EP4165727A1 - Antenne multimode, multiport et multistandard pour systeme de communication adaptable - Google Patents

Antenne multimode, multiport et multistandard pour systeme de communication adaptable

Info

Publication number
EP4165727A1
EP4165727A1 EP21737709.2A EP21737709A EP4165727A1 EP 4165727 A1 EP4165727 A1 EP 4165727A1 EP 21737709 A EP21737709 A EP 21737709A EP 4165727 A1 EP4165727 A1 EP 4165727A1
Authority
EP
European Patent Office
Prior art keywords
antenna
radiating element
communication
port
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21737709.2A
Other languages
German (de)
English (en)
Inventor
Divitha Seetharamdoo
Naveen Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Gustave Eiffel
Original Assignee
Universite Gustave Eiffel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Gustave Eiffel filed Critical Universite Gustave Eiffel
Publication of EP4165727A1 publication Critical patent/EP4165727A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the invention relates to antennas and more particularly to an antenna and a method for multiport and multiband antennas capable of addressing several communications standards.
  • This solution has the drawback of generating a significant space requirement or of limiting the number of operable communication standards depending on the size of the antenna device.
  • a matching circuit is necessary to excite the different antennas appropriately.
  • the use of this type of circuit has the disadvantage of operating only on a narrow frequency band inducing low radiation efficiency.
  • MIMO multiple input and output systems
  • Document EP2528158 describes a wireless reception system with a reconfigurable mechanical antenna to simultaneously support reception and transmission of signals.
  • the reconfigurable mechanical antenna includes at least two antennas which can be mechanically reconfigured to cover different frequency ranges.
  • a decoupling and matching network is used and electrically controlled to change the operating state with each change in the mechanical configuration of the antenna.
  • EP2064774 describes a compact antenna tunable using different shapes of the radiating element and RF switches, duplexers and diplexers to tune the antenna to different desired frequencies.
  • This solution requires the use of a control circuit to tune the antenna by controlling the switch circuit.
  • EP 1776737 discloses a method using a circular flat antenna with a plurality of spatially distinct inputs. All ports resonate on the same frequency band which results in a particular MIMO configuration.
  • the invention aims to solve this particular problem by proposing an antenna provided with a single radiating element configured to simultaneously receive and process signals from different communication technologies using different communication standards, without any configuration or adaptation network.
  • An object of the invention proposes a multimode, multiport and multistandard antenna comprising a substrate on which is disposed a single planar radiating element, a plurality of communication ports connected to the radiating element each at a location distinct from the radiating element and intended to be coupled to different means of communication at the same time using different communication standards.
  • the radiating element comprises an elliptical shape.
  • the elliptical shape of the antenna according to the invention makes it possible to have a single radiating element capable of managing several accesses, each access being dedicated to a particular communication system with a particular communication standard, while having a natural isolation between these. standards, that is to say an absence of interference.
  • This multiport and multistandard multimode antenna offers greater compactness and reduced mass than what exists and which can be applied without restriction to any multistandard communicating system.
  • the elliptical shape of the antenna offers resonance at lower frequency and over a wider band compared to antennas with other planar geometric shapes (polygonal, circular).
  • the antenna according to the invention does not need a configuration or adaptation network to operate, which makes it possible to simplify the architecture of the antenna, to reduce its size and to lighten it. .
  • each location of the radiating element to which a communication port is connected preferably corresponds to a location where the radiation is maximum for a distinct resonance mode. other resonance modes for which a communication port is connected.
  • the total current of the antenna is broken down into characteristic modes. These current modes are naturally orthogonal with respect to each other and are thus independent of each other.
  • resonance mode is meant a characteristic mode of the current.
  • Each characteristic mode is used around its resonant frequency to ensure that the antenna has a good match to its excitation port and that its radiating efficiency will be maximized.
  • the ports are each placed at a location where the maximum current of the mode of interest is located, they are thus isolated from each other, no interference disturbing their transmission or reception of signals over their frequency range.
  • the radiating element can be sized to support as many resonant modes as needed. Each of these modes can be energized by one port thus offering more than three ports.
  • the dimension of the radiating element can vary depending on the minimum frequency of the radiation to be transmitted or received.
  • the dimensions of the antenna are thus adjustable according to the desired use, that is to say according to the different communication standards with which one wishes to use it and the desired number of ports.
  • the antenna may further include a ground track disposed on the substrate and electrically isolated from the radiating element, the track having an impedance suitable for a range of frequencies for a communication standard.
  • the antenna can be dispensed with the use of an adaptation module or the like.
  • the antenna can further comprise a feed line of the coplanar waveguide type to excite the radiating element. in different places which makes it possible to bring about an independent excitation of the different characteristic modes.
  • the width of the feed line depends on the impedance of the communication port with the radiating element, and the distance between the feed line and the ground track depends on the desired bandwidth
  • Another object of the invention provides a communication device comprising an antenna as defined above.
  • Figure 1 shows schematically the concept of antenna architect according to the invention.
  • Figure 2 shows a top view of a multimode, multiport and multistandard antenna according to one embodiment of the invention.
  • FIG. 3A-3C Figures 3A, 3B and 3C show the current distribution on the surface of the radiating element of the antenna of Figure 2 for the first resonance mode, the fourth resonance mode and the ninth mode, respectively. resonance.
  • Figure 1 shows schematically the concept of the antenna architect according to the invention.
  • the multimode, multiport and multistandard antenna 1 comprises a single radiating element 2 and several ports, and more particularly three ports 3, 4 and 5 in the example illustrated in FIG. 1.
  • the antenna 1 is connected to four communication modules 6, 7, 8 and 9 each having a different communication standard.
  • Each port 3 through 5 is paired with each of the four modules 6 through 9.
  • the first communication module 6 uses the telecommunication communication standard called in English “Long Term Evolution” and known by the abbreviation LTE
  • the second communication module 7 uses the communication protocol wireless broadband Internet referred to as WiFi
  • the third communication module 8 uses the third generation 3G telecommunication communication standards
  • the fourth communication module uses the fifth generation radio access telecommunication standard, 5G NR.
  • Figure 2 shows a top view of a multimode, multiport and multistandard antenna according to one embodiment of the invention.
  • the antenna 1 comprises three ports 3, 4 and 5 as in the schematic representation of Figure 1.
  • the multimode antenna comprises a substrate 10 on which is arranged the single radiating element 2.
  • the radiating element 2 is a planar element, in other words two-dimensional, produced by depositing conductive material on the substrate 10 electrically. insulating. To allow its operation and thus isolate the ports from each other without having to resort to an adaptation network, the radiating element 2 has an elliptical shape.
  • Each communication port 3, 4 and 5 is connected at a first end, denoted 30, 40 and 50 respectively, to the radiating element 2, each at a location of the radiating element 2 separate from the other ports.
  • Each communication port 3, 4 and 5 comprises at a second end, denoted respectively 32, 42 and 52, a connection terminal making it possible to connect one or more cable (s) to connect the port to one or more communication modules 6 to 9.
  • the total current of the antenna is broken down into characteristic modes.
  • the current modes are naturally orthogonal with respect to each other and are thus independent of each other.
  • each resonance mode has locations on radiation element 2 where the radiation is greatest. This current distribution is almost constant over the entire frequency band including the communication standards considered.
  • Figure 3A shows the current distribution on the elliptical surface of the radiating element 2 for the first resonance mode
  • Figure 3B shows the current distribution for the fourth resonance mode
  • Figure 3C for the ninth mode of resonance. resonance.
  • Each location of the radiating element 2 to which a communication port 3 to 5 is connected corresponds to a location 60 where the radiation is maximum for a resonance mode distinct from the other resonance modes for which a communication port is connected. They are thus isolated from each other, no interference disturbing their transmission or reception of signals over their frequency range.
  • the antenna 1 further comprises ground tracks 11, 12, 13, 14 and 15 arranged on the substrate 10 and electrically isolated from the radiating element 2.
  • the ground tracks 11 to 15 each have an impedance matched to one of the frequency ranges used for a communication standard. In the embodiment illustrated in FIG. 2, each of the five ground tracks 11 to 15 can thus be adapted to a different communication standard.
  • the invention thus provides an antenna provided with a single radiating element configured to simultaneously receive and process signals from different communication technologies using different communication standards, without any configuration or adaptation network.

Abstract

Une antenne multimode, multiport et multistandard comprenant un substrat sur lequel est disposé un unique élément rayonnant planaire, une pluralité de ports de communication connectés à l'élément rayonnant chacun à un emplacement distinct de l'élément rayonnant et destinés à être couplés à différents moyens de communication à la fois utilisant différents standards de communication. L'élément rayonnant comprend une forme elliptique.

Description

Description
Titre de l'invention : Antenne multimode, multiport et multistandard pour système de communication adaptable
Domaine Technique
L’invention concerne les antennes et plus particulièrement une antenne et un procédé pour des antennes multiport et multibande pouvant adresser plusieurs standards de communications.
Technique antérieure
De par l’existence et l’utilisation d’une pluralité de standards de communication cellulaire ou non cellulaire, il est intéressant pour des systèmes de communication sans fil d’avoir la capacité d’être adapté pour communiquer selon différents standards de communication.
La manière la plus simple pour un système de communication d’être adapté à différents standards de communication est d’utiliser autant d’antennes que possible sur une unique plateforme, chaque antenne étant configurée pour communiquer selon un standard de communication distinct. En d’autres termes, une solution avec une plateforme dotée de plusieurs antennes de réception différentes.
Cette solution a pour inconvénient de générer un encombrement spatial non négligeable ou bien de limiter le nombre de standards de communication opérables en fonction de la taille du dispositif d’antenne. En outre, la plupart du temps un circuit d’adaptation, ou « matching circuit » en anglais, est nécessaire pour exciter les différentes antennes de manière appropriée. De plus, l’utilisation de ce type de circuit a pour inconvénient d’opérer que sur une bande de fréquence étroite induisant une faible efficacité de rayonnement.
Il existe un besoin pour des systèmes de communication permettant de gérer simultanément différentes technologies de communication.
Dans l’article intitulé « Integrated Wide-narrow Band Antenna for Multistandard Radio » de E. Ebrahimi et al., paru dans la revue “IEEE transactions on antennas and propagation » en 2011 , il est décrit une antenne intégrée à large bande fréquentielle sur une première face d’un substrat et une antenne à bande fréquentielle étroite sur une seconde face du substrat opposée à la première face, l’antenne à bande étroite utilisant un circuit d’accordage pour obtenir la bande fréquentielle désirée.
Il y a de nombreux inconvénients à ce type d’antennes dont notamment le fait qu’il soit utilisé deux antennes à proximité, obligeant à l’utilisation d’un circuit d’adaptation pour éviter les interférences comme évoquer précédemment.
Dans l’article intitulé « Considérations for reconfigurable multistandard antennas for mobile terminais » de D. Manteuffel et al. dans la revue « IEEE International Workshop on Antenna » en 2008, et dans l’article intitulé « Compact and low profile frequency agile antenna for multistandard wireless communication Systems » rédigé par Genovesi et al. dans la revue « IEEE transactions on antennas and propagation » en 2014 est décrit l’utilisation de dispositifs actifs et de réseaux d’adaptation pour obtenir un système de communication avec des performance appropriées pour les antennes.
Il y a aussi plusieurs inconvénients à ce type de solution notamment car il y a un besoin de polarisation/d’alimentation pour opérer les dispositifs actifs ce qui rend le système de communication plus encombrant, les antennes présentent une efficacité réduite et un faible gain, et il est relativement difficile d’accorder le réseau de configuration reconfigurable.
Dans l’article d’E. Antonio-Daviu et al. intitulé « Design of a Multimode MIMO antenna using characteristic modes » paru dans « IEEE European Conférence on Antennas and Propagation » en 2009, et dans l’article de D. Manteuffel et al. intitulé « Compact Multimode multi element antenna for indoor UWB massive MIMO » paru dans la revue « IEEE transactions on antennas and propagation » en 2016, il est décrit un système de communication doté d’une unique antenne alimentée via différentes entrées offrant ainsi un aspect multiport à l’unique antenne tout en conservant une certaine compacité.
Cependant, cette solution répond à la problématique de systèmes à entrées et sortie multiples (MIMO) : elle n’est adaptée qu’à la réception d’un seul standard de communication et elle nécessite une architecture complexe de réseau d’alimentation pour alimenter l’antenne à différents endroits.
En outre, il est connu du document EP2840651 un système de communication ayant une antenne dotée d’une pluralité de point d’entrée avec des modules d’accordage individuels pour chaque point d’entrée. L’antenne décrite couvre une plage fréquentielle comprise entre 700 et 960 MHz pour une entrée et une plage fréquentielle comprise entre 2400 et 2690 MHz sur une autre entrée. Des capacités sont utilisées pour réaliser l’accordage fréquentiel.
Cependant, pour réaliser l’accordage fréquentiel, il est aussi nécessaire d’utiliser un circuit de polarisation entraînant une efficacité réduite et une couverture fréquentielle réduite, c’est-à-dire un fonctionnement sur une plage fréquentielle étroite.
Dans la solution proposée, les différents standards sont couverts par des circuits actifs, c’est-à-dire non pas par des circuits passifs.
Le document EP2528158 décrit un système de réception sans fil avec une antenne mécanique reconfigurable pour supporter simultanément la réception et la transmission de signaux. L’antenne mécanique reconfigurable comprend au moins deux antennes qui peuvent être mécaniquement reconfigurées pour couvrir des plages fréquentielles différentes. Un réseau de découplage et de correspondance est utilisé et contrôlé électriquement pour changer d’état de fonctionnement à chaque changement de configuration mécanique de l’antenne.
Cependant, la reconfiguration mécanique nécessite l’utilisation de moteurs électriques et d’aimants qui augmentent l’encombrement du système de communication. En outre, dans la solution proposée, les différents standards sont couverts par des circuits actifs, c’est-à-dire non passifs, comme des contrôleurs ou des capteurs avec des réseaux de découplage et de correspondance.
Le document EP2064774 décrit une antenne compacte accordable en utilisant différentes formes de l’élément rayonnant et des interrupteurs radiofréquences, des duplexeurs et des diplexeurs pour accorder l’antenne sur différentes fréquences souhaitées.
Cette solution requiert l’utilisation d’un circuit de contrôle pour accorder l’antenne en commandant le circuit d’interrupteurs.
Le document EP 1776737 divulgue un procédé utilisant une antenne plate circulaire avec une pluralité d’entrées spatialement distinctes. Tous les ports résonnent sur la même bande fréquentielle ce qui résulte en une configuration MIMO particulière.
Cette solution ne permet pas de traiter plusieurs standards à la fois. Exposé de l’invention
L'invention vise à résoudre ce problème particulier en proposant une antenne munie d’un unique élément rayonnant configuré pour recevoir et traiter simultanément des signaux de différentes technologies de communication utilisant différents standards de communication, sans réseau de paramétrage ou d’adaptation.
Un objet de l’invention propose une antenne multimode, multiport et multistandard comprenant un substrat sur lequel est disposé un unique élément rayonnant planaire, une pluralité de ports de communication connectés à l’élément rayonnant chacun à un emplacement distinct de l’élément rayonnant et destinés à être couplés à différents moyens de communication à la fois utilisant différents standards de communication.
Selon une caractéristique générale de l’invention, l’élément rayonnant comprend une forme elliptique.
La forme elliptique de l’antenne selon l’invention permet d’avoir un unique élément rayonnant capable de gérer plusieurs accès, chaque accès étant dédié à un système de communication particulier avec un standard de communication particulier, tout en ayant une isolation naturelle entre ces standards, c’est-à-dire une absence d’interférence.
Cette antenne multimode multiport et multistandard offre une compacité plus importante et une masse réduite que ce qui existe et qui peut être appliquée sans restriction à tout système communicant multistandard.
En outre, à surface égale, la forme elliptique de l’antenne offre une résonance à plus basse fréquence et sur une plus large bande par rapport aux antennes ayant une autres forme géométrique planaire (polygonale, circulaire).
Par ailleurs, l’antenne selon l’invention n’a pas besoin d’un réseau de paramétrage ou d’adaptation pour fonctionner, ce qui permet de simplifier l’architecture de l’antenne, de réduire son encombrement et de l’alléger.
Selon un premier aspect de l’antenne, chaque emplacement de l’élément rayonnant auquel est connecté un port de communication correspond de préférence à un emplacement où le rayonnement est maximal pour un mode de résonnance distinct des autres modes de résonnance pour lesquels un port de communication est connecté.
Le courant total de l’antenne est décomposé en modes caractéristiques. Ces modes de courant sont naturellement orthogonaux les uns par rapport aux autres et sont ainsi indépendants les uns des autres.
On entend par mode de résonance un mode caractéristique du courant. Chaque mode caractéristique est utilisé autour de sa fréquence de résonnance pour s’assurer que l’antenne présente une bonne adaptation à son port d’excitation et que son efficacité de rayonnement sera maximisée.
Les ports sont chacun placés à un emplacement où se situe le maximum de courant du mode auquel on s’intéresse, ils sont ainsi isolés les uns des autres, aucune interférence ne venant perturber leurs émissions ou réceptions de signaux sur leur plage fréquentielle.
L’élément rayonnant peut être dimensionné pour supporter autant de modes résonants que nécessaire. Chacun de ces modes peut être excité par un port proposant ainsi plus de trois ports.
Selon un deuxième aspect de l’antenne, la dimension de l’élément rayonnant peut varier en fonction de la fréquence minimale du rayonnement à émettre ou recevoir.
Les dimensions de l’antenne sont ainsi ajustables en fonction de l’utilisation souhaitée, c’est-à-dire en fonction des différents standards de communication avec laquelle on souhaite l’utiliser et le nombre de ports souhaité.
Selon un troisième aspect de l’antenne, l’antenne peut comprendre en outre une piste de masse disposée sur le substrat et électriquement isolée de l’élément rayonnant, la piste présentant une impédance adaptée à une plage de fréquences pour un standard de communication.
En adaptant la piste de masse pour avoir une impédance correspondant à celle de la plage fréquentielle du standard de communication, l’antenne peut s’affranchir de l’utilisation d’un module d’adaptation ou autre.
Selon un quatrième aspect de l’antenne, l’antenne peut comprendre en outre une ligne d’alimentation de type guide d’onde coplanaire pour exciter l’élément rayonnant en différents endroits qui permet d’entraîner une excitation indépendante des différents modes caractéristiques.
Selon un cinquième aspect de l’antenne, laquelle la largeur de la ligne d’alimentation dépend de l’impédance du port de communication avec l’élément rayonnant, et l’écart entre la ligne d’alimentation et la piste de masse dépend de la bande passante souhaitée
Un autre objet de l’invention propose un appareil de communication comprenant une antenne telle que définie ci-dessus.
Brève description des dessins
[Fig. 1] La figure 1 présente schématiquement le concept d’architecteur de l’antenne selon l’invention.
[Fig. 2] La figure 2 présente une vue de dessus d’une antenne multimode, multiport et multistandard selon un mode de réalisation de l’invention.
[Fig. 3A-3C] Les figures 3A, 3B et 3C présentent la distribution de courant sur la surface de l’élément rayonnant de l’antenne de la figure 2 respectivement pour le premier mode de résonnance, le quatrième mode de résonnance et le neuvième mode de résonnance.
Description des modes de réalisation
La figure 1 présente schématiquement le concept d’architecteur de l’antenne selon l’invention.
L’antenne 1 multimode, multiport et multistandard comprend un unique élément rayonnant 2 et plusieurs ports, et plus particulièrement trois ports 3, 4 et 5 dans l’exemple illustré sur la figure 1. L’antenne 1 est connectée à quatre modules de communication 6, 7, 8 et 9 ayant chacun un standard de communication différent. Chaque port 3 à 5 est couplé à chacun des quatre modules 6 à 9.
Dans l’exemple illustré sur la figure 1 , le premier module de communication 6 utilise le standard de communication de télécommunication dénomme en anglais « Long Term Evolution » et connu sous l’abréviation LTE, le deuxième module de communication 7 utilise le protocole de communication sans fil à Internet à haut débit dénommé WiFi, le troisième module de communication 8 utilise les standards de communication de télécommunication de troisième génération 3G, et le quatrième module de communication utilise le standard de télécommunication de cinquième génération d’accès radio, 5G NR.
La figure 2 présente une vue de dessus d’une antenne multimode, multiport et multistandard selon un mode de réalisation de l’invention.
Dans le mode de réalisation illustré sur la figure 2, l’antenne 1 comprend trois ports 3, 4 et 5 comme dans la représentation schématique de la figure 1.
Comme cela est illustré, l’antenne multimode comprend un substrat 10 sur lequel est disposé l’unique élément rayonnant 2. L’élément rayonnant 2 est un élément planaire, autrement dit bidimensionnel, réalisé par un dépôt de matériau conducteur sur le substrat 10 électriquement isolant. Pour permettre son fonctionnement et ainsi isoler les ports les uns des autres sans avoir recours à un réseau d’adaptation, l’élément rayonnant 2 présente une forme elliptique.
Chaque port de communication 3, 4 et 5 est connecté à une première extrémité, respectivement notée 30, 40 et 50, à l’élément rayonnant 2, chacun à un emplacement de l’élément rayonnant 2 distinct des autres ports. Chaque port de communication 3, 4 et 5 comprend à une seconde extrémité, respectivement notée 32, 42 et 52, une borne de connexion permettant de raccorder un ou plusieurs câble(s) pour relier le port à un ou plusieurs modules de communication 6 à 9.
Le courant total de l’antenne est décomposé en modes caractéristiques. Les modes de courant sont naturellement orthogonaux les uns par rapport aux autres et sont ainsi indépendants les uns des autres.
Comme cela est illustré sur les figures 3A, 3B et 3C, chaque mode de résonnance présente des emplacements sur l’élément rayonnement 2 où le rayonnement est plus important. Cette distribution de courant est quasi-constante sur toute la bande de fréquence incluant les standards de communication considérés.
La figure 3A présente la distribution en courant sur la surface elliptique de l’élément rayonnant 2 pour le premier mode de résonnance, tandis que la figure 3B représente la distribution en courant pour le quatrième mode de résonnance et la figure 3C pour le neuvième mode de résonnance.
Chaque emplacement de l’élément rayonnant 2 auquel est connecté un port de communication 3 à 5 correspond à un emplacement 60 où le rayonnement est maximal pour un mode de résonnance distinct des autres modes de résonnance pour lesquels un port de communication est connecté. Ils sont ainsi isolés les uns des autres, aucune interférence ne venant perturber leurs émissions ou réceptions de signaux sur leur plage fréquentielle. L’antenne 1 comprend en outre des pistes de masse 11, 12, 13, 14 et 15 disposées sur le substrat 10 et électriquement isolée de l’élément rayonnant 2. Les pistes de masse 11 à 15 présentent chacune une impédance adaptée à une des plages de fréquences utilisées pour un standard de communication. Dans le mode de réalisation illustré sur la figure 2, chacune des cinq pistes de masse 11 à 15 peut être ainsi adaptée à un standard de communication différent.
L'invention fournit ainsi une antenne munie d’un unique élément rayonnant configuré pour recevoir et traiter simultanément des signaux de différentes technologies de communication utilisant différents standards de communication, sans réseau de paramétrage ou d’adaptation.

Claims

Revendications
[Revendication 1] Antenne (1) multimode, multiport et multistandard comprenant un substrat (10) sur lequel est disposé un unique élément rayonnant (2) planaire, une pluralité de ports de communication (3, 4, 5) connectés à l'élément rayonnant (2) chacun à un emplacement distinct de l'élément rayonnant (2) et destinés à être couplés à différents moyens de communication (6, 7, 8, 9) à la fois, les moyens de communication (6, 7, 8, 9) utilisant différents standards de communication, l'élément rayonnant (2) comprend une forme elliptique, caractérisée en ce que l'antenne comprend en outre une ligne d'alimentation de type guide d'onde coplanaire pour exciter l'élément rayonnant (2) en différents endroits et entraîner l'excitation indépendante des différents modes caractéristiques.
[Revendication 2] Antenne (1) selon la revendication 1, dans lequel chaque emplacement de l'élément rayonnant (2) auquel est connecté un port de communication (3, 4, 5) correspond à un emplacement où la distribution de courant est maximale pour un mode, caractéristique et résonant, distinct des autres modes de résonnance pour lesquels un port de communication (3, 4 ? 5) est connecté.
[Revendication 3] Antenne (1) selon l'une des revendications 1 ou 2, dans laquelle la dimension de l'élément rayonnant (2) varie en fonction de la fréquence minimale du rayonnement à émettre ou recevoir.
[Revendication 4] Antenne (1) selon l'une des revendications 1 à 3, comprenant une piste de masse (11 à 15) disposée sur le substrat (10) et électriquement isolée de l'élément rayonnant (2), la piste de masse (11 à 15) présentant une impédance adaptée à une plage de fréquences pour un standard de communication.
[Revendication 5] Antenne (1) selon l'une des revendications 1 à 4, dans laquelle la largeur de la ligne d'alimentation dépend de l'impédance du port de communication avec l'élément rayonnant (2), et l'écart entre la ligne d'alimentation et la piste (11 à 15) de masse dépend de la bande passante souhaitée.
[Revendication 6] Appareil de communication comprenant une antenne (1) selon l'une des revendications 1 à 5.
EP21737709.2A 2020-06-11 2021-06-06 Antenne multimode, multiport et multistandard pour systeme de communication adaptable Pending EP4165727A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006115A FR3111480A1 (fr) 2020-06-11 2020-06-11 Antenne multimode, multiport et multistandard pour système de communication adaptable
PCT/FR2021/051014 WO2021250342A1 (fr) 2020-06-11 2021-06-06 Antenne multimode, multiport et multistandard pour systeme de communication adaptable

Publications (1)

Publication Number Publication Date
EP4165727A1 true EP4165727A1 (fr) 2023-04-19

Family

ID=72709500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21737709.2A Pending EP4165727A1 (fr) 2020-06-11 2021-06-06 Antenne multimode, multiport et multistandard pour systeme de communication adaptable

Country Status (3)

Country Link
EP (1) EP4165727A1 (fr)
FR (1) FR3111480A1 (fr)
WO (1) WO2021250342A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209080B2 (en) 2004-07-01 2007-04-24 Raytheon Co. Multiple-port patch antenna
US7671804B2 (en) 2006-09-05 2010-03-02 Apple Inc. Tunable antennas for handheld devices
JP2011078037A (ja) * 2009-10-02 2011-04-14 Tokai Univ 広帯域平面アンテナ
EP2528158B1 (fr) 2011-05-26 2014-04-16 Option NV Dispositif sans fil avec antenne extensible
US9325067B2 (en) 2013-08-22 2016-04-26 Blackberry Limited Tunable multiband multiport antennas and method

Also Published As

Publication number Publication date
WO2021250342A1 (fr) 2021-12-16
FR3111480A1 (fr) 2021-12-17

Similar Documents

Publication Publication Date Title
EP1374340B1 (fr) Antenne commutee
WO1999060657A1 (fr) Antenne pour station de base de radiocommunication
EP0890226B1 (fr) Station radio a antennes a polarisation circulaire
EP0427654A1 (fr) Antenne en hélice, quadrifilaire, résonnante bicouche
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
FR2817661A1 (fr) Dispositif pour la reception et/ou l'emission de signaux multifaisceaux
EP3146593A1 (fr) Système d'antennes pour réduire le couplage électromagnétique entre antennes
WO2014040957A1 (fr) Antenne multibande à inclinaison électrique variable
WO1999056348A1 (fr) Systemes d'antennes de poursuite de satellites a defilement
EP0957534A1 (fr) Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement
EP0098192B1 (fr) Dispositif de multiplexage pour grouper deux bandes de fréquences
EP2446504A1 (fr) Systeme d'antenne avec positionneur equilibre
FR2923658A1 (fr) Systeme de deux antennes isolees a une frequence de travail
EP0934608B1 (fr) Systeme antennaire pour poste radiotelephone portatif
EP4165727A1 (fr) Antenne multimode, multiport et multistandard pour systeme de communication adaptable
EP2009735A1 (fr) Antenne a diversité de polarisation pour la transmission et/ou la reception de signaux audio et/ou video
FR2829297A1 (fr) Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
FR2831734A1 (fr) Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2930844A1 (fr) Antenne rf d'emission et/ou de reception comportant des elements rayonnants excites par couplage electromagnetique sans contact
FR3013909A1 (fr) Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes
EP3506429A1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
EP0957590A1 (fr) Circuit et procédé de réception ou d'émission d'ondes hyperfréquences

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)