reposent à l'extrémité d'une des voies (400a, 400b), les masses (300a, 300b) reposent sur une plateforme (554) disposée sur ledit surplomb et dans laquelle ledit wagon (520) en outre comprend un contrepoids (521) à l'extrémité du wagon (520) opposée au porte-à-faux.
  8. Système selon l'une des revendications 1 à 6, dans lequel les moyens d'extraction des masses (500) comprennent un wagon (530) configuré pour pouvoir disposer simultanément au moins un de ses essieux sur chacune des voies (400a, 400b), dans lequel ledit wagon (530) comprend une plate-forme (554), sur laquelle reposent les masses (300a, 300b), qui est déplacée le long dudit wagon (530) via des moyens de déplacement linéaire (531).
  9. Système selon l'une quelconque des revendications 1 à 8, dans lequel les masses sont constituées de conteneurs pouvant contenir un matériau granulaire ou un liquide.
  10. Système selon l'une quelconque des revendications 1 à 9, comprenant un système de surveillance et de contrôle du fonctionnement des différents éléments, comprenant des capteurs et des dispositifs de communication et de contrôle.
  11. Procédé pour déplacer verticalement des masses entre un niveau de départ et un niveau de destination, réalisé avec le système selon l'une quelconque des revendications 1 à 10, comprenant :
    (a) disposer l'ensemble supérieur pour dévier les boucles de câble (230) et l'ensemble inférieur pour dévier les boucles de câble (250) dans la première position, dans lequel la première partie de câble (260a, 260a') de chaque boucle de câble (260, 260') est sensiblement centré dans l'espace de déplacement vertical (100) ;
    (b) au niveau de départ, insérer une masse (300a) dans l'espace de déplacement vertical (100) ;
    (c) coupler ladite masse (300a) à la première partie de câble (260a, 260a') de chaque boucle de câble (260, 260') au moyen des ensembles de couplage (261a, 261a') ;
    (d) faire tourner la ou les poulies d'entraînement (221) dans une direction jusqu'à ce que la masse (300a) atteigne son niveau de destination ;
    (e) désolidariser la masse (300a) des ensembles de couplage (261a, 261a') ;
    (f) extraire la masse (300a) de l'espace de déplacement vertical (100) audit niveau de destination ;
    (g) disposer l'ensemble supérieur pour dévier les boucles de câble (230) et l'ensemble inférieur pour dévier les boucles de câble (250) dans la première position, dans lequel la première partie de câble (260b, 260b') de chaque boucle de câble (260, 260') est sensiblement centré dans l'espace de déplacement vertical (100) ;
    (h) au niveau de départ, insérer une nouvelle masse (300b) dans l'espace de déplacement vertical (100) ;
    (i) coupler ladite masse (300b) à la deuxième partie de câble (260b) au moyen des ensembles de couplage (261b, 261b') ;
    (j) faire tourner la ou les poulies d'entraînement (221) dans un second sens, opposé au sens de rotation indiqué à l'étape (d), jusqu'à ce que la masse (300b) atteigne son niveau de destination ;
    (k) désolidariser la masse (300b) des ensembles de couplage (261b, 261b') ;
    (l) extraire la masse (300b) de l'espace de déplacement vertical (100) audit niveau de destination ; et
    (m) répéter les étapes (a) à (l).
  12. Procédé selon la revendication 11, réalisé avec le système selon l'une quelconque des revendications 6 à 10, comprenant :
    - effectuer l'étape (a) ;
    - effectuer l'étape (b) selon les sous-étapes suivantes :
    - faire tourner la ou les poulies d'entraînement (221) dans une direction dans laquelle les ensembles d'accouplement (261a, 261a') avec lesquels la masse (300a) doit être couplée descendent jusqu'à un niveau auquel, lors de l'insertion de ladite masse dans l'espace de déplacement vertical (100), lesdits ensembles de couplage n'interfèrent pas avec ladite masse et/ou ses supports (362, 362', 372, 372'), ni avec les moyens d'extraction (500) ; et
    - insérer les moyens d'extraction (500) dans l'espace de déplacement vertical (100), avec la masse (300a) reposant sur celui-ci, dans le sens allant de la première portion de câble (260a, 260a') vers la deuxième portion de câble (260b, 260b') de chaque boucle de câble (260, 260'), de telle sorte que les portions de câble (260a, 260a') soient insérées dans les fentes (303, 303') de la masse (300a) et/ou de ses supports (362, 362', 372, 372'), jusqu'à ce que les supports supérieurs (362, 362') ainsi que les trous (301, 301') ou supports inférieurs (372, 372') soient sur la même verticale que les accouplements supérieurs (262, 262') et les accouplements inférieurs (272, 272') ;
    - effectuer l'étape (c) selon les sous-étapes suivantes :
    - faire tourner la ou les poulies d'entraînement (221) dans une direction dans laquelle les ensembles d'accouplement (261a, 261a') auxquels la masse (300a) doit être couplée montent, s'insérant dans le boîtier de ses supports supérieurs (362, 362') et de ses trous (301, 301') ou supports inférieurs (372, 372') ;
    - continuer à faire tourner la ou les poulies d'entraînement (221) dans ladite direction, amenant les accouplements supérieurs (262, 262') à venir en butée contre les supports supérieurs (362, 362') et à tirer la masse (300a) vers le haut jusqu'à ce qu'elle se détache des moyens d'extraction (500) ; et
    - extraire le moyen d'extraction (500), le retirer de l'espace de déplacement vertical (100), jusqu'à sa position d'origine ;
    - effectuer l'étape (d) ;
    - effectuer l'étape (e) selon les sous-étapes suivantes :
    - si le niveau de destination est le niveau supérieur, continuer à faire tourner la ou les poulies d'entraînement (221) dans le même sens qu'à l'étape (d) de telle sorte que la masse (300a, 300b) monte au-dessus de la hauteur à laquelle l'extraction du niveau supérieur le moyen est localisé, et insérer le moyen d'extraction (500) dans l'espace de déplacement vertical (100), jusqu'à ce qu'il se trouve à la verticale de la masse (300a) ;
    - si le niveau de destination est le niveau inférieur, avant que la masse (300a) n'atteigne la hauteur à laquelle se trouve le moyen d'extraction du niveau inférieur (500), insérer ledit moyen d'extraction dans l'espace de déplacement vertical (100), jusqu'à ce qu'il soit à la verticale de la masse (300a) ; et
    - pour l'un ou l'autre des niveaux de destination, et suite aux sous-étapes précédentes, faire tourner la au moins une poulie motrice (221) dans le sens de descente de la masse (300a), jusqu'à ce qu'elle repose sur les moyens d'extraction (500), la partie supérieure des accouplements (262, 262') cessant de venir en butée contre les supports supérieurs (362, 362') ;
    - effectuer l'étape (f) selon les sous-étapes suivantes :
    - continuer à faire tourner la ou les poulies d'entraînement (221) dans le sens dans lequel elle tournait à la fin de l'étape (e), de telle sorte que les ensembles d'accouplement (261a, 261a') continuent de descendre jusqu'à un niveau auquel, lorsque extraire la masse de l'espace de déplacement vertical (100), lesdits ensembles de couplage n'interférant pas avec la masse (300a) ni avec les moyens d'extraction (500) ; et
    - extraire les moyens d'extraction (500) avec la masse (300a) reposant dessus, dans le sens allant de la deuxième portion de câble (260b, 260b') vers la première portion de câble (260a, 260a') de chaque boucle de câble (260, 260'), de telle sorte qu'un déplacement relatif des premières portions de câble (260a, 260a') soit réalisé par rapport à la masse (300a) vers l'ouverture des fentes (303, 303') de ladite masse (300a) et/ou de ses supports (362, 362', 372, 372'), jusqu'à ce que ladite masse et lesdits moyens d'extraction soient complètement retirés de l'espace de déplacement vertical (100) ;
    - effectuer l'étape (g) ;
    - effectuer l'étape (h) selon les sous-étapes suivantes :
    - faire tourner la ou les poulies d'entraînement (221) dans une direction dans laquelle les ensembles d'accouplement (261a, 261a') avec lesquels la masse (300b) doit être couplée descendent jusqu'à un niveau auquel, lors de l'insertion de ladite masse dans le déplacement vertical espace (100), lesdits ensembles de couplage n'interfèrent pas avec ladite masse et/ou ses supports (362, 362', 372, 372'), ni avec les moyens d'extraction (500) ; et
    - insérer les moyens d'extraction (500) dans l'espace de déplacement vertical (100), avec la masse (300b) reposant dessus, dans le sens allant de la première portion de câble (260a, 260a') vers la deuxième portion de câble (260b, 260b') de chaque boucle de câble (260, 260'), de telle sorte que les deuxièmes portions de câble (260b, 260b') soient insérées dans les fentes (303, 303') de la masse (300b) et/ou de son supports (362, 362', 372, 372'), jusqu'à ce que les supports supérieurs (362, 362') et de même les trous (301, 301') ou supports inférieurs (372, 372') soient sur la même verticale que les supports supérieurs les accouplements (262, 262') et les accouplements inférieurs (272, 272') ;
    - effectuer l'étape (i) selon les sous-étapes suivantes :
    - faire tourner la ou les poulies d'entraînement (221) dans la direction dans laquelle les ensembles d'accouplement (261b, 261b') avec lesquels la masse (300b) doit être couplée montent, s'insérant dans le boîtier de ses supports supérieurs (362, 362') et de ses trous (301, 301') ou supports inférieurs (372, 372') ;
    - continuer à faire tourner la ou les poulies d'entraînement (221) dans ladite direction, amenant les accouplements supérieurs (262, 262') à venir en butée contre les supports supérieurs (362, 362') et à tirer la masse (300b) vers le haut jusqu'à ce qu'elle se détache des moyens d'extraction (500) ; et
    - extraire le moyen d'extraction (500), le retirer de l'espace de déplacement vertical (100) ;
    - effectuer l'étape (j) ;
    - effectuer l'étape (k) selon les sous-étapes suivantes :
    - si le niveau de destination est le niveau supérieur, continuer à faire tourner la ou les poulies d'entraînement (221) dans le même sens qu'à l'étape (d) de telle sorte que la masse (300b) monte au-dessus de la hauteur à laquelle l'extraction du niveau supérieur le moyen est localisé, et insérer le moyen d'extraction (500) dans l'espace de déplacement vertical (100), jusqu'à ce qu'il se trouve à la verticale de la masse (300b) ;
    - si le niveau de destination est le niveau inférieur, avant que la masse (300b) n'atteigne la hauteur à laquelle se trouve le moyen d'extraction du niveau inférieur (500), insérer ledit moyen d'extraction dans l'espace de déplacement vertical (100), jusqu'à ce qu'il soit à la verticale de la masse (300b) ; et
    - pour l'un ou l'autre des niveaux de destination, et suite aux sous-étapes précédentes, faire tourner la au moins une poulie motrice (221) dans le sens qui fait descendre la masse (300b), jusqu'à ce qu'elle repose sur les moyens d'extraction (500), les accouplements supérieurs (262, 262') cessent de venir en butée contre les supports supérieurs (362, 362') ;
    - effectuer l'étape (l) selon les sous-étapes suivantes :
    - continuer à faire tourner la ou les poulies d'entraînement (221) dans le sens dans lequel elle tournait à la fin de l'étape (k), de telle sorte que les ensembles d'accouplement (261b, 261b') continuent de descendre jusqu'à un niveau auquel, lorsque extraire la masse de l'espace de déplacement vertical (100), lesdits ensembles de couplage n'interférant pas avec la masse (300b) ni avec les moyens d'extraction (500) ; et
    - extraire les moyens d'extraction (500) avec la masse (300b) reposant dessus, dans le sens allant de la première portion de câble (260a, 260a') vers la deuxième portion de câble (260b, 260b') de chaque boucle de câble (260, 260'), de telle sorte qu'un déplacement relatif des deuxièmes portions de câble (260b, 260b') soit réalisé par rapport à la masse (300b), vers l'ouverture des fentes (303, 303') de ladite masse (300b) et/ou de ses supports (362, 362', 372, 372'), jusqu'à ce que ladite masse et lesdits moyens d'extraction soient complètement retirés de l'espace de déplacement vertical (100) ; et
    - exécuter l'étape (m).
  13. Procédé selon la revendication 11 ou 12, réalisé avec le système selon l'une quelconque des revendications 6 à 10, dans lequel :
    - depuis l'achèvement de l'étape (c) d'un cycle jusqu'au début de l'étape (b) du cycle suivant, les opérations suivantes sont effectuées :
    - au niveau de départ, abaisser la plateforme (554) du wagon (500a, 520, 530, 510a) jusqu'à sa position abaissée, une fois qu'il n'y a plus de masse dessus ;
    - déplacer ledit wagon le long des voies (400a, 410a) du niveau de départ, jusqu'à ce qu'il se trouve avec sa plateforme (554) en dessous d'une masse (300a) stockée dans la structure de niveau supérieur/inférieur pour le stockage de masses (600a, 610a) ;
    - élever la plate-forme (554) dudit wagon, amenant la masse (300a, 300b) à reposer sur la plate-forme (554) et à la séparer des poutres de support (623) ; et
    - déplacer ledit wagon (500a, 520, 530, 510a) le long des voies (400a, 410a) vers l'espace de déplacement vertical (100), la masse (300a) reposant sur sa plateforme (554), qui reste dans sa position relevée, de telle sorte que ladite masse soit maintenue au-dessus des poutres de support (623) ;
    - depuis l'achèvement de l'étape (f) d'un cycle jusqu'au début de l'étape (e) du cycle suivant, les opérations suivantes sont effectuées :
    - au niveau de destination, déplacer le wagon (500a, 520, 530, 510a) le long des voies (400a, 410a) dudit niveau vers la position de stockage de masse (300a) dans la structure de niveau supérieur/inférieur de stockage de masses (600a, 610a), ladite masse reposant sur la plateforme (554) du wagon, qui reste surélevée, de telle sorte que ladite masse soit maintenue au-dessus des poutres de support ;
    - abaisser la plateforme (554) du wagon, faisant reposer la masse (300a) sur les poutres de support (623) et ne reposant plus sur ladite plateforme (554) ;
    - déplacer le wagon (500a, 520, 530, 510a) le long des voies (400a, 410a) avec sa plateforme (554) dans sa position abaissée, vers l'espace de déplacement vertical (100) ; et
    - élever la plate-forme (554) du wagon (500a, 520, 530, 510a), qui ne porte pas encore de masse sur elle, jusqu'à sa position relevée ;
    - depuis l'achèvement de l'étape (i) d'un cycle jusqu'au début de l'étape (h) du cycle suivant, les opérations suivantes sont effectuées :
    - au niveau de départ, abaisser la plateforme (554) du wagon (500b, 520, 530, 510b) jusqu'à sa position abaissée, une fois qu'il n'y a plus de masse dessus ;
    - déplacer ledit wagon le long des voies (400b, 410b) du niveau de départ, jusqu'à ce qu'il se trouve avec sa plate-forme au-dessous d'une masse (300b) stockée dans la structure de niveau supérieur/inférieur pour le stockage de masses (600b, 610b) ;
    - élever la plate-forme (554) dudit wagon, amenant la masse (300b, 300b) à reposer sur la plate-forme (554) et à se séparer des poutres de support (623) ; et
    - déplacer ledit wagon (500b, 520, 530, 510b) le long des voies (400b, 410b) vers l'espace de déplacement vertical (100), la masse (300b) reposant sur sa plateforme (554), qui reste dans sa position relevée, de sorte que ladite masse soit maintenue au-dessus des poutres de support (623) ;
    - depuis l'achèvement de l'étape (l) d'un cycle jusqu'au début de l'étape (k) du cycle suivant, les opérations suivantes sont effectuées :
    - au niveau de destination, déplacer le wagon (500b, 520, 530, 510b) le long des voies (400b, 410b) dudit niveau vers la position de stockage de masse (300b) dans la structure de niveau supérieur/inférieur de stockage de masses (600b, 610b), ladite masse reposant sur la plate-forme (554) du wagon, qui reste surélevée, de manière à ce que ladite masse soit maintenue au-dessus des poutres de support (623) ;
    - abaisser la plateforme (554) du wagon, faisant reposer la masse (300b) sur les poutres de support (623) et ne reposant plus sur ladite plateforme (554) ;
    - déplacer le wagon (500b, 520, 530, 510b) le long des voies (400b, 410b) avec sa plateforme (554) dans sa position abaissée, vers l'espace de déplacement vertical (100) ; et
    - relever la plate-forme (554) du wagon (500b, 520, 530, 510b), qui ne porte pas encore de masse sur elle, jusqu'à sa position relevée.
  14. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel les masses (300a, 300b) sont soulevées pour stocker de l'énergie potentielle au moyen de la machine rotative bidirectionnelle (223) de l'ensemble d'entraînement (220) agissant comme moteur, et/ou lorsque les masses (300a, 300b) descendent, la machine rotative bidirectionnelle (223), agissant comme un générateur, produit de l'énergie.
  15. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel les masses sont déplacées pour extraire du matériau d'une mine.
EP21383022.7A 2021-11-12 2021-11-12 Système et procédé de déplacement vertical de poids Active EP4180379B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21383022.7A EP4180379B1 (fr) 2021-11-12 2021-11-12 Système et procédé de déplacement vertical de poids
PCT/EP2022/081575 WO2023084007A1 (fr) 2021-11-12 2022-11-11 Système et procédé de déplacement vertical de masses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21383022.7A EP4180379B1 (fr) 2021-11-12 2021-11-12 Système et procédé de déplacement vertical de poids

Publications (2)

Publication Number Publication Date
EP4180379A1 EP4180379A1 (fr) 2023-05-17
EP4180379B1 true EP4180379B1 (fr) 2024-05-15

Family

ID=79185912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21383022.7A Active EP4180379B1 (fr) 2021-11-12 2021-11-12 Système et procédé de déplacement vertical de poids

Country Status (2)

Country Link
EP (1) EP4180379B1 (fr)
WO (1) WO2023084007A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1016253A1 (ru) * 1981-07-16 1983-05-07 Borovlev Vladimir Шахтна подъемна установка дл транспорта людей и оборудовани
US7357226B2 (en) * 2005-06-28 2008-04-15 Masami Sakita Elevator system with multiple cars in the same hoistway
SG11202000750VA (en) * 2017-08-17 2020-02-27 Inventio Ag Elevator system

Also Published As

Publication number Publication date
WO2023084007A1 (fr) 2023-05-19
EP4180379A1 (fr) 2023-05-17

Similar Documents

Publication Publication Date Title
CN102132036A (zh) 能够到达风轮机的设备
US20220163018A1 (en) Gravitational Energy Storage Device
KR20220027229A (ko) 중력-기반 에너지 저장 시스템
CN102556814B (zh) 罐笼承载钢丝绳伸长量的智能补偿装置及其智能补偿方法
CN105645214A (zh) 一种坠落缓冲装置
EP4180379B1 (fr) Système et procédé de déplacement vertical de poids
CN106948593A (zh) 一种轮式机器人爬架
CN104909270B (zh) 一种绳滚架及可折装龙门吊及装卸料的方法
JP5567095B2 (ja) エレベータ装置
CN203022382U (zh) 一体式卸船机抓斗检修平台
CN112081439B (zh) 具有伸缩式自动平层装置的横移台车存取车辆的方法
CN209382842U (zh) 一种预制件牵引装置
PT107881B (pt) Dispositivo mecânico para conversão da energia cinética das correntes marinhas ou fluviais em energia potencial para posterior conversão em energia elétrica
CN214270025U (zh) 支撑平台和集装箱装卸设备
CN112478559B (zh) 一种子母车
CN212358244U (zh) 一种直线电机电气升船机
CN202379572U (zh) 立井锁罐装置
CN205526358U (zh) 一种预制件生产运输系统
CN105059134B (zh) 一种磁浮列车直线电机下线装置
CN218986407U (zh) 下沉式移动接触网
CN219295422U (zh) 一种装料输送斗车
CN205471273U (zh) 一种预制件生产运输系统
CN216836812U (zh) 适合复杂场地且不易偏载的双横轨单轨吊运系统
US9734925B2 (en) Device for lifting and lowering loads in vertical shafts, in particular containers with radioactive contents
CN205574937U (zh) 一种预制件生产运输系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230927

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP