EP4162296A1 - Radar detection system for a vehicle - Google Patents

Radar detection system for a vehicle

Info

Publication number
EP4162296A1
EP4162296A1 EP21728931.3A EP21728931A EP4162296A1 EP 4162296 A1 EP4162296 A1 EP 4162296A1 EP 21728931 A EP21728931 A EP 21728931A EP 4162296 A1 EP4162296 A1 EP 4162296A1
Authority
EP
European Patent Office
Prior art keywords
radar
layer
detection system
layers
radar detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21728931.3A
Other languages
German (de)
French (fr)
Inventor
Christophe GRARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP4162296A1 publication Critical patent/EP4162296A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/22RF wavebands combined with non-RF wavebands, e.g. infrared or optical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness

Definitions

  • the present invention relates to a radar detection system for a vehicle. It finds a particular but nonlimiting application in motor vehicles.
  • a radar detection system 5 of a vehicle well known to those skilled in the art illustrated in FIG. 1 comprises:
  • a radar sensor 50 configured to transmit / receive a plurality of radar waves S5,
  • a luminous element 51 arranged opposite said radar sensor and comprising at least one light source 510 configured to emit light rays, and a plurality of layers 511 including a transparent layer 511a configured to diffuse said light rays.
  • the transparent layer 511a is delimited by two layers 511b and 511c.
  • a drawback of this state of the art is that when the light element 51 is crossed by the radar waves from the radar sensor 50, the different layers 511 of the light element disturb the radar waves S5 emitted. Indeed, the different layers 511 represent different media that the radar waves must pass through. Each transition from one medium to another results in double reflections, namely the radar waves are reflected and then the reflections which are directed in the opposite direction to the radar waves are again reflected. There are thus several series of reflections S5 ′ illustrated in FIG. 1 of the radar waves S5 on these different layers 511, and on the surface of the radar sensor 50 itself. The reflected S5 ’radar waves mix with the transmitted S5 radar waves, which disrupts the emission of said radar waves.
  • the present invention aims to provide a radar detection system of a vehicle which overcomes the mentioned drawback.
  • the invention provides a radar detection system for a vehicle, said radar detection system, comprising:
  • a radar sensor configured to transmit / receive a plurality of radar waves
  • said radar detection system may further include one or more additional characteristics taken alone or in any technically possible combination, among the following.
  • said transparent layer is a light guide.
  • said transparent layer is delimited by two layers including a dark layer.
  • said dark layer is placed opposite said radar sensor.
  • the other layer which delimits said transparent layer is a reflecting layer.
  • one of the layers other than the transparent layer is configured to produce a pattern.
  • the dielectric permittivities of said layers are between 2.4 and 3.5.
  • said radar sensor is a millimeter wave or microwave or microwave radar sensor
  • said radar sensor operates at a radar frequency between 76GHz and 81GHz.
  • said layer which produces a pattern is a reflective layer.
  • said transparent layer is an optical element configured to propagate the light rays from said at least one light source and direct them towards another layer.
  • said other layer is a reflective layer.
  • said transparent layer is made of transparent polycarbonate
  • said dark layer is made of black polycarbonate
  • said reflecting layer is made of indium coated polycarbonate.
  • FIG. 1 is a schematic view of a radar detection system of a vehicle according to the prior art, the radar detection system comprising a radar sensor and a light element with at least one light source and a plurality of layers,
  • FIG. 2 is a schematic view of a radar detection system of a vehicle, the radar detection system comprising a radar sensor and a light element with at least one light source and a plurality of layers, according to an embodiment not limiting the invention,
  • FIG. 3 is a schematic view of the radar sensor of the radar detection system of FIG. 2, according to a non-limiting embodiment
  • FIG. 4 is a schematic front view of a pattern produced in one of the layers of the light element of the radar detection system of FIG. 2, according to a non-limiting embodiment
  • FIG. 5 is a schematic view of radar wave reflections from the radar sensor on said plurality of layers of the light element of the radar detection system of Figure 2, said plurality of layers being seen as a single layer by the radar waves which pass through it and on which said radar waves are reflected, according to a non-limiting embodiment.
  • the vehicle 2 is a motor vehicle.
  • motor vehicle is meant any type of motor vehicle. This embodiment is taken as a non-limiting example in the remainder of the description. In the remainder of the description, the vehicle 2 is thus otherwise called motor vehicle 2.
  • the radar detection system 1 is integrated behind the grille at the front of the motor vehicle 2.
  • the Radar detection system is integrated in the grille at the rear of the motor vehicle 2.
  • the radar detection system 1 comprises:
  • the radar sensor 10 is a radar for detecting objects 3 (pedestrian, bicycle, vehicle, tree, etc.) which are located in the external environment of the vehicle. motor vehicle 2.
  • objects 3 located in the external environment of the vehicle. motor vehicle 2.
  • a non-limiting example of an object 3 is illustrated in FIG. 3. It is a pedestrian in the non-limiting example.
  • the radar sensor 10 is a millimeter wave (between 24 GHz and 300 GHz) or microwave (between 300 MHz and 79 GHz) or microwave (between 1 GHz and 300 GHz) radar sensor.
  • the radar sensor 10 operates at a radar frequency of between 76 and 81 GHz.
  • the radar sensor 10 is configured to transmit / receive radar waves S1, S2.
  • the radar sensor 10 comprises:
  • a transmitter 100 configured to generate a plurality of SI radar waves, otherwise called SI primary radar waves,
  • a receiver 101 configured to process a plurality of radar waves S2, otherwise called secondary radar waves S2,
  • a single electronic component can be used for both transmission and reception functions.
  • Said transmitter 100 is configured to generate primary radar waves SI, which when they encounter an object 3 in the external environment of the vehicle 2 are reflected (bounced back) on said object 3.
  • the radar waves thus reflected are waves transmitted back to the radar sensor 10.
  • the primary radar waves SI and the secondary radar waves S2 are radio frequency waves. The operation of a radar sensor 10 being known to those skilled in the art, it is not described in more detail here.
  • the radar detection system 1 further comprises an electronic control unit 14 configured to analyze the secondary radar waves S2 processed by the receiver 101 and in deduce whether there is an object 3 in the external environment of the motor vehicle 2. It will be noted that the analysis can also be done directly in the radar sensor 10 in another non-limiting embodiment.
  • the radar sensor 10 is disposed facing said light element 11, centered on the light element 11. It is disposed behind the element. light 11 along a through axis Ax (otherwise called transverse axis) of the motor vehicle 2 which passes through the light element 11, said through axis Ax extending in a direction opposite to the movement of the motor vehicle 2.
  • the motor vehicle 2 moves forward.
  • the radar sensor 10 is fixed to the light element 11. In a nonlimiting example, it is hung by means of fixing clips (not illustrated).
  • the light element 11 comprises:
  • a plurality of layers 111 including a transparent layer 111a is a plurality of layers 111 including a transparent layer 111a.
  • the light source 110 is configured to emit light rays RI which are propagated by the transparent layer 111a.
  • said at least one light source 110 is a semiconductor light source.
  • said semiconductor light source forms part of a light emitting diode.
  • light-emitting diode is meant any type of light-emitting diode, whether in non-limiting examples of LEDs (“Light Emitting Diode”), OLED (“organic LED”), AMOLED (Active-Matrix-Organic LED), or FOLED (Flexible OLED).
  • said at least one light source 10 is a bulb with a filament. In a nonlimiting embodiment illustrated in FIG.
  • the luminous element 11 comprises two light sources 110.
  • This nonlimiting embodiment is taken as a nonlimiting example in the remainder of the description.
  • the two light sources 110 are arranged on either side of the light element 11. Thus, they are offset relative to the light element 11 and therefore by in relation to its different layers.
  • the transparent layer 111a is an optical element configured to propagate the light rays RI from the two light sources 110 and direct them towards another layer 111c.
  • the transparent layer 111a is a light guide.
  • the transparent layer 111a is delimited by two layers 111 including a dark layer 111b.
  • the other layer 111c which delimits the transparent layer 111a is a reflecting layer.
  • the transparent layer 111a is configured to propagate the light rays RI from the two light sources 110 and project them through the reflecting layer 111c and also to project them directly through the pattern 13 described. later if such a pattern 13 is present.
  • the dark layer 111b extends along the transparent layer 111a on the side opposite to the reflective layer 111c.
  • the dark layer 111b is thus located behind the reflective layer 111c along the transverse axis Ax.
  • the dark layer 111b is opaque or semi-opaque.
  • the dark layer 111b is located opposite the radar sensor 10. The latter is thus located behind the dark layer 111b along the transverse axis Ax.
  • the dark layer 111b is made of black polycarbonate.
  • the dark layer 111b is a dark paint which covers the side of the transparent layer 111a opposite to the reflective layer 111c.
  • the reflective layer 111c is a layer visible to an observer from outside the motor vehicle 2.
  • the reflective layer 111c is thus located in front of the transparent layer 111a along the transverse axis Ax. In a nonlimiting embodiment, it extends along the transparent layer 111a. It is a reflective layer of light. It makes it possible to obtain a mirror effect.
  • the reflective layer 111c is made of indium, silicon oxide, titanium or any other reflective material. These materials make it possible to produce a reflective layer 111c which is sufficiently thin so that the radar waves S1, S2 from the radar sensor 10 can pass through.
  • the reflective layer 111c is composed of a stack of layers of said reflective material. This is the case for silicon oxide in a non-limiting example.
  • the reflective layer 111c is configured to produce a pattern 13.
  • the pattern 13 is produced by laser engraving.
  • areas 130 are cut by laser engraving in the reflecting layer 111c. They let the light rays RI from the light sources 110 pass.
  • the pattern 13 makes it possible to have a light signature when the two light sources 110 are on.
  • the pattern 13 is a logo. The signature is thus the logo of the manufacturer of the motor vehicle 2 in a non-limiting example.
  • the radar sensor 10 is placed behind the pattern 13 along the transverse axis Ax.
  • the plurality of layers 111 is crossed by the radar waves SI emitted by the radar sensor 10. A part of these radar waves SI is reflected on said plurality of layers 111 and produces reflections. SI ', otherwise called parasitic reflections or parasitic waves.
  • the plurality of layers 111 of the luminous element 11 have different refractive indices of light n. Furthermore, the plurality of layers 111 of the luminous element 11 have substantially equal dielectric permittivities e.
  • the transparent layer 111a and the two layers which delimit it, namely the dark layer 111b and the reflective layer 111c in the non-limiting example taken respectively exhibit refractive indices of light ni, n2, n3 different. This makes it possible to reflect the light rays RI from the light sources 110 and to orient them correctly at the desired location, here towards the layer visible from the outside of the motor vehicle 2, namely the reflective layer 111c in the non-limiting example. taken.
  • the transparent layer 111a the dark layer 111b and the reflecting layer 111c in the non-limiting example taken respectively have dielectric permittivities e ⁇ , e2, e3 which are substantially equal.
  • their dielectric permittivity e ⁇ , e2, e3 is between 2.4 and 3.5. This makes it possible to significantly reduce the reflections of the transmitted SI radar waves. There will be less reflections, called parasitic reflections, which interfere with the emission of said SI radar waves. Therefore, the detection of an object 3 will be more efficient. As illustrated in FIG.
  • the plurality of layers 111a, 111b, 111c, of the luminous element 11 is seen by the radar waves SI emitted as a single layer 111 which is therefore crossed by said radar waves SI. Therefore, there will only be a series of SI 'reflections on this layer. Indeed, as the layers 111a, 111b, 111c have dielectric permittivities e ⁇ , e2, e3 which are substantially equal, they are seen as the same medium by the radar waves SI. They will thus have the same propagation effect on the SI radar waves without these SI radar waves being disturbed by internal reflections which would be due to discontinuities in dielectric permittivities. This eliminates the need for discontinuities in dielectric permittivities.
  • the transparent layer 111a will be composed of transparent polycarbonate
  • the dark layer 111b will be composed of black polycarbonate
  • the reflective layer 111c will be composed of polycarbonate coated with indium (thin layers of a few tens of nanometers in a non-limiting embodiment).
  • black polycarbonate it is possible to have a dielectric permittivity e2 of 2.49, 2.57 and 2.95.
  • a dielectric permittivity e3 of 2.77. It will be noted that the thin layers of indium do not significantly change the dielectric permittivity of the polycarbonate (thin layers with a thickness of nanometers).
  • the transparent layer 111a is formed of prisms and / or micro-prisms.
  • the transparent layer 111a can be delimited by two dark layers instead of a dark layer and a reflective layer.
  • the plurality of layers 111 of the luminous element 11 can comprise more than three layers.
  • the plurality of layers 111 can comprise at least one layer of air with the different layers other than said at least one layer of air of substantially equal dielectric permittivity.
  • the transparent layer 111a is separated from the dark layer 111c by a layer of air, and / or from the reflecting layer 111c by another layer of air.
  • the number of reflections will decrease with respect to a plurality of layers of different dielectric permittivity including one or more layers of air of dielectric permittivity also different from the other layers.
  • the two light sources 110 are arranged facing the dark layer 111b on a side opposite to the reflecting layer 111c.
  • the radar detection system 1 is placed in a lighting device of the vehicle 2.
  • the lighting device is a headlight or a rear light.
  • the radar sensor 10 comprises a plurality of transmitters 100 and a plurality of receivers 101.

Abstract

The invention relates to a radar detection system (1) for a vehicle (2), said radar detection system (1) comprising: - a radar sensor (10) configured to emit/receive a plurality of radar waves (S1, S2), - a lighting element (11) arranged facing said radar sensor (10) and comprising at least one light source (110) configured to emit light rays (R1), and a plurality of layers (111) including a transparent layer (111a) configured to propagate said light rays (R1), characterized in that said layers (111) have substantially equal dielectric permittivities (ε).

Description

Description Description
Titre de l'invention : Système de détection radar d'un véhicule Title of the invention: Radar detection system of a vehicle
[1] La présente invention se rapporte à un système de détection radar d'un véhicule. Elle trouve une application particulière mais non limitative dans les véhicules automobiles. [1] The present invention relates to a radar detection system for a vehicle. It finds a particular but nonlimiting application in motor vehicles.
[2] Dans le domaine des véhicules automobiles, un système de détection radar 5 d'un véhicule bien connu de l'homme du métier illustré sur la figure 1 comprend : [2] In the field of motor vehicles, a radar detection system 5 of a vehicle well known to those skilled in the art illustrated in FIG. 1 comprises:
- un capteur radar 50 configuré pour émettre/recevoir une pluralité d'ondes radars S5,a radar sensor 50 configured to transmit / receive a plurality of radar waves S5,
- un élément lumineux 51 disposé en regard dudit capteur radar et comprenant au moins une source de lumière 510 configurée pour émettre des rayons lumineux, et une pluralité de couches 511 dont une couche transparente 511a configurée pour diffuser lesdits rayons lumineux. La couche transparente 511a est délimitée par deux couches 511b et 511c. a luminous element 51 arranged opposite said radar sensor and comprising at least one light source 510 configured to emit light rays, and a plurality of layers 511 including a transparent layer 511a configured to diffuse said light rays. The transparent layer 511a is delimited by two layers 511b and 511c.
[3] Un inconvénient de cet état de la technique est que lorsque l'élément lumineux 51 est traversé par les ondes radars du capteur radar 50, les différentes couches 511 de l'élément lumineux perturbent les ondes radars S5 émises. En effet, les différentes couches 511 représentent des milieux différents que les ondes radars doivent traverser. Chaque transition d'un milieu à un autre entraîne des doubles réflexions, à savoir les ondes radars sont réfléchies puis les réflexions qui sont dirigées dans le sens inverse des ondes radars sont de nouveau réfléchies. Il existe ainsi plusieurs séries de réflexions illustrées S5' sur la figure 1 des ondes radars S5 sur ces différentes couches 511, et sur la surface du capteur radar 50 lui-même. Les ondes radars S5’ ainsi réfléchies se mélangent avec les ondes radars S5 émises ce qui perturbe l'émission desdites ondes radars. [3] A drawback of this state of the art is that when the light element 51 is crossed by the radar waves from the radar sensor 50, the different layers 511 of the light element disturb the radar waves S5 emitted. Indeed, the different layers 511 represent different media that the radar waves must pass through. Each transition from one medium to another results in double reflections, namely the radar waves are reflected and then the reflections which are directed in the opposite direction to the radar waves are again reflected. There are thus several series of reflections S5 ′ illustrated in FIG. 1 of the radar waves S5 on these different layers 511, and on the surface of the radar sensor 50 itself. The reflected S5 ’radar waves mix with the transmitted S5 radar waves, which disrupts the emission of said radar waves.
[4] Dans ce contexte, la présente invention vise à proposer un système de détection radar d'un véhicule qui permet de résoudre l'inconvénient mentionné. [4] In this context, the present invention aims to provide a radar detection system of a vehicle which overcomes the mentioned drawback.
[5] A cet effet, l'invention propose un système de détection radar d'un véhicule, ledit système de détection radar , comprenant : [5] To this end, the invention provides a radar detection system for a vehicle, said radar detection system, comprising:
- un capteur radar configuré pour émettre/recevoir une pluralité d'ondes radars,- a radar sensor configured to transmit / receive a plurality of radar waves,
- un élément lumineux disposé en regard dudit capteur radar et comprenant au moins une source de lumière configurée pour émettre des rayons lumineux, et une pluralité de couches dont une couche transparente configurée pour propager lesdits rayons lumineux, caractérisé en ce que lesdites couches présentent des permittivités diélectriques sensiblement égales. [6] Selon des modes de réalisation non limitatifs, ledit système de détection radar peut comporter en outre une ou plusieurs caractéristiques supplémentaires prises seules ou selon toutes les combinaisons techniquement possibles, parmi les suivantes. a light element arranged opposite said radar sensor and comprising at least one light source configured to emit light rays, and a plurality of layers including a transparent layer configured to propagate said light rays, characterized in that said layers have permittivities substantially equal dielectrics. [6] According to non-limiting embodiments, said radar detection system may further include one or more additional characteristics taken alone or in any technically possible combination, among the following.
[7] Selon un mode de réalisation non limitatif, ladite couche transparente est un guide de lumière. [7] According to a nonlimiting embodiment, said transparent layer is a light guide.
[8] Selon un mode de réalisation non limitatif, ladite couche transparente est délimitée par deux couches dont une couche sombre. [8] According to a non-limiting embodiment, said transparent layer is delimited by two layers including a dark layer.
[9] Selon un mode de réalisation non limitatif, ladite couche sombre est disposée en regard dudit capteur radar. [9] According to a non-limiting embodiment, said dark layer is placed opposite said radar sensor.
[10] Selon un mode de réalisation non limitatif, l'autre couche qui délimite ladite couche transparente est une couche réfléchissante. [10] According to a non-limiting embodiment, the other layer which delimits said transparent layer is a reflecting layer.
[11] Selon un mode de réalisation non limitatif, une des couches autre que la couche transparente est configurée pour réaliser un motif. [11] According to a non-limiting embodiment, one of the layers other than the transparent layer is configured to produce a pattern.
[12] Selon un mode de réalisation non limitatif, les permittivités diélectriques desdites couches sont comprises entre 2.4 et 3.5. [12] According to a nonlimiting embodiment, the dielectric permittivities of said layers are between 2.4 and 3.5.
[13] Selon un mode de réalisation non limitatif, ledit capteur radar est un capteur radar à ondes millimétriques ou hyperfréquences ou micro-ondes [13] According to a nonlimiting embodiment, said radar sensor is a millimeter wave or microwave or microwave radar sensor
[14] Selon un mode de réalisation non limitatif, ledit capteur radar fonctionne à une fréquence radar comprise entre 76GHz et 81GHz. [14] According to a nonlimiting embodiment, said radar sensor operates at a radar frequency between 76GHz and 81GHz.
[15] Selon un mode de réalisation non limitatif, ladite couche qui réalise un motif est une couche réfléchissante. [15] According to a nonlimiting embodiment, said layer which produces a pattern is a reflective layer.
[16] Selon un mode de réalisation non limitatif, ladite couche transparente est un élément optique configuré pour propager les rayons lumineux de ladite au moins une source de lumière et les orienter vers autre couche. [16] According to a non-limiting embodiment, said transparent layer is an optical element configured to propagate the light rays from said at least one light source and direct them towards another layer.
[17] Selon un mode de réalisation non limitatif, ladite autre couche est une couche réfléchissante. [17] According to a non-limiting embodiment, said other layer is a reflective layer.
[18] Selon un mode de réalisation non limitatif, ladite couche transparente est composée de polycarbonate transparent, ladite couche sombre est composée de polycarbonate noir, et ladite couche réfléchissante est composée de polycarbonate recouvert d'indium. [18] According to a nonlimiting embodiment, said transparent layer is made of transparent polycarbonate, said dark layer is made of black polycarbonate, and said reflecting layer is made of indium coated polycarbonate.
[19] L'invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent : [20] [Fig. 1] est une vue schématique d'un système de détection radar d'un véhicule selon l'état de la technique antérieur, le système de détection radar comprenant un capteur radar et un élément lumineux avec au moins une source de lumière et une pluralité de couches, [19] The invention and its various applications will be better understood on reading the following description and examining the accompanying figures: [20] [Fig. 1] is a schematic view of a radar detection system of a vehicle according to the prior art, the radar detection system comprising a radar sensor and a light element with at least one light source and a plurality of layers,
[21] [Fig. 2] est une vue schématique d'un système de détection radar d'un véhicule, le système de détection radar comprenant un capteur radar et un élément lumineux avec au moins une source de lumière et une pluralité de couches, selon un mode de réalisation non limitatif de l'invention, [21] [Fig. 2] is a schematic view of a radar detection system of a vehicle, the radar detection system comprising a radar sensor and a light element with at least one light source and a plurality of layers, according to an embodiment not limiting the invention,
[22] [Fig. 3] est une vue schématique du capteur radar du système de détection radar de la figure 2, selon un mode de réalisation non limitatif, [22] [Fig. 3] is a schematic view of the radar sensor of the radar detection system of FIG. 2, according to a non-limiting embodiment,
[23] [Fig. 4] est une vue schématique de face d'un motif réalisé dans une des couches de l'élément lumineux du système de détection radar de la figure 2, selon un mode de réalisation non limitatif, [23] [Fig. 4] is a schematic front view of a pattern produced in one of the layers of the light element of the radar detection system of FIG. 2, according to a non-limiting embodiment,
[24] [Fig. 5] est une vue schématique de réflexions d'ondes radars du capteur radar sur ladite pluralité de couches de l'élément lumineux du système de détection radar de la figure 2, ladite pluralité de couches étant vue comme une seule couche par les ondes radars qui la traversent et sur laquelle lesdites ondes radars se réfléchissent, selon un mode de réalisation non limitatif. [24] [Fig. 5] is a schematic view of radar wave reflections from the radar sensor on said plurality of layers of the light element of the radar detection system of Figure 2, said plurality of layers being seen as a single layer by the radar waves which pass through it and on which said radar waves are reflected, according to a non-limiting embodiment.
[25] Les éléments identiques, par structure ou par fonction, apparaissant sur différentes figures conservent, sauf précision contraire, les mêmes références. [25] Elements which are identical, by structure or by function, appearing in different figures retain the same references, unless otherwise specified.
[26] Le système de détection radar 1 selon l'invention est décrit en référence aux figures 2 à 5. Dans un mode de réalisation non limitatif, le véhicule 2 est un véhicule automobile. Par véhicule automobile, on entend tout type de véhicule motorisé. Ce mode de réalisation est pris comme exemple non limitatif dans la suite de la description. Dans la suite de la description, le véhicule 2 est ainsi autrement appelé véhicule automobile 2. [26] The radar detection system 1 according to the invention is described with reference to Figures 2 to 5. In a non-limiting embodiment, the vehicle 2 is a motor vehicle. By motor vehicle is meant any type of motor vehicle. This embodiment is taken as a non-limiting example in the remainder of the description. In the remainder of the description, the vehicle 2 is thus otherwise called motor vehicle 2.
[27] Tel qu'illustré sur la figure 2, dans un mode de réalisation non limitatif, le système de détection radar 1 est intégré derrière la calandre à l'avant du véhicule automobile 2. Dans un autre mode de réalisation non limitatif, le système de détection radar est intégré dans la calandre à l'arrière du véhicule automobile 2. [27] As illustrated in Figure 2, in a non-limiting embodiment, the radar detection system 1 is integrated behind the grille at the front of the motor vehicle 2. In another non-limiting embodiment, the Radar detection system is integrated in the grille at the rear of the motor vehicle 2.
[28] Tel qu'illustré sur la figure 2, le système de détection radar 1 comprend : [28] As illustrated in Figure 2, the radar detection system 1 comprises:
- un capteur radar 10, - a radar sensor 10,
- un élément lumineux 11. - a light element 11.
[29] Dans un mode de réalisation non limitatif, le capteur radar 10 est un radar de détection d'objets 3 (piéton, vélo, véhicule, arbre etc.) qui se trouvent dans l'environnement extérieur du véhicule automobile 2. Un exemple non limitatif d'objet 3 est illustré sur la figure 3. C'est un piéton dans l'exemple non limitatif. Dans un mode de réalisation non limitatif, le capteur radar 10 est un capteur radar à ondes millimétriques (entre 24GHz et 300 GHz) ou hyperfréquences (entre 300MHz et 79GHz) ou micro-ondes (entre 1GHz et 300GHz). Dans une variante de réalisation non limitative, le capteur radar 10 fonctionne à une fréquence radar comprise entre 76 et 81 GHz. Le capteur radar 10 est configuré pour émettre/recevoir des ondes radars SI, S2. [29] In a non-limiting embodiment, the radar sensor 10 is a radar for detecting objects 3 (pedestrian, bicycle, vehicle, tree, etc.) which are located in the external environment of the vehicle. motor vehicle 2. A non-limiting example of an object 3 is illustrated in FIG. 3. It is a pedestrian in the non-limiting example. In a non-limiting embodiment, the radar sensor 10 is a millimeter wave (between 24 GHz and 300 GHz) or microwave (between 300 MHz and 79 GHz) or microwave (between 1 GHz and 300 GHz) radar sensor. In a non-limiting variant embodiment, the radar sensor 10 operates at a radar frequency of between 76 and 81 GHz. The radar sensor 10 is configured to transmit / receive radar waves S1, S2.
[30] Tel qu'illustré sur la figure 3, le capteur radar 10 comprend : [30] As illustrated in Figure 3, the radar sensor 10 comprises:
- un émetteur 100 configuré pour générer une pluralité d'ondes radars SI, autrement appelées ondes radars primaires SI, a transmitter 100 configured to generate a plurality of SI radar waves, otherwise called SI primary radar waves,
- un récepteur 101 configuré pour traiter une pluralité d'ondes radars S2, autrement appelées ondes radars secondaires S2, a receiver 101 configured to process a plurality of radar waves S2, otherwise called secondary radar waves S2,
- plusieurs antennes 102. - several antennas 102.
[31] Dans un mode de réalisation non limitatif, un seul composant électronique peut être utilisé pour les deux fonctions émission et réception. On aura ainsi un ou plusieurs émetteur/récepteur. Ledit émetteur 100 est configuré pour générer des ondes radars primaires SI, qui lorsqu'ils rencontrent un objet 3 dans l'environnement extérieur du véhicule 2 se réfléchissent (rebondissent) sur ledit objet 3. Les ondes radars ainsi réfléchies sont des ondes transmises en retour au capteur radar 10. Ce sont les ondes radars secondaires S2 reçues par les antennes 102 et traitées par le récepteur 101. Dans un mode de réalisation non limitatif, les ondes radars primaires SI et les ondes radars secondaires S2 sont des ondes radio fréquence. Le fonctionnement d'un capteur radar 10 étant connu de l'homme du métier, il n'est pas décrit plus en détail ici. [31] In a nonlimiting embodiment, a single electronic component can be used for both transmission and reception functions. There will thus be one or more transmitter / receiver. Said transmitter 100 is configured to generate primary radar waves SI, which when they encounter an object 3 in the external environment of the vehicle 2 are reflected (bounced back) on said object 3. The radar waves thus reflected are waves transmitted back to the radar sensor 10. These are the secondary radar waves S2 received by the antennas 102 and processed by the receiver 101. In a non-limiting embodiment, the primary radar waves SI and the secondary radar waves S2 are radio frequency waves. The operation of a radar sensor 10 being known to those skilled in the art, it is not described in more detail here.
[32] Tel qu'illustré sur la figure 2, dans un mode de réalisation non limitatif, le système de détection radar 1 comprend en outre une unité de contrôle électronique 14 configurée pour analyser les ondes radars secondaires S2 traitées par le récepteur 101 et en déduire s'il existe un objet 3 dans l'environnement extérieur du véhicule automobile 2. On notera que l'analyse peut également se faire directement dans le capteur radar 10 dans un autre mode de réalisation non limitatif. [32] As illustrated in Figure 2, in a non-limiting embodiment, the radar detection system 1 further comprises an electronic control unit 14 configured to analyze the secondary radar waves S2 processed by the receiver 101 and in deduce whether there is an object 3 in the external environment of the motor vehicle 2. It will be noted that the analysis can also be done directly in the radar sensor 10 in another non-limiting embodiment.
[33] Tel qu'illustré sur la figure 2, dans un mode de réalisation non limitatif, le capteur radar 10 est disposé en regard dudit élément lumineux 11, de façon centrée à l'élément lumineux 11. Il est disposé derrière l'élément lumineux 11 selon un axe traversant Ax (autrement appelé axe transversal) du véhicule automobile 2 qui passe par l'élément lumineux 11, ledit axe traversant Ax s'étendant selon une direction inverse au mouvement du véhicule automobile 2. Dans l'exemple non limitatif pris de la figure 2, le véhicule automobile 2 avance. Dans un mode de réalisation non limitatif, le capteur radar 10 est fixé à l'élément lumineux 11. Dans un exemple non limitatif, il est accroché au moyen de clips de fixation (non illustrés). [33] As illustrated in Figure 2, in a non-limiting embodiment, the radar sensor 10 is disposed facing said light element 11, centered on the light element 11. It is disposed behind the element. light 11 along a through axis Ax (otherwise called transverse axis) of the motor vehicle 2 which passes through the light element 11, said through axis Ax extending in a direction opposite to the movement of the motor vehicle 2. In the example non-limiting taken from Figure 2, the motor vehicle 2 moves forward. In a nonlimiting embodiment, the radar sensor 10 is fixed to the light element 11. In a nonlimiting example, it is hung by means of fixing clips (not illustrated).
[34] Tel qu'illustré sur la figure 2, l'élément lumineux 11 comprend : [34] As illustrated in Figure 2, the light element 11 comprises:
- au moins une source de lumière 110, - at least one light source 110,
- une pluralité de couches 111 dont une couche transparente 111a. a plurality of layers 111 including a transparent layer 111a.
[35] La source de lumière 110 est configurée pour émettre des rayons lumineux RI qui sont propagés par la couche transparente 111a. Dans un mode de réalisation non limitatif, ladite au moins une source de lumière 110 est une source de lumière à semi-conducteur. Dans un mode de réalisation non limitatif, ladite source de lumière à semi-conducteur fait partie d'une diode électroluminescente. Par diode électroluminescente, on entend tout type de diodes électroluminescentes, que ce soit dans des exemples non limitatifs des LED (« Light Emitting Diode »), des OLED (« organic LED »), des AMOLED (Active-Matrix-Organic LED), ou encore des FOLED (Flexible OLED). Dans un autre mode de réalisation non limitatif, ladite au moins une source de lumière 10 est une ampoule avec un filament. Dans un mode de réalisation non limitatif illustré sur la figure 2, l'élément lumineux 11 comprend deux sources de lumière 110. Ce mode de réalisation non limitatif est pris comme exemple non limitatif dans la suite de la description. Dans un mode de réalisation non limitatif illustré sur la figure 2, les deux sources de lumière 110 sont disposées de part et d'autre de l'élément lumineux 11. Ainsi, elles sont déportées par rapport à l'élément lumineux 11 et donc par rapport à ses différentes couches. [35] The light source 110 is configured to emit light rays RI which are propagated by the transparent layer 111a. In a non-limiting embodiment, said at least one light source 110 is a semiconductor light source. In a non-limiting embodiment, said semiconductor light source forms part of a light emitting diode. By light-emitting diode is meant any type of light-emitting diode, whether in non-limiting examples of LEDs (“Light Emitting Diode”), OLED (“organic LED”), AMOLED (Active-Matrix-Organic LED), or FOLED (Flexible OLED). In another nonlimiting embodiment, said at least one light source 10 is a bulb with a filament. In a nonlimiting embodiment illustrated in FIG. 2, the luminous element 11 comprises two light sources 110. This nonlimiting embodiment is taken as a nonlimiting example in the remainder of the description. In a non-limiting embodiment illustrated in FIG. 2, the two light sources 110 are arranged on either side of the light element 11. Thus, they are offset relative to the light element 11 and therefore by in relation to its different layers.
[36] Dans un mode de réalisation non limitatif, la couche transparente 111a est un élément optique configuré pour propager les rayons lumineux RI des deux sources de lumière 110 et les orienter vers autre couche 111c. Dans une variante de réalisation non limitative illustrée sur la figure 2, la couche transparente 111a est un guide de lumière. [36] In a non-limiting embodiment, the transparent layer 111a is an optical element configured to propagate the light rays RI from the two light sources 110 and direct them towards another layer 111c. In a non-limiting variant embodiment illustrated in FIG. 2, the transparent layer 111a is a light guide.
[37] Dans un mode de réalisation non limitatif, la couche transparente 111a est délimitée par deux couches 111 dont une couche sombre 111b. Dans un mode de réalisation non limitatif, l'autre couche 111c qui délimite la couche transparente 111a est une couche réfléchissante. Ainsi, dans un mode de réalisation non limitatif, la couche transparente 111a est configurée pour propager les rayons lumineux RI des deux sources de lumière 110 et les projeter à travers de la couche réfléchissante 111c et également de les projeter directement au travers du motif 13 décrit plus loin si un tel motif 13 est présent. [37] In a non-limiting embodiment, the transparent layer 111a is delimited by two layers 111 including a dark layer 111b. In a non-limiting embodiment, the other layer 111c which delimits the transparent layer 111a is a reflecting layer. Thus, in a non-limiting embodiment, the transparent layer 111a is configured to propagate the light rays RI from the two light sources 110 and project them through the reflecting layer 111c and also to project them directly through the pattern 13 described. later if such a pattern 13 is present.
[38] Dans un mode de réalisation non limitatif, la couche sombre 111b s'étend le long de la couche transparente 111a côté opposé à la couche réfléchissante 111c. La couche sombre 111b est ainsi située derrière la couche réfléchissante 111c selon l'axe transversal Ax. La couche sombre 111b est opaque ou semi-opaque. Dans un mode de réalisation non limitatif, la couche sombre 111b est située en regard du capteur radar 10. Ce dernier est ainsi situé derrière la couche sombre 111b selon l'axe transversal Ax. Dans un premier exemple de réalisation non limitatif, la couche sombre 111b est en polycarbonate noir. Dans un deuxième exemple de réalisation non limitatif, la couche sombre 111b est une peinture sombre qui recouvre le côté de la couche transparente 111a opposé à la couche réfléchissante 111c. [38] In a non-limiting embodiment, the dark layer 111b extends along the transparent layer 111a on the side opposite to the reflective layer 111c. The dark layer 111b is thus located behind the reflective layer 111c along the transverse axis Ax. The dark layer 111b is opaque or semi-opaque. In a non-limiting embodiment, the dark layer 111b is located opposite the radar sensor 10. The latter is thus located behind the dark layer 111b along the transverse axis Ax. In a first nonlimiting exemplary embodiment, the dark layer 111b is made of black polycarbonate. In a second nonlimiting exemplary embodiment, the dark layer 111b is a dark paint which covers the side of the transparent layer 111a opposite to the reflective layer 111c.
[39] La couche réfléchissante 111c est une couche visible par un observateur depuis l'extérieur du véhicule automobile 2. La couche réfléchissante 111c est ainsi située devant la couche transparente 111a selon l'axe transversal Ax. Dans un mode de réalisation non limitatif, elle s'étend le long de la couche transparente 111a. C'est une couche réfléchissante de la lumière. Elle permet d'obtenir un effet miroir. Dans des modes de réalisation non limitatifs, la couche réfléchissante 111c est en indium, en oxyde de silicium, en titane ou tout autre matériau réfléchissant. Ces matériaux permettent de produire une couche réfléchissante 111c suffisamment fine pour que les ondes radars SI, S2 du capteur radar 10 puissent passer au travers. Dans une variante de réalisation non limitative, la couche réfléchissante 111c est composée d'empilement de couches dudit matériau réfléchissant. C'est le cas pour l'oxyde de silicium dans un exemple non limitatif. [39] The reflective layer 111c is a layer visible to an observer from outside the motor vehicle 2. The reflective layer 111c is thus located in front of the transparent layer 111a along the transverse axis Ax. In a nonlimiting embodiment, it extends along the transparent layer 111a. It is a reflective layer of light. It makes it possible to obtain a mirror effect. In non-limiting embodiments, the reflective layer 111c is made of indium, silicon oxide, titanium or any other reflective material. These materials make it possible to produce a reflective layer 111c which is sufficiently thin so that the radar waves S1, S2 from the radar sensor 10 can pass through. In a non-limiting variant embodiment, the reflective layer 111c is composed of a stack of layers of said reflective material. This is the case for silicon oxide in a non-limiting example.
[40] Tel qu'illustré sur la figure 4, dans un mode de réalisation non limitatif, la couche réfléchissante 111c est configurée pour réaliser un motif 13. Dans un mode de réalisation non limitatif, le motif 13 est réalisé par gravure laser. Lorsque le motif 13 est découpé par gravure laser, des zones 130 sont découpées par gravure laser dans la couche réfléchissante 111c. Elles laissent passer les rayons lumineux RI des sources de lumière 110. Le motif 13 permet d'avoir une signature lumineuse lorsque les deux sources de lumière 110 sont allumées. Dans un mode de réalisation non limitatif, le motif 13 est un logo. La signature est ainsi le logo du constructeur du véhicule automobile 2 dans un exemple non limitatif. Ainsi, le capteur radar 10 est disposé derrière le motif 13 selon l'axe transversal Ax. [40] As illustrated in FIG. 4, in a non-limiting embodiment, the reflective layer 111c is configured to produce a pattern 13. In a non-limiting embodiment, the pattern 13 is produced by laser engraving. When the pattern 13 is cut by laser engraving, areas 130 are cut by laser engraving in the reflecting layer 111c. They let the light rays RI from the light sources 110 pass. The pattern 13 makes it possible to have a light signature when the two light sources 110 are on. In a non-limiting embodiment, the pattern 13 is a logo. The signature is thus the logo of the manufacturer of the motor vehicle 2 in a non-limiting example. Thus, the radar sensor 10 is placed behind the pattern 13 along the transverse axis Ax.
[41] Tel qu'illustré sur la figure 5, la pluralité de couches 111 est traversé par les ondes radars SI émises par le capteur radar 10. Une partie de ces ondes radars SI se réfléchit sur ladite pluralité de couches 111 et produit des réflexions SI', autrement appelées réflexions parasites ou ondes parasites. La pluralité de couches 111 de l'élément lumineux 11 présentent des indices de réfraction de la lumière n différents. Par ailleurs, la pluralité de couches 111 de l'élément lumineux 11 présentent des permittivités diélectriques e sensiblement égales. [42] Ainsi, la couche transparente 111a et les deux couches qui la délimitent, à savoir la couche sombre 111b et la couche réfléchissante 111c dans l'exemple non limitatif pris, présentent respectivement des indices de réfraction de la lumière ni, n2, n3 différents. Cela permet de réfléchir les rayons lumineux RI des sources de lumière 110 et de les orienter correctement à l'endroit voulu, ici vers la couche visible depuis l'extérieur du véhicule automobile 2, à savoir la couche réfléchissante 111c dans l'exemple non limitatif pris. [41] As illustrated in FIG. 5, the plurality of layers 111 is crossed by the radar waves SI emitted by the radar sensor 10. A part of these radar waves SI is reflected on said plurality of layers 111 and produces reflections. SI ', otherwise called parasitic reflections or parasitic waves. The plurality of layers 111 of the luminous element 11 have different refractive indices of light n. Furthermore, the plurality of layers 111 of the luminous element 11 have substantially equal dielectric permittivities e. [42] Thus, the transparent layer 111a and the two layers which delimit it, namely the dark layer 111b and the reflective layer 111c in the non-limiting example taken, respectively exhibit refractive indices of light ni, n2, n3 different. This makes it possible to reflect the light rays RI from the light sources 110 and to orient them correctly at the desired location, here towards the layer visible from the outside of the motor vehicle 2, namely the reflective layer 111c in the non-limiting example. taken.
[43] Ainsi, la couche transparente 111a la couche sombre 111b et la couche réfléchissante 111c dans l'exemple non limitatif pris, présentent respectivement des permittivités diélectriques eΐ, e2, e3 sensiblement égales. Dans un mode de réalisation non limitatif, leur permittivité diélectrique eΐ, e2, e3 est comprise entre 2.4 et 3.5. Cela permet de réduire sensiblement les réflexions des ondes radars SI émises. Il y aura moins de réflexions, dites réflexions parasitent, qui interfèrent avec l'émission desdites ondes radars SI. Par conséquent, la détection d'un objet 3 sera plus efficace. Tel qu'illustré sur la figure 5, la pluralité de couches 111a, 111b, 111c, de l'élément lumineux 11 est vu par les ondes radars SI émises comme une seule couche 111 qui est donc traversées par lesdites ondes radars SI. Par conséquent, il n'y aura qu'une série de réflexions SI' sur cette couche. En effet, comme les couches 111a, 111b, 111c ont des permittivités diélectriques eΐ, e2, e3 sensiblement égales, elles sont vues comme un même milieu par les ondes radars SI. Elles vont ainsi avoir le même effet de propagation sur les ondes radars SI sans que ces ondes radars SI ne soient perturbées par des réflexions internes qui seraient dues à des discontinuités de permittivités diélectriques. On s'affranchit ainsi des discontinuités de permittivités diélectriques. [43] Thus, the transparent layer 111a the dark layer 111b and the reflecting layer 111c in the non-limiting example taken, respectively have dielectric permittivities eΐ, e2, e3 which are substantially equal. In a nonlimiting embodiment, their dielectric permittivity eΐ, e2, e3 is between 2.4 and 3.5. This makes it possible to significantly reduce the reflections of the transmitted SI radar waves. There will be less reflections, called parasitic reflections, which interfere with the emission of said SI radar waves. Therefore, the detection of an object 3 will be more efficient. As illustrated in FIG. 5, the plurality of layers 111a, 111b, 111c, of the luminous element 11 is seen by the radar waves SI emitted as a single layer 111 which is therefore crossed by said radar waves SI. Therefore, there will only be a series of SI 'reflections on this layer. Indeed, as the layers 111a, 111b, 111c have dielectric permittivities eΐ, e2, e3 which are substantially equal, they are seen as the same medium by the radar waves SI. They will thus have the same propagation effect on the SI radar waves without these SI radar waves being disturbed by internal reflections which would be due to discontinuities in dielectric permittivities. This eliminates the need for discontinuities in dielectric permittivities.
[44] Comme on peut le voir sur la figure 5, il existe également une série de réflexions SI' sur la surface du capteur radar 10. Une partie de ses réflexions repartent dans la direction inverse de la direction de l'axe transversal A x, à savoir vers l'extérieur du véhicule automobile 2, l'autre partie se réfléchit à nouveau sur la couche 111 considérée comme unique. [44] As can be seen in figure 5, there is also a series of reflections SI 'on the surface of the radar sensor 10. A part of its reflections start again in the direction opposite to the direction of the transverse axis A x , namely towards the outside of the motor vehicle 2, the other part is reflected again on the layer 111 considered to be unique.
[45] Afin d'obtenir des permittivités diélectriques eΐ, e2, e3 sensiblement égales, dans des modes de réalisation non limitatifs, la couche transparente 111a sera composée de polycarbonate transparent, la couche sombre 111b sera composée de polycarbonate noir, et la couche réfléchissante 111c sera composé de polycarbonate recouvert d'indium (de couches fines de quelques dizaines nanomètres dans un mode de réalisation non limitatif). Pour un matériau et une couleur donnés en fonction du fabriquant et du processus de fabrication, on peut trouver différentes valeurs de permittivité diélectrique. Ainsi, dans des exemples non limitatifs, pour du polycarbonate transparent on peut avoir une permittivité diélectrique eΐ de 2.5, 2.57 et 2.77. Dans des exemples non limitatifs, pour du polycarbonate noir, on peut avoir une permittivité diélectrique e2 de 2.49, 2.57 et 2.95. Dans un exemple non limitatif, pour du polycarbonate recouvert d'indium, on peut avoir une permittivité diélectrique e3 de 2.77. On notera que les couches fines d'indium ne changent pas de façon significative la permittivité diélectrique du polycarbonate (couches fines d'épaisseur des nanomètres). [45] In order to obtain dielectric permittivities eΐ, e2, e3 which are substantially equal, in non-limiting embodiments, the transparent layer 111a will be composed of transparent polycarbonate, the dark layer 111b will be composed of black polycarbonate, and the reflective layer 111c will be composed of polycarbonate coated with indium (thin layers of a few tens of nanometers in a non-limiting embodiment). For a given material and color depending on the manufacturer and the manufacturing process, we can find different values of dielectric permittivity. Thus, in nonlimiting examples, for transparent polycarbonate, it is possible to have a dielectric permittivity eΐ of 2.5, 2.57 and 2.77. In nonlimiting examples, for black polycarbonate, it is possible to have a dielectric permittivity e2 of 2.49, 2.57 and 2.95. In a non-limiting example, for polycarbonate coated with indium, it is possible to have a dielectric permittivity e3 of 2.77. It will be noted that the thin layers of indium do not significantly change the dielectric permittivity of the polycarbonate (thin layers with a thickness of nanometers).
[46] Afin d'obtenir des permittivités eΐ, e2, e3 sensiblement égales, dans un mode de réalisation non limitatif, on peut prévoir de charger le matériau d'une ou de plusieurs couches 111, de microbilles de polycarbonate référencé PC dont la matière est plus dense. Ainsi, plus le matériau d'une couche sera dense, plus sa permittivité diélectrique e augmentera. [46] In order to obtain substantially equal permittivities eΐ, e2, e3, in a nonlimiting embodiment, provision can be made to load the material with one or more layers 111, with polycarbonate microbeads referenced PC, the material of which is is more dense. Thus, the more dense the material of a layer, the more its dielectric permittivity e will increase.
[47] Bien entendu la description de l'invention n'est pas limitée aux modes de réalisation décrits ci-dessus et au domaine décrit ci-dessus. Ainsi, dans un autre mode de réalisation non limitatif, la couche transparente 111a est formée de prismes et/ou micro-prismes. Ainsi, dans un autre mode de réalisation non limitatif, la couche transparente 111a peut être délimitée par deux couches sombres au lieu d'une couche sombre et d'une couche réfléchissante. Ainsi, dans un autre mode de réalisation non limitatif, la pluralité de couches 111 de l'élément lumineux 11 peut comprendre plus de trois couches. Ainsi, dans un autre mode de réalisation non limitatif, la pluralité de couches 111 peut comprendre au moins une couche d'air avec les différentes couches autre que ladite au moins une couche d'air de permittivité diélectriques sensiblement égales. Ainsi, dans une variante de réalisation non limitative, la couche transparente 111a est séparée de la couche sombre 111c par une couche d'air, et/ou de la couche réfléchissante 111c par une autre couche d'air. Le nombre de réflexions diminuera par rapport à une pluralité de couches de permittivité diélectriques différentes dont une ou plusieurs couches d'air de permittivité diélectrique également différente des autres couches. Ainsi, dans un autre mode de réalisation non limitatif, les deux sources de lumière 110 sont disposées en regard de la couche sombre 111b d'un coté opposé à la couche réfléchissante 111c. Ainsi, dans un autre mode de réalisation non limitatif, le système de détection radar 1 est disposé dans un dispositif lumineux du véhicule 2. Dans des exemples non limitatifs, le dispositif lumineux est un projecteur ou un feu arrière. Ainsi, dans un mode de réalisation non limitatif, le capteur radar 10 comprend une pluralité d'émetteurs 100 et une pluralité de récepteurs 101. [47] Of course, the description of the invention is not limited to the embodiments described above and to the field described above. Thus, in another nonlimiting embodiment, the transparent layer 111a is formed of prisms and / or micro-prisms. Thus, in another non-limiting embodiment, the transparent layer 111a can be delimited by two dark layers instead of a dark layer and a reflective layer. Thus, in another nonlimiting embodiment, the plurality of layers 111 of the luminous element 11 can comprise more than three layers. Thus, in another nonlimiting embodiment, the plurality of layers 111 can comprise at least one layer of air with the different layers other than said at least one layer of air of substantially equal dielectric permittivity. Thus, in a non-limiting variant embodiment, the transparent layer 111a is separated from the dark layer 111c by a layer of air, and / or from the reflecting layer 111c by another layer of air. The number of reflections will decrease with respect to a plurality of layers of different dielectric permittivity including one or more layers of air of dielectric permittivity also different from the other layers. Thus, in another nonlimiting embodiment, the two light sources 110 are arranged facing the dark layer 111b on a side opposite to the reflecting layer 111c. Thus, in another non-limiting embodiment, the radar detection system 1 is placed in a lighting device of the vehicle 2. In non-limiting examples, the lighting device is a headlight or a rear light. Thus, in a nonlimiting embodiment, the radar sensor 10 comprises a plurality of transmitters 100 and a plurality of receivers 101.
[48] Ainsi, l'invention décrite présente notamment les avantages suivants : [48] Thus, the invention described has the following advantages in particular:
- elle permet de réduire les réflexions parasites des ondes radars SI émises par le capteur radar 10 tout en continuant à propager et orienter les rayons lumineux RI de ladite au moins une source de lumière 110 ; ainsi cela réduit la perturbation des ondes radars SI émises et la détection d'un objet 3 se trouvant dans l'environnement extérieur du véhicule 2 est plus précise, - elle permet d'avoir pour un élément lumineux 11 avec une pluralité de couches, des réflexions sensiblement similaires à un élément lumineux 11 qui ne comprend qu'une seule couche. - It makes it possible to reduce the parasitic reflections of the radar waves SI emitted by the radar sensor 10 while continuing to propagate and direct the light rays RI from said at least one light source 110; thus this reduces the disturbance of the transmitted SI radar waves and the detection of a object 3 located in the external environment of the vehicle 2 is more precise, - it makes it possible to have for a luminous element 11 with a plurality of layers, reflections substantially similar to a luminous element 11 which comprises only one layer .

Claims

Revendications Claims
[Revendication 1] Système de détection radar (1) d'un véhicule (2), ledit système de détection radar (1) comprenant : [Claim 1] A radar detection system (1) of a vehicle (2), said radar detection system (1) comprising:
- un capteur radar (10) configuré pour émettre/recevoir une pluralité d'ondes radars (SI, S2),- a radar sensor (10) configured to transmit / receive a plurality of radar waves (SI, S2),
- un élément lumineux (11) disposé en regard dudit capteur radar (10) et comprenant au moins une source de lumière (110) configurée pour émettre des rayons lumineux (RI), et une pluralité de couches (111) dont une couche transparente (111a) configurée pour propager lesdits rayons lumineux (RI), caractérisé en ce que lesdites couches (111) présentent des permittivités diélectriques (e) sensiblement égales. - a luminous element (11) arranged opposite said radar sensor (10) and comprising at least one light source (110) configured to emit light rays (RI), and a plurality of layers (111) including a transparent layer ( 111a) configured to propagate said light rays (RI), characterized in that said layers (111) have substantially equal dielectric permittivities (e).
[Revendication 2] Système de détection radar (1) selon la revendication 1, selon lequel ladite couche transparente (111a) est un guide de lumière. [Claim 2] A radar detection system (1) according to claim 1, wherein said transparent layer (111a) is a light guide.
[Revendication 3] Système de détection radar (1) selon l'une quelconque des revendications précédentes, selon lequel ladite couche transparente (111a) est délimitée par deux couches (111b, 111c) dont une couche sombre (111b). [Claim 3] A radar detection system (1) according to any one of the preceding claims, wherein said transparent layer (111a) is delimited by two layers (111b, 111c) including a dark layer (111b).
[Revendication 4] Système de détection radar (1) selon la revendication précédente, selon lequel ladite couche sombre (111b) est disposée en regard dudit capteur radar (10). [Claim 4] A radar detection system (1) according to the preceding claim, wherein said dark layer (111b) is disposed opposite said radar sensor (10).
[Revendication 5] Système de détection radar (1) selon l'une quelconque des revendications 3 ou 4, selon lequel l'autre couche (111c) qui délimite ladite couche transparente (111a) est une couche réfléchissante. [Claim 5] A radar detection system (1) according to any one of claims 3 or 4, wherein the other layer (111c) which delimits said transparent layer (111a) is a reflective layer.
[Revendication 6] Système de détection radar (1) selon l'une quelconque des revendications précédentes, selon lequel une (111c) des couches (111) autre que la couche transparente (111a) est configurée pour réaliser un motif (13). [Claim 6] A radar detection system (1) according to any preceding claim, wherein one (111c) of the layers (111) other than the transparent layer (111a) is configured to provide a pattern (13).
[Revendication 7] Système de détection radar (1) selon l'une quelconque des revendications précédentes, selon lequel lesdites permittivités diélectriques (e) desdites couches (111) sont comprises entre 2.4 et 3.5. [Claim 7] A radar detection system (1) according to any preceding claim, wherein said dielectric permittivities (e) of said layers (111) are between 2.4 and 3.5.
[Revendication 8] Système de détection radar (1) selon l'une quelconque des revendications précédentes, selon lequel ledit capteur radar (10) est un capteur radar à ondes millimétriques ou hyperfréquences ou micro-ondes. [Claim 8] A radar detection system (1) according to any preceding claim, wherein said radar sensor (10) is a millimeter wave or microwave or microwave radar sensor.
[Revendication 9] Système de détection radar (1) selon la revendication précédente, selon lequel ledit capteur radar (10) fonctionne à une fréquence radar comprise entre 76GHz et 81GHz. [Claim 9] A radar detection system (1) according to the preceding claim, wherein said radar sensor (10) operates at a radar frequency between 76GHz and 81GHz.
EP21728931.3A 2020-06-09 2021-05-31 Radar detection system for a vehicle Pending EP4162296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006019A FR3111195A1 (en) 2020-06-09 2020-06-09 Vehicle radar detection system
PCT/EP2021/064525 WO2021249806A1 (en) 2020-06-09 2021-05-31 Radar detection system for a vehicle

Publications (1)

Publication Number Publication Date
EP4162296A1 true EP4162296A1 (en) 2023-04-12

Family

ID=74045459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21728931.3A Pending EP4162296A1 (en) 2020-06-09 2021-05-31 Radar detection system for a vehicle

Country Status (5)

Country Link
US (1) US20230314601A1 (en)
EP (1) EP4162296A1 (en)
CN (1) CN115698762A (en)
FR (1) FR3111195A1 (en)
WO (1) WO2021249806A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128982A1 (en) 2021-11-08 2023-05-11 Marelli Automotive Lighting Reutlingen (Germany) GmbH sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755809B2 (en) * 2000-10-27 2006-03-15 本田技研工業株式会社 Radio wave permeable exterior part and manufacturing method thereof
DE102015003207A1 (en) * 2015-03-13 2016-09-15 Covestro Deutschland Ag Ornamental device for a motor vehicle
DE102018111438A1 (en) * 2018-05-14 2019-11-14 Automotive Lighting Reutlingen Gmbh Radom
DE102018005592A1 (en) * 2018-07-16 2020-01-16 Daimler Ag radome

Also Published As

Publication number Publication date
WO2021249806A1 (en) 2021-12-16
CN115698762A (en) 2023-02-03
US20230314601A1 (en) 2023-10-05
FR3111195A1 (en) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2021122554A1 (en) Light element of a vehicle
EP2098774A1 (en) Optical system with main function for an automobile
FR2691581A1 (en) Microwave antenna at low cost and space for transmitter system and / or vehicle receiver.
EP4031411B1 (en) Light device of a vehicle
EP3024696A1 (en) Lighting system, in particular for a motor vehicle lighting member, comprising a printed circuit board in the plane of the lighting direction
EP4162296A1 (en) Radar detection system for a vehicle
EP4078724A1 (en) Backlit radome comprising a de-icing device
FR3010515A1 (en) MOTOR VEHICLE EQUIPMENT INCLUDING A DEVICE FOR MEASURING OBJECT DISTANCES
FR3111711A1 (en) Vehicle assembly including radar sensor
FR3090822A1 (en) Glass and light device for obstacle detection system
EP2873992A1 (en) System for displaying an image on a windscreen
FR3116909A1 (en) Vehicle assembly comprising a radar sensor and an arrangement of layers forming a logo
FR3119896A1 (en) Vehicle assembly comprising a sensor and an arrangement of layers
FR3136063A1 (en) Vehicle assembly including a radar sensor and layer arrangement
EP4256375A1 (en) Vehicle assembly comprising a radar sensor and an arrangement of layers
EP4256376A1 (en) Vehicle assembly comprising a radar sensor and a light-emitting signalling module
FR3111197A1 (en) Vehicle assembly comprising a radar sensor and a set of layers
WO2022253560A1 (en) Lighting device for a vehicle, comprising an inclined intermediate element
FR3069088A1 (en) DISPLAY DEVICE AND INTERNAL VEHICLE INTERIOR COMPRISING SUCH A DISPLAY DEVICE
FR3099584A1 (en) Automotive vehicle lighting device
US20230141051A1 (en) Sensor Device
FR3098892A1 (en) Motor vehicle light device
FR3111241A1 (en) Vehicle radar detection system
FR3105608A1 (en) Motor vehicle radome comprising a decorative pattern
FR3135933A1 (en) Touch device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)