EP4146679A1 - Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale - Google Patents

Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale

Info

Publication number
EP4146679A1
EP4146679A1 EP21722502.8A EP21722502A EP4146679A1 EP 4146679 A1 EP4146679 A1 EP 4146679A1 EP 21722502 A EP21722502 A EP 21722502A EP 4146679 A1 EP4146679 A1 EP 4146679A1
Authority
EP
European Patent Office
Prior art keywords
weight
hydrolyzate
ranging
amino acids
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21722502.8A
Other languages
German (de)
English (en)
Inventor
Etienne Broin
Joel DUPERRAY
Jean-Philippe SOULARD
Renaud Sergheraert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bretagne Chimie Fine SAS
Original Assignee
Bretagne Chimie Fine SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bretagne Chimie Fine SAS filed Critical Bretagne Chimie Fine SAS
Publication of EP4146679A1 publication Critical patent/EP4146679A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4741Keratin; Cytokeratin
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs

Definitions

  • the present invention relates to the field of hydrolysates with high levels of free amino acids and for their uses in particular in the field of animal nutrition, in particular feline and canine food, in aquaculture and in agriculture, in particular as a plant biostimulant.
  • the amino acid-based compositions are used in very diverse fields such as nutraceuticals, cosmetics, plant, animal and human nutrition, for very different and specific applications in each of these fields. Mention may in particular be made of uses aimed at the growth and shine of hair in humans, as well as uses aimed at a supply of free amino acids constituting a source of specific proteins in animal feed, particularly in the fields of aquaculture and canine and feline nutrition.
  • One of the ways to obtain a composition based on amino acids is to produce a hydrolyzate of keratin materials.
  • Natural keratin materials predominantly comprise polypeptides of high molecular weight and with a highly crosslinked structure making it hardly accessible to enzymes. This natural keratin material is hardly digestible. However, it is known that the hydrolysis of keratin materials into amino acids improves their digestibility.
  • the keratin hydrolysates offered for sale in particular as food supplements, ingredients for formulating animal nutrition recipes, or raw materials for animal nutrition are generally obtained by very partial hydrolysis. These hydrolysates generally exhibit a high molecular mass due to the presence of high levels of so-called “linked” amino acids forming peptides and polypeptides. Typically the molecular weight of commercial compositions ranges from 5,000 to 50,000 daltons. These keratin hydrolysates are relatively poorly digestible and contain very little or no free amino acids. In fact, it is technically difficult and industrially expensive to obtain a keratin hydrolyzate having a very high level of free amino acids.
  • Patent application WO2019 / 043128 describes a keratin hydrolyzate with high levels of free amino acids, it is obtained by implementing a process in which the hydrolysis step is followed by an extraction step of tyrosine.
  • This hydrolyzate has the advantages linked to the high levels of free amino acids, in particular a good digestibility, however this hydrolyzate does not include all the amino acids generally present at the end of an acid hydrolysis, in particular the levels of cysteine and tyrosine. are weak.
  • obtaining a hydrolyzate which can be used in a complete and balanced food, without adding additional amino acids is a property that is generally sought after.
  • hydrolysates obtained by chemical hydrolysis in particular by acid hydrolysis are in salt form, while most uses, in particular in animal feed and in biostimulation, require desalted hydrolysates.
  • desalination processes generally lead to a loss of a significant amount of certain amino acids, in particular the amino acids which precipitate at the end of neutralization, indeed desalination can generally only be carried out on a filtered solution. Consequently, the yields of hydrolysates obtained according to the methods of the prior art are not always satisfactory.
  • the inventors of the present invention have succeeded in overcoming the problems of the prior art by the implementation of a process making it possible to obtain a desalted keratin hydrolyzate, exhibiting a rate high in free amino acids and comprising all the amino acids generally present at the end of a acid hydrolysis.
  • the profile of the amino acids of the hydrolyzate according to the present invention is close to that of the original keratin material.
  • the use of the hydrolyzate according to the present invention makes it possible to dispense with the great majority of the addition of additional amino acids, among those present in the original keratin material.
  • the free amino acids obtained according to the invention are not damaged or denatured, in particular the amino acids among the most difficult to release in free form during the hydrolysis process such as valine, leucine, isoleucine .
  • the method according to the present invention allows obtaining a good yield of amino acids, that is to say a good ratio between the total of total amino acids of the hydrolyzate according to the invention and the starting keratin material, because all the phases resulting from the various steps of the process are recovered and treated so as to extract the maximum therefrom, that is to say practically all the amino acids.
  • the present invention relates to a keratin hydrolyzate comprising at least 88%, preferably at least 90%, by weight of free amino acids relative to the total weight of amino acids of the hydrolyzate, said hydrolyzate comprising of free tyrosine in a content ranging from 2 to 4%, preferably 2.5 to 3.5% by weight relative to the total weight of the free amino acids of the hydrolyzate.
  • said hydrolyzate comprises at least 90%, preferably at least 93%, and preferably at least 95% of cystine in free form by weight relative to the total weight of cystine in the hydrolyzate.
  • said hydrolyzate is desalted, that is to say it comprises less than 11%, preferably less 7% by weight of salts relative to the total weight of the hydrolyzate, the salts being chosen from sodium chloride, sodium sulfate, sodium phosphate, sodium chloride potassium, potassium sulfate and potassium phosphate, preferably sodium chloride.
  • a second object of the present invention is a process for preparing the keratin hydrolyzate according to the invention from an animal keratin material, preferably from poultry, comprising at least the following steps, in this order:
  • the suspension obtained is dried and the solid obtained at the end of the drying recovered.
  • the means for implementing the method according to the invention have the advantage of being simple: the invention can be implemented with a device using means commonly used in industry such as reactors, dryers, atomization towers. Several steps can be carried out in the same enclosure, moreover the meeting of the various phases is carried out easily without notable problems.
  • the present invention also relates to the use of keratin hydrolyzate in animal feed, in particular feline, canine, in aquaculture or in agriculture.
  • the present invention relates more particularly to the use of the hydrolyzate according to the invention or prepared according to the invention as a component of a product chosen from foodstuffs for animal feed for companion animals, foodstuffs for pet animals. aquaculture, plant biostimulants.
  • this hydrolyzate is obtained from natural keratin materials, animal, in particular poultry, advantageously from poultry feathers. Mention may be made, by way of poultry, of hens, in particular laying hens, chickens, turkeys, ducks, geese, etc. 'animals, animal nails. In particular, the hydrolyzate according to the present invention is not obtained from human keratin such as the hair.
  • the hydrolyzate according to the present invention comprises at least 88%, preferably 90% by weight of free amino acids relative to the total weight of amino acids of the hydrolyzate.
  • the total amino acid content of the hydrolyzate according to the invention ranges from 40% to 95%, preferably 45% to 93% by weight relative to the total weight of the hydrolyzate, the hydrolyzate comprising in addition to mineral matter and water.
  • the hydrolyzate according to the invention has free branched amino acids: undenatured valine, leucine and isoleucine. However, these branched amino acids are known to be more difficult to release under identical operating conditions.
  • the hydrolyzate according to the invention comprises at least 90%, preferably at least 93% and preferably at least 95% of cystine in free form by weight relative to the total weight of cystine in the hydrolyzate.
  • the hydrolyzate according to the invention comprises: at least 95%, preferably 100%, of aspartic acid in free form by weight relative to the total weight of aspartic acid in the hydrolyzate; at least 95%, preferably 100%, of threonine in free form by weight relative to the total weight of threonine in the hydrolyzate; at least 95%, preferably 100%, serine in free form by weight relative to the total weight of serine in the hydrolyzate; at least 93%, preferably at least 95%, of glutamic acid in free form by weight relative to the total weight of glutamic acid in the hydrolyzate; at least 90%, preferably at least 93%, of glycine in free form by weight relative to the total weight of glycine in the hydrolyzate; at least 90%, preferably at least 93%, of alanine in free form by weight relative to the total weight of alanine in the hydrolyzate; at least 90%, preferably at least 93%, of alanine in free form by weight relative to
  • the amino acids of the hydrolyzate have a molecular mass less than or equal to 250 daltons, preferably less than or equal to 240 daltons. Consequently, this hydrolyzate can be used to prepare complete feeds for animal feed having hypoallergenic or even anallergic properties.
  • the hydrolyzate obtained is advantageously desalted, that is to say it comprises less than 11%, preferably less than 7% by weight of salts relative to the total weight of the hydrolyzate, the salts being chosen from sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate and potassium phosphate, preferably sodium chloride (NaCl).
  • the percentage of salts falls within the competence of those skilled in the art.
  • the percentage of salts is determined by the dosage of the anions.
  • the chloride ions are determined by a potentiometric assay, by 0.1 N silver nitrate, followed by a combined Ag / AgCl electrode;
  • the phosphate ions are determined by spectrophotometric determination of a phosphomolybdic complex according to the ISO 6878 standard and the sulphates by gravimetric determination by adding a barium salt according to the ISO 2480: 1972 standard.
  • the anions assay can be supplemented by a cation assay, in general the sodium and potassium assay is performed by flame ionization spectrophotometry according to the ISO 9964-2: 1993 standard.
  • the salt (s) content depends on the quality of the washing of the precipitate and the degree to which the electrodialysis is continued. It is within the competence of those skilled in the art to adjust the parameters of these steps, in particular to adapt the times, according to the desired salt content (s).
  • dry hydrolyzate or “dried hydrolyzate” within the meaning of the present invention is meant a hydrolyzate containing less than 5% by weight of water.
  • the water weight of the hydrolyzate is measured using an infrared thermobalance.
  • the hydrolyzate according to the present invention comprises the following free amino acids, by weight, relative to the total weight of the free amino acids of the hydrolyzate: aspartic acid in a content ranging from 6.00 at 10.00%, preferably ranging from 7.00 to 9.00%, and preferably 7.83% by weight; threonine in a content ranging from 3.00 to 7.00%, preferably ranging from 4.00 to 6.00%, and preferably 4.93% by weight; serine in a content ranging from 11.00 to 15.00%, preferably ranging from 12.00 to 14.00%, and preferably 12.88% by weight; glutamic acid in a content ranging from 8.50 to 12.50%, preferably ranging from 9.50 to 11.50%, and preferably 10.47% by weight; glycine in a content ranging from 6.50 to 10.50%, preferably ranging from
  • valine in a content ranging from 3.50 to 7.50%, preferably ranging from
  • cystine in a content ranging from 4.00 to 8.00%, preferably ranging from
  • methionine in a content ranging from 0.10 to 2.00%, preferably ranging from 0.20 to 1.00%, and preferably 0.57% by weight
  • isoleucine in a content of 1.50 to 5.50%, preferably ranging from 2.50 to
  • leucine in a content ranging from 6.00 to 10.00%, preferably ranging from
  • tyrosine in a content ranging from 2.50 to 3.50%, preferably 3.00 to
  • histidine in a content ranging from 0.10 to 2.00%, preferably ranging from
  • arginine in a content ranging from 4.00 to 8.00%, preferably ranging from
  • proline in a content ranging from 8.50 to 12.50%, preferably ranging from 9.50 to 11.50%, and preferably 10.59% by weight.
  • Another advantage of the keratin hydrolyzate according to the present invention is that its amino acid profile is close to that of the original keratin material. In fact, with the exception of tryptophan destroyed in acid hydrolyses, the 17 amino acids present in the original keratin material are also present in free form in the final hydrolyzate.
  • the keratin hydrolyzate according to the present invention comprises 17 amino acids, and for each of the amino acids the percentage variation between the weight of the free amino acid in the hydrolyzate and the weight of this amino acid in the starting keratin material is less than 20% in absolute value, advantageously for 15 of these amino acids, said variation is less than 10% in absolute value.
  • the variation, in percentage, for an amino acid corresponds to the ratio of the absolute value of the difference between the weight of the amino acid in the keratin material and the weight of the free amino acid in the hydrolyzate on the weight of the amino acid in the keratin material multiplied by 100, i.e. the following formula:
  • hydrolyzate according to the present invention is very digestible, moreover, it is recognized to be of food grade.
  • the hydrolyzate according to the invention has a true digestibility of its protein fraction of at least 98%. This value is very close to the maximum possible (100%).
  • the digestibility is measured in vivo according to the method described by ZM Larbier, AM Chagneau and M. Lessire in "Effect of protein intake on true digestibility of amino acids in rapeseed meals for adult roosters force fed with moistened feed". Animal Feed Science and Technology. 34 (1991) 255-260. [0039] Method
  • FIG.1 is a diagram showing the main steps of the process according to the invention described below as well as the phases obtained at the end of these different steps. The stages are presented in rectangles and the phases in ellipses.
  • the process comprises hydrolysis followed by a pH adjustment step leading to a liquid phase and a precipitate which are subjected to a solid-liquid separation step.
  • the precipitate is then subjected to washing to give the desalted precipitate (AA2).
  • the liquid phase and the washing water are combined and this solution (AA1) is subjected to a desalination step leading to a desalinated solution.
  • the desalted solution and the desalted precipitate (AA2) are combined and the suspension obtained is subjected to drying resulting in the obtaining of the dried desalinated hydrolyzate.
  • the process for preparing the keratin hydrolyzate according to the invention implements at least one chemical hydrolysis by means of an acid under conditions capable of obtaining a hydrolyzate comprising at least 88% of weight of free amino acids relative to the total weight of amino acids in the hydrolyzate, the rest of the amino acids in the hydrolyzate being in the form of small peptides, i.e. having a molecular mass less than or equal to 800 Dalton.
  • the percentage of small peptides in the hydrolyzate according to the invention generally ranges from 5 to 12% by weight relative to the total weight of the hydrolyzate.
  • the chemical hydrolysis of the keratin is carried out by means of an acid, preferably a strong acid chosen from hydrochloric, phosphoric and sulfuric acids, preferably hydrochloric acid.
  • an acid preferably a strong acid chosen from hydrochloric, phosphoric and sulfuric acids, preferably hydrochloric acid.
  • the concentration of acid, preferably hydrochloric acid ranges from 14 to 34% by weight.
  • the acid / keratin material weight ratio, in particular the acid / feather weight ratio ranges from 2 to 5.
  • Chemical hydrolysis is generally carried out for a period ranging from 1 hour to 24 hours, preferably ranging from 6 to 20 hours at a temperature ranging from 100 to 115 ° C.
  • the chemical hydrolysis is carried out in two stages: a first chemical hydrolysis carried out at a temperature ranging from 60 to 80 ° C for a period ranging from 4 to 5 hours then a second chemical hydrolysis carried out at a temperature ranging from 100 to 115 ° C for a period ranging from 5 to 8 hours.
  • the two hydrolyses can be carried out without an intermediate pause step or by performing an intermediate pause step of between 1 hour and 7 days.
  • the first chemical hydrolysis is carried out at 72 ° C for 4.5 hours and the second chemical hydrolysis is carried out at 107 ° C for 6 hours, an intermediate break of 24 to 80 hours being carried out between the two hydrolyses chemical.
  • Chemical hydrolysis carried out in one or more steps, is followed by a pH adjustment step.
  • the hydrolyzate is brought to a pH having a value ranging from 3 to 5, preferably from 4 to 5.
  • This step is carried out by adding a base chosen from sodium hydroxide and potassium hydroxide, preferably 1. 'sodium hydroxide.
  • This step is a classic step, the implementation of which falls within the competence of those skilled in the art.
  • This step also has the effect of precipitating, at least partially, the less soluble amino acids including cystine, tyrosine, leucine and isoleucine. These less soluble amino acids form the precipitate, the other amino acids remain in solution and form, with the salt formed and the water, the liquid phase.
  • the pH adjustment step is followed by a step of separating the precipitate from the liquid phase.
  • the separation step can be carried out by implementing any solid-liquid separation technique, in particular by the application of centrifugal force or of pressing, in particular by means of a filter press.
  • the separation step is a spinning, the spinning is advantageously carried out by applying a centrifugal force by means of a rotation of about 1000 rpm.
  • This technique known to those skilled in the art for performing a solid-liquid separation, consists in removing the liquid phase by the effect of centrifugal force, while maintaining the precipitate (solid fraction) on a cloth.
  • salts is meant sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate and potassium phosphate, preferably sodium chloride (NaCl).
  • the water content of the precipitate ranges from 50 to 60% by weight relative to the total weight of the precipitate.
  • the desalted precipitate mainly comprises the following amino acids: cystine, tyrosine and leucine, it also comprises valine, isoleucine and phenylalanine.
  • the washing water is collected and added to the liquid phase obtained at the end of the spinning, they form a salted solution of amino acids.
  • the salted amino acid solution is subjected to a desalination step by electrodialysis.
  • Said salty amino acid solution includes all amino acids, but cystine and tyrosine are present in very small amounts.
  • the desalination step aims to remove the salts, in particular the sodium chloride formed during the pH adjustment step by adding sodium hydroxide to the hydrochloric acid used in step d 'hydrolysis.
  • This desalination step is carried out by electrodialysis. Electrodialysis is conventionally carried out by opposing pure water to the solution to be desalinated, the two solutions circulating separately and alternately between anionic and cationic membranes to which an electric current is applied.
  • the salt content of the solution is less than 1% by weight of salt relative to the total weight of the solution.
  • the desalinated precipitate obtained at the end of the water washing step is introduced into the desalinated solution thus forming a suspension.
  • the inventors have shown that all the amino acids resulting from acid hydrolysis are present.
  • the The profile of the amino acids of the hydrolyzate according to the present invention is close to that of the original keratin material.
  • the suspension obtained is dried and the solid obtained after drying is recovered.
  • the hydrolyzate according to the present invention is preferably in dry form, it comprises less than 5% by weight of water relative to the total weight of the hydrolyzate.
  • the hydrolyzate in dry form comprises less than 11%, preferably less than 7% by weight of salts relative to the total weight of the hydrolyzate.
  • the weight of total amino acids recovered in the hydrolyzate in dry form is at least equal to 80% of the weight of the total amino acids contained in the keratin material involved in the hydrolysis, preferably at least 84%.
  • the present invention relates to the use of the hydrolyzate in animal nutrition, especially feline, canine, in aquaculture or in agriculture.
  • the present invention relates more particularly to the use of the hydrolyzate according to the invention or prepared according to the invention as a component of a product chosen from foodstuffs for animal feed for pets, foodstuffs. for aquaculture, plant biostimulants.
  • the present invention relates to the use, orally, of the keratin hydrolyzate, according to the invention or obtained according to the preparation process according to the invention as a raw material for the animal feed.
  • the present invention also relates to a raw material comprising a hydrolyzate according to the present invention without additions of ingredients.
  • raw material means all products of plant or animal origin, in the natural state, fresh or preserved, and derived from their industrial transformation, as well as all organic or inorganic substances, including or not including additives, which are intended for use in feeding animals by the oral route, either directly as such, or after processing, for the preparation of compound feedingstuffs for animals, or as carriers of premixtures (Directive 96/25 / CE of the Council of April 29, 1996).
  • the raw material according to the present invention is a mixture of amino acids intended to be incorporated into a complete and balanced food in animals or to be used as a food supplement in humans. It is therefore intended for oral administration in terrestrial and / or marine animals and / or in humans. Said raw material does not belong to the therapeutic field.
  • the present invention relates more particularly to the use of the hydrolyzate, in animal feed and more particularly as a raw material source of free amino acids making it possible to dispense with food proteins of plant and / or animal origin. of complex molecular structure and large molecular weight.
  • the formulation of the raw material for animal feed according to the invention implements conventional processes which are part of the general skills of those skilled in the art.
  • the present invention also relates to a complete feed for animal feed comprising from 0.25 to 40% by weight of the composition or preferably of the hydrolyzate according to the invention relative to the total weight of said complete food.
  • the complete feed for animal feed in accordance with the invention can be formulated with the excipients usually used in compositions intended for the oral route, in particular humectants, thickeners, texturing agents, flavor, coating agents, preservatives, antioxidants, colors, plant extracts, non-protein ingredients such as starches, plant fibers, minerals and vitamins.
  • excipients usually used in compositions intended for the oral route, in particular humectants, thickeners, texturing agents, flavor, coating agents, preservatives, antioxidants, colors, plant extracts, non-protein ingredients such as starches, plant fibers, minerals and vitamins.
  • the complete feed for animal feed in accordance with the invention can be formulated according to one of the following presentations: a kibble, a capsule, a dragee, a tablet, a soft or hard capsule, or even a suspension, a solution, a gel, a dry preparation containing less than 15% by weight of water, or a wet preparation comprising at least 50% by weight of water and 85% by weight of water at most.
  • the invention also relates to the use of the composition according to the invention or of the hydrolyzate according to the invention to prepare a raw material or a complete feed for animal feed.
  • the present invention is aimed at the use of keratin hydrolyzate as an ingredient promoting palatability in feed for aquaculture, in particular for rearing shrimp, in particular at the larval stage. and up to the magnification stage.
  • the present invention relates to the use of keratin hydrolyzate as a plant biostimulant.
  • the hydrolyzate according to the invention can be used on different parts of plants: seeds, leaves, flowers, fruits.
  • Biostimulants are defined as substances and / or microorganisms whose function, when applied to plants or to the rhizosphere, is to stimulate natural processes which promote / improve the absorption or use of nutrients , abiotic stress tolerance, crop quality or yield, regardless of the presence of nutrients.
  • the hydrolyzate can also be used with an ingredient chosen from phytosanitary products, fertilizers, microorganisms, algae extracts, humic and fulvic acids, minerals.
  • amino acids are separated by chromatography (HPLC or "HPLC” in English) with an ion exchange column and assayed by reaction with ninhydrin and photometric detection at 570 nm.
  • hydrolysis In a 55,000 liter reactor / hydrolyzer, 9000 kg of poultry feathers containing 50% dry matter are introduced. Chemical hydrolysis is carried out by adding 18,000 liters of hydrochloric acid (23%), hydrolysis is carried out at 72 ° C for 4.5 hours. The product obtained is stored for 48 hours, allowing its temperature to rise naturally to room temperature. Then a second chemical hydrolysis is carried out by heating at 107 ° C for 6 hours without adding acid. The hydrolyzate obtained comprises 88% by weight of free amino acids, the remainder of the amino acids of the hydrolyzate being in the form of small peptides with a molecular mass of less than or equal to 800 Dalton. [0100] Purification
  • the hydrolyzate is then allowed to settle in order to remove the fat provided by the keratin material which floats on the surface of the aqueous phase.
  • the hydrochloric acid introduced in excess in the hydrolysis step. 8000 kg of concentrate are recovered. Then 4,500 kg of water are added to it to obtain 12,500 kg of dilute concentrate.
  • sodium hydroxide 30.5% sodium hydroxide is added to the hydrolyzate, to bring the pH to a value between 4 and 5.
  • sodium hydroxide the least soluble amino acids, in particular cystine, tyrosine, leucine , isoleucine precipitate at least partially.
  • the other amino acids remain completely in solution in the liquid phase.
  • the suspension is then placed in a wringer, to separate the precipitate (which remains on the cloth), and to recover the liquid phase, corresponding to 17000 kg, in a tank.
  • the precipitate remaining on the cloth is then washed by introducing 3000 kg of water directly into the wringer to remove the salt (NaCl).
  • the washing water corresponding to 3440 kg, is sent to the tank which already contains the liquid phase resulting from the dewatering, to give 20 440 kg of a solution called AA1.
  • the 1560 kg of washed precipitate are recovered, which corresponds to the product AA2.
  • composition of free amino acids of the AA1 solution is presented in Table 1.
  • AA1 has a dry matter content of 34.07%, by measurement by means of an infrared thermobalance, a NaCl content of 14.74% and a free amino acid content of 93.4% by weight per relative to the total weight of total amino acids of AA1.
  • the AA2 precipitate has a free amino acid content of 92.17% by weight relative to the total weight of the total amino acids of the AA2 precipitate.
  • the AA1 solution (liquid phase resulting from the dewatering and the water for washing the precipitate together) weighing 20,440 kg is desalinated by electrodialysis in front of water, to give approximately 14,300 kg of desalinated solution, containing less than 1 % NaCl.
  • the electrodialyzer used to perform the desalination consists of a double stack of 2 x 600 alternating anionic and cationic membranes, between which the solutions circulate, and through which a direct electric current flows.
  • Table 3 shows, in the second column: the weight fraction of each AAL (free amino acids) of the hydrolyzate relative to the total of the AALs; in the third column: the weight fraction in each AA (amino acids) of the original keratin material relative to the total of the AAs; in the fourth column, the percentage change, in absolute value, between the weight of the free amino acid in the hydrolyzate and the weight of this amino acid in the keratin material.
  • the hydrolyzate obtained has a solids content of 98.6%, a NaCl content of 4.7% and a free amino acid content of 91.11% by weight relative to the total weight of amino acids. total hydrolyzate.
  • the starting keratin material contains 93% of total amino acids on the dry matter (4500 kg of dry matter), and the hydrolyzate obtained (3860 kg as it is) contains 90.6% of total amino acids on the dry matter. as it is, the yield of total amino acids is 83.6%.
  • the profile of the amino acids of the hydrolyzate according to the present invention is close to that of the original keratin material, in fact as presented in the fourth column, for each of the 17 amino acids, the variation in percentage between the weight of the free amino acid in the hydrolyzate and the weight of this amino acid in the starting keratin material is less than 20% in absolute value, moreover for 15 of them, this weight variation is less at 10%.
  • Example 2- Digestibility The true digestibility of the proteins of the hydrolyzate according to the invention is very high since it is equal to 98.99% and therefore very close to the possible maximum (100%). This value was obtained according to the following protocol on cecectomized roosters, which is a reference model for measuring the bioavailability of proteins in the animal kingdom.
  • the digestibility measurements are carried out on cecectomized adult roosters housed in individual cages and fed outside the test period with a standard diet.
  • the faeces are then lyophilized in the oven, combined and mixed into 2 pools corresponding to the 2 repetitions of 4 animals used for each of the 2 hydrolysates.
  • the 2 pools are analyzed.
  • Nutritional analyzes dry matter, crude proteins (Dumas method ISO 16634-1: 2008 standard) are carried out on the hydrolyzate, the feces of roosters as well as on the endogenous losses. These data are used to calculate the true digestibility. proteins.
  • True protein digestibility% (Proteins ingested hydrolyzate - (proteins excreted faeces- endogenous excreted proteins)) / Proteins ingested hydrolyzate x100.
  • the hydrolyzate according to the invention is therefore very easily assimilated by the body.
  • a raw material for animal nutrition is prepared from the hydrolyzate, the composition of which in free amino acids is presented in Table 3 (2nd column) without the addition of additional amino acids, in particular without the addition of L-tyrosine.
  • the raw material prepared is hypoallergenic.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Fodder In General (AREA)
  • Birds (AREA)
  • Cultivation Of Plants (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention vise un hydrolysat de kératine comprenant au moins 88 %, de préférence au moins 90 %, en poids d'acides aminés libres par rapport au poids total des acides aminés de l'hydrolysat, et comprenant de la tyrosine libre en une teneur allant de 2 à 4%, de préférence 2,5 à 3,5% en poids par rapport au poids total des acides aminés libres de l'hydrolysat ainsi qu'un procédé de préparation de cet hydrolysat comprenant notamment les étapes suivantes: une hydrolyse acide, un ajustement du pH et un dessalement. L'invention vise aussi l'utilisation de cet hydrolysat en particulier pour l'alimentation des animaux de compagnie, les aliments pour l'aquaculture, les biostimulants de plantes.

Description

Titre de l'invention : Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d’obtention et utilisation pour l’alimentation animale et la nutrition végétale [0001] La présente invention se rapporte au domaine des hydrolysats à hautes teneurs en acides aminés libres et à leurs utilisations en particulier dans le domaine de l’alimentation animale notamment féline et canine, en aquaculture et en agriculture notamment en tant que biostimulant de plantes.
[0002] Les compositions à base d’acides aminés sont utilisées dans des domaines très divers tels que la nutraceutique, la cosmétique, la nutrition végétale, animale et humaine, pour des applications très différentes et spécifiques dans chacun de ces domaines. On peut notamment citer les utilisations visant la croissance et la brillance des cheveux chez l’homme, ainsi que les utilisations visant un apport d’acides aminés libres constituant une source de protéines spécifique en alimentation animale, particulièrement dans les domaines de l’aquaculture et de la nutrition canine et féline.
[0003] Une des façons d’obtenir une composition à base d’acides aminés est de réaliser un hydrolysat de matières kératiniques.
[0004] Les matières kératiniques naturelles comprennent majoritairement des polypeptides de hauts poids moléculaires et à la structure très réticulée la rendant peu accessible aux enzymes. Cette matière kératinique naturelle est peu digestible. Cependant, il est connu que l’hydrolyse des matières kératiniques en acides aminés permet d’en améliorer la digestibilité.
[0005] Les hydrolysats de kératine proposés à la vente notamment à titre de compléments alimentaires, d’ingrédients de formulation de recettes en nutrition animale, ou de matières premières pour l’alimentation animale sont généralement obtenus par hydrolyse très partielle. Ces hydrolysats présentent généralement une masse moléculaire élevée due à la présence de taux élevés d’acides aminés dits « liés » formant des peptides et polypeptides. Typiquement la masse moléculaire des compositions du commerce va de 5000 à 50000 daltons. Ces hydrolysats de kératine sont relativement peu digestibles et contiennent très peu voire pas d’acides aminés libres. En effet, il est techniquement difficile et coûteux sur le plan industriel d’obtenir un hydrolysat de kératine présentant un taux d’acides aminés libres très élevé.
En outre une hydrolyse trop poussée présente un risque de dénaturation et de destruction des acides aminés.
[0006] La demande de brevet WO2019/043128 décrit un hydrolysat de kératine à hautes teneurs en acides aminés libres, il est obtenu en mettant en oeuvre un procédé dans lequel l’étape d’hydrolyse est suivie d’une étape d’extraction de la tyrosine. Cet hydrolysat présente les avantages liés aux taux élevés d’acides aminés libres, notamment une bonne digestibilité, cependant cet hydrolysat ne comprend pas tous les acides aminés généralement présents à l’issue d’une hydrolyse acide, en particulier les taux de cystéine et tyrosine sont faibles. Or l’obtention d’un hydrolysat qui peut être utilisé dans un aliment complet et équilibré, sans ajout d’acides aminés additionnels, est une propriété généralement recherchée.
[0007] Par ailleurs, les hydrolysats obtenus par hydrolyse chimique notamment par hydrolyse acide sont sous forme salée, alors que la plupart des utilisations, notamment en alimentation animale et en biostimulation, requièrent des hydrolysats dessalés. Or les procédés de dessalement conduisent généralement à une perte d’une quantité non négligeable de certains acides aminés en particulier les acides aminés qui précipitent en fin de neutralisation, en effet le dessalement ne peut généralement s’effectuer que sur une solution filtrée. En conséquence les rendements des hydrolysats obtenus selon les procédés de l’art antérieur ne sont pas toujours satisfaisants.
[0008] De manière surprenante et avantageuse, les inventeurs de la présente invention sont parvenus à surmonter les problèmes de l’art antérieur par la mise en oeuvre d’un procédé permettant l’obtention d’un hydrolysat de kératine dessalé, présentant un taux élevé en acides aminés libres et comprenant tous les acides aminés généralement présents à l’issue d’une hydrolyse acide. De plus le profil des acides aminés de l’hydrolysat selon la présente invention est proche de celui de la matière kératinique d’origine.
Ainsi l’utilisation de l’hydrolysat selon la présente invention permet de s’affranchir en grande majorité de l’ajout d’acides aminés additionnels, parmi ceux présents dans la matière kératinique d’origine.
[0009] Les acides aminés libres obtenus selon l’invention ne sont pas endommagés ni dénaturés, en particulier les acides aminés parmi les plus difficiles à libérer sous une forme libre lors du procédé d’hydrolyse comme la valine, la leucine, l’isoleucine.
[0010] De plus le procédé selon la présente invention permet l’obtention d’un bon rendement en acides aminés, c’est-à-dire un bon rapport entre le total des acides aminés totaux de l’hydrolysat selon l’invention et la matière kératinique de départ, car toutes les phases issues des différentes étapes du procédé sont récupérées et traitées de manière à en extraire le maximum c’est-à-dire pratiquement tous les acides aminés.
[0011] La présente invention a pour objet un hydrolysat de kératine comprenant au moins 88 %, de préférence au moins 90 %, en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat, ledit hydrolysat comprenant de la tyrosine libre en une teneur allant de 2 à 4%, de préférence 2,5 à 3,5% en poids par rapport au poids total des acides aminés libres de l’hydrolysat.
[0012] Avantageusement, ledit hydrolysat comprend au moins 90%, de préférence au moins 93%, et de manière préférée au moins 95% de cystine sous forme libre en poids par rapport au poids total de cystine dans l’hydrolysat.
[0013] Selon un mode préféré, ledit hydrolysat est dessalé c’est-à-dire qu’il comprend moins de 11 %, de préférence moins 7% en poids de sels par rapport au poids total de l’hydrolysat, les sels étant choisis parmi le chlorure de sodium, le sulfate de sodium, le phosphate de sodium, le chlorure de potassium, le sulfate de potassium et le phosphate de potassium, de préférence le chlorure de sodium.
[0014] Un deuxième objet de la présente invention vise un procédé de préparation de l’hydrolysat de kératine selon l’invention à partir d’une matière kératinique animale, de préférence de volaille, comprenant au moins les étapes suivantes, dans cet ordre :
- soumettre la matière kératinique à au moins une hydrolyse chimique au moyen d’un acide dans des conditions aptes à obtenir un hydrolysat comprenant au moins 88% en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat, le reste des acides aminés de l’hydrolysat étant sous la forme de peptides présentant une masse moléculaire inférieure ou égale à 800 Dalton ;
- soumettre l’hydrolysat à une étape d’ajustement du pH à une valeur allant de 3 à 5, de préférence allant de 4 à 5 et récupérer le précipité et la phase liquide ;
- séparer le précipité et la phase liquide, de préférence par essorage ;
- soumettre le précipité à au moins un lavage à l’eau jusqu’à l’obtention d’un précipité dessalé comprenant moins de 1% de sels en poids par rapport au poids total du précipité, et récupérer le précipité dessalé d’une part et les eaux de lavage d’autre part,
- réunir les eaux de lavage et la phase liquide pour obtenir une solution et procéder au dessalement de cette solution par électrodialyse pour obtenir une solution dessalée,
- ajouter le précipité dessalé à ladite solution dessalée, -récupérer la suspension dessalée obtenue.
[0015] Selon une variante préférée, la suspension obtenue est séchée et le solide obtenu à l’issue du séchage récupéré.
[0016] Les moyens de mise en oeuvre du procédé selon l’invention présentent l’avantage d’être simples : l’invention peut être mise en oeuvre avec un dispositif utilisant des moyens couramment utilisés dans l’industrie tels que réacteurs, essoreuses, tours d’atomisation. Plusieurs étapes peuvent être réalisées dans la même enceinte, en outre la réunion des différentes phases est effectuée facilement sans problèmes notables.
[0017] La présente invention vise encore l’utilisation de l’hydrolysat de kératine en alimentation animale notamment féline, canine, en aquaculture ou en agriculture. La présente invention vise plus particulièrement l’utilisation de l’hydrolysat selon l’invention ou préparé selon l’invention à titre de composant d’un produit choisi parmi les aliments pour l’alimentation animale des animaux de compagnie, les aliments pour l’aquaculture, les biostimulants de plantes.
[0018] D'autres aspects, avantages, propriétés de l'invention ressortiront clairement de la description, en particulier des exemples, et des dessins qui suivent, à titre indicatif et nullement limitatif.
[0019] Description détaillée
[0020] Avantageusement, cet hydrolysat est obtenu à partir de matières kératiniques naturelles, animales, notamment de volaille, avantageusement à partir de plumes de volailles. A titre de volailles, on peut citer les poules, notamment les poules pondeuses, poulets, dindes, canards, oies... Les matières kératiniques naturelles peuvent également être choisies parmi les poils d’animaux, notamment les soies de porcs, les sabots d’animaux, les ongles d’animaux. [0021] En particulier, l’hydrolysat selon la présente invention n’est pas obtenu à partir de kératine humaine telle que les cheveux.
[0022] Comme déjà mentionné, l’hydrolysat selon la présente invention comprend au moins 88%, de préférence 90% en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat. [0023] Avantageusement, la teneur en acides aminés totaux de l’hydrolysat selon l’invention va de 40% à 95%, de préférence 45% à 93% en poids par rapport au poids total de l’hydrolysat, l’hydrolysat comprenant en outre de la matière minérale et de l’eau. [0024] En outre, l’hydrolysat selon l’invention présente des acides aminés ramifiés libres : valine, leucine et isoleucine non dénaturés. Or ces acides aminés ramifiés sont connus pour être plus difficiles à libérer dans des conditions de mise en oeuvre identiques.
[0025] Comme déjà mentionné, l’hydrolysat selon l’invention comprend au moins 90%, de préférence au moins 93 % et de manière préférée au moins 95% de cystine sous forme libre en poids par rapport au poids total de cystine dans l’hydrolysat.
[0026] Selon une variante préférée, l’hydrolysat selon l’invention comprend : au moins 95%, de préférence 100%, d’acide aspartique sous forme libre en poids par rapport au poids total d’acide aspartique dans l’hydrolysat ; au moins 95%, de préférence 100%, de thréonine sous forme libre en poids par rapport au poids total de thréonine dans l’hydrolysat ; au moins 95%, de préférence 100%, de sérine sous forme libre en poids par rapport au poids total de sérine dans l’hydrolysat ; au moins 93%, de préférence au moins 95%, d’acide glutamique sous forme libre en poids par rapport au poids total d’acide glutamique dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, de glycine sous forme libre en poids par rapport au poids total de glycine dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, d’alanine sous forme libre en poids par rapport au poids total d’alanine dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, de phénylalanine sous forme libre en poids par rapport au poids total de phénylalanine dans l’hydrolysat ; au moins 93%, de préférence au moins 95%, de proline sous forme libre en poids par rapport au poids total de proline dans l’hydrolysat.
[0027] Par ailleurs au moins 90 % en poids des acides aminés de l’hydrolysat présentent une masse moléculaire inférieure ou égale à 250 daltons, de préférence inférieure ou égale à 240 daltons. En conséquence, cet hydrolysat peut être utilisé pour préparer des aliments complets pour l’alimentation animale possédant des propriétés hypoallergéniques voire anallergiques. [0028] L’hydrolysat obtenu est avantageusement dessalé c’est-à-dire qu’il comprend moins de 11 %, de préférence moins 7% en poids de sels par rapport au poids total de l’hydrolysat, les sels étant choisis parmi le chlorure de sodium, le sulfate de sodium, le phosphate de sodium, le chlorure de potassium, le sulfate de potassium et le phosphate de potassium, de préférence le chlorure de sodium (NaCI).
[0029] La détermination du pourcentage en sels relève des compétences de l’homme du métier. De préférence, le pourcentage en sels est déterminé par le dosage des anions. En particulier les ions chlorures sont déterminés par un dosage potentiométrique, par le nitrate d’argent 0,1 N, suivi par une électrode combinée Ag/AgCI ; les ions phosphates sont dosés par dosage spectrophotométrique d’un complexe phosphomolybdique suivant la norme ISO 6878 et les sulfates par dosage gravimétrique par ajout d’un sel de baryum suivant la norme ISO 2480 : 1972.
[0030] Le dosage des anions peut être complété par un dosage des cations, en général le dosage du sodium et du potassium est effectué par spectrophotométrie par ionisation de flamme suivant la norme ISO 9964-2 : 1993.
[0031] La teneur en sel(s) dépend de la qualité du lavage du précipité et du degré jusqu’auquel on poursuit l’électrodialyse. Il relève des compétences de l’homme du métier d’ajuster les paramètres de ces étapes, notamment d’en adapter les durées, en fonction de la teneur en sel(s) souhaitée.
[0032] Par « hydrolysat sec » ou « hydrolysat séché » au sens de la présente invention, on entend un hydrolysat contenant moins de 5 % en poids d’eau. Le poids en eau de l’hydrolysat est mesuré au moyen d’une thermobalance infrarouge.
[0033] De préférence, l’hydrolysat selon la présente invention comprend les acides aminés libres suivants, en poids, par rapport au poids total des acides aminés libres de l’hydrolysat : de l’acide aspartique en une teneur allant de 6,00 à 10,00 %, de préférence allant de 7,00 à 9,00 %, et de manière préférée 7,83% en poids ; de la thréonine en une teneur allant de 3,00 à 7,00 %, de préférence allant de 4,00 à 6,00 %, et de manière préférée 4,93 % en poids ; de la sérine en une teneur allant de 11 ,00 à 15,00 %, de préférence allant de 12,00 à 14,00 %, et de manière préférée 12,88 % en poids ; de l’acide glutamique en une teneur allant de 8,50 à 12,50 %, de préférence allant de 9,50 à 11 ,50 %, et de manière préférée 10,47 % en poids ; de la glycine en une teneur allant de 6,50 à 10,50 %, de préférence allant de
7.50 à 9,50 %, et de manière préférée 8,56 % en poids ; de l’alanine en une teneur allant de 3,00 à 7,00 %, de préférence allant de
4,00 à 6,00 %, et de manière préférée 5,04 % en poids ; de la valine en une teneur allant de 3,50 à 7,50 %, de préférence allant de
4.50 à 6,50 %, et de manière préférée 5,61% en poids ; de la cystine en une teneur allant de 4,00 à 8,00 %, de préférence allant de
5,00 à 7,00 %, et de manière préférée 5,80% en poids ; de la méthionine en une teneur allant de 0,10 à 2,00 %, de préférence allant de 0,20 à 1 ,00 %, et de manière préférée 0,57 % en poids ; de l’isoleucine en une teneur de 1 ,50 à 5,50 %, de préférence allant de 2,50 à
4.50 %, et de manière préférée 3,50 % en poids ; de la leucine en une teneur allant de 6,00 à 10,00 %, de préférence allant de
7,00 à 9,00 %, et de manière préférée 7,77 % en poids ; de la tyrosine en une teneur allant de 2,50 à 3,50 % de préférence 3,00 à
3.50 % et de manière préférée 3,15 % en poids ; de la phénylalanine en une teneur allant de 3,00 à 7,00 %, de préférence allant de 4,00 à 6,00 %, et de manière préférée 5,08% en poids ; de la lysine en une teneur allant de 0,50 à 3,00 %, de préférence allant de
1 ,00 à 2,00 %, et de manière préférée 1 ,66 % en poids ; de l’histidine en une teneur allant de 0,10 à 2,00 %, de préférence allant de
0,20 à 1 ,00 %, et de manière préférée 0,74 % en poids ; de l’arginine en une teneur allant de 4,00 à 8,00 %, de préférence allant de
5,00 à 7,00 %, et de manière préférée 5,82% en poids ; de la proline en une teneur allant de 8,50 à 12,50 %, de préférence allant de 9,50 à 11 ,50 %, et de manière préférée 10,59% en poids.
[0034] Un autre avantage de l’hydrolysat de kératine selon la présente invention est que son profil en acides aminés est proche de celui de la matière kératinique d’origine. En effet, à l’exception du tryptophane détruit dans les hydrolyses acides, les 17 acides aminés présents dans la matière kératinique d’origine, sont aussi présents sous forme libre dans l’hydrolysat final.
[0035] Ainsi, l’hydrolysat de kératine selon la présente invention comprend 17 acides aminés, et pour chacun des acides aminés la variation en pourcentage entre le poids de l’acide aminé libre dans l’hydrolysat et le poids de cet acide aminé dans la matière kératinique de départ est inférieure à 20 % en valeur absolue, avantageusement pour 15 de ces acides aminés, ladite variation est inférieure à 10 % en valeur absolue.
[0036] La variation, en pourcentage, pour un acide aminé, correspond au rapport de la valeur absolue de la différence entre le poids de l’acide aminé dans la matière kératinique et le poids de l’acide aminé libre dans l’hydrolysat sur le poids de l’acide aminé dans la matière kératinique multiplié par 100, c’est-à-dire la formule suivante :
( | poids de l’acide aminé dans la matière kératinique - poids de l’acide aminé libre dans l’hydrolysat | / poids de l’acide aminé dans la matière kératinique ) x 100.
[0037] Un autre avantage de l’hydrolysat selon la présente invention est qu’il est très digestible, en outre, il est reconnu être de qualité alimentaire. L’hydrolysat selon l’invention présente une digestibilité vraie de sa fraction protéique d’au moins 98%. Cette valeur est très proche du maximum possible (100%).
[0038] La digestibilité est mesurée in vivo selon la méthode décrite par Z. M. Larbier, A.M. Chagneau and M. Lessire dans « Effect of protein intake on true digestibility of amino acids in rapeseed meals for adult roosters force fed with moistened feed ». Animal Feed Science and Technology. 34 (1991) 255-260. [0039] Procédé
[0040] [Fig.1 ] est un schéma présentant les étapes principales du procédé selon l’invention décrit ci-après ainsi que les phases obtenues à l’issue de ces différentes étapes. Les étapes sont présentées dans des rectangles et les phases dans des ellipses. Selon le schéma de la figure 1, le procédé comprend une hydrolyse suivie d’une étape d'ajustement du pH conduisant à une phase liquide et un précipité qui sont soumis à une étape de séparation solide-liquide. Le précipité est ensuite soumis à un lavage pour donner le précipité dessalé (AA2). La phase liquide et les eaux de lavage sont réunies et cette solution (AA1 ) est soumise à une étape de dessalement conduisant à une solution dessalée. Puis la solution dessalée et le précipité dessalé (AA2) sont réunis et la suspension obtenue est soumise à un séchage conduisant à l’obtention de l’hydrolysat dessalé séché.
[0041] Hydrolyse acide [0042] Le procédé de préparation de l’hydrolysat de kératine selon l’invention met en œuvre au moins une hydrolyse chimique au moyen d’un acide dans des conditions aptes à obtenir un hydrolysat comprenant au moins 88% en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat, le reste des acides aminés de l’hydrolysat étant sous la forme de petits peptides c’est-à-dire présentant une masse moléculaire inférieure ou égale à 800 Dalton.
[0043] Le pourcentage de petits peptides dans l’hydrolysat selon l’invention va généralement de 5 à 12 % en poids par rapport au poids total de l’hydrolysat.
[0044] En effet l’hydrolyse n’étant pas totale, le pourcentage de petits peptides dans l’hydrolysat n’est pas nul, et il est de 12 % en poids au plus.
[0045] L’hydrolyse chimique de la kératine est réalisée au moyen d’un acide de préférence un acide fort choisi parmi les acides chlorhydrique, phosphorique et sulfurique, de préférence l’acide chlorhydrique. De préférence, la concentration en acide, de préférence en acide chlorhydrique, va de 14 à 34% en poids. [0046] De préférence, le ratio pondéral acide/matière kératinique, en particulier le ratio pondéral acide/plumes, va de 2 à 5.
[0047] L’hydrolyse chimique est généralement effectuée pendant une durée allant de 1 heure à 24 heures, de préférence allant de 6 à 20 heures à une température allant de 100 à 115°C.
[0048] Selon une variante particulière, l’hydrolyse chimique est effectuée en deux étapes : une première hydrolyse chimique réalisée à une température allant de 60 à 80°C pendant une période allant de 4 à 5 heures puis une deuxième hydrolyse chimique réalisée à une température allant de 100 à 115°C pendant une période allant de 5 à 8 heures.
[0049] En outre, les deux hydrolyses peuvent être réalisées sans étape de pause intermédiaire ou en effectuant une étape de pause intermédiaire comprise entre 1 heure et 7 jours.
[0050] Plus précisément, la première hydrolyse chimique est réalisée à 72°C pendant 4,5 heures et la deuxième hydrolyse chimique est réalisée à 107°C pendant 6 heures, une pause intermédiaire de 24 à 80 heures étant effectuée entre les deux hydrolyses chimiques.
[0051] Avantageusement, lorsqu’une partie graisseuse surnage à la surface de l’hydrolysat, ce surnageant est éliminé.
[0052] Ajustement du pH
[0053] L’hydrolyse chimique, réalisée en une ou plusieurs étapes, est suivie d’une étape d’ajustement du pH. L’hydrolysat est porté à un pH présentant une valeur allant de 3 à 5, de préférence de 4 à 5. Cette étape est effectuée par ajout d’une base choisie parmi l’hydroxyde de sodium et l’hydroxyde de potassium de préférence l’hydroxyde de sodium. Cette étape est une étape classique dont la mise en œuvre relève des compétences de l’homme du métier.
[0054] Cette étape a également pour effet de faire précipiter, au moins partiellement, les acides aminés les moins solubles notamment la cystine, la tyrosine, la leucine et l’isoleucine. Ces acides aminés les moins solubles forment le précipité, les autres acides aminés restent en solution et forment, avec le sel formé et l’eau, la phase liquide.
[0055] Séparation Solide-liquide - Essorage
[0056] L’étape d’ajustement du pH est suivie d’une étape de séparation du précipité de la phase liquide. L’étape de séparation peut être effectuée en mettant en oeuvre toute technique de séparation solide-liquide, en particulier par l’application d’une force centrifuge ou d’un pressage notamment au moyen d’un filtre presse. Selon une variante préférée, l’étape de séparation est un essorage, l’essorage est avantageusement réalisé en appliquant une force centrifuge au moyen d’une rotation d’environ 1000tr/min. Cette technique connue de l’homme du métier pour effectuer une séparation solide-liquide, consiste à éliminer la phase liquide par l’effet de la force centrifuge, tout en maintenant le précipité (fraction solide) sur une toile.
[0057] Lavage
[0058] Le précipité, essoré, récupéré, de préférence sur la toile de l’essoreuse, est ensuite lavé à l’eau jusqu’à l’obtention d’un précipité dessalé de teneur en sels inférieure à 1 % en poids, par rapport au poids total du précipité. Par « sels » on entend le chlorure de sodium, le sulfate de sodium, le phosphate de sodium, le chlorure de potassium, le sulfate de potassium et le phosphate de potassium, de préférence le chlorure de sodium (NaCI).
[0059] Lors du lavage, l'eau qui passe sur le précipité en place sur la toile entraîne, par solubilisation, les sels présents dans ledit précipité ainsi que quelques acides aminés, tout en laissant sous forme solide les acides aminés les plus insolubles.
[0060] A l’issue de l’étape de lavage, la teneur en eau du précipité va de 50 à 60 % en poids par rapport au poids total du précipité. [0061] Le précipité dessalé comprend majoritairement les acides aminés suivants : la cystine, la tyrosine et la leucine, il comprend également de la valine, de l’isoleucine et de la phénylalanine.
[0062] La possibilité d’effectuer l’essorage et le lavage dans la même enceinte, en particulier dans l’essoreuse, contribue à la simplification des moyens de mise en œuvre du procédé selon l’invention.
[0063] Les eaux de lavage sont récupérées et ajoutées à la phase liquide obtenue à l’issue de l’essorage, elles forment une solution d’acides aminés salée.
[0064] Dessalement
[0065] La solution d’acides aminés salée est soumise à une étape de dessalement par électrodialyse. Ladite solution d’acides aminés salée comprend l’ensemble des acides aminés, mais la cystine et la tyrosine y sont présentes en très faible quantité.
[0066] L’étape de dessalement vise à éliminer les sels, en particulier le chlorure de sodium formé au cours de l’étape d’ajustement du pH par ajout d’hydroxyde de sodium sur l’acide chlorhydrique utilisé à l’étape d’hydrolyse. Cette étape de dessalement est effectuée par électrodialyse. L’électrodialyse est classiquement effectuée, en opposant de l’eau pure à la solution à dessaler, les deux solutions circulant séparément et alternativement entre des membranes anioniques et cationiques sur lesquelles on applique un courant électrique. A l’issue de l’étape de dessalement, la teneur en sel de la solution est inférieure à 1% en poids de sel par rapport au poids total de la solution.
[0067] Réunion des phases
[0068] Après l’étape de dessalement, le précipité dessalé obtenu à l’issue de l’étape de lavage à l’eau est introduit dans la solution dessalée formant ainsi une suspension.
[0069] De manière surprenante et avantageuse les inventeurs ont montré que tous les acides aminés issus de l’hydrolyse acide sont présents. En outre, le profil des acides aminés de l’hydrolysat selon la présente invention est proche de celui de la matière kératinique d’origine.
[0070] De préférence, la suspension obtenue est séchée et le solide obtenu à l’issue du séchage récupéré. L’hydrolysat selon la présente invention est de préférence sous forme sèche, il comprend moins de 5% en poids d’eau par rapport au poids total de l’hydrolysat.
[0071] L’hydrolysat sous forme sèche comprend moins de 11%, de préférence moins de 7% en poids de sels par rapport au poids total de l’hydrolysat.
[0072] Le poids d’acides aminés totaux récupéré dans l’hydrolysat sous forme sèche est au moins égal à 80% du poids des acides aminés totaux contenus dans la matière kératinique engagée dans l’hydrolyse, de préférence au moins 84%.
[0073] Utilisations
[0074] Comme déjà mentionné, la présente invention vise l’utilisation de l’hydrolysat en nutrition animale notamment féline, canine, en aquaculture ou en agriculture.
[0075] La présente invention vise plus particulièrement l’utilisation de l’hydrolysat selon l’invention ou préparé selon l’invention à titre de composant d’un produit choisi parmi les aliments pour l’alimentation animale des animaux de compagnie, les aliments pour l’aquaculture, les biostimulants de plantes.
[0076] Selon une première variante, la présente invention vise l’utilisation, par voie orale, de l’hydrolysat de kératine, selon l’invention ou obtenu suivant le procédé de préparation selon l’invention en tant que matière première pour l’alimentation animale.
[0077] La présente invention vise encore une matière première comprenant un hydrolysat selon la présente invention sans ajouts d’ingrédients.
[0078] On entend par « matière première », tous produits d'origine végétale ou animale, à l'état naturel, frais ou conservés, et dérivés de leur transformation industrielle, ainsi que toutes substances organiques ou inorganiques, comprenant ou non des additifs, qui sont destinés à être utilisés pour l'alimentation des animaux par voie orale, soit directement tels quels, soit après transformation, pour la préparation d’aliments composés pour animaux ,ou en tant que supports des prémélanges (Directive 96/25/CE du Conseil du 29 avril 1996).
[0079] La matière première selon la présente invention est un mélange d’acides aminés destiné à être incorporé dans un aliment complet et équilibré chez l’animal ou à être utilisé en tant que complément alimentaire chez l’homme. Elle est en conséquence destinée à une administration par voie orale chez les animaux terrestres et/ou marins et/ou chez l’homme. Ladite matière première n’appartient pas au domaine thérapeutique.
[0080] La présente invention concerne plus particulièrement l’utilisation de l’hydrolysat, en alimentation animale et plus particulièrement en tant que matière première source d’acides aminés libres permettant de s’affranchir des protéines alimentaires d’origine végétale et/ou animale de structure moléculaire complexe et de poids moléculaire important.
[0081] La formulation de la matière première pour l’alimentation animale conforme à l’invention met en œuvre des procédés classiques qui font partie des compétences générales de l’homme du métier.
[0082] Comme déjà mentionné, la présente invention vise encore un aliment complet pour l’alimentation animale comprenant de 0,25 à 40 % en poids de la composition ou de préférence de l’hydrolysat selon l’invention par rapport au poids total dudit aliment complet.
[0083] L’aliment complet pour l’alimentation animale conforme à l’invention peut être formulé avec les excipients usuellement utilisés dans les compositions destinées à la voie orale, notamment les agents humectants, les épaississants, les agents de texture, les agents de saveur, les agents d’enrobage, les conservateurs, les antioxydants, les colorants, les extraits de plante, les ingrédients non protéiques tels que les amidons, les fibres végétales, les minéraux et les vitamines. [0084] Bien entendu, l’homme du métier veillera à choisir ces excipients de manière à ne pas altérer les propriétés de l’aliment complet pour l’alimentation animale.
[0085] L’aliment complet pour l’alimentation animale conforme à l’invention peut être formulé selon une des présentations suivantes : une croquette, une gélule, une dragée, un comprimé, une capsule molle ou dure, ou encore une suspension, une solution, un gel, une préparation sèche contenant moins de 15% en poids d’eau, ou humide comprenant au moins 50% en poids d’eau et 85% en poids d’eau au maximum.
[0086] La formulation de l’aliment complet pour l’alimentation animale conforme à l’invention met en oeuvre des procédés classiques qui font partie des compétences générales de l’homme du métier.
[0087] L’invention vise aussi l’utilisation de la composition selon l’invention ou de l’hydrolysat selon l’invention pour préparer une matière première ou un aliment complet pour l’alimentation animale.
[0088] Selon une deuxième variante, la présente invention vise l’utilisation de l’hydrolysat de kératine en tant qu’ingrédient favorisant l’appétence dans les aliments pour l’aquaculture, notamment pour l’élevage des crevettes en particulier au stade larvaire et jusqu’au stade du grossissement.
[0089] Selon une troisième variante la présente invention vise l’utilisation de l’hydrolysat de kératine en tant que biostimulant de plantes. L’hydrolysat selon l’invention peut être utilisé sur les différentes parties des plantes : semences, feuilles, fleurs, fruits.
[0090] Les biostimulants se définissent comme des substances et/ou des micro-organismes dont la fonction, lorsqu’appliqués aux plantes ou à la rhizosphère, est la stimulation des processus naturels qui favorisent/améliorent l’absorption ou l’utilisation des nutriments, la tolérance aux stress abiotiques, la qualité ou le rendement de la culture, indépendamment de la présence de nutriments. [0091] L’hydrolysat peut également être utilisé avec un ingrédient choisi parmi les produits phytosanitaires, les engrais, les microorganismes, les extraits d’algues, les acides humique et fulvique, les minéraux.
[0092] Les exemples qui suivent visent à illustrer l’invention sans en limiter la portée.
[0093] Exemples
[0094] Les acides aminés présentés dans les tableaux 1 à 3 sont dosés selon une méthode adaptée du règlement CE 152/2009.
[0095] Les acides aminés sont séparés par chromatographie (CLHP ou « HPLC » en langue anglaise) avec colonne échangeuse d’ions et dosés par réaction avec la ninhydrine et détection photométrique à 570 nm.
[0096] Exemple 1- Hydrolysat
[0097] Préparation de l’hydrolysat [0098] Hydrolyse [0099] Dans un réacteur/hydrolyseur de 55000 litres, on introduit 9000 kg de plumes de volaille contenant 50% de matière sèche. Une hydrolyse chimique est réalisée en ajoutant 18000 litres d’acide chlorhydrique (23%), l’hydrolyse est effectuée à 72°C pendant 4,5 heures. Le produit obtenu est stocké pendant 48 heures en laissant sa température évoluer naturellement jusqu’à la température ambiante. Ensuite une deuxième hydrolyse chimique est effectuée en chauffant à 107°C pendant 6 heures sans ajout d’acide. L’hydrolysat obtenu comprend 88 % en poids d’acides aminés libres, le reste des acides aminés de l’hydrolysat étant sous la forme de petits peptides présentant une masse moléculaire inférieure ou égale à 800 Dalton. [0100] Purification
[0101] L’hydrolysat est ensuite mis à décanter afin d’éliminer la graisse apportée par la matière kératinique qui surnage en surface de la phase aqueuse. On procède à une élimination de l’acide chlorhydrique introduit en excès à l’étape d’hydrolyse. 8000 kg de concentrât sont récupérés. Puis on y ajoute 4500 kg d’eau pour obtenir 12500 kg de concentrât dilué.
[0102] Ajustement du pH
[0103] La soude à 30,5% est ajoutée à l’hydrolysat, pour porter le pH à une valeur entre 4 et 5. Lors de l’ajout de la soude, les acides aminés les moins solubles notamment cystine, tyrosine, leucine, isoleucine précipitent au moins partiellement. Les autres acides aminés restent complètement en solution dans la phase liquide.
[0104] Essorage
[0105] La suspension est alors placée dans une essoreuse, pour séparer le précipité (qui reste sur la toile), et récupérer la phase liquide, correspondant à 17000 kg, dans une cuve.
[0106] Lavage
[0107] Le précipité resté sur la toile est alors lavé par introduction de 3000 kg d’eau directement dans l’essoreuse pour en éliminer le sel (NaCI). Les eaux de lavage, correspondant à 3440 kg, sont envoyées dans la cuve qui contient déjà la phase liquide issue de l’essorage, pour donner 20440 kg d’une solution nommée AA1. Les 1560 kg de précipité lavé sont récupérés, ce qui correspond au produit AA2.
[0108] La composition en acides aminés libres de la solution AA1 est présentée dans le tableau 1
[0109] [Tableau 1 ]
[0110] AA1 présente un taux de matière sèche de 34,07%, par mesure au moyen d’une thermobalance infrarouge, une teneur en NaCI de 14,74% et une teneur en acides aminés libres de 93,4% en poids par rapport au poids total des acides aminés totaux de AA1.
[0111] Les 1560 kg de précipité lavé, contenant moins de 1 % de NaCI sont récupérés. La teneur en matière sèche est de 44% en poids par mesure au moyen d’une thermobalance infrarouge. La composition en acides aminés libres du précipité lavé, séché est présentée dans le tableau 2. [0112] [Tableau 2 ]
[0113] Le précipité AA2 présente une teneur en acides aminés libres de 92,17% en poids par rapport au poids total des acides aminés totaux du précipité AA2.
[0114] Dessalement
[0115] La solution AA1 (phase liquide issue de l’essorage et eaux de lavage du précipité réunies) de poids 20440 kg est dessalée par électrodialyse face à de l’eau, pour donner environ 14300 kg de solution dessalée, contenant moins de 1 % de NaCI. L’électrodialyseur utilisé pour effectuer le dessalement consiste en un double empilement de 2 x 600 membranes anioniques et cationiques alternées, entre lesquelles circulent les solutions, et parcourues par un courant électrique continu.
[0116] Réunion des phases [0117] Le précipité lavé correspondant à 1560 kg et la solution dessalée correspondant à 14300 kg sont réunis pour donner 15860 kg de suspension, qui est séchée par atomisation dans une tour de séchage dont la température en entrée est de 172°C et en sortie de 80°C et équipée d’un tamisage de 2500pm. On obtient environ 3860 kg de poudre, dont la composition est donnée dans le tableau 3.
[0118] Le tableau 3 présente, dans la deuxième colonne : la fraction pondérale de chaque AAL (acides aminés libres) de l’hydrolysat par rapport au total des AAL ; dans la troisième colonne : la fraction pondérale en chaque AA (acides aminés) de la matière kératinique d’origine par rapport au total des AA ; dans la quatrième colonne, la variation en pourcentage, en valeur absolue, entre le poids de l’acide aminé libre dans l’hydrolysat et le poids de cet acide aminé dans la matière kératinique.
[0119] [Tableau 3 ]
[0120] L’hydrolysat obtenu présente un taux de matière sèche de 98,6%, une teneur en NaCI de 4,7% et une teneur en acides aminés libres de 91 ,11% en poids par rapport au poids total des acides aminés totaux de l’hydrolysat.
[0121] La matière kératinique de départ contient 93% d’acides aminés totaux sur la matière sèche (4500 kg de matière sèche), et l’hydrolysat obtenu (3860 kg tel quel) contient 90,6% d’acides aminés totaux sur tel quel, le rendement en acides aminés totaux est de 83,6%.
[0122] De plus, le profil des acides aminés de l’hydrolysat selon la présente invention est proche de celui de la matière kératinique d’origine, en effet comme présenté à la quatrième colonne, pour chacun des 17 acides aminés, la variation en pourcentage entre le poids de l’acide aminé libre dans l’hydrolysat et le poids de cet acide aminé dans la matière kératinique de départ est inférieure à 20 % en valeur absolue, en outre pour 15 d’entre eux, cette variation pondérale est inférieure à 10 %. [0123] Exemple 2- Digestibilité [0124] La digestibilité vraie des protéines de l’hydrolysat selon l’invention est très élevée puisqu’elle est égale à 98,99 % et donc très proche du maximum possible (100%). Cette valeur a été obtenue selon le protocole suivant sur coqs caecectomisés, qui est un modèle de référence pour la mesure de la biodisponibilité des protéines dans le règne animal.
[0125] Protocole expérimental
[0126] Les mesures de digestibilité sont effectuées sur les coqs adultes caecectomisés logés dans des cages individuelles et nourris hors période d'essai avec un régime alimentaire standard.
[0127] 2 répétitions de 4 coqs caecectomisés sont utilisées. Tous les animaux sont mis à jeun pendant 24h avant d'ingérer un repas unique de 80 g composé de 24 g d'échantillon (hydrolysat) mélangé à 56 g de sucre.
[0128] Toutes les fèces (= matières fécales), y compris les pertes endogènes, sont collectées pendant les 48 h suivantes en deux périodes de 24h pour éviter leur fermentation et détérioration éventuelle.
[0129] Ces fèces, exclus de toutes contaminations telles des plumes par exemple, sont soigneusement prélevées avant d'être congelées (-80°C).
[0130] Les fèces sont ensuite lyophilisées au four, regroupées et mélangées en 2 pools correspondant aux 2 répétitions de 4 animaux utilisés pour chacun des 2 hydrolysats. Les 2 pools sont analysés.
[0131] Les analyses nutritionnelles (matière sèche, protéines brutes (méthode Dumas norme ISO 16634-1 :2008) sont effectuées sur l’hydrolysat, les fèces de coqs ainsi que sur les pertes endogènes. Ces données sont utilisées pour calculer la digestibilité vraie des protéines.
[0132] Pour cette valeur de digestibilité vraie des protéines, en raison de la contamination des excréments d'oiseaux par l'azote urique, l'azote protéique est mesuré dans les fèces (méthode Terpstra ; Terpstra K. D. and N. De Hart. 1973. « The estimation of urinary nitrogen and faecal nitrogen in poultry excreta » Zeitschrift für Tierphysiologie Tierernàhrung und Futtermittelkunde. 32 (1-5): 306-320).
[0133] La digestibilité vraie des protéines mesurée en pourcentage est donc calculée selon une méthode quantitative par la différence entre la quantité d’hydrolysat ingérée et la quantité de fèces excrétée, corrigée des pertes endogènes selon la formule suivante.
[0134] Digestibilité vraie protéines % = (Protéines ingérées hydrolysat - (protéines excrétées fèces- protéines excrétées endogènes))/ Protéines ingérées hydrolysat x100.
[0135] L’hydrolysat selon l’invention est par conséquent très facilement assimilable par l’organisme.
[0136] Exemple 3- Matière première pour l’alimentation animale
[0137] On prépare une matière première pour la nutrition animale à partir de l’hydrolysat dont la composition en acides aminés libres est présentée au tableau 3 (2ème colonne) sans ajouts d’acides aminés additionnels, en particulier sans ajout de L-tyrosine, précurseur de la mélanine, pigment responsable des colorations foncées (brune et noire) du pelage et sans ajout de L-Cystine, indispensable à la bonne santé de la peau et constitutif de la kératine du pelage des animaux.
[0138] La matière première préparée est anallergique.
[0139] En outre son pouvoir d’appétence sur les chats et les chiens a été observé.

Claims

Revendications
[Revendication 1] [Hydrolysat de kératine caractérisé en ce qu’il comprend au moins 88 %, de préférence au moins 90 %, en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat, ledit hydrolysat comprenant de la tyrosine libre en une teneur allant de 2 à 4%, de préférence 2,5 à 3,5% en poids par rapport au poids total des acides aminés libres de l’hydrolysat.
[Revendication 2] Hydrolysat de kératine selon la revendication 1 caractérisé en ce qu’il comprend au moins 90%, de préférence au moins 93 % et de manière préférée au moins 95% de cystine sous forme libre en poids par rapport au poids total de cystine dans l’hydrolysat.
[Revendication 3] Hydrolysat de kératine selon la revendication 1 ou 2 caractérisé en ce qu’il est dessalé c’est-à-dire qu’il comprend moins de 11 %, de préférence moins 7% en poids de sels par rapport au poids total de l’hydrolysat, les sels étant choisis parmi le chlorure de sodium, le sulfate de sodium, le phosphate de sodium, le chlorure de potassium, le sulfate de potassium et le phosphate de potassium, de préférence le chlorure de sodium.
[Revendication 4] Hydrolysat de kératine selon l’une quelconque des revendications 1 à 3 caractérisé en ce qu’il comprend les acides aminés libres suivants: au moins 95%, de préférence 100%, d’acide aspartique sous forme libre en poids par rapport au poids total d’acide aspartique dans l’hydrolysat ; au moins 95%, de préférence 100%, de thréonine sous forme libre en poids par rapport au poids total de thréonine dans l’hydrolysat ; au moins 95%, de préférence 100%, de sérine sous forme libre en poids par rapport au poids total de sérine dans l’hydrolysat ; au moins 93%, de préférence au moins 95%, d’acide glutamique sous forme libre en poids par rapport au poids total d’acide glutamique dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, de glycine sous forme libre en poids par rapport au poids total de glycine dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, d’alanine sous forme libre en poids par rapport au poids total d’alanine dans l’hydrolysat ; au moins 90%, de préférence au moins 93%, de phénylalanine sous forme libre en poids par rapport au poids total de phénylalanine dans l’hydrolysat ; au moins 93%, de préférence au moins 95%, de proline sous forme libre en poids par rapport au poids total de proline dans l’hydrolysat.
[Revendication 5] Hydrolysat de kératine selon l’une quelconque des revendications 1 à 4 obtenu à partir d’une matière kératinique comprenant 17 acides aminés, dans lequel, pour chacun des acides aminés, la variation en pourcentage entre le poids de l’acide aminé libre dans l’hydrolysat et le poids de cet acide aminé dans la matière kératinique de départ est inférieure à 20 % en valeur absolue, avantageusement pour 15 de ces acides aminés, ladite variation est inférieure à 10 % en valeur absolue.
[Revendication 6] Hydrolysat selon l’une quelconque des revendications 1 à
5 caractérisé en ce qu’il comprend les acides aminés libres suivants, en poids, par rapport au poids total des acides aminés libres de l’hydrolysat : de l’acide aspartique en une teneur allant de 6,00 à 10,00 %, de préférence allant de 7,00 à 9,00 %, et de manière préférée 7,83% en poids ; de la thréonine en une teneur allant de 3,00 à 7,00 %, de préférence allant de
4,00 à 6,00 %, et de manière préférée 4,93 % en poids ; de la sérine en une teneur allant de 11 ,00 à 15,00 %, de préférence allant de
12,00 à 14,00 %, et de manière préférée 12,88 % en poids ; de l’acide glutamique en une teneur allant de 8,50 à 12,50 %, de préférence allant de 9,50 à 11 ,50 %, et de manière préférée 10,47 % en poids ; de la glycine en une teneur allant de 6,50 à 10,50 %, de préférence allant de
7.50 à 9,50 %, et de manière préférée 8,56 % en poids ; de l’alanine en une teneur allant de 3,00 à 7,00 %, de préférence allant de 4,00 à 6,00 %, et de manière préférée 5,04 % en poids ; de la valine en une teneur allant de 3,50 à 7,50 %, de préférence allant de 4,50 à 6,50 %, et de manière préférée 5,61% en poids ; de la cystine en une teneur allant de 4,00 à 8,00 %, de préférence allant de
5,00 à 7,00 %, et de manière préférée 5,80% en poids ; de la méthionine en une teneur allant de 0,10 à 2,00 %, de préférence allant de
0,20 à 1 ,00 %, et de manière préférée 0,57 % en poids ; de l’isoleucine en une teneur de 1 ,50 à 5,50 %, de préférence allant de 2,50 à
4.50 %, et de manière préférée 3,50 % en poids ; de la leucine en une teneur allant de 6,00 à 10,00 %, de préférence allant de
7,00 à 9,00 %, et de manière préférée 7,77 % en poids ; de la tyrosine en une teneur allant de 2,50 à 3,50 % de préférence 3,00 à
3.50 % et de manière préférée 3,15 % en poids ; de la phénylalanine en une teneur allant de 3,00 à 7,00 %, de préférence allant de 4,00 à 6,00 %, et de manière préférée 5,08% en poids ; de la lysine en une teneur allant de 0,50 à 3,00 %, de préférence allant de 1 ,00 à 2,00 %, et de manière préférée 1 ,66 % en poids ; de l’histidine en une teneur allant de 0,10 à 2,00 %, de préférence allant de
0,20 à 1 ,00 %, et de manière préférée 0,74 % en poids ; de l’arginine en une teneur allant de 4,00 à 8,00 %, de préférence allant de
5,00 à 7,00 %, et de manière préférée 5,82% en poids ; de la proline en une teneur allant de 8,50 à 12,50 %, de préférence allant de
9.50 à 11 ,50 %, et de manière préférée 10,59% en poids.
[Revendication 7] Procédé de préparation de l’hydrolysat selon l’une quelconque des revendications 1 à 6, à partir d’une matière kératinique animale, de préférence de volaille, caractérisé en ce qu’il comprend au moins les étapes suivantes, dans cet ordre :
- soumettre la matière kératinique à au moins une hydrolyse chimique au moyen d’un acide dans des conditions aptes à obtenir un hydrolysat comprenant au moins 88% en poids d’acides aminés libres par rapport au poids total des acides aminés de l’hydrolysat, le reste des acides aminés de l’hydrolysat étant sous la forme de peptides présentant une masse moléculaire inférieure ou égale à 800 Dalton ;
- soumettre l’hydrolysat à une étape d’ajustement du pH à une valeur allant de 3 à 5, de préférence allant de 4 à 5 et récupérer le précipité et la phase liquide ;
- séparer le précipité et la phase liquide, de préférence par essorage ;
- soumettre le précipité à au moins un lavage à l’eau jusqu’à l’obtention d’un précipité dessalé comprenant moins de 1% de sels en poids par rapport au poids total du précipité, et récupérer le précipité dessalé d’une part et les eaux de lavage d’autre part,
- réunir les eaux de lavage et la phase liquide pour obtenir une solution et procéder au dessalement de cette solution par électrodialyse pour obtenir une solution dessalée,
- ajouter le précipité dessalé à ladite solution dessalée,
-récupérer la suspension dessalée obtenue.
[Revendication 8] Procédé de préparation de l’hydrolysat selon la revendication précédente dans lequel l’hydrolyse chimique est effectuée pendant une durée allant de 1 heure à 24 heures, de préférence allant de 6 à 20 heures à une température allant de 100 à 115°C.
[Revendication 9] Procédé de préparation de l’hydrolysat selon l’une des revendications 7 ou 8 dans lequel l’hydrolyse chimique est effectuée en deux étapes :
-une première hydrolyse chimique réalisée à une température allant de 60 à 80°C pendant une période allant de 4 à 5 heures puis
-une deuxième hydrolyse chimique réalisée à une température allant de 100 à 115°C pendant une période allant de 5 à 8 heures.
[Revendication 10] Procédé de préparation de l’hydrolysat selon l’une des revendications 7 à 9 dans lequel la suspension obtenue est séchée et le solide obtenu à l’issue du séchage récupéré.
[Revendication 11] Utilisation de l’hydrolysat selon l’une des revendications 1 à 6 ou obtenu suivant le procédé selon l’une des revendications 7 à 10 à titre de composant d’un produit choisi parmi les aliments pour l’alimentation animale des animaux de compagnie, les aliments pour l’aquaculture, les biostimulants de plantes.
EP21722502.8A 2020-05-07 2021-05-05 Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale Pending EP4146679A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004564A FR3109938B1 (fr) 2020-05-07 2020-05-07 Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d’obtention et utilisation pour l’alimentation animale et la nutrition végétale
PCT/EP2021/061812 WO2021224310A1 (fr) 2020-05-07 2021-05-05 Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale

Publications (1)

Publication Number Publication Date
EP4146679A1 true EP4146679A1 (fr) 2023-03-15

Family

ID=72088258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21722502.8A Pending EP4146679A1 (fr) 2020-05-07 2021-05-05 Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale

Country Status (8)

Country Link
US (1) US20230192788A1 (fr)
EP (1) EP4146679A1 (fr)
JP (1) JP2023525074A (fr)
KR (1) KR20230006564A (fr)
CN (1) CN115515967A (fr)
CA (1) CA3176533A1 (fr)
FR (1) FR3109938B1 (fr)
WO (1) WO2021224310A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130795A1 (fr) * 2021-12-22 2023-06-23 Bretagne Chimie Fine Utilisation d’un hydrolysat de kératine à hautes teneurs en acides aminés libres pour stimuler la levée et la croissance précoce des plantes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712825A1 (de) * 1987-04-15 1988-11-03 Diamalt Ag Gesamteiweiss-abbauprodukt
FR3070600B1 (fr) 2017-09-01 2020-05-15 Bretagne Chimie Fine Hydrolysat de keratine, utilisation cosmetique par voie orale de cet hydrolysat pour ameliorer la qualite des phaneres et complement alimentaire le contenant

Also Published As

Publication number Publication date
FR3109938B1 (fr) 2022-04-15
KR20230006564A (ko) 2023-01-10
CN115515967A (zh) 2022-12-23
WO2021224310A1 (fr) 2021-11-11
US20230192788A1 (en) 2023-06-22
JP2023525074A (ja) 2023-06-14
FR3109938A1 (fr) 2021-11-12
CA3176533A1 (fr) 2021-11-11

Similar Documents

Publication Publication Date Title
US20060035313A1 (en) Proteolytic fermenter
EP3675811B1 (fr) Hydrolysat de kératine pour utilisation cosmétique par voie orale
WO2019068998A1 (fr) Composition de protéines de pois a qualité nutritionnelle améliorée
CA2491241A1 (fr) Procede de reticulation de proteines par un cetose de 3 a 5 atomes de carbone
EP3701802A1 (fr) Composition à hautes teneurs en acides aminés libres et utilisation en tant que matière première et aliment complet pour l'alimentation animale
EP3691461B1 (fr) Composition de protéines de pois a qualité nutritionnelle améliorée
FR2809595A1 (fr) Derive laitier presentant une composition minerale et en acides amines selectivement modifiee, procedes pour sa fabrication, et utilisation.
EP4146679A1 (fr) Hydrolysat de kératine à hautes teneurs en acides aminés libres et haute teneur en tyrosine libre, procédé d'obtention et utilisation pour l'alimentation animale et la nutrition végétale
US20040038391A1 (en) Amino acids factory
EP0682873B1 (fr) Hydrolysat de protéines d'animaux marins, procédé d'obtention et applications
WO2017187109A1 (fr) Hydrolysat de proteines de luzerne, son procede d'obtention et son utilisation
SU1081843A1 (ru) Способ получени белкового гидролизата из подсолнечного шрота
RU2802759C1 (ru) Способ получения морского биологического кальция из панцирных отходов креветки
WO2022043527A1 (fr) Utilisation d 'un hydrolysat à hautes teneurs en acides aminés libres dans un aliment pour les crevettes en croissance
RU2252532C1 (ru) Способ обогащения подкормки для пчел
Toukourou et al. Croissance des agneaux Djallonkés nourris avec du lait de soja.
Shahidi Extraction of value-added components from shellfish processing discards
JPS61285966A (ja) アコヤ貝の粘液からなる栄養食品
WO2023036836A1 (fr) Composition alimentaire pour les poissons comprenant un hydrolysat a hautes teneurs en acides amines libres et utilisations
RU2192149C1 (ru) Биологически активная добавка и способ ее получения
RU2346456C1 (ru) Способ получения белкового изолята из нутового сырья
Leimer et al. Alternatives for the use of dried yeast and its products
FR2961379A1 (fr) Extrait aqueux riche en mineraux naturels
Slawski et al. Total fish meal replacement with rapeseed protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss W.)
FR2628118A1 (fr) Fractions peptidiques issues d'hemolysats de cruor, leur obtention et leurs applications

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)