WO1999060657A1 - Antenne pour station de base de radiocommunication - Google Patents

Antenne pour station de base de radiocommunication Download PDF

Info

Publication number
WO1999060657A1
WO1999060657A1 PCT/FR1999/001169 FR9901169W WO9960657A1 WO 1999060657 A1 WO1999060657 A1 WO 1999060657A1 FR 9901169 W FR9901169 W FR 9901169W WO 9960657 A1 WO9960657 A1 WO 9960657A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
housing
station according
front face
slots
Prior art date
Application number
PCT/FR1999/001169
Other languages
English (en)
Inventor
Thierry Lucidarme
Original Assignee
Nortel Matra Cellular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Matra Cellular filed Critical Nortel Matra Cellular
Priority to EP99919340A priority Critical patent/EP1078418A1/fr
Priority to US09/700,550 priority patent/US6501965B1/en
Publication of WO1999060657A1 publication Critical patent/WO1999060657A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to a radiocommunication base station.
  • This station is especially intended for a cellular network, and more particularly for small cells (micro- or picocells) in an "indoor" type environment (station installable inside premises).
  • base stations For indoor applications, two arrangements of base stations (or their antenna systems if these form separate units from those providing digital processing and the interface with fixed networks) are commonly used by installers a wall layout and a ceiling layout.
  • the antenna often consists of a dipole (or a monopole) which radiates a wave whose electric field is polarized parallel to the axis of the dipole.
  • a dipole or a monopole
  • microstrip type printed circuit antennas whose radiation pattern is more directive. So that the electric field produced is vertically polarized in the two usual arrangements, wall and ceiling, we have to double the number of antenna systems, which is not economical and can cause space problems. Otherwise, we must design two separate architectures, one for the wall position and the other for the ceiling position, which is also disadvantageous.
  • Document GB-A-2 229 319 discloses an antenna intended to be mounted in a vertical position, and in which the radiating element consists of a pair of spaced parallel metal plates. It is indicated that the antenna could be mounted horizontally, in a ceiling or a floor.
  • An object of the present invention is to provide base stations whose antenna systems adapt well to the various usual conditions of "indoor” installation, without requiring duplication.
  • the invention thus provides a radiocommunication base station comprising, for communicating by radio with mobile stations, at least one antenna system comprising a housing for its attachment to a support.
  • the antenna system comprises at least one radiating slot formed in a conductive plane parallel to a front face of the housing and arranged to emit, in a first direction substantially perpendicular to the front face of the housing, a polarization electric field oriented in a second direction substantially parallel to said front face and perpendicular to the orientation of the slit, and to emit, in at least one other direction substantially closer to the second direction than to the first direction, a polarizing electric field oriented substantially in the first direction, the housing having a first operating position in which said second direction is substantially vertical, and a second operating position in which said first direction is substantially vertical.
  • the antenna system In the wall position, the antenna system will be placed so that the "first direction" is vertical.
  • the mobile stations located opposite the antenna system will thus receive a wave whose electric field has a relatively large vertical component, as is desirable.
  • the antenna system comprises two parallel radiating slots formed in a conductive plane parallel to a front face of the housing, separated by a distance substantially equal to half of the radiated wavelength, and means for supplying the two slots with radioelectric energy, arranged to supply the two slots either in phase or in phase opposition depending on whether the front face of the housing is installed in a horizontal or vertical plane.
  • FIG. 1 is a diagram showing the field radiated in front of a slot supplied with radio frequency
  • FIG. 2 is a perspective diagram showing a base station according to the invention in the wall position
  • - Figure 3 is a perspective view showing a base station according to the invention in the ceiling position
  • - Figure 4 is a radiation diagram of a pair of parallel slots spaced by ⁇ / 2, in a plane perpendicular to the slots;
  • - Figure 5 is a diagram of supply means R of a pair of radiating slots of a base station according to the invention.
  • FIG. 6 is a perspective diagram of an embodiment of the supply of an individual slot.
  • FIG. 1 illustrates the electric E and magnetic fields H of the wave produced by a radiating slit 10 formed in a plane xOz.
  • Ox indicates the longitudinal direction of the slit, and Oy the direction perpendicular to the plane xOz.
  • the slot 10 is supplied with radio electric energy from its rear face, by means of a conductor parallel to the axis Oz.
  • Typical dimensions of the slit are a length of the order of ⁇ / 2 (along Ox) and a width of ⁇ / 10 (along Oz), ⁇ being the radiated wavelength.
  • Such a radiating slit 10 formed in an infinite conductive plate has a radiation pattern dual to that of the electric dipole.
  • the property of such a slit that the present invention exploits is the fact that the electric field E has a direction which varies in the plane yOz perpendicular to the longitudinal axis Ox of the slit.
  • the electric field vector E is directed in the direction Oz parallel to the plane of the slit, while in the neighboring planes of the plane of the slit xOz, the field vector electric E is perpendicular to the plane of the slot (parallel to Oy).
  • the magnetic field vector H remains constant, while the electric field vector E performs a half tower.
  • the curve 12 shown in FIG. 1 in the xOy plane is an iso-E curve included in the xOy plane, along which the electric field vector E is constant (parallel to Oz).
  • Curves 13 and 14 are iso-E curves located immediately in front of the xOz plane (electric field E parallel to Oy).
  • such a radiating slot 10 is provided on the front face 16 of the housing 15 of a cellular radio base station intended for an "indoor" type environment.
  • the actual radiation pattern of the slit depends on the dimensions of the conductive plane in which it is formed. In practice, such a slot of typical dimensions ⁇ / 2, ⁇ / 10 formed in a ground plane whose rectangular dimensions are typical of the application considered at a radiocommunication base station
  • Figure 2 shows the base station attached to a wall.
  • the front face 16 of its housing 15 is arranged vertically, parallel to the wall, so that the longitudinal axis Ox of the slot 10 is positioned horizontally.
  • the radiated electric field ⁇ is substantially vertical (the iso-E curve 12 of FIG. 1, located in a horizontal plane, is shown in broken lines in FIG. 2). Consequently, the mobile stations 18 operating in the premises served by the base station receive an electric field E close to the vertical, which optimizes the sensitivity. If the antennas of mobile stations 18 are not located exactly in the xOy plane, they are nevertheless relatively close to this plane, above or below, so that the received electric field E remains fairly close to the vertical since its direction changes only gradually when moving along the arc of a circle 11 shown in FIG. 1.
  • Figure 3 shows the base station suspended from the ceiling with its front face 16 horizontal.
  • the housing 15 can be placed near an angle of the ceiling as shown, the direction Oz pointing approximately along the bisector of this angle.
  • the mobile stations 18 located in the premises served also see an electric field E directed approximately along the vertical.
  • the iso-E curves 19 passing through the most probable locations of the mobile stations are much closer to the curves 13 and 14 shown in FIG. 1 than to the curve 12.
  • From the front face 16 of the station basic the mobiles 18 are seen under a near-grazing incidence, which ensures this property of the electric field which the invention takes advantage of. This latter property is not observed vertically from the base station, the electric field received in direct view there being almost horizontal. However, these locations are very close to the base station so that a large field is received there. It is rather judicious, considering the problems of "blocking" previously evoked, that the electric field is depolarized in this zone.
  • the base station whose antenna system consists of a single radiating slot initially diffuses relatively large radioelectric energy beneath it.
  • the network formed by the two parallel slots is supplied in phase opposition so that, if the network were produced from isotropic sources, it would radiate a maximum field in the plane containing the two slots (network configuration "endfire").
  • the network In the wall position, the network is supplied in phase so that, if it were produced from isotropic sources, it would radiate a maximum field in the median plane between the two slots ("broadside" network configuration).
  • FIG. 4 Such an arrangement, in the ceiling position, is shown diagrammatically in FIG. 4.
  • the energy radiated by the system of two slots 10 spaced by ⁇ / 2 and supplied in phase opposition form two lobes 20 symmetrical with respect to the median plane of the slots.
  • the interference of the waves radiated by the two slits means that the energy radiated near this median plane is greatly reduced. It thus succeeds in greatly reducing the horizontal component of the electric field E radiated unnecessarily vertically from the antenna system in the case where it consists of a single slot.
  • the supply of radio frequency energy to the antenna system with two slots 10 can be carried out by the means shown diagrammatically in FIG. 5.
  • the RF power to be radiated is supplied to the input of a hybrid switch 22, the two outputs of which are connected by conductors of the same electrical length to two inputs 24, 25 of a hybrid coupler 23.
  • the switch 22 delivers the energy radio frequency either at input 25 or at input 24 of the coupler according to an external command depending on the position (wall or ceiling) in which the station is installed.
  • An example of a hybrid switch that can be used is the single pole double pass switch (SPDT, "single pole - double through") model SWD-1 from the company R&K.
  • the hybrid coupler 23 has four ports 24-27, and can be of the "rat-race” type (see “Lumped-element networks compose wide-bandwidth balun", Microwaves & RF, September 1993, page 119).
  • a "rat-race” coupler comprises a conductive pattern separated from a ground plane by an electric layer, this pattern having the shape of a circle of diameter 3 ⁇ / 2 ⁇ along which the four accesses are distributed: the second, third and fourth access are respectively located at 60, 120 and 180 degrees relative to the first access.
  • the first access 24 and the third access 25 located at 120 ° are those which are connected to the two outputs of the switch 22.
  • the second and fourth access 26, 27 located at 60 ° and 180 ° are used to supply respectively the two slots 10, for example by means of identical coaxial cables 28.
  • Each coaxial cable 28 has its shield connected to the ground plane of the coupler 23, and its core connected to the access 26, 27 transmits energy to the slot 10.
  • the switch 22 is controlled to deliver RF power to the access 25 of the coupler 23 when the base station is installed in the wall position. Under these conditions, the two slits 10 are supplied in phase, so that the radiated energy is maximized in the desired direction (median plane between the two slits) with the vertical electric field. This gives a directivity gain of around 3 dB.
  • the switch 22 delivers the RF power to the access 24, so that the two slots 10 are supplied in phase opposition, which provides the interference effect explained with reference to FIG. 4.
  • the FIG. 6 shows a hybrid component 30 which can serve as an antenna in a base station according to the invention.
  • the radiating slot 10 is unique in the diagram of FIG. 10, but it will be understood that this diagram can be repeated in the case of multiple radiating slots.
  • Component 30 is of the "triplate” type. It consists of two metallized planes 31,32 sandwiching a dielectric. These two planes 31, 32 are connected to ground.
  • the radiating slot 10 is etched in that of the ground planes 31 which is directed towards the outside, the other ground plane 32 being uninterrupted.
  • a conductive line 33 is located in the dielectric between the ground planes 31,32. It is on this line 33 that the radioelectric energy is supplied (in the diagram of FIG. 5, the line 33 is connected to the access 26 or 27 of the coupler 23). In the vicinity of the slot 10, the conductive line 33 is perpendicular to it.
  • the impedance of the slot antenna is adjusted by varying the position, along the longitudinal direction x of the slot 10, where the line 33 crosses this slot 10.
  • Triplate components 30 such as that shown in Figure 6 have the advantage of providing a compact and inexpensive embodiment of the antenna system and its power supply.
  • Such a component 30 can be placed on the front face of the housing 15 to radiate the waves having the properties explained above. In the explanations previously given, it is the entire base station of the micro- or pico-cell which is installed either in the wall position or in the ceiling position ( Figures 2 and 3).
  • each antenna system can be installed on the wall or ceiling as explained above.
  • the housing 15 provided with the slit antenna may contain a duplexer, a power amplifier for the transmission, a low noise amplifier for the reception, and possibly certain filters, modulators or demodulators.
  • the link between the main unit of the station and such a box 15 can consist of a coaxial cable if it carries radio frequency signals, or a simple twisted pair if it carries signals in baseband.

Abstract

La station a un système d'antenne comportant un boîtier (15) pour sa fixation sur un support. Ce système d'antenne peut consister en une ou plusieurs fentes rayonnantes. Il est agencé pour émettre, dans une première direction sensiblement perpendiculaire à une face avant (16) du boîtier, un champ électrique (E) de polarisation orientée selon une seconde direction sensiblement parallèle à ladite face avant, et pour émettre, dans au moins une autre direction sensiblement plus proche de la seconde direction que de la première direction, un champ électrique (E) de polarisation orientée sensiblement selon la première direction. La station de base est bien adaptée aux environnements 'indoor', dans des micro- ou pico-cellules. On peut en effet la fixer verticalement sur un mur ou la suspendre horizontalement à un plafond, sans qu'il ait été nécessaire de prévoir des systèmes d'antenne distincts pour ces deux modes d'installation.

Description

ANTENNE POUR STATION DE BASE DE RADIOCOMMUNICATION
La présente invention concerne une station de base de radiocommunication. Cette station est notamment destinée à un réseau cellulaire, et plus particulièrement à des cellules de petites dimensions (micro- ou pico- cellules) en environnement de type "indoor" (station installable à 1 ' intérieur de locaux) .
On cherche généralement à faire en sorte que les systèmes d'antennes des stations de base de radiocommunication rayonnent une onde polarisée verticalement par rapport au sol, c'est-à-dire avec un vecteur champ électrique dirigé verticalement. La raison en est que les dipôles des antennes des stations mobiles sont le plus souvent orientés autour de la verticale lorsque ces stations sont en cours de communication. La polarisation verticale de 1 ' onde produite par la station de base permet donc d'optimiser la puissance captée.
En général, il est souhaitable d'intégrer le système d'antenne à la structure du boîtier de la station, afin de limiter les coûts d'installation liés à l'emploi de connecteurs , câbles et antennes déportés .
Pour les applications "indoor", deux dispositions des stations de base (ou de leurs systèmes d'antennes si ceux-ci forment des unités distinctes de celles assurant les traitements numériques et 1 ' interface avec les réseaux fixes) sont couramment employées par les installateurs une disposition murale et une disposition au plafond.
L'antenne consiste souvent en un dipôle (ou un monopôle) qui rayonne un onde dont le champ électrique est polarisé parallèlement à l'axe du dipôle. On rencontre également des antennes à circuit imprimé de type microstrip, dont le diagramme de rayonnement est plus directif. Pour que le champ électrique produit soit polarisé verticalement dans les deux dispositions usuelles, murale et au plafond, on est amené à multiplier par deux le nombre de systèmes d'antenne, ce qui n'est pas économique et peut poser des problèmes d'encombrement. Sinon, on doit concevoir deux architectures distinctes, l'une pour la position murale et l'autre pour la position plafond, ce qui est également pénalisant. Les documents WO 95/23441, EP-A-0 805 508, EP-A-0 521 326, "Analysis and design of a circumferential ide slot eut on a thin cylinder for mobile base station antennas" ( J. Hiroka a et al, IEEE, Proceedings of APSIS, 1993, Vol.3, 28 juin 1993, pages 1842-1845), ainsi que l'abrégé de la demande de brevet japonais JP-A-09 232835, divulguent des antennes dont les éléments rayonnants sont constitués par des fentes rayonnantes .
Le document GB-A-2 229 319 divulgue une antenne destinée à être montée en position verticale, et dans laquelle l'élément rayonnant consiste en une paire de plaques métalliques parallèles et espacées . Il est indiqué que l'antenne pourrait être montée horizontalement, dans un plafond ou un plancher .
Un but de la présente invention est de proposer des stations de base dont les systèmes d'antenne s'adaptent bien aux différentes conditions usuelles d'installation "indoor", sans nécessiter de duplication.
L'invention propose ainsi une station de base de radiocommunication comprenant, pour communiquer par radio avec des stations mobiles, au moins un système d'antenne comportant un boîtier pour sa fixation sur un support.
Selon un premier aspect de l'invention, le système d' antenne comprend au moins une fente rayonnante formée dans un plan conducteur parallèle à une face avant du boîtier et agencée pour émettre, dans une première direction sensiblement perpendiculaire à la face avant du boîtier, un champ électrique de polarisation orientée selon une seconde direction sensiblement parallèle à ladite face avant et perpendiculaire à l'orientation de la fente, et pour émettre, dans au moins une autre direction sensiblement plus proche de la seconde direction que de la première direction, un champ électrique de polarisation orientée sensiblement selon la première direction, le boîtier ayant une première position de fonctionnement dans laquelle ladite seconde direction est sensiblement verticale, et une seconde position de fonctionnement dans laquelle ladite première direction est sensiblement verticale .
En position murale, on disposera le système d'antenne de façon que la "première direction" soit verticale. Les stations mobiles situées en regard du système d'antenne recevront ainsi une onde dont le champ électrique présente une composante verticale relativement importante, ainsi qu'il est souhaitable.
En position plafond, la face avant du boîtier sera horizontale. L' "autre direction" étant orientée vers une zone à couvrir, les stations mobiles situées dans cette zone recevront également une onde dont le champ électrique présente une composante verticale relativement importante . Il est vrai qu'à l'aplomb du boîtier, le champ électrique directement rayonné est quasi-horizontal. Mais grâce au fait que les stations mobiles qui s'y trouvent reçoivent une puissance assez élevée, cette orientation du champ électrique ne pose pas de problème de sensibilité . Au contraire, le fait de rayonner un champ électrique quasi- horizontal à proximité immédiate de la station permet, grâce aux pertes par dépolarisation, de limiter l'incidence des problèmes de "blocking" , c'est-à-dire de saturation des récepteurs (voir spécification GSM 05.05). Ces problèmes de "blocking" sont très importants en pratique et conduisent actuellement à des spécifications sévères quant à la linéarité des récepteurs , ce qui est un facteur de surcoût.
Selon un deuxième aspect de l' inventio , le système d'antenne comprend deux fentes rayonnantes parallèles formées dans un plan conducteur parallèle à une face avant du boîtier, séparées par une distance sensiblement égale à la moitié de la longueur d'onde rayonnée, et des moyens d'alimentation des deux fentes en énergie radioelectrique, agencés pour alimenter les deux fentes soit en phase soit en opposition de phase selon que la face avant du boîtier est installée dans un plan horizontal ou vertical .
D ' autres particularités et avantages de la présente invention apparaîtront dans la description ci- après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels
- la figure 1 est un diagramme montrant le champ rayonné en avant d'une fente alimentée en radiofréquence ;
- la figure 2 est un schéma en perspective montrant une station de base selon l'invention en position murale; - la figure 3 est une vue en perspective montrant une station de base selon l'invention en position plafond;
- la figure 4 est un diagramme de rayonnement d'une paire de fentes parallèles espacées de λ/2 , dans un plan perpendiculaire aux fentes ; - la figure 5 est un schéma de moyens d'alimentation R d'une paire de fentes rayonnantes d'une station de base selon l'invention; et
- la figure 6 est un schéma en perspective d'une forme de réalisation de l'alimentation d'une fente individuelle.
La figure 1 illustre les champs électrique E et magnétique H de 1 ' onde produite par une fente rayonnante 10 ormée dans un plan xOz . Ox désigne la direction longitudinale de la fente, et Oy la direction perpendiculaire au plan xOz . La fente 10 est alimentée en énergie radio électrique depuis sa face arrière, au moyen d'un conducteur parallèle à l'axe Oz . Des dimensions typiques de la fente sont une longueur de 1 ' ordre de λ/2 (suivant Ox) et une largeur de λ/10 (suivant Oz) , λ étant la longueur d'onde rayonnée. Une telle fente rayonnante 10 formée dans une plaque conductrice infinie a un diagramme de rayonnement dual de celui du dipôle électrique. La propriété d'une telle fente que la présente invention exploite est le fait que le champ électrique E a une direction qui varie dans le plan yOz perpendiculaire à 1 ' axe longitudinal Ox de la fente .
Ainsi, le long de la direction Oy perpendiculaire au plan de la fente 10, le vecteur champ électrique E est dirigé suivant la direction Oz parallèle au plan de la fente, alors que dans les plans voisins du plan de la fente xOz, le vecteur champ électrique E est perpendiculaire au plan de la fente (parallèle à Oy) . Lorsqu'on se déplace le long d'un demi-cercle 11 centré sur l'axe Ox (représenté en trait interrompu sur la figure 1) , le vecteur champ magnétique H reste constant, tandis que le vecteur champ électrique E effectue un demi-tour.
La courbe 12 montrée sur la figure 1 dans le plan xOy est une courbe iso-E comprise dans le plan xOy, le long de laquelle le vecteur champ électrique E est constant (parallèle à Oz) . Les courbes 13 et 14 sont des courbes iso-E situées immédiatement en avant du plan xOz (champ électrique E parallèle à Oy) .
Suivant l'invention, une telle fente rayonnante 10 est prévue sur la face avant 16 du boîtier 15 d'une station de base de radiocommunication cellulaire destinée à un environnement de type "indoor" .
Le diagramme de rayonnement réel de la fente dépend des dimensions du plan conducteur dans lequel elle est formée . Dans la pratique , une telle fente de dimensions typiques λ/2, λ/10 formée dans un plan de masse dont les dimensions rectangulaires sont typiques de 1 ' application considérée à une station de base de radiocommunication
(quelques dizaines de centimètres) , produit un diagramme de rayonnement quasiment hémisphérique . La figure 2 montre la station de base fixée à un mur. La face avant 16 de son boîtier 15 est disposée verticalement, parallèlement au mur, de façon que 1 ' axe longitudinal Ox de la fente 10 soit positionné horizontalement .
Ainsi, dans le plan horizontal xOy passant par la fente 10 , le champ électrique rayonné Ξ est sensiblement vertical (la courbe iso-E 12 de la figure 1, située dans un plan horizontal, est représentée en trait interrompu sur la figure 2) . En conséquence, les stations mobiles 18 fonctionnant dans les locaux desservis par la station de base reçoivent un champ électrique E proche de la verticale, ce qui optimise la sensibilité. Si les antennes des stations mobiles 18 ne sont pas situées exactement dans le plan xOy, elles sont néanmoins relativement proches de ce plan, au-dessus ou au-dessous, de sorte que le champ électrique reçu E reste assez proche de la verticale puisque sa direction ne change que progressivement lorsqu'on se déplace le long de l'arc de cercle 11 représenté sur la figure 1.
La figure 3 montre la station de base suspendue au plafond avec sa face avant 16 horizontale.
Le boîtier 15 peut être placé près d'un angle du plafond comme représenté, la direction Oz pointant approximativement suivant la bissectrice de cet angle . Dans cette disposition, les stations mobiles 18 situées dans les locaux desservis voient également un champ électrique E dirigé approximativement suivant la verticale. En d'autres termes, les courbes iso-E 19 passant par les emplacements les plus probables des stations mobiles sont beaucoup plus proches des courbes 13 et 14 représentées sur la figure 1 que de la courbe 12. Depuis la face avant 16 de la station de base, les mobiles 18 sont vus sous une incidence quasi-rasante, ce qui assure cette propriété du champ électrique dont 1 ' invention tire parti . Cette dernière propriété n'est pas respectée à la verticale de la station de base, le champ électrique reçu en vue directe y étant quasiment horizontal. Toutefois, ces emplacements sont très proches de la station de base de sorte qu'un champ important y est capté. Il est plutôt judicieux, au regard des problèmes de "blocking" précédemment évoqués, que le champ électrique soit dépolarisé dans cette zone.
Les figures 2 et 3 montrent que la même station de base, dont le système d'antenne consiste en une simple fente rayonnante 10 formée dans la face avant 16 de son boîtier 15, peut être utilisée sans autre mesure particulière en position murale ou en position plafond, tout en procurant 1 ' orientation souhaitée du champ électrique rayonné .
On peut noter que, dans la position plafond représentée sur la figure 3, la station de base dont le système d'antenne consiste en une fente rayonnante unique diffuse initialement une énergie radioelectrique relativement importante sous elle. Pour limiter cet effet, on prévoit avantageusement que le système d'antenne consiste en deux fentes parallèles formées dans la face avant 16 du boîtier 15 et séparées par une distance λ/2 égale à la moitié de la longueur d'onde rayonnée.
Dans la disposition plafond, le réseau formé par les deux fentes parallèles est alimenté en opposition de phase de façon que, si le réseau était réalisé à partir de sources isotropes, il rayonnerait un champ maximum dans le plan contenant les deux fentes (configuration de réseau "endfire") .
Dans la position murale, le réseau est alimenté en phase de façon que, s'il était réalisé à partir de sources isotropes , il rayonnerait un champ maximum dans le plan médian entre les deux fentes (configuration de réseau "broadside") .
Un tel agencement, en position plafond, est représenté schématiquement sur la figure 4. L ' énergie rayonnée par le système de deux fentes 10 espacées de λ/2 et alimentées en opposition de phase forme deux lobes 20 symétriques par rapport au plan médian des fentes . Les interférences des ondes rayonnees par les deux fentes font que 1 ' énergie rayonnée à proximité de ce plan médian est fortement réduite . On parvient ainsi à diminuer fortement la composante horizontale du champ électrique E rayonnée inutilement à la verticale du système d'antenne dans le cas où celui-ci se compose d'une seule fente.
L'alimentation en énergie radiofréquence du système d'antennes à deux fentes 10 peut être réalisée par les moyens représentés schématiquement sur la figure 5.
La puissance RF à rayonner est fournie à l'entrée d'un commutateur hybride 22 dont les deux sorties sont reliées par des conducteurs de même longueur électrique à deux entrées 24,25 d'un coupleur hybride 23. Le commutateur 22 délivre 1 ' énergie radiofréquence soit à l'entrée 25 soit à l'entrée 24 du coupleur selon une commande externe dépendant de la position (murale ou plafond) dans laquelle la station est installée. Un exemple de commutateur hybride utilisable est le commutateur à pôle unique et à double passage (SPDT, "single pôle - double through") modèle SWD-1 de la société R&K.
Le coupleur hybride 23 a quatre accès 24-27, et peut être de type "rat-race" (voir "Lumped-element networks compose wide-bandwidth balun" , Microwaves & RF, septembre 1993, page 119). Un coupleur "rat-race" comporte un motif conducteur séparé d'un plan de masse par une couche électrique, ce motif ayant la forme d'un cercle de diamètre 3λ/2π le long duquel les quatre accès sont répartis : les second, troisième et quatrième accès sont respectivement situés à 60, 120 et 180 degrés par rapport au premier accès. Le premier accès 24 et le troisième accès 25 situé à 120° sont ceux qui sont reliés aux deux sorties du commutateur 22. Les second et quatrième accès 26,27 situé à 60° et 180° servent à alimenter respectivement les deux fentes 10, par exemple par l'intermédiaire de câbles coaxiaux identiques 28. Chaque câble coaxial 28 a son blindage relié au plan de masse du coupleur 23, et son âme reliée à l'accès 26, 27 transmet 1 ' énergie à la fente 10.
Avec 1 ' agencement de la figure 5 , le commutateur 22 est commandé pour délivrer la puissance RF sur l'accès 25 du coupleur 23 lorsque la station de base est installée en position murale. Dans ces conditions, les deux fentes 10 sont alimentées en phase, de sorte que l'énergie rayonnée est maximisée dans la direction souhaitée (plan médian entre les deux fentes) avec le champ électrique vertical. On obtient ainsi un gain en directivité de 1 ' ordre de 3 dB. Dans la position plafond, le commutateur 22 délivre la puissance RF à l'accès 24, de sorte que les deux fentes 10 sont alimentées en opposition de phase, ce qui procure l'effet d'interférence expliqué en référence à la figure 4. La figure 6 montre un composant hybride 30 pouvant servir d'antenne dans une station de base selon l'invention. La fente rayonnante 10 est unique dans le schéma de la figure 10, mais on comprendra que ce schéma peut être répété dans le cas de fentes rayonnantes multiples.
Le composant 30 est de type "triplaque" . Il se compose de deux plans métallisés 31,32 prenant en sandwich un diélectrique. Ces deux plans 31,32 sont reliés à la masse. La fente rayonnante 10 est gravée dans celui des plans de masse 31 qui est dirigé vers l'extérieur, l'autre plan de masse 32 étant ininterrompu. Une ligne conductrice 33 se trouve dans le diélectrique entre les plans de masse 31,32. C'est sur cette ligne 33 qu'est fournie l'énergie radioelectrique (dans le schéma de la figure 5, la ligne 33 est reliée à l'accès 26 ou 27 du coupleur 23) . Au voisinage de la fente 10, la ligne conductrice 33 est perpendiculaire à celle-ci . L ' impédance de 1 ' antenne à fente est réglée en jouant sur la position, le long de la direction longitudinale x de la fente 10, où la ligne 33 croise cette fente 10. Autour de la fente, quelques passages métallisés 34, formés à travers le diélectrique, relient entre eux les deux plans de masse 31,32 pour éviter les rayonnements par les côtés du composant et les renvois d'énergie vers le générateur. Des composants triplaque 30 tels que celui représenté sur la figure 6 ont l'avantage de procurer une réalisation compacte et bon marché du système d'antenne et de son alimentation. Un tel composant 30 peut être placé sur la face avant du boîtier 15 pour rayonner les ondes présentant les propriétés expliquées précédemment . Dans les explications précédemment données, c'est l'ensemble de la station de base de la micro- ou pico- cellule qui est installée soit en position murale, soit en position plafond (figures 2 et 3) .
Bien entendu, dans le cas où la station de base présente une unité principale (assurant les traitement en bande de base et l'interface avec les réseaux fixes) distincte du ou des systèmes d'antenne employés pour desservir une cellule ou plusieurs secteurs depuis cette station de base, c'est chaque système d'antenne qui peut faire l'objet de l'installation murale ou plafond comme expliqué précédemment. Dans ce cas, le boîtier 15 pourvu de 1 ' antenne à fente peut renfermer un duplexeur , un amplificateur de puissance pour l'émission, un amplificateur faible bruit pour la réception, et éventuellement certains filtres, modulateurs ou démodulateurs . La liaison entre 1 ' unité principale de la station et un tel boîtier 15 peut consister en un câble coaxial si elle transporte des signaux radiofréquence, ou en une simple paire torsadée si elle transporte des signaux en bande de base.

Claims

R E V E N D I C A T I O N S
1. Station de base de radiocommunication comprenant, pour communiquer par radio avec des stations mobiles (18) , au moins un système d'antenne comportant un boîtier (15) pour sa fixation sur un support, caractérisé en ce que le système d'antenne comprend au moins une fente rayonnante
(10) formée dans un plan conducteur parallèle à une face avant (16) du boîtier (15) et agencée pour émettre, dans une première direction sensiblement perpendiculaire à la face avant (16) du boîtier, un champ électrique (E) de polarisation orientée selon une seconde direction sensiblement parallèle à ladite face avant et perpendiculaire à l'orientation de la fente, et pour émettre, dans au moins une autre direction sensiblement plus proche de la seconde direction que de la première direction, un champ électrique (E) de polarisation orientée sensiblement selon la première direction, le boîtier ayant une première position de fonctionnement dans laquelle ladite seconde direction est sensiblement verticale, et une seconde position de fonctionnement dans laquelle ladite première direction est sensiblement verticale .
2. Station de base selon la revendication 1 , dans laquelle chaque fente rayonnante (10) du système d'antenne est formée dans une partie du boîtier (15) s ' étendant suivant sa face avant (16) .
3. Station de base selon la revendication 1 ou 2 , dans laquelle le système d'antenne comprend une seule fente rayonnante (10) orientée perpendiculairement aux première et seconde directions.
4. Station de base selon la revendication 1 ou 2 , dans laquelle le système d'antenne comprend deux fentes rayonnantes parallèles (10) orientées perpendiculairement aux première et seconde directions et séparées par une distance sensiblement égale à la moitié de la longueur d'onde rayonnée, et des moyens (22,23,28,30) d'alimentation des deux fentes en énergie radioelectrique, agencés pour alimenter les deux fentes soit en phase soit en opposition de phase selon que la face avant (16) du boîtier (15) est installée dans un plan horizontal ou vertical .
5. Station de base selon la revendication 4 , dans laquelle les moyens d'alimentation comprennent un coupleur hybride à quatre accès (23) , un commutateur RF double (22) dont une entrée reçoit 1 ' énergie radioelectrique à rayonner et deux sorties sont respectivement reliées à deux accès (24,25) du coupleur hybride, et deux moyens d'alimentation (28) reliant respectivement les deux autres accès (26,27) du coupleur hybride aux deux fentes rayonnantes (10) .
6. Station de base selon la revendication 5 , dans laquelle le coupleur hybride (23) est de type "rat race" .
7. Station de base selon la revendication 5 ou 6, dans laquelle les deux moyens d'alimentation (28) sont de type coaxial ou tri-plaque.
8. Station de base selon l'une quelconque des revendications 1 à 7 , dans laquelle un circuit imprimé tri-plaque (30) est disposé suivant la face avant (16) du boîtier (15) , ce circuit imprimé comprenant deux plans conducteurs externes (31,32) reliés à la masse dont l'un, dirigé vers l'extérieur du boîtier (16), est gravé pour former chaque fente rayonnante (10) , une ligne (33) d'alimentation de chaque fente (10) étant située entre les deux plans conducteurs externes .
9. Station de base de radiocommunication comprenant, pour communiquer par radio avec des stations mobiles (18) , au moins un système d'antenne comportant un boîtier (15) pour sa fixation sur un support, caractérisée en ce que le système d'antenne comprend deux fentes rayonnantes parallèles (10) formées dans un plan conducteur parallèle à une face avant (16) du boîtier (15) , séparées par une distance sensiblement égale à la moitié de la longueur d'onde rayonnée, et des moyens (22,23,28,30) d'alimentation des deux fentes en énergie radioelectrique, agencés pour alimenter les deux fentes soit en phase soit en opposition de phase selon que la face avant (16) du boîtier (15) est installée dans un plan horizontal ou vertical .
10. Station de base selon la revendication 9 , dans laquelle les fentes rayonnantes (10) sont formées dans une partie du boîtier (15) s ' étendant suivant sa face avant (16) .
11. Station de base selon la revendication 9 ou 10, dans laquelle les moyens d'alimentation comprennent un coupleur hybride à quatre accès (23) , un commutateur RF double (22) dont une entrée reçoit l'énergie radioelectrique à rayonner et deux sorties sont respectivement reliées à deux accès (24,25) du coupleur hybride, et deux moyens d'alimentation (28) reliant respectivement les deux autres accès (26,27) du coupleur hybride aux deux fentes rayonnantes (10) .
12. Station de base selon la revendication 11 , dans laquelle le coupleur hybride (23) est de type "rat race" .
13. Station de base selon les revendications 11 ou 12, dans laquelle les deux moyens d'alimentation (28) sont de type coaxial ou tri-plaque.
14. Station de base selon l'une quelconque des revendications 9 à 13, dans laquelle un circuit imprimé tri-plaque (30) est disposé suivant la face avant (16) du boîtier (15) , ce circuit imprimé comprenant deux plans conducteurs externes (31,32) reliés à la masse dont l'un, dirigé vers l'extérieur du boîtier (16), est gravé pour former chaque fente rayonnante (10) , une ligne (33) d'alimentation de chaque fente (10) étant située entre les deux plans conducteurs externes .
PCT/FR1999/001169 1998-05-20 1999-05-17 Antenne pour station de base de radiocommunication WO1999060657A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99919340A EP1078418A1 (fr) 1998-05-20 1999-05-17 Antenne pour station de base de radiocomunication
US09/700,550 US6501965B1 (en) 1998-05-20 1999-05-17 Radio communication base station antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9806385A FR2779022B1 (fr) 1998-05-20 1998-05-20 Station de base de radiocommunication
FR98/06385 1998-05-20

Publications (1)

Publication Number Publication Date
WO1999060657A1 true WO1999060657A1 (fr) 1999-11-25

Family

ID=9526557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001169 WO1999060657A1 (fr) 1998-05-20 1999-05-17 Antenne pour station de base de radiocommunication

Country Status (5)

Country Link
US (1) US6501965B1 (fr)
EP (1) EP1078418A1 (fr)
CN (1) CN1162939C (fr)
FR (1) FR2779022B1 (fr)
WO (1) WO1999060657A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085776A1 (fr) * 2002-03-04 2003-10-16 Cisco Technology, Inc. Antenne diversifiee pour point d'acces unii
EP1626536A2 (fr) * 2000-06-13 2006-02-15 Sony Deutschland GmbH Système de transmission sans fil
EP1676781A2 (fr) 2000-07-18 2006-07-05 Mineral Lassen LLC Dispositif communication sans fil et procédé
USRE43683E1 (en) 2000-07-18 2012-09-25 Mineral Lassen Llc Wireless communication device and method for discs

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244717A (ja) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd 無線情報家電装置
US7098850B2 (en) * 2000-07-18 2006-08-29 King Patrick F Grounded antenna for a wireless communication device and method
KR100493105B1 (ko) * 2003-04-25 2005-06-02 삼성전자주식회사 가정용 무선 통신 안테나 설치 방법
JP2005075301A (ja) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp 情報処理装置
US7443360B2 (en) * 2005-03-30 2008-10-28 Joymax Electronics Co., Ltd. Readily attachable ceiling antenna housing
US8238822B2 (en) * 2005-08-12 2012-08-07 Kt Corporation Method for selecting the installation position and direction of link antenna in inbuilding radio frequency repeater and cable apparatus used in the same
US7486251B2 (en) * 2005-09-20 2009-02-03 Joymax Electronics Co., Ltd. Readily attachable ceiling antenna housing
US20070292136A1 (en) 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7627250B2 (en) 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
JP5480916B2 (ja) 2009-02-03 2014-04-23 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 光ファイバベースの分散型アンテナシステム、構成要素、及びその較正のための関連の方法
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010090999A1 (fr) 2009-02-03 2010-08-12 Corning Cable Systems Llc Systèmes d'antennes réparties basés sur les fibres optiques, composants et procédés associés destinés à leur surveillance et à leur configuration
US10879619B2 (en) 2009-06-04 2020-12-29 Ubiquiti Inc. Microwave system
CN101640304B (zh) * 2009-07-14 2012-08-15 珠海市民为通讯科技有限公司 城市基站室外天馈布放系统
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
EP2606707A1 (fr) 2010-08-16 2013-06-26 Corning Cable Systems LLC Grappes d'antennes distantes, et systèmes, composants et procédés associés adaptés pour prendre en charge une propagation de signaux de données numériques entre des unités d'antennes distantes
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
EP2678972B1 (fr) 2011-02-21 2018-09-05 Corning Optical Communications LLC Fourniture de services de données numériques comme signaux électriques et télécommunications radiofréquence (rf) sur une fibre optique dans des systèmes de télécommunications répartis, et composants et procédés associés
EP2702710A4 (fr) 2011-04-29 2014-10-29 Corning Cable Sys Llc Détermination de temps de propagation de communications dans systèmes d'antennes distribuées, et composants, systèmes et procédés associés
WO2012148940A1 (fr) 2011-04-29 2012-11-01 Corning Cable Systems Llc Systèmes, procédés et dispositifs pour augmenter la puissance radiofréquence (rf) dans systèmes d'antennes distribuées
US8866684B2 (en) 2012-02-28 2014-10-21 Symbol Technologies, Inc. Reflector-backed RFID slot antenna with a cosecant-squared-like radiation pattern
EP2832012A1 (fr) 2012-03-30 2015-02-04 Corning Optical Communications LLC Réduction d'un brouillage lié à la position dans des systèmes d'antennes distribuées fonctionnant selon une configuration à entrées multiples et à sorties multiples (mimo), et composants, systèmes et procédés associés
WO2013162988A1 (fr) 2012-04-25 2013-10-31 Corning Cable Systems Llc Architectures de système d'antenne distribué
WO2014024192A1 (fr) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution de services de gestion multiplexés par répartition dans le temps (tdm) dans un système d'antennes distribuées, et composants, systèmes et procédés associés
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
EP3008828B1 (fr) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Duplexage par répartition temporelle (tdd) dans des systèmes de communication répartis, comprenant des systèmes d'antenne répartis (das)
CN105452951B (zh) 2013-06-12 2018-10-19 康宁光电通信无线公司 电压控制式光学定向耦合器
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
CN105705857B (zh) * 2013-08-23 2019-03-19 飞利浦灯具控股公司 具有无线发射器的发光体
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
WO2016071902A1 (fr) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Antennes planes monopôles multibandes configurées pour faciliter une isolation radiofréquence (rf) améliorée dans un système d'antennes entrée multiple sortie multiple (mimo)
WO2016075696A1 (fr) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Systèmes d'antennes distribuées (das) analogiques prenant en charge une distribution de signaux de communications numériques interfacés provenant d'une source de signaux numériques et de signaux de communications radiofréquences (rf) analogiques
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
EP3235336A1 (fr) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Modules d'interface numérique (dim) pour une distribution flexible de signaux de communication numériques et/ou analogiques dans des réseaux d'antennes distribuées (das) analogiques étendus
WO2016098111A1 (fr) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Modules d'interface numérique-analogique (daim) pour une distribution flexible de signaux de communications numériques et/ou analogiques dans des systèmes étendus d'antennes distribuées analogiques (das)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229319A (en) * 1989-01-20 1990-09-19 Antenna Products Ltd Antenna
EP0521326A2 (fr) * 1991-06-14 1993-01-07 ALENIA AERITALIA & SELENIA S.P.A. Dispositif pour améliorer l'efficacité d'un système rayonnant par éléments parasites dans le plan de masse
WO1995023441A1 (fr) * 1994-02-28 1995-08-31 Hazeltine Corporation Antennes reseau a fentes
EP0805508A2 (fr) * 1996-05-02 1997-11-05 Nortel Networks Corporation Ensemble d'antennes avec dispositif de réglage de la charactéristique de radiation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680876B1 (fr) * 1991-08-30 1993-11-19 Gec Alsthom Sa Systeme de localisation par ondes electromagnetiques hyperfrequences.
JPH0685520A (ja) * 1992-09-03 1994-03-25 Sumitomo Metal Mining Co Ltd プリントアンテナ
JPH09232835A (ja) * 1996-02-23 1997-09-05 Hitachi Ltd アンテナ
US6301238B1 (en) * 1997-01-28 2001-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Directional-beam generative apparatus and associated method
SE511497C2 (sv) * 1997-02-25 1999-10-11 Ericsson Telefon Ab L M Anordning för att mottaga och sända radiosignaler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229319A (en) * 1989-01-20 1990-09-19 Antenna Products Ltd Antenna
EP0521326A2 (fr) * 1991-06-14 1993-01-07 ALENIA AERITALIA & SELENIA S.P.A. Dispositif pour améliorer l'efficacité d'un système rayonnant par éléments parasites dans le plan de masse
WO1995023441A1 (fr) * 1994-02-28 1995-08-31 Hazeltine Corporation Antennes reseau a fentes
EP0805508A2 (fr) * 1996-05-02 1997-11-05 Nortel Networks Corporation Ensemble d'antennes avec dispositif de réglage de la charactéristique de radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGAWA K ET AL: "A BEAM TILT DIPOLE ARRAY ANTENNA FOR INDOOR MOBILE APPLICATIONS", IEICE TRANSACTIONS ON ELECTRONICS, vol. E79-C, no. 5, 1 May 1996 (1996-05-01), pages 685 - 692, XP000621612 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626536A2 (fr) * 2000-06-13 2006-02-15 Sony Deutschland GmbH Système de transmission sans fil
EP1626536A3 (fr) * 2000-06-13 2006-05-10 Sony Deutschland GmbH Système de transmission sans fil
EP1676781A2 (fr) 2000-07-18 2006-07-05 Mineral Lassen LLC Dispositif communication sans fil et procédé
EP1676781A3 (fr) * 2000-07-18 2007-06-13 Mineral Lassen LLC Dispositif communication sans fil et procédé
USRE43683E1 (en) 2000-07-18 2012-09-25 Mineral Lassen Llc Wireless communication device and method for discs
WO2003085776A1 (fr) * 2002-03-04 2003-10-16 Cisco Technology, Inc. Antenne diversifiee pour point d'acces unii
US6781544B2 (en) 2002-03-04 2004-08-24 Cisco Technology, Inc. Diversity antenna for UNII access point

Also Published As

Publication number Publication date
FR2779022B1 (fr) 2000-07-28
FR2779022A1 (fr) 1999-11-26
EP1078418A1 (fr) 2001-02-28
US6501965B1 (en) 2002-12-31
CN1301413A (zh) 2001-06-27
CN1162939C (zh) 2004-08-18

Similar Documents

Publication Publication Date Title
WO1999060657A1 (fr) Antenne pour station de base de radiocommunication
US6310584B1 (en) Low profile high polarization purity dual-polarized antennas
Kramer et al. Very small footprint 60 GHz stacked Yagi antenna array
JP3684948B2 (ja) レドーム付きマイクロストリップアレーアンテナ
EP2654126B1 (fr) Antenne mobile directive à commutation de polarisation par déplacement de panneaux rayonnants
EP0108463B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés
EP0890226B1 (fr) Station radio a antennes a polarisation circulaire
Luo et al. Multibeam dual-circularly polarized reflectarray for connected and autonomous vehicles
EP1129504A1 (fr) Antenne a onde lente, miniaturisee et a bande large
US6967619B2 (en) Low noise block
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
FR2578105A1 (fr) Antenne plane a micro-ondes
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
Geng et al. A Ka-band leaky-wave antenna array with stable gains based on HMSIW structure
FR2953652A1 (fr) Systeme d'antennes multi secteurs
EP0520908B1 (fr) Antenne réseau linéaire
JPH10247818A (ja) 偏波共用アンテナ
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
Chen et al. A Low-Cost, Quad-Beam, Dual-Polarized, 2-D Leaky-Wave Antenna With Wide-Angle Beam Scanning for Millimeter-Wave Applications
JP2013157707A (ja) 整形ビームアンテナ
EP0831550B1 (fr) Antenne-réseau polyvalente
EP4167378A1 (fr) Dispositif d'antennes radiofrequences isolees
Maodudul Multi-Functional Self-Oscillating Active Integrated Array Antenna for Next Generation Wireless Communications
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
FR2906938A1 (fr) Dispositif de couplage fente/pastille ellipsoidale pour l'alimentation directe par guide d'ondes d'une antenne plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806367.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09700550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999919340

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999919340

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1999919340

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999919340

Country of ref document: EP