EP4162247A1 - Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité - Google Patents

Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité

Info

Publication number
EP4162247A1
EP4162247A1 EP21737552.6A EP21737552A EP4162247A1 EP 4162247 A1 EP4162247 A1 EP 4162247A1 EP 21737552 A EP21737552 A EP 21737552A EP 4162247 A1 EP4162247 A1 EP 4162247A1
Authority
EP
European Patent Office
Prior art keywords
cavity
fluid
pressure
compliance
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21737552.6A
Other languages
German (de)
English (en)
Inventor
Jan Hendrik Carstens
Ibrahim Ilik
Felix Menzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WOM World of Medicine GmbH
Original Assignee
WOM World of Medicine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WOM World of Medicine GmbH filed Critical WOM World of Medicine GmbH
Publication of EP4162247A1 publication Critical patent/EP4162247A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3218Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for flexible or elastic containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3254Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a flow detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the invention relates to a method for determining the compliance of a cavity of rubber-elastic medical products (e.g. latex products) for non-destructive leak testing and devices for carrying out the method.
  • rubber-elastic medical products e.g. latex products
  • Rubber-elastic medical products such as rubber gloves, balloon catheters, condoms, etc.
  • Rubber-elastic medical products are subjected to a large number of tests before they are placed on the market. Homogeneity errors are searched for, but perforation and burst tests are also carried out.
  • To test rubber-elastic medical devices they are usually filled with gas or liquid. Depending on the size of the cavity formed as a result, the volume of a fluid required for this varies (e.g.
  • N 2 , CO 2 , water, saline solution in order to expand the product so that it can be checked for production errors, especially for leaks.
  • liquid fluids such as saline solutions
  • peristaltic pumps are used here, which can vary the volume flow by controlling the pump rotation.
  • the cavity By introducing the volume flow into the cavity, the cavity is filled with the fluid and the pressure in this cavity increases. At the same time, the cavity of the medical device expands.
  • CONFIRMATION COPY The basic condition here is that the specific pressure in this cavity must not have any harmful effects on the medical device (with the exception of burst tests in which the aim is to destroy the product). For this reason, pressure sensors are typically used to determine the cavity pressure. The necessary volume flow can be calculated using a suitable control system without causing cavity pressure that is harmful to the product. The necessary volume flow will be realized accordingly via the regulation of the pressure reducer or the peristaltic pump. However, it must be taken into account that the pressure is not measured during the fluid supply: For the pressure measurement, the fluid supply is interrupted for a short time so that a pressure equilibrium is established which represents the actual pressure in the medical product. After the measurement, more fluid is added.
  • the user of the test device currently has to make a large number of necessary settings in order to convey the information about the product and its size to the device.
  • quality assurance measures a few products are often removed from a product series and subjected to corresponding expansion or burst tests on a separate test stand.
  • the manual entry of the individual product parameters e.g. type and size of the product
  • the parameters and limit values for the control / regulation of the device are derived from this.
  • data records are thus loaded that quantify the maximum permissible delivery rate of the fluid.
  • the present invention discloses a technical device for introducing a fluid into a rubber-elastic medical product which determines the parameters of a cavity and thus independently determines the necessary operating parameters.
  • FIG. 2 shows a medical device (3) according to the invention for conveying fluid with the following components:
  • the fluid can be a gas (e.g. C02 or N2 or a liquid (e.g. saline solution).
  • a regulated pump (actuator or delivery unit) (4) to deliver the fluid in a regulated manner.
  • a pressure sensor (6) to determine the dynamic and static pressure of the fluid.
  • a connecting element (7) e.g. hose to convey the fluid from the device to the medical device (8).
  • An electronic storage element (not explicitly shown) which is used to record measurement data. Furthermore, an electronic processing unit (e.g. microcontroller) to set the necessary control commands to actuators, to evaluate data, to load / write parameter data sets from the memory element.
  • an electronic processing unit e.g. microcontroller
  • the compliance of the cavity can be determined automatically on the basis of the values of the volume flow and pressure so that incorrect operation of the staff can be avoided.
  • Various determination methods can be used for this, which are described below.
  • the rubber-elastic medical product is first connected to the device by means of a connecting element (fluid line).
  • the device is then switched on. Before the initial introduction of a volume flow, the device determines the pressure in the cavity.
  • a predefined temporal volume flow q is then generated by means of the actuator (eg a pulse-shaped volume flow with a defined temporal length). The volume flow creates a pressure increase q c in the cavity.
  • the volume V can be determined by integrating the volume flow measurement unit.
  • the device stops pumping after the defined volume flow and determines the static pressure in the cavity.
  • the elasticity can thus be determined from the partial pressure increase (dp c / dV c ).
  • This procedure can be repeated until a desired target pressure is reached in the cavity.
  • the so-called P-V diagram can then be derived from the partial pressure increases.
  • This diagram therefore provides information about the size of the cavity, i.e. the size of the medical device.
  • the parameterization and selection of optimal system parameters e.g. maximum delivery rate, control and regulation parameters
  • the automatic cavity detection can be confirmed by an optional confirmation from the user.
  • method la is expanded as follows:
  • a pressure control device is used to generate pressure in the cavity.
  • the volume flow required to achieve the desired pressure is specified.
  • the pressure control would regulate the volume flow to zero when the desired pressure is reached (see FIG. 6).
  • the pressure control would continuously track a volume flow in order to compensate for the leakage.
  • This volume flow which is necessary to maintain the pressure, is the leakage volume flow q t at the existing cavity pressure. This is shown as an example in FIG. From this, the volume V 2 and V 3 , which flows out of the medical device via the leak, can be determined. The introduced volume can then be cleared of the leakage.
  • the pressure in the cavity p cl at the point in time at which the volume flow is stopped can be determined or approximated by prior knowledge of the pressure drop across the connecting element and the measured pressure p dl,. At this point in time p d « p cl applies.
  • the evaluation can be used as in method l.a.
  • the target pressure can be increased (temporarily) in each case.
  • the current operating point can be determined in the PV diagram of the medical device.
  • a measurement pause is generated when the device is in operation.
  • the volume flow is briefly interrupted and the stationary cavity pressure is determined p cl .
  • a predefined temporal volume flow is then generated by means of the actuator (eg a pulse-shaped volume flow with a defined temporal length).
  • the volume flow creates a pressure increase in the cavity.
  • the volume V 2 supplied in this time segment can be determined by integrating the volume flow measuring unit.
  • the device ends after the defined volume flow the conveyance and determines the static pressure in the cavity p c2 .
  • the device then resumes its normal functionality (see Figure 7).
  • the plausibility can be compared to the presetting selected by the user and the actually determined characteristic values (see FIG. 8).
  • the device can independently adapt the device parameter set in order to enable the user to optimally set the system to carry out the intervention.
  • This method is particularly suitable for testing balloon catheters.
  • balloon catheters can have openings which represent a leak.
  • burst tests (or tear propagation tests) can be carried out.
  • the pressure is temporarily increased when the device is in operation.
  • An active pressure control / regulation is used for this.
  • the additional volume required to obtain the desired pressure in the cavity is determined in the pressure increase phase.
  • the procedure is to be equated with method II.
  • method III can also be used in the initial filling phase of the cavity.
  • the desired setpoint pressure of the pressure control is increased in a quasi-stationary manner (very slowly or in stages). A measurement pause is not necessary if the system parameters are present for the device and the connection unit between the device and the medical device.
  • the data of the volume and generated pressure can thus be transferred to a P-V diagram.
  • this provides the basis for deriving the cavity size or product type. This gives the opportunity to parameterize and select optimal system parameters (e.g. max. Delivery rate, control and regulation parameters).
  • the automatic cavity detection can be confirmed by an optional confirmation from the user.
  • a variation of method II is that after determining the current cavity pressure p cl , the volume flow is increased.
  • the increasing pressure at the sensor correlates with the pressure increase in the cavity (see Figure 9). It follows from this that a measurement of the cavity pressure p c2 becomes unnecessary (cf. method II). For this purpose (see FIG. 10) the increase Ap c based on the volume V 2 is determined. After the values have been determined, the device resumes its previous operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

L'invention concerne un procédé pour déterminer des volumes de cavité de produits médicaux à élasticité caoutchoutique (par exemple des produits en latex) à des fins de test d'étanchéité non destructif et des dispositifs pour la mise en oeuvre dudit procédé.
EP21737552.6A 2020-06-05 2021-06-07 Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité Pending EP4162247A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020003418.7A DE102020003418A1 (de) 2020-06-05 2020-06-05 Verfahren zur Bestimmung von Kavitätsvolumen von elastischen Medizinprodukten zur Dichtigkeitsprüfung
PCT/DE2021/000107 WO2021244691A1 (fr) 2020-06-05 2021-06-07 Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité

Publications (1)

Publication Number Publication Date
EP4162247A1 true EP4162247A1 (fr) 2023-04-12

Family

ID=76796867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21737552.6A Pending EP4162247A1 (fr) 2020-06-05 2021-06-07 Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité

Country Status (6)

Country Link
US (1) US20230241307A1 (fr)
EP (1) EP4162247A1 (fr)
JP (1) JP2023528915A (fr)
CN (1) CN115836194A (fr)
DE (1) DE102020003418A1 (fr)
WO (1) WO2021244691A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309380C2 (de) 1993-03-23 2000-01-05 Infors Ag Bottmingen Verfahren zur Überwachung eines Systems
DE19809867C1 (de) 1998-03-07 1999-09-30 Draeger Medizintech Gmbh Verfahren zur Bestimmung der Compliance von Teilen eines Atemgas-Kreislaufsystems
US20070083126A1 (en) 2005-09-27 2007-04-12 Angiometrx, Inc. Apparatus & method for determining physiologic characteristics of body lumens
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation

Also Published As

Publication number Publication date
WO2021244691A1 (fr) 2021-12-09
CN115836194A (zh) 2023-03-21
US20230241307A1 (en) 2023-08-03
DE102020003418A1 (de) 2021-12-09
JP2023528915A (ja) 2023-07-06

Similar Documents

Publication Publication Date Title
DE102011106113B4 (de) Verfahren und Vorrichtung zum Überprüfen der Förderleistung mindestens eines ersten und eines zweiten Fördermittels einer Vorrichtung zur extrakorporalen Blutbehandlung
DE102008039022B4 (de) Verfahren und Vorrichtung zum Überwachen einer peristaltischen Schlauchpumpe zur Förderung einer Flüssigkeit in einer Schlauchleitung
DE3750352T2 (de) Feststellung von Durchflussstörungen bei der parenterale Infusion.
DE102011106111B4 (de) Verfahren und Vorrichiung zum Bestimmen mindestens eines vom Absolutdruck abhängigen Betriebsparameters einer Vorrichtung zur extrakorporalen Blutbehandlung, Vorrichtung zur extrakorporalen Blutbehandlung
EP1061976A1 (fr) Injecteur pour l'application de liquides au moyen d'un systeme manometrique
EP2587329A1 (fr) Aide au diagnostic d'erreurs d'une installation industrielle
DE102015015152B4 (de) Verfahren zur Überprüfung eines Gassensors in einem Gasmesssystem
DE102014012784A1 (de) Verfahren und Vorrichtung zur Durchführung einer Integritätsprüfung eines Filterelements
WO2005070287A1 (fr) Reglage de capteurs ou de systemes de mesure
EP3180051A1 (fr) Dispositif pour déterminer la pression intrapéritonéale
EP3570902B1 (fr) Diagnostic par capteur de mesure de la concentration de dialysat
WO2021244691A1 (fr) Procédé pour déterminer la compliance d'une cavité de produits médicaux élastiques à des fins de test d'étanchéité
DE102015008050A1 (de) Anordnung in Form eines Modellsystems zur Nachbildung von maternalen und fetalen Pulskurven für die nichtinvasive transabdominale Plethysmografie
EP3914314A1 (fr) Procédé de vérification de la précision d'acheminement de moyens d'acheminement d'un dispositif de traitement médical, et dispositifs
EP3746150B1 (fr) Appareil de détermination de la pression statistique du patient
DE102014004480B4 (de) Verfahren und Vorrichtung zur Regelung des Körperinnendrucks bei Verwendung einer medizintechnischen Pumpe
DE102020003419A1 (de) Verfahren zur Bestimmung von Kavitätsvolumen bei minimal-lnvasiven Operationen
WO2018158431A1 (fr) Procédé et dispositif pour le dosage et la conservation de liquides à l'aide de récipients ouverts en permanence
DE4131401C1 (en) Monitoring pressure sensors for controlled or regulated pressure generator - detecting width of deviation of pressure signal from sensor under test and comparing with stipulated range related to control valves
DE102012104022A1 (de) Verfahren zum Überprüfen einer Dichtigkeitsmessung und Leckmessgerät mit einem Lecksimulator
EP3520839A1 (fr) Dispositif de surveillance et procédé de surveillance d'un dispositif de traitement extracorporel du sang
EP3344309B1 (fr) Procédé d'étalonnage et/ou de surveillance d'un capteur de débit
DE102018220598B3 (de) Druckregler-Einrichtung, System und Verfahren, Druckfluid-Bereitstellungseinrichtung
EP3283234A1 (fr) Dispositif et procédé de distribution dosée d'un liquide
DE102020133387A1 (de) Kurzschlussleitung, medizintechnische Behandlungsvorrichtung, sowie Verfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)