EP4179047A1 - Additifs de carburant pour atténuer l'encrassement d'une buse d'injecteur et réduire les émissions de particules - Google Patents
Additifs de carburant pour atténuer l'encrassement d'une buse d'injecteur et réduire les émissions de particulesInfo
- Publication number
- EP4179047A1 EP4179047A1 EP21740216.3A EP21740216A EP4179047A1 EP 4179047 A1 EP4179047 A1 EP 4179047A1 EP 21740216 A EP21740216 A EP 21740216A EP 4179047 A1 EP4179047 A1 EP 4179047A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- amine
- detergent
- ppm
- fuel
- fuel composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002816 fuel additive Substances 0.000 title description 19
- 230000000116 mitigating effect Effects 0.000 title description 3
- 239000000446 fuel Substances 0.000 claims abstract description 75
- 239000000203 mixture Substances 0.000 claims abstract description 71
- 150000001412 amines Chemical class 0.000 claims abstract description 50
- 239000003599 detergent Substances 0.000 claims abstract description 49
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000003502 gasoline Substances 0.000 claims abstract description 19
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 19
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims abstract description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 9
- -1 aliphatic hydrocarbyl amine Chemical class 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 16
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 14
- 229920000768 polyamine Polymers 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 9
- 238000006683 Mannich reaction Methods 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 239000006079 antiknock agent Substances 0.000 claims description 3
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 239000006078 metal deactivator Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 229960002317 succinimide Drugs 0.000 claims 3
- 239000000654 additive Substances 0.000 abstract description 24
- 230000000996 additive effect Effects 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 description 32
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 15
- 239000013618 particulate matter Substances 0.000 description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 125000005037 alkyl phenyl group Chemical group 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- CUFBDUDYFHCIOH-UHFFFAOYSA-N 3-(11-methyldodecoxy)propan-1-amine Chemical compound CC(C)CCCCCCCCCCOCCCN CUFBDUDYFHCIOH-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- IVHKZGYFKJRXBD-UHFFFAOYSA-N amino carbamate Chemical compound NOC(N)=O IVHKZGYFKJRXBD-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- DVFGEIYOLIFSRX-UHFFFAOYSA-N 3-(2-ethylhexoxy)propan-1-amine Chemical compound CCCCC(CC)COCCCN DVFGEIYOLIFSRX-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- 101100495914 Arabidopsis thaliana ETL1 gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- CREXVNNSNOKDHW-UHFFFAOYSA-N azaniumylideneazanide Chemical group N[N] CREXVNNSNOKDHW-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
- C10L1/2225—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
- C10L1/2387—Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0415—Light distillates, e.g. LPG, naphtha
- C10L2200/0423—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
- C10L2200/0446—Diesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/023—Specifically adapted fuels for internal combustion engines for gasoline engines
Definitions
- This disclosure relates to fuel components that can improve engine performance. More specifically, this disclosure describes compositions and methods for mitigating injector nozzle fouling and reducing particulate emissions in direct injection spark ignition engines.
- a fuel composition comprising: a hydrocarbon-based fuel boiling in the gasoline or diesel range; an amine-based detergent given by formula Ri-0-(CH2)m-NHR2, wherein the detergent is present in about 10 ppm to about 750 ppm by weight based on total weight of the fuel composition; wherein Ri is a hydrocarbyl group having 8 to 20 carbons, is hydrogen or (CH2) n NH2 moiety, and wherein m, n are independently integers having a value of 3 or greater; and one or more nitrogen-containing detergent.
- a concentrate composition comprising: about 30 to 90 wt % of an organic solvent boiling in a range of from 65°C to 205°C and; about 10 to 70 wt % of a detergent mixture comprising: (1) an amine- based detergent given by formula Ri-0-(CH 2 )m-NHR 2 , wherein Ri is a hydrocarbyl group having 8 to 20 carbons, R2 is hydrogen or (CF j n NF moiety, and wherein m, n are independently integers having a value of 3 or greater; and (2) one or more nitrogen-containing detergent.
- a method of controlling injector fouling comprising: supplying to a direct injection engine a fuel composition comprising: a hydrocarbon-based fuel boiling in the gasoline or diesel range; an amine-based detergent given by formula Ri-0-(CH 2 )m-NHR 2 , wherein the amine-based detergent is present in about 10 ppm to about 750 ppm by weight based on total weight of the fuel composition; wherein Ri is a hydrocarbyl group having 8 to 20 carbons, R2 is hydrogen or (CF j n NF moiety, and wherein m, n are independently integers having a value of 3 or greater; and one or more nitrogen-containing detergent.
- FIG. 1 is an illustration described in the Example section.
- FIG. 2 is an illustration described in the Example section.
- FIG. 3 is an illustration described in the Example section.
- FIG. 4 is an illustration described in the Example section.
- FIGS. 5A-5C are illustrations described in the Example section.
- FIGS. 6A-6C are illustrations described in the Example section.
- FIGS. 7A-7C are illustrations described in the Example section.
- FIGS. 8A-8C are illustrations described in the Example section.
- FIGS. 9A-9C are illustrations described in the Example section.
- FIGS. 10A-10C are illustrations described in the Example section.
- FIGS. 11A-11 B are illustrations described in the Example section.
- FIG. 12 is an illustration described in the Example section.
- the present invention describes compositions and methods for deposit control in direct injection engines. More specifically, the present invention provides detergent additive compositions that can be utilized as components of fuel compositions and methods of using the compositions thereof.
- the fuel composition of the present invention comprises (i) a hydrocarbon-based fuel, (ii) a primary fuel additive and (iii) one or more secondary fuel additives.
- the hydrocarbon-based fuel includes gasoline and diesel.
- Gasoline fuel refers to a composition containing at least predominantly C4-C12 hydrocarbons.
- gasoline or gasoline boiling range components is further defined to refer to a composition containing at least predominantly C4-C12 hydrocarbons and further having a boiling range of from about 37.8°C (100°F) to about 204°C (400°F).
- gasoline is defined to refer to a composition containing at least predominantly C4-C12 hydrocarbons, having a boiling range of from about 37.8°C (100°F) to about 204°C (400°F), and further defined to meet ASTM D4814.
- Diesel fuel refers to middle distillate fuels containing at least predominantly C10-C25 hydrocarbons.
- diesel is further defined to refer to a composition containing at least predominantly C10-C25 hydrocarbons, and further having a boiling range of from about 165.6°C (330°F) to about 371.1°C (700°F).
- diesel is as defined above to refer to a composition containing at least predominantly C10-C25 hydrocarbons, having a boiling range of from about 165.6°C (330°F) to about 371.1°C (700°F), and further defined to meet ASTM D975.
- the hydrocarbon-based fuel is present in a major amount by weight % of the total fuel composition.
- the hydrocarbon-based fuel is present in about 50 wt% or greater, 55 wt% or greater, 60 wt% or greater, 65 wt% or greater, 70 wt% or greater, 75 wt% or greater, 80 wt% or greater, 85 wt% or greater, 90 wt% or greater, 95 wt% or greater or between any range from about 50 wt% to up to below 100 wt%.
- the gasoline employed in the present invention may be clean burning gasoline (CBG).
- CBG refers to gasoline formulations that contain reduced levels of sulfur, aromatics and olefins. The exact formulation may vary depending on local regulatory definitions.
- a fuel-soluble, non-volatile carrier fluid or oil may also be used with compounds of this disclosure.
- the carrier fluid is a chemically inert hydrocarbon- soluble liquid vehicle which substantially increases the non-volatile residue (NVR), or solvent-free liquid fraction of the fuel additive composition while not overwhelmingly contributing to octane requirement increase.
- the carrier fluid may be a natural or synthetic oil, such as mineral oil, refined petroleum oils, synthetic polyalkanes and alkenes, including hydrogenated and unhydrogenated polyalphaolefins, synthetic polyoxyalkylene-derived oils, such as those described in U.S. Patent Nos. 3,756,793; 4,191,537; and 5,004,478; and in European Patent Appl. Pub. Nos. 356,726 and 382,159.
- the carrier fluids may be employed in amounts ranging from 35 to 5000 ppm by weight of the hydrocarbon fuel (e.g., 50 to 3000 ppm of the fuel). When employed in a fuel concentrate, carrier fluids may be present in amounts ranging from 20 to 60 wt % (e.g., 30 to 50 wt %).
- the primary fuel additive of the present invention is an amine-based detergent (more specifically, a linear/branched aliphatic ether amine) having the following formula: Ri-0-(CH 2 )m-NHR 2 Formula I where Ri is a hydrocarbyl group having 8 to 20 carbons, R 2 is hydrogen or (CH 2 ) n NH 2 moiety, and m, n are independently integers having a value of 3 or greater.
- the hydrocarbyl group may be saturated or unsaturated. In some embodiments, the hydrocarbyl group may contain more than one unsaturated bond.
- the fuel additives of the present invention can deliver more basic nitrogen at the same treat rate compared to conventional amine-based fuel detergents (such as polyisobutylamine, polyether amine, etc.). This feature is important in determining detergency.
- conventional amine-based fuel detergents such as polyisobutylamine, polyether amine, etc.
- the low molecular weight of the additives of the present invention along with their low decomposition temperature and high volatility prevents the additives from generating harmful deposits.
- Particularly illustrative aliphatic ether amines compatible with the present invention include isotridecyloxypropylamine and 2-ethylhexyloxypropyl amine. These are illustrative examples that are not intended to be limiting.
- the primary fuel additive can be present in about 10 ppm to about 750 ppm (such as 20 to 700, 30 to 650, 50 to 600, 100 to 500, 200 to 400, 250 to 350, and so forth) based on the total fuel composition.
- the fuel composition of the present invention includes one or more secondary fuel additives.
- the secondary fuel additive is a nitrogen-containing detergent that provides enhanced detergency when paired with the primary fuel additive of the present invention.
- Suitable secondary fuel additives may be classified as aliphatic hydrocarbyl-substituted amines, hydrocarbyl-substituted poly(oxyalkylene)amines, hydrocarbyl-substituted succinimides, Mannich reaction products, polyalkylphenoxyaminoalkanes, nitro and amino aromatic esters of polyalkylphenoxyalkanols, and nitrogen-containing carburetor/injector detergents.
- Each class of secondary fuel additive will be described in more detail herein.
- the aliphatic hydrocarbyl-substituted amines employed in the present invention may be straight or branched chain hydrocarbyl-substituted amines having at least one basic nitrogen and wherein the hydrocarbyl group has a number average molecular weight of about 700 to 3,000.
- Specific examples of aliphatic hydrocarbyl-substituted amines include polyisobutenyl amines and polyisobutyl amines. These amines can be derived as monoamines or polyamines. Preparation of aliphatic amines are generally known and described in detail in U.S. Pat. Nos. 3,438,757; 3,565,804; 3,574,576; 3,848,056; 3,960,515; 4,832,702; and 6,203,584, all of which are hereby incorporated by reference.
- the hydrocarbyl-substituted poly(oxyalkylene)amines employed in the present invention may include hydrocarbyl poly(oxyalkylene)amines (monoamines or polyamines) wherein the hydrocarbyl group contains from about 1 to about 30 carbon atoms.
- the number of oxyalkylene units can range from about 5 to about 100.
- the amine moiety is derived from ammonia, primary alkyl or secondary dialkyl monoamine, or polyamine having a terminal amino nitrogen atom.
- the oxyalkylene moiety may be oxypropylene or oxybutylene or a mixture thereof.
- Hydrocarbyl-substituted poly(oxyalkylene)amines are described in U.S. Pat. No. 6,217,624, and U.S. Pat. No. 5,112,364, which are hereby incorporated herein by reference.
- Specific examples of hydrocarbyl-substituted poly(oxyalkylene)monoamine include alkylphenyl poly(oxyalkylene)monoamine wherein the poly(oxyalkylene) moiety contains oxypropylene units or oxybutylene units or mixtures of oxypropylene and oxybutylene units.
- the alkyl group on the alkylphenyl moiety is a straight or branched-chain alkyl of about 1 to about 24 carbon atoms.
- a preferred alkylphenyl moiety is tetrapropenylphenyl where the alkyl group is a branched-chain alkyl of 12 carbon atoms derived from a propylene tetramer.
- additional hydrocarbyl-substituted poly(oxyalkylene)amines include hydrocarbyl-substituted poly(oxyalkylene)aminocarbamates disclosed in U.S. Pat. Nos. 4,288,612; 4,236,020;
- hydrocarbyl poly(oxyalkylene)aminocarbamates contain at least one basic nitrogen atom and have an average molecular weight of about 500 to 10,000, preferably about 500 to 5,000, and more preferably about 1,000 to 3,000.
- a preferred aminocarbamate is alkylphenyl poly(oxybutylene)aminocarbamate wherein the amine moiety is derived from ethylene diamine or diethylene triamine.
- the hydrocarbyl-substituted succinimides employed in the present invention include polyalkyl and polyalkenyl succinimides wherein the polyalkyl or polyalkenyl group has an average molecular weight of about 500 to 5,000, and preferably about 700 to 3,000.
- the hydrocarbyl-substituted succinimides are typically prepared by reacting a hydrocarbyl-substituted succinic anhydride with an amine or polyamine having at least one reactive hydrogen bonded to an amine nitrogen atom.
- Preferred hydrocarbyl-substituted succinimides include polyisobutenyl and polyisobutanyl succinimides, and derivatives thereof.
- the Mannich reaction products employed in the present invention include products typically obtained from Mannich condensation of a high molecular weight alkyl-substituted hydroxyaromatic compound, an amine containing at least one reactive hydrogen, and an aldehyde.
- the high molecular weight alkyl- substituted hydroxyaromatic compounds are preferably polyalkylphenols, such as polypropylphenol and polybutylphenol, especially polyisobutylphenol, wherein the polyakyl group has an average molecular weight of about 600 to 3,000.
- the amine reactant is typically a polyamine, such as alkylene polyamines, especially ethylene or polyethylene polyamines, for example, ethylene diamine, diethylene triamine, triethylene tetramine, and the like.
- the aldehyde reactant is generally an aliphatic aldehyde, such as formaldehyde, including paraformaldehyde and formalin, and acetaldehyde.
- a preferred Mannich reaction product is obtained by condensing a polyisobutylphenol with formaldehyde and diethylene triamine, wherein the polyisobutyl group has an average molecular weight of about 1,000.
- the Mannich reaction products suitable for use in the present invention are described, for example, in U.S. Pat. Nos. 4,231,759 and 5,697,988, the disclosures of each of which are incorporated herein by reference.
- a still further class of detergent additive suitable for use in the present invention are polyalkylphenoxyaminoalkanes.
- Preferred polyalkylphenoxyaminoalkanes include those having the following formula:
- R3 ⁇ 4 is a polyalkyl group having an average molecular weight in the range of about 600 to 5,000; [3 ⁇ 4 and R 7 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and A is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms.
- the polyalkylphenoxyaminoalkanes of Formula II above and their preparations are described in detail in U.S. Pat. No. 5,669,939, which is hereby incorporated herein by reference.
- Certain detergent mixtures may be particularly useful as secondary additives in accordance with the present invention.
- mixtures of polyalkylphenoxyaminoalkanes and poly(oxyalkylene)amines may be employed. These mixtures are described in detail in U.S. Pat. No. 5,851,242, which is hereby incorporated by reference.
- mixtures of nitro and amino aromatic esters of polyalkylphenoxyalkanols may be employed.
- Preferred nitro and amino aromatic esters of polyalkylphenoxyalkanols include those having the formula:
- Preferred hydrocarbyl-substituted poly(oxyalkylene)amines which may be employed as detergent additives in the present invention include those having the following formula: Formula IV wherein: R17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms; R18 and R19 are each independently hydrogen or lower alkyl having about 1 to about 6 carbon atoms and each R18 and R19 is independently selected in each — O — CHR18 — CHR19 — unit; m is from about 5 to about 100; B is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms; and m is an integer from about 5 to about 100.
- R17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms
- hydrocarbyl-substituted poly(oxyalkylene)amines of Formula IV above and their preparations are described in detail in U.S. Pat. No. 6,217,624, which is hereby incorporated by reference.
- the hydrocarbyl-substituted poly(oxyalkylene)amines of Formula IV are preferably utilized either by themselves or in combination with other detergent additives, particularly with the polyalkylphenoxyaminoalkanes or the nitro and amino aromatic esters of polyalkylphenoxyalkanols. More preferably, the detergent additives employed in the present invention will be combinations of the hydrocarbyl-substituted poly(oxyalkylene)amines with the nitro and amino aromatic esters of polyalkylphenoxyalkanols.
- a particularly preferred hydrocarbyl-substituted poly(oxyalkylene)amine detergent additive is dodecylphenoxy poly(oxybutylene)amine and a particularly preferred combination of detergent additives is the combination of dodecylphenoxy poly(oxybutylene)amine and 4- polyisobutylphenoxyethyl para-aminobenzoate.
- Another class of detergent additive suitable for use in the present invention include nitrogen-containing carburetor/injector detergents.
- the carburetor/injector detergent additives are typically low molecular weight compounds having a number average molecular weight of about 100 to about 600 and possessing at least one polar moiety and at least one non-polar moiety.
- the non-polar moiety is typically a linear or branched-chain alkyl or alkenyl group having about 6 to about 40 carbon atoms.
- the polar moiety is typically nitrogen-containing.
- Typical nitrogen- containing polar moieties include amines (for example, as described in U.S. Pat. No. 5,139,534 and PCT International Publication No.
- WO 90/10051 ether amines (for example, as described in U.S. Pat. No. 3,849,083 and PCT International Publication No. WO 90/10051), amides, polyamides and amide-esters (for example, as described in U.S. Pat. Nos. 2,622,018; 4,729,769; and 5,139,534; and European Patent Publication No. 149,486), imidazolines (for example, as described in U.S. Pat. No. 4,518,782), amine oxides (for example, as described in U.S. Pat. Nos. 4,810,263 and 4,836,829), hydroxyamines (for example, as described in U.S. Pat. No. 4,409,000), and succinimides (for example, as described in U.S. Pat. No. 4,292,046).
- amides for example, as described in U.S. Pat. No. 3,849,083 and PCT International Publication No. WO 90/
- Each secondary fuel additive can be present in about 50 ppm to about 2500 ppm (such as 100 to 2000, 200 to 1500, 300 to 1000 and the like) by weight of the fuel composition. More preferably, the secondary fuel additive is present in about 50 ppm to about 1000 ppm by weight of the fuel composition.
- the fuel composition may comprise other generally known fuel additives. Suitable examples include, but are not limited to, antioxidants, metal deactivators, demulsifiers, oxygenates, antiknock agents, dispersants and other detergents. In diesel fuel, other well-known additives can be employed such as pour point depressants, flow improvers, and the like.
- each of the foregoing additives when used, is used at a functionally effective amount to impart the desired properties to the fuel composition.
- concentration of each of these additives, when used may range, unless otherwise specified, from about 0.001 to about 20 wt. %, such as about 0.01 to about 10 wt. %.
- the compounds of the present disclosure may be formulated as a concentrate using an inert stable oleophilic (i.e., soluble in hydrocarbon fuel) organic solvent boiling in a range of 65°C to 205°C.
- An aliphatic or an aromatic hydrocarbon solvent may be used, such as benzene, toluene, xylene, or higher-boiling aromatics or aromatic thinners.
- Aliphatic alcohols containing 2 to 8 carbon atoms, such as ethanol, isopropanol, methyl isobutyl carbinol, n-butanol and the like, in combination with the hydrocarbon solvents are also suitable for use with the present additives.
- the amount of the additive may range from 10 to 70 wt % (e.g., 20 to 40 wt %).
- Table 1 summarizes the additives used to test injector fouling and/or deposit control performance. Additives used in the following tests include isotridecyloxypropylamine (Example 1), and polyoxybutylene amine (Example 2). Base Fuel is unadditized gasoline composition.
- Example 1 was blended in gasoline and tested for their ability to mitigate DISI injector fouling in a test vehicle using the test method described herein.
- a 2017 VW Jetta SE equipped with 1.4L turbocharged DISI 4-cylinder gasoline was the test vehicle used in this Example.
- FIG. 1 illustrates engine speed and load test conditions observed during a vehicle drive cycle.
- the vehicle drive cycle is based on 10 hills extracted from the transient phase of the Environmental Protection Agency (EPA) Urban Dynamometer Drive Schedule (UDDS) with additional idle periods added.
- Total drive cycle is 20 minutes in duration and the overall test duration is 2,000-miles.
- EPA Environmental Protection Agency
- UDDS Urban Dynamometer Drive Schedule
- Additive testing is conducted in a "keep clean" configuration which starts with a clean injector and combustion chamber. This test configuration evaluates the ability of a given deposit control additive to keep the injector and combustion chamber clean over the duration of the test.
- test fuel samples were formulated with the target deposit control additive.
- Three injector "keep clean" tests were performed: (i) two tests using the unadditized base fuel and (ii) one test using the same base fuel as in (i) blended with 200 ppmw of Example 1.
- Injector fuel restriction (average) after the designated drive cycles are summarized in Table 2 below.
- the injector fuel restriction substantially decreased during additized fuel use as compared to during nonadditized fuel use.
- Injector fuel restriction measures the decrease in fuel flow from the injector, representing the presence of deposits in the injector orifices.
- Injector restriction can force the engine controller to make additional control adjustments to maintain proper engine fuel delivery, and the presence of deposits in the injector orifices can impact fuel mixing, leading to decreased engine performance and increased particulate emissions.
- Injector face images of each formulation after completion of test are shown in FIG. 2 and correspond to Table 2.
- a test engine was also used to evaluate PM emissions of Example 1.
- the engine drive cycle is 360s in duration with engine speeds ranging from idle to 3000-RPM, and load varying up to 100-Nm.
- the overall test duration is 96 hours.
- FIG. 3 illustrates engine speed and load test conditions.
- MSS Micro Soot Sensor
- FIGS. 5A-5C illustrate the results of PM emissions trendlines (96 hour test) for fuel compositions with 150 ppmw of Example 2 (FIG. 5A), with 150 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 5B), and with 150 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 5C).
- FIGS. 6A-6C illustrate the results of the PM emissions trendlines (96 hour test) for fuel compositions with 2000 ppmw of Example 3 (FIG. 6A), with 2000 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 6B), and with 2000 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 6C).
- FIGS. 7A-7C and FIGS. 8A-8C illustrate results of direct injection spark- ignition (DISI) rig injector flow tests. These graphs show percent restriction relative to clean injector flow for various pulse widths (1.5 ms, 2.5 ms, 3.5 ms, and 4.5 ms) at 100 bar injection pressure.
- the samples tested include fuel compositions with 150 ppmw of Example 2 (FIG. 7A), with 150 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 7B), and with 150 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 7C).
- the samples also include fuel compositions with 2000 ppmw of Example 2 (FIG. 8A), with 2000 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 8B), and with 2000 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 8C).
- FIGS. 9A-9C show injector face images that were taken after end of vehicle or engine test (prior to flow tests) corresponding to samples containing fuel compositions with 150 ppmw of Example 2 (FIG. 9A), with 150 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 9B), and with 150 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 9C).
- FIGS. 10A-10C show injector face images that were taken after end of vehicle or engine test (prior to flow tests) corresponding to samples containing fuel compositions with 2000 ppmw of Example 2 (FIG. 10A), with 2000 ppmw of Example 2 and 150 ppmw of Example 1 (FIG. 10B), and with 2000 ppmw of Example 2 and 750 ppmw of Example 1 (FIG. 10C).
- FIG. 11 A shows average injector tip deposit volume (mm 3 ) for fuel compositions with 150 ppmw of Example 2 (left bar), with 150 ppmw of Example 2 and 150 ppmw of Example 1 (middle bar), and with 150 ppmw of Example 2 and 750 ppm of Example 1 (right bar).
- FIG. 11 B shows average injector tip deposit volume (mm 3 ) for fuel compositions with 2000 ppmw of Example 2 (left bar), with 2000 ppmw of Example 2 and 150 ppmw of Example 1 (middle bar), and 2000 ppmw of Example 2 and 750 ppmw of Example 1 (right bar). These measurements were taken end of vehicle or engine test (prior to flow tests).
- Table 3 summarizes samples that were tested and rated for anti corrosion property using NACE TM0172 standard test method.
- Base fuel is unadditized fuel.
- FIG. 12 provides visual confirmation of the anti-corrosion test.
- ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited.
- ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited.
- within a range includes every point or individual value between its end points even though not explicitly recited. Thus, every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.
- compositions, an element or a group of elements are preceded with the transitional phrase “comprising,” it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of,” “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063048922P | 2020-07-07 | 2020-07-07 | |
PCT/IB2021/056075 WO2022009105A1 (fr) | 2020-07-07 | 2021-07-07 | Additifs de carburant pour atténuer l'encrassement d'une buse d'injecteur et réduire les émissions de particules |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4179047A1 true EP4179047A1 (fr) | 2023-05-17 |
Family
ID=76859668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21740216.3A Pending EP4179047A1 (fr) | 2020-07-07 | 2021-07-07 | Additifs de carburant pour atténuer l'encrassement d'une buse d'injecteur et réduire les émissions de particules |
Country Status (10)
Country | Link |
---|---|
US (1) | US20220145199A1 (fr) |
EP (1) | EP4179047A1 (fr) |
JP (1) | JP2023533737A (fr) |
KR (1) | KR20230035330A (fr) |
CN (1) | CN116134116A (fr) |
AU (1) | AU2021304467A1 (fr) |
CA (1) | CA3188758A1 (fr) |
CO (1) | CO2023001087A2 (fr) |
MX (1) | MX2023000329A (fr) |
WO (1) | WO2022009105A1 (fr) |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622018A (en) | 1949-10-19 | 1952-12-16 | Socony Vacuum Oil Co Inc | Motor fuel |
US3574576A (en) | 1965-08-23 | 1971-04-13 | Chevron Res | Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine |
GB1346765A (en) | 1970-06-16 | 1974-02-13 | Shell Int Research | Fuel compositions |
US3849083A (en) * | 1972-04-14 | 1974-11-19 | Ethyl Corp | Gasoline additive |
US3848056A (en) | 1972-09-05 | 1974-11-12 | Continental Oil Co | Molten alkaline alkanoic mixtures for absorption of sulfur oxides |
US4231759A (en) | 1973-03-12 | 1980-11-04 | Standard Oil Company (Indiana) | Liquid hydrocarbon fuels containing high molecular weight Mannich bases |
US3960515A (en) | 1973-10-11 | 1976-06-01 | Chevron Research Company | Hydrocarbyl amine additives for distillate fuels |
GB1486144A (en) | 1974-03-13 | 1977-09-21 | Cities Service Oil Co | Gasoline additive |
US4191537A (en) | 1976-06-21 | 1980-03-04 | Chevron Research Company | Fuel compositions of poly(oxyalkylene) aminocarbamate |
US4236020A (en) | 1976-06-21 | 1980-11-25 | Chevron Research Company | Carbamate deposit control additives |
US4288612A (en) | 1976-06-21 | 1981-09-08 | Chevron Research Company | Deposit control additives |
US4160648A (en) | 1976-06-21 | 1979-07-10 | Chevron Research Company | Fuel compositions containing deposit control additives |
US4233168A (en) | 1978-06-19 | 1980-11-11 | Chevron Research Company | Lubricant compositions containing dispersant additives |
US4197409A (en) | 1978-08-08 | 1980-04-08 | Chevron Research Company | Poly(oxyalkylene)aminocarbomates of alkylene polyamine |
US4243798A (en) | 1979-08-09 | 1981-01-06 | Chevron Research Company | Process for the production of a polymeric carbamate |
US4292046A (en) | 1979-08-10 | 1981-09-29 | Mobil Oil Corporation | Detergent compositions |
US4270930A (en) | 1979-12-21 | 1981-06-02 | Chevron Research Company | Clean combustion chamber fuel composition |
US4518782A (en) | 1981-08-10 | 1985-05-21 | Texaco Inc. | Fuel compositions containing N-alkyl glycyl imidazoline |
US4392866A (en) * | 1981-11-05 | 1983-07-12 | Texaco Inc. | Etheramine corrosion inhibitor for alcohols |
US4409000A (en) | 1981-12-14 | 1983-10-11 | The Lubrizol Corporation | Combinations of hydroxy amines and carboxylic dispersants as fuel additives |
EP0149486A3 (fr) | 1984-01-17 | 1986-10-08 | Atlantic Richfield Company | Détergents et composition de carburant les contenant |
US4836829A (en) | 1986-03-14 | 1989-06-06 | Exxon Research And Engineering Company | Fuel composition and process for multi-port fuel injection systems (PNE-509) |
DE3611230A1 (de) | 1986-04-04 | 1987-10-08 | Basf Ag | Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen |
US4810263A (en) | 1986-04-11 | 1989-03-07 | Exxon Research And Engineering Company | Fuel composition |
US4729769A (en) | 1986-05-08 | 1988-03-08 | Texaco Inc. | Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents |
US4881945A (en) | 1987-10-23 | 1989-11-21 | Chevron Research Company | Fuel compositions containing very long chain alkylphenyl poly(oxyalkylene) aminocarbonates |
DE3826608A1 (de) | 1988-08-05 | 1990-02-08 | Basf Ag | Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren |
DE3826797A1 (de) | 1988-08-06 | 1990-02-08 | Basf Ag | Kraftstoffzusammensetzungen, die polycarbonsaeureester langkettiger alkohole enthalten |
DE3838918A1 (de) | 1988-11-17 | 1990-05-23 | Basf Ag | Kraftstoffe fuer verbrennungsmaschinen |
EP0382159A1 (fr) | 1989-02-06 | 1990-08-16 | E.I. Du Pont De Nemours And Company | Désencrassage d'appareils à combustible |
WO1990010051A1 (fr) | 1989-02-21 | 1990-09-07 | Union Oil Company Of California | Composition de carburant permettant la regulation de depots sur des soupapes d'admission |
GB9007431D0 (en) | 1990-04-03 | 1990-05-30 | Shell Int Research | Diesel fuel additives |
EP0557516B1 (fr) | 1991-09-13 | 1996-07-17 | Chevron Chemical Company | Compositions additives pour carburant contenant des succinimides de polyisobutenyle |
US5697988A (en) | 1991-11-18 | 1997-12-16 | Ethyl Corporation | Fuel compositions |
GB9208034D0 (en) | 1992-04-10 | 1992-05-27 | Bp Chem Int Ltd | Fuel composition |
US5620486A (en) | 1994-12-30 | 1997-04-15 | Chevron Chemical Company | Fuel compositions containing aryl succinimides |
US5669939A (en) | 1996-05-14 | 1997-09-23 | Chevron Chemical Company | Polyalkylphenoxyaminoalkanes and fuel compositions containing the same |
US5618320A (en) | 1996-05-14 | 1997-04-08 | Chevron Chemical Company | Aromatic esters of polyalkylphenoxyalkanols and fuel compositions containing the same |
US6203584B1 (en) | 1998-03-31 | 2001-03-20 | Chevron Chemical Company Llc | Fuel composition containing an amine compound and an ester |
US5954843A (en) | 1998-08-28 | 1999-09-21 | Chevron Chemical Company Llc | Aminocarbamates of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same |
US6114542A (en) | 1998-08-28 | 2000-09-05 | Chevron Chemical Company Llc | Ethers of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same |
US5993497A (en) | 1998-08-28 | 1999-11-30 | Chevron Chemical Company Llc | Esters of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same |
US5916825A (en) | 1998-08-28 | 1999-06-29 | Chevron Chemical Company Llc | Polyisobutanyl succinimides and fuel compositions containing the same |
US6217624B1 (en) | 1999-02-18 | 2001-04-17 | Chevron Chemical Company Llc | Fuel compositions containing hydrocarbyl-substituted polyoxyalkylene amines |
US6361573B1 (en) * | 1999-08-31 | 2002-03-26 | Ethyl Corporation | Fuel dispersants with enhanced lubricity |
US6746495B2 (en) * | 2000-10-24 | 2004-06-08 | Exxonmobil Research And Engineering Company | Method for controlling deposit formation in gasoline direct injection engine by use of a fuel having particular compositional characteristics |
US7435272B2 (en) * | 2002-04-24 | 2008-10-14 | Afton Chemical Intangibles | Friction modifier alkoxyamine salts of carboxylic acids as additives for fuel compositions and methods of use thereof |
US8231695B2 (en) * | 2006-08-09 | 2012-07-31 | Afton Chemical Corporation | Fuel compositions comprising hydrocarbon oil carriers and methods for using the same |
BR112012030330A2 (pt) * | 2010-06-01 | 2016-08-09 | Basf Se | composição de aditivo de combustível, composição de combustível, e, uso |
-
2021
- 2021-07-07 US US17/368,918 patent/US20220145199A1/en active Pending
- 2021-07-07 AU AU2021304467A patent/AU2021304467A1/en active Pending
- 2021-07-07 EP EP21740216.3A patent/EP4179047A1/fr active Pending
- 2021-07-07 JP JP2023501273A patent/JP2023533737A/ja active Pending
- 2021-07-07 CA CA3188758A patent/CA3188758A1/fr active Pending
- 2021-07-07 WO PCT/IB2021/056075 patent/WO2022009105A1/fr unknown
- 2021-07-07 MX MX2023000329A patent/MX2023000329A/es unknown
- 2021-07-07 KR KR1020237002934A patent/KR20230035330A/ko active Search and Examination
- 2021-07-07 CN CN202180059812.1A patent/CN116134116A/zh active Pending
-
2023
- 2023-01-31 CO CONC2023/0001087A patent/CO2023001087A2/es unknown
Also Published As
Publication number | Publication date |
---|---|
WO2022009105A1 (fr) | 2022-01-13 |
CN116134116A (zh) | 2023-05-16 |
CO2023001087A2 (es) | 2023-02-06 |
US20220145199A1 (en) | 2022-05-12 |
JP2023533737A (ja) | 2023-08-04 |
AU2021304467A1 (en) | 2023-02-23 |
KR20230035330A (ko) | 2023-03-13 |
MX2023000329A (es) | 2023-03-27 |
CA3188758A1 (fr) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7901470B2 (en) | Gasoline additives | |
AU689585B2 (en) | Fuel additive compositions containing an aliphatic amine, a polyolefin and a poly(oxyalkylene) monool | |
EP3887488B1 (fr) | Composé amidoamine gras quaternaire destiné à être utilisé en tant qu'additif pour carburant | |
CA2165305C (fr) | Compositions d'additif pour carburant contenant une amine aliphatique, une polyolefine et un ester aromatique | |
US20220145199A1 (en) | Fuel additives for mitigating injector nozzle fouling and reducing particulate emissions | |
CA2440548C (fr) | Methode de reduction des emissions de particules dans des moteurs a combustion interne | |
EP4214297B1 (fr) | Aryloxy alkylamines utilisées comme additifs de carburant pour réduire l'encrassement des injecteurs dans des moteurs à essence, allumage par étincelle et injection directe | |
EP4413100A1 (fr) | Additifs de carburant pour abaisser le dépôt et l'émission de particules | |
JP4330828B2 (ja) | 燃料油添加剤および燃料油組成物 | |
AU2003219078B2 (en) | Gasoline additives | |
CA2533001A1 (fr) | Compositions d'essence | |
WO2008054368A9 (fr) | Composition de type additif synergique pour les combustibles pétroliers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 10/04 20060101ALI20240104BHEP Ipc: C10L 1/2383 20060101ALI20240104BHEP Ipc: C10L 1/22 20060101ALI20240104BHEP Ipc: C10L 1/2387 20060101ALI20240104BHEP Ipc: C10L 1/238 20060101ALI20240104BHEP Ipc: C10L 1/23 20060101ALI20240104BHEP Ipc: C10L 1/224 20060101ALI20240104BHEP Ipc: C10L 1/222 20060101ALI20240104BHEP Ipc: C10L 10/06 20060101ALI20240104BHEP Ipc: C10L 10/02 20060101ALI20240104BHEP Ipc: C10L 1/10 20060101AFI20240104BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240207 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CHEVRON U.S.A. INC. Owner name: CHEVRON ORONITE COMPANY LLC |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240909 |