EP4145636B1 - Struktur zur übertragung elektromagnetischer wellen - Google Patents

Struktur zur übertragung elektromagnetischer wellen Download PDF

Info

Publication number
EP4145636B1
EP4145636B1 EP22152928.2A EP22152928A EP4145636B1 EP 4145636 B1 EP4145636 B1 EP 4145636B1 EP 22152928 A EP22152928 A EP 22152928A EP 4145636 B1 EP4145636 B1 EP 4145636B1
Authority
EP
European Patent Office
Prior art keywords
transmission line
electromagnetic wave
antennas
units
tunable dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22152928.2A
Other languages
English (en)
French (fr)
Other versions
EP4145636A1 (de
Inventor
Su-Wei Chang
Sheng-Fuh Chang
Chia-Chan Chang
Shih-Cheng Lin
Yuan-Chun Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMY Technology Inc
Original Assignee
TMY Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW110148503A external-priority patent/TWI788156B/zh
Application filed by TMY Technology Inc filed Critical TMY Technology Inc
Publication of EP4145636A1 publication Critical patent/EP4145636A1/de
Application granted granted Critical
Publication of EP4145636B1 publication Critical patent/EP4145636B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the invention relates to an electromagnetic wave transmission structure, and in particular, to an electromagnetic wave transmission structure configured to guide an RF signal or a millimeter wave signal.
  • Prior art document US 2020/266511 A1 discloses a liquid crystal phase shifter with periodic branch-like stubs combinable with an antenna, wherein the dimensions and pitch of the branch-like stubs are design parameters.
  • the invention provides an electromagnetic wave transmission structure suitable for improving the energy loss of an electromagnetic wave caused by the blocking of an obstacle, and the receiving and emitting directions of an electromagnetic wave at the receiving end and the emitting end thereof are adjustable.
  • An electromagnetic wave transmission structure of the invention includes a substrate, at least one transmission line, a plurality of antennas, and a plurality of tunable dielectric units.
  • the at least one transmission line is disposed on the substrate.
  • the transmission line includes a first extending portion and a plurality of second extending portions.
  • the first extending portion is extended in a first direction.
  • the second extending portions are respectively extended from two opposite edges of the first extending portion, and an extending direction thereof is parallel to a second direction.
  • the second extending portions are arranged at a pitch P along the first direction, wherein any two adjacent ones arranged along the first direction have a spacing S.
  • Each of the second extending portions has a length L along the second direction.
  • the plurality of antennas are disposed on the substrate and adjacent to the at least one transmission line.
  • the plurality of tunable dielectric units are overlapped with a plurality of portions of the at least one transmission line located between the antennas.
  • Each of the tunable dielectric units has a first electrode layer and a controllable dielectric layer overlapped with each other.
  • the controllable dielectric layer is disposed between the first electrode layer and the at least one transmission line.
  • S P 2 ck sspp ⁇ ⁇ r 2 ⁇ 1 cot 2 2 L ⁇ r ⁇ c , wherein k sspp is a wavenumber of an electromagnetic wave signal transmitted via the at least one transmission line, ⁇ r is an effective dielectric constant of the controllable dielectric layer, ⁇ is an angular frequency of the electromagnetic wave signal transmitted via the at least one transmission line, and c is a speed of light.
  • the transmission line of the electromagnetic wave transmission structure has a transmitting section, a receiving section, and an emitting section.
  • the transmitting section is connected between the receiving section and the emitting section.
  • the plurality of tunable dielectric units include a plurality of first tunable dielectric units overlapped with one of the emitting section and the receiving section. A portion of the antennas adjacent to the one of the emitting section and the receiving section and the first tunable dielectric units are alternately arranged along an extending direction of the at least one transmission line.
  • the plurality of tunable dielectric units of the electromagnetic wave transmission structure further include a plurality of second tunable dielectric units overlapped with the other of the emitting section and the receiving section. Another portion of the antennas adjacent to the other of the emitting section and the receiving section and the second tunable dielectric units are alternately arranged along the extending direction.
  • the at least one transmission line of the electromagnetic wave transmission structure is a plurality of transmission lines extended in the first direction.
  • the transmission lines are arranged along the second direction.
  • the plurality of antennas are respectively adjacent to a plurality of the receiving section and a plurality of the emitting section of the transmission lines.
  • the tunable dielectric units further include a plurality of third tunable dielectric units overlapped with a plurality of the transmitting section of the transmission lines.
  • the third tunable dielectric units are arranged in a plurality of columns and a plurality of rows along the first direction and the second direction, respectively.
  • the first electrode layer of each of the tunable dielectric units of the electromagnetic wave transmission structure has a bottom portion parallel to the substrate and a sidewall portion extended from the bottom portion in a bent manner.
  • the sidewall portion surrounds the controllable dielectric layer.
  • the first electrode layer and the at least one transmission line are suitable for generating an electric field configured to change an effective dielectric constant of the controllable dielectric layer.
  • an insulating layer is provided between the two sidewall portions of any two adjacent ones of the first electrode layers of the plurality of third tunable dielectric units arranged along the first direction.
  • the transmission line of the electromagnetic wave transmission structure has a transmitting section, a receiving section, and an emitting section.
  • the transmitting section is connected between the receiving section and the emitting section.
  • the at least one transmission line is a plurality of transmission lines extended in the first direction.
  • the transmission lines are arranged along the second direction.
  • the plurality of antennas are respectively adjacent to a plurality of the receiving section and a plurality of the emitting section of the transmission lines.
  • At least a portion of the plurality of tunable dielectric units is overlapped with a plurality of the transmitting section of the transmission lines, and is arranged in a plurality of columns and a plurality of rows along the first direction and the second direction, respectively.
  • the first electrode layer of each of the tunable dielectric units of the electromagnetic wave transmission structure has a bottom portion parallel to the substrate and a sidewall portion extended from the bottom portion in a bent manner.
  • the sidewall portion surrounds the controllable dielectric layer.
  • the first electrode layer and the at least one transmission line are suitable for generating an electric field configured to change an effective dielectric constant of the controllable dielectric layer.
  • the at least one transmission line of the electromagnetic wave transmission structure is one transmission line.
  • Each of the plurality of antennas is a same distance from the transmission line.
  • the antennas are arranged along the extending direction of the transmission line and have a symmetry axis. A diameter of each of the antennas is decreased or increased away from the symmetry axis.
  • the at least one transmission line of the electromagnetic wave transmission structure is one transmission line.
  • a geometric center of each of the plurality of antennas is a same distance from the transmission line.
  • the antennas are arranged along the extending direction of the transmission line and have a symmetry axis. A diameter of each of the antennas is decreased or increased away from the symmetry axis.
  • the at least one transmission line of the electromagnetic wave transmission structure is one transmission line.
  • Each of the plurality of antennas has a same diameter.
  • the antennas are arranged along the extending direction of the transmission line and have a symmetry axis. A spacing of each of the antennas from the transmission line is increased away from the symmetry axis.
  • each of the tunable dielectric units of the electromagnetic wave transmission structure further includes a second electrode layer disposed on a side surface of the substrate faced away from the at least one transmission line and overlapped with the controllable dielectric layer.
  • the first electrode layer and the second electrode layer are suitable for generating an electric field configured to change an effective dielectric constant of the controllable dielectric layer.
  • controllable dielectric layer of the electromagnetic wave transmission structure is a liquid-crystal layer.
  • the first electrode layer of the electromagnetic wave transmission structure includes a plurality of first strip electrodes and a plurality of second strip electrodes.
  • the first strip electrodes and the second strip electrodes are alternately arranged along the first direction and parallel to the plurality of second extending portions. Any adjacent ones of the first strip electrodes and the second strip electrodes are suitable for generating an electric field configured to change an effective dielectric constant of the controllable dielectric layer.
  • a plurality of antennas are provided adjacent to the transmission line, and a plurality of tunable dielectric units are provided at a plurality of portions of the transmission line between the antennas.
  • the phase of the electromagnetic wave signal may be changed by electronically modulating the effective dielectric constant of the controllable dielectric layer overlapped with the transmission line in the tunable dielectric units, thereby modulating the electromagnetic wave emitting and receiving directions of the antennas.
  • “About”, “similar”, “essentially”, or “substantially” used in the present specification include the value and the average value within an acceptable deviation range of a specific value confirmed by those having ordinary skill in the art, and the concerned measurement and a specific quantity (i.e., limitations of the measuring system) of measurement-related errors are taken into consideration.
  • “about” may represent within one or a plurality of standard deviations of the value, or, for instance, within ⁇ 30%, ⁇ 20%, ⁇ 15%, ⁇ 10%, or ⁇ 5%.
  • “about”, “similar”, “essentially”, or “substantially” used in the present specification may include a more acceptable deviation range or standard deviation according to measurement properties, cutting properties, or other properties, and one standard deviation does not need to apply to all of the properties.
  • FIG. 1 is a schematic top view of an electromagnetic wave transmission structure of the first embodiment of the invention.
  • FIG. 2A is an enlarged schematic view of a partial region of the electromagnetic wave transmission structure of FIG. 1 .
  • FIG. 2B is a schematic top view of another modified embodiment of the transmission line of FIG. 2A .
  • FIG. 3A and FIG. 3B are schematic cross-sectional views of the tunable dielectric units of FIG. 2A operated in different states.
  • FIG. 4A to FIG. 4C are schematic top views of some other modified embodiments of the electromagnetic wave transmission structure of FIG. 1 .
  • FIG. 3A and FIG. 3B correspond to the section line A-A' of FIG. 2A .
  • an electromagnetic wave transmission structure 10 includes a substrate 100 and a transmission line 120 and a plurality of antennas 140 disposed on the substrate 100.
  • the substrate 100 is, for example, a glass substrate, a ceramic laminate, or a low dielectric loss substrate (e.g., a Rogers substrate), but the invention is not limited thereto.
  • the transmission line 120 includes a first extending portion 120P1 and a plurality of second extending portions 120P2.
  • the second extending portions 120P2 are extended from two opposite edges e1 and e2 of the first extending portion 120P1, respectively.
  • the first extending portion 120P1 and the second extending portion 120P2 may be extended in a direction X and a direction Y, respectively, and the direction X may be optionally perpendicular to the direction Y, but the invention is not limited thereto.
  • the orthographic profile of the second extending portions 120P2 on the substrate 100 may be a rectangle. That is, the extending directions of the two edges of the second extending portions 120P2 arranged in the direction X and opposite to each other are parallel to each other and parallel to the direction Y, but the invention is not limited thereto.
  • the orthographic profile of the second extending portions 120P2-A of a transmission line 120A on the substrate 100 may also be a trapezoid (as shown in an electromagnetic wave transmission structure 10A shown in FIG. 2B ). More specifically, the extending directions of the two edges of the second extending portions 120P2-A arranged in the direction X and opposite to each other may also not be parallel to the direction Y, that is, not perpendicular to the two edges e1 and e2 of the first extending portion 120P1.
  • the electromagnetic wave transmission structure 10 has a receiving area RA, a transmitting area TA, and an emitting area EA, and is suitable for being mounted on an obstacle (such as a concrete wall or a building pillar) that readily causes energy loss of an electromagnetic wave.
  • the obstacle (not shown) has a front surface facing the electromagnetic wave source and a back surface facing away from the electromagnetic wave source.
  • the electromagnetic wave transmission structure 10 may be disposed on the obstacle and detour from the front surface of the obstacle to the back surface of the obstacle.
  • the receiving area RA and the emitting area EA of the electromagnetic wave transmission structure 10 are respectively disposed on the front surface and the back surface of the obstacle, and the transmitting area TA may be extended on other planes connecting the front surface and the back surface of the obstacle.
  • the transmission line 120 may be divided into a receiving section 120rs extended in the receiving area RA, a transmitting section 120ts extended in the transmitting area TA, and an emitting section 120es extended in the emitting area EA, wherein the transmitting section 120ts is connected between the receiving section 120rs and the emitting section 120es.
  • the antennas 140 are, for example, patch antennas. A portion of the antennas 140 may be disposed in the receiving area RA as receiving antennas 140R, and another portion of the antennas 140 may be disposed in the emitting area EA as emitting antennas 140E.
  • the electromagnetic wave transmitted toward the front surface of the obstacle may be fed into the transmission line 120 via the receiving antennas 140R in the receiving area RA of the electromagnetic wave transmission structure 10, and transmitted via the transmitting section 120ts of the transmission line 120 to enter the emitting area EA located at the back surface of the obstacle.
  • the electromagnetic wave signal transmitted to the emitting area EA may be coupled to and radiated via the emitting antennas 140E.
  • the electromagnetic wave transmission structure 10 of the present embodiment may be mounted on the obstacle to serve as a detour structure for the electromagnetic wave.
  • the electromagnetic wave sent toward the obstacle would be guided by the proposed structure 10 rather than directly passing through the obstacle. Therefore, the energy loss when the electromagnetic wave passes through the obstacle via this detour structure is much less compared with directly passing through the obstacle.
  • the plurality of receiving antennas 140R located in the receiving area RA may be adjacent to a side of the receiving section 120rs of the transmission line 120 and arranged to form a one-dimensional receiving antenna along the extending direction (e.g., the direction X) of the first extending portion 120P1 of the transmission line 120.
  • the plurality of emitting antennas 140E located in the emitting area EA are adjacent to a side of the emitting section 120es of the transmission line 120, and are arranged in a one-dimensional emitting antenna array along the extending direction of the first extending portion 120P1 of the transmission line 120.
  • the invention is not limited thereto.
  • the receiving antennas 140R and the emitting antennas 140E may also be disposed at two opposite sides of the transmission line 120 respectively, or the receiving antennas 140R (or the emitting antennas 140E) are adjacent to both the two opposite sides of the transmission line 120.
  • the electromagnetic wave transmission structure 10 further includes a plurality of tunable dielectric units 160.
  • the tunable dielectric units 160 are overlapped with the transmission line 120 along the direction perpendicular to the substrate 100 (e.g., a direction Z).
  • the tunable dielectric units 160 may be disposed in the emitting area EA and the receiving area RA, respectively.
  • the emitting area EA may be provided with a plurality of tunable dielectric units 161
  • the receiving area RA may be provided with a plurality of tunable dielectric units 162.
  • the tunable dielectric units 161 are respectively overlapped with a plurality of portions (or sections) of the emitting section 120es of the transmission line 120 located between the plurality of emitting antennas 140E along the direction Z.
  • the tunable dielectric units 162 are respectively overlapped with a plurality of portions (or sections) of the receiving section 120rs of the transmission line 120 located between the plurality of receiving antennas 140R along the direction Z.
  • the emitting antennas 140E adjacent to the emitting section 120es and the tunable dielectric units 161 are alternately arranged along the extending direction of the transmission line 120 (for example, the direction X), and the receiving antennas 140R adjacent to the receiving section 120rs and the tunable dielectric units 162 are alternately arranged along the extending direction of the transmission line 120.
  • the tunable dielectric units 160 have a first electrode layer EL1 and a controllable dielectric layer CDL overlapped in the direction Z, and the controllable dielectric layer CDL is disposed between the first electrode layer EL1 and the transmission line 120.
  • the controllable dielectric layer CDL is, for example, a liquid-crystal layer, and the electric field generated by the potential difference between the first electrode layer EL1 and the transmission line 120 is suitable for driving a plurality of liquid-crystal molecules LCM of the liquid-crystal layer to rotate.
  • the first electrode layer EL1 may be disposed on another substrate SUB, and a spacer SP is sandwiched between the substrate SUB and the substrate 100 to form an accommodating space of the controllable dielectric layer CDL.
  • the plurality of second extending portions 120P2 of the transmission line 120 are arranged at two opposite sides of the first extending portion 120P1 along the direction X at a pitch P. Any two adjacent ones of the second extending portions 120P2 arranged along the direction X have a spacing S, and each of them has a length L along the direction Y.
  • the liquid-crystal material used as the controllable dielectric layer CDL in the present embodiment has dielectric anisotropy, that is, the liquid-crystal material respectively has different dielectric constants (for example: a dielectric constant ⁇ // and a dielectric constant ⁇ ⁇ ) in the directions parallel and perpendicular to the long axis of the liquid-crystal molecules, the liquid-crystal material is electrically controllable.
  • the effective dielectric constant of the liquid-crystal layer in a specific direction may be changed, and the effective dielectric constant falls within the range between the dielectric constant ⁇ // and the dielectric constant ⁇ ⁇ .
  • the controllable dielectric layer CDL may adopt the liquid-crystal material K15 (Merck KGaA) with the dielectric constant ⁇ // and the dielectric constant ⁇ ⁇ of 2.9 and 2.72, respectively, and an alignment material layer with horizontal alignment capability (for example: a polyimide thin-film brushed with fluff) is adopted to align the liquid-crystal molecules LCM.
  • the alignment material layer may be disposed at the interface of the liquid-crystal layer and the first electrode layer EL1 and/or at the interface of the liquid-crystal layer and the substrate 100.
  • the invention is not limited thereto. In other embodiments, the selection of the liquid-crystal material and the alignment manner thereof may be adjusted according to different application requirements.
  • the liquid-crystal layer when the liquid-crystal layer is in a state where no electric field is applied, the liquid-crystal molecules LCM thereof are arranged parallel to the substrate 100 (as shown in FIG. 3A ).
  • the effective dielectric constant of the controllable dielectric layer CDL to the electromagnetic wave signal transmitted on the transmission line 120 is the larger dielectric constant ⁇ // , so that the equivalent electromagnetic wave wavelength is smaller and the wavenumber is larger. Therefore, the controllable dielectric layer CDL to which the electric field is not applied may generate more phase shifts in the X-axis direction than a state in which the electric field is applied, as described later.
  • the long molecular axis thereof tends to align along the direction of the electric field.
  • the direction of the electric field formed in the overlap region of the first electrode layer EL1 and the transmission line 120 is substantially perpendicular to the substrate 100.
  • the electric field strength is large enough, the long axis direction of most of the liquid-crystal molecules located in the overlap region is also substantially perpendicular to the substrate 100 (as shown in FIG. 3B ).
  • the effective dielectric constant of the controllable dielectric layer CDL to the electromagnetic wave signal transmitted on the transmission line 120 is the smaller dielectric constant ⁇ ⁇ . Therefore, when an electric field is applied to the liquid-crystal layer (i.e., the controllable dielectric layer CDL), less phase shift may be generated in the X-axis direction compared to the above state in which the electric field is not applied.
  • the effective dielectric constant of the controllable dielectric layer CDL in the direction of the electric field of the electromagnetic wave signal may be changed, thereby changing the phase of the electromagnetic wave signal transmitted on the transmission line 120.
  • the tunable dielectric units 160 are provided in the portion between the receiving section 120rs and the emitting section 120es of the transmission line 120 between any two adjacent antennas 140, and via the phase modulation capability of the tunable dielectric units 160, the electromagnetic wave receiving and emitting directions of the plurality of antennas 140 of the one-dimensional antenna array arranged along one side of the transmission line 120 may be changed, wherein the adjustment of the electromagnetic wave receiving and emitting directions is, for example, in the dimension of the XZ plane.
  • the plurality of tunable dielectric units 161 located in the emitting area EA are suitable for adjusting the phase of the electromagnetic wave signal transmitted in the emitting section 120es of the transmission line 120. Therefore, the electromagnetic wave signal coupled and radiated by the plurality of emitting antennas 140E from the transmission line 120 has different phase combinations according to the different phase shifts imparted by each of the tunable dielectric units 161, thereby changing the transmission direction of the electromagnetic wave on the XZ plane.
  • the plurality of tunable dielectric units 162 located in the receiving area RA are suitable for adjusting the phase of the electromagnetic wave signal fed into the transmission line 120 at different delay times, which is equivalent to adjusting the receiving field pattern of the receiving section 120rs on the XZ plane.
  • the orthographic profile of the antennas 140 of the present embodiment on the substrate 100 is, for example, a circle, and the size (e.g., diameter) of each of the antennas 140 is substantially the same.
  • a spacing s1 between each of the antennas 140 and the adjacent transmission line 120 is also substantially the same. Therefore, each of the antennas 140 has a similar degree of energy coupling with the transmission line 120. For example, the energy difference of the electromagnetic wave fed into the transmission line 120 via each of the receiving antennas 140R is not large, and the power radiated by the electromagnetic wave signal via each of the emitting antennas 140E is also similar.
  • the beam width/half power beam width (HPBW) of the main lobe of the electromagnetic wave radiated by the emitting antenna array is narrower, and the radiated power difference between the side lobe and the main lobe is also smaller.
  • the invention is not limited thereto.
  • the plurality of antennas forming the antenna array may also have different sizes, and the distances between the antennas and the transmission line may also be different.
  • the plurality of antennas 140A e.g., receiving antennas 140R-A and emitting antennas 140E-A
  • the plurality of antennas 140A may have different sizes.
  • the plurality of receiving antennas 140R-A have a symmetry axis SA, and the diameter (or circular diameter) of each of the receiving antennas 140R-A is increased away from the symmetry axis SA.
  • the plurality of emitting antennas 140E-A are also configured in the same manner.
  • the antennas 140A located on the symmetry axis SA have the best reception/radiation efficiency for an electromagnetic wave of a specific frequency (that is, the resonance frequency of the central antenna is the carrier frequency of the pre-transceived signal), and the reception/radiation efficiency of the antennas 140A with different sizes deviated from the symmetry axis SA for the an electromagnetic wave of a specific frequency is decreased as the size (e.g., diameter) of the antennas become larger.
  • the HPBW of the main lobe of the electromagnetic wave radiated by the emitting antenna array may be increased, and the radiated power of the side lobe may be suppressed.
  • the size configuration of the plurality of antennas 140B (e.g., receiving antennas 140R-B and emitting antennas 140E-B) of an electromagnetic wave transmission structure 10C is similar to that of the plurality of antennas 140A of FIG. 4A , but the spacings between the antennas 140B and the adjacent transmission line 120 may be different. It is particularly noted that distances d between a geometric center C of each of the antennas 140B and the adjacent transmission line 120 are all substantially the same.
  • the diameter of each of a plurality of receiving antennas 140R-C thereof is decreased away from the symmetry axis SA, and a plurality of emitting antennas 140E-C thereof are also configured in the same manner.
  • the resonance frequency of the center antenna is the carrier frequency of the pre-transmission signal.
  • the configuration of the emitting antenna array and the receiving antenna array may also be optionally different.
  • FIG. 5 is a schematic top view of an electromagnetic wave transmission structure of the second embodiment of the invention.
  • the difference between an electromagnetic wave transmission structure 10E of the present embodiment and the electromagnetic wave transmission structure 10 of FIG. 1 is that the configuration of the antenna array is different.
  • the antenna array formed by a plurality of antennas 140D of the electromagnetic wave transmission structure 10E has the symmetry axis SA, and a spacing s2 between the plurality of antennas 140D of the antenna array and the transmission line 120 is increased away from the symmetry axis SA.
  • the antennas 140D e.g., receiving antennas 140R-D and emitting antennas 140E-D located on symmetry axis SA have the smallest distance from transmission line 120 and thus have the greatest degree of energy coupling. Conversely, the distance between the antennas 140D located outside the antenna array and the transmission line 120 is largest, and therefore the degree of energy coupling thereof is smallest.
  • the antennas 140D located on the symmetry axis SA have the best reception/radiation efficiency for an electromagnetic wave of a specific frequency, and the reception/radiation efficiency of the antennas 140D with the same size deviated from the symmetry axis SA for the electromagnetic wave of the specific frequency is decreased as the spacing s2 between the antennas 140D and the transmission line 120 is increased.
  • the HPBW of the main lobe of the electromagnetic wave radiated by the emitting antenna array may be increased, and the radiated power of the side lobe may be suppressed.
  • FIG. 6 is a schematic top view of an electromagnetic wave transmission structure of the third embodiment of the invention.
  • FIG. 7 is a schematic cross-sectional view of the electromagnetic wave transmission structure of FIG. 6 along section line B-B'.
  • FIG. 6 omits the illustration of the substrate SUB, the controllable dielectric layer CDL, and the spacer SP in FIG. 7 .
  • tunable dielectric units 160A of an electromagnetic wave transmission structure 20 of the present embodiment further include a second electrode layer EL2 disposed on a side surface 100s of the substrate 100 faced away from the transmission line 120 and overlapped with the controllable dielectric layer CDL along the direction Z.
  • the first electrode layer EL1 and the second electrode layer EL2 of the tunable dielectric units 160A of the present embodiment are suitable for generating an electric field configured to change the effective dielectric constant of the controllable dielectric layer CDL. That is, in the present embodiment, the transmission line 120 is not used as an electrode for driving the controllable dielectric layer CDL.
  • the second electrode layer EL2 is also a patterned electrode, but the invention is not limited thereto.
  • the second electrode layer EL2 may also be a planar electrode corresponding to a plurality of first electrode layers EL1 of the plurality of tunable dielectric units 160A. That is, the second electrode layer EL2 may be a non-patterned electrode layer comprehensively covering the surface 100s of the substrate 100.
  • FIG. 8 is a schematic top view of an electromagnetic wave transmission structure of the fourth embodiment of the invention.
  • FIG. 9 is an enlarged schematic view of a partial region of the electromagnetic wave transmission structure of FIG. 8 .
  • FIG. 10 is a schematic cross-sectional view of the electromagnetic wave transmission structure of FIG. 8 along section line C-C'.
  • FIG. 11 is a schematic cross-sectional view of the electromagnetic wave transmission structure of FIG. 9 along section line D-D'.
  • an electromagnetic wave transmission structure 30 may include a plurality of transmission lines, such as a transmission line 121, a transmission line 122, a transmission line 123, and a transmission line 124. Since the configuration relationship and the corresponding technical effect of each of the transmission line 120, the antennas 140, the tunable the dielectric units 161, and the tunable dielectric units 162 of the present embodiment are similar to the electromagnetic wave transmission structure 10 in FIG. 1 , for detailed descriptions, please refer to the relevant paragraphs of the above embodiments, which are not repeated herein.
  • the plurality of antennas 140 adjacent to the plurality of transmission lines 120 may be arranged in a plurality of columns and a plurality of rows along the direction X and the direction Y, respectively.
  • the plurality of receiving antennas 140R located in the receiving area RA may be arranged to form one two-dimensional receiving antenna array
  • the plurality of emitting antennas 140E located in the emitting area EA may be arranged to form one two-dimensional emitting antenna array.
  • the invention is not limited thereto.
  • the plurality of antennas 140 located in the receiving area RA or the emitting area EA may also be arranged in a honeycomb-shaped two-dimensional antenna array.
  • any two adjacent ones of the plurality of one-dimensional antenna arrays arranged along the direction X of the antennas 140 may be disposed in a staggered manner in the direction Y.
  • an electromagnetic wave transmission structure 30 of the present embodiment is also provided with a plurality of tunable dielectric units 163 in the transmitting area TA.
  • the tunable dielectric units 163 are overlapped with a plurality of the transmitting section 120ts of the plurality of transmission lines 120 along the direction Z, and are arranged in a plurality of columns and a plurality of rows along the direction X and the direction Y, respectively. That is, the tunable dielectric units 163 may be arranged in an array in the transmitting area TA of the electromagnetic wave transmission structure 30. Since the detailed composition of the tunable dielectric units 163 is similar to that of the tunable dielectric units 161 and the tunable dielectric units 162, detailed descriptions are omitted.
  • the plurality of tunable dielectric units 163 located in the transmitting area TA and overlapped with the same transmission line 120 are disposed adjacent to each other. More specifically, there is no gap between the tunable dielectric units 163 arranged along the transmitting sections 120ts. Therefore, when the electromagnetic wave signal is transmitted on the transmission line 120, the energy attenuation caused by the discontinuity of the surrounding dielectric layer may be avoided. Moreover, when the plurality of tunable dielectric units 163 on the same transmission line 120 are driven, the effective dielectric constant of each of the controllable dielectric layers CDL thereof (as shown in FIG.
  • the difference in dielectric constant between any two adjacent ones of the plurality of controllable dielectric layers CDL of the tunable dielectric units 163 is not too large, so as to avoid significant energy loss when the electromagnetic wave signal passes through.
  • different voltages may be applied to a first electrode layer EL1-A of each of the tunable dielectric units 163 on the same transmission line 120, so that the rotation degrees of the plurality of liquid-crystal molecules in the liquid-crystal layer serving as the controllable dielectric layer CDL are different, and the effective dielectric constant in the direction of the electric field of the electromagnetic wave signal generates an approximate continuous change.
  • the effective dielectric constant is, for example, between the dielectric constant ⁇ ⁇ and the dielectric constant ⁇ // of the liquid-crystal layer according to different applied voltages.
  • the approximate continuous change of the effective dielectric constant here means that the difference between the effective dielectric constants generated by any two adjacent tunable dielectric units 163 is very small, and the difference may depend on the number of the tunable dielectric units 163 on the same transmission line 120. That is to say, if there are more tunable dielectric units 163 on the same transmission line 120, the change of the effective dielectric constant on the transmission line 120 is closer to the continuous change.
  • the phase difference between the electromagnetic wave signals transmitted on the different transmission lines 120 may be adjusted, so that the two-dimensional antenna array of the present embodiment has the capability of modulating the electromagnetic wave receiving and emitting directions on the XZ plane and the YZ plane at the same time.
  • the tunable dielectric units 163 are suitable for adjusting the phases of a plurality of electromagnetic wave signals transmitted in a plurality of transmitting sections 120ts of the transmission lines 120, so that the electromagnetic wave signals are respectively transmitted to the emitting area EA with different delay times and radiated via a plurality of corresponding emitting antennas 140E.
  • the emitting direction of the electromagnetic wave may be modified on the YZ plane.
  • the tunable dielectric units 161 are simultaneously enabled, the emitting direction of the electromagnetic wave may be modified on the YZ plane and the XZ plane at the same time.
  • the first electrode layer EL1-A of the tunable dielectric units 160B has a bottom portion EL1bp parallel to the substrate 100 and a sidewall portion EL1sp extended from the bottom portion EL1bp in a bent manner, wherein a sidewall portion EL1sp surrounds the controllable dielectric layer CDL. More specifically, the controllable dielectric layer CDL of each of the tunable dielectric units 160B of the present embodiment is covered by the first electrode layer EL1-A. Therefore, it may be ensured that the driving of the controllable dielectric layer CDL of each of the tunable dielectric units 160B is not affected by the electrode of another tunable dielectric unit 160B.
  • each of the plurality of first electrode layers of the plurality of tunable dielectric units may have at least one notch, and the accommodating space configured to fill the liquid-crystal layer (i.e., the controllable dielectric layer CDL) between the substrate 100 and each of the plurality of first electrode layers of the plurality of tunable dielectric units may be communicated via the at least one notch.
  • the first electrode layers of the tunable dielectric units may be disposed in one continuously distributed liquid-crystal layer.
  • the electromagnetic wave transmission structure 30 may further include an insulating layer INS1 and an insulating layer INS2.
  • the insulating layer INS1 is provided between the first electrode layer EL1-A and the transmission line 120 so that the first electrode layer EL1-A and the transmission line 120 are electrically separated from each other.
  • the insulating layer INS2 is provided between any two adjacent first electrode layers EL1-A so that any two adjacent first electrode layers EL1-A are electrically separated from each other.
  • the insulating layer INS2 may not be provided between two adjacent first electrode layers EL1-A arranged along the direction Y, but the invention is not limited thereto. In other embodiments, the insulating layer INS2 may also be disposed around the first electrode layer of each of the tunable dielectric units to insulate the adjacent first electrode layer of another tunable dielectric unit arranged in a different direction.
  • FIG. 12 is a schematic top view of an electromagnetic wave transmission structure of the fifth embodiment of the invention.
  • FIG. 13A and FIG. 13B are schematic cross-sectional views of the tunable dielectric units of FIG. 12 operated in different states.
  • FIG. 13A and FIG. 13B correspond to section line E-E' of FIG. 12 .
  • FIG. 12 omits the illustration of the substrate SUB, the controllable dielectric layer CDL, and the spacer SP in FIG. 13A and FIG. 13B .
  • the difference between an electromagnetic wave transmission structure 10F of the present embodiment and the electromagnetic wave transmission structure 10 of FIG. 3A is that the configuration of the first electrode layer of the tunable dielectric units and the driving method of the liquid-crystal layer are different.
  • a first electrode layer EL1-B of tunable dielectric units 160C includes a plurality of first strip electrodes SE1 and a plurality of second strip electrodes SE2.
  • the first strip electrodes SE1 and the second strip electrodes SE2 are alternately arranged along the extending direction (e.g., the direction X) of the first extending portion 120P1 of the transmission line 120, and are parallel to the second extending portions 120P2.
  • the transmission line 120 is not used as an electrode configured to drive the controllable dielectric layer CDL. Instead, the effective dielectric constant of the controllable dielectric layer CDL is changed by the electric field generated between any adjacent ones of the first strip electrodes SE1 and the second strip electrodes SE2.
  • the arrangement direction i.e., the alignment direction
  • the arrangement direction i.e., the alignment direction
  • the first electrode layer EL1-B is enabled, a lateral electric field substantially parallel to the substrate 100 is formed between the first strip electrodes SE1 and the second strip electrodes SE2.
  • the liquid-crystal material adopted in the present embodiment is a positive liquid-crystal material (that is, the dielectric constant ⁇ // of the liquid-crystal molecules LCM in the long axis direction is greater than the dielectric constant ⁇ ⁇ in the short axis direction), the long axis of the liquid-crystal molecules LCM tends to align along the direction of this transverse electric field (as shown in FIG. 13B ). More specifically, the liquid-crystal layer of the present embodiment is operated in an in-plane switching (IPS) mode.
  • IPS in-plane switching
  • the effective dielectric constant of the controllable dielectric layer CDL in the direction of the electric field of the electromagnetic wave signal is the smaller dielectric constant ⁇ , and therefore less phase shift is generated.
  • the effective dielectric constant of the controllable dielectric layer CDL in the direction of the electric field of the electromagnetic wave signal is the larger dielectric constant ⁇ // , and therefore more phase shift is generated.
  • FIG. 14 is a schematic top view of an electromagnetic wave transmission structure of the sixth embodiment of the invention.
  • a plurality of tunable dielectric units 160D of an electromagnetic wave transmission structure 10G of the present embodiment for example: a plurality of tunable dielectric units 161D located in the emitting area EA or/and a plurality of tunable dielectric units 162D located in the receiving area RA, are arranged adjacent to each other.
  • the boundaries of the two opposite sides in the arrangement direction of the two antennas 140 may be respectively aligned with the geometric center C of each of the two antennas 140.
  • a plurality of antennas are provided adjacent to the transmission line, and a plurality of tunable dielectric units are provided at a plurality of portions of the transmission line between the antennas.
  • the phase of the electromagnetic wave signal may be changed by electronically modulating the effective dielectric constant of the controllable dielectric layer overlapped with the transmission line in the tunable dielectric units, thereby modulating the electromagnetic wave emitting and receiving directions of the antennas.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguides (AREA)
  • Waveguide Aerials (AREA)

Claims (14)

  1. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30), umfassend:
    ein Substrat (100, SUB);
    wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124), die auf dem Substrat (100, SUB) angeordnet ist, wobei jede der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) umfasst:
    einen ersten Erstreckungsabschnitt (120P1), der sich in eine erste Richtung erstreckt; und
    eine Vielzahl zweiter Erstreckungsabschnitte (120P2, 120P2-A), die sich jeweils von zwei gegenüberliegenden Kanten (e1, e2) des ersten Erstreckungsabschnitts (120P1) erstrecken, wobei eine Erstreckungsrichtung der zweiten Erstreckungsabschnitte parallel zu einer zweiten Richtung ist, die zweite Erstreckungsabschnitte (120P2, 120P2-A) in einer Neigung P entlang der ersten Richtung angeordnet sind, zwei Benachbarte der zweiten Erstreckungsabschnitte (120P2, 120P2-A), die entlang der ersten Richtung angeordnet sind, einen Abstand S aufweisen, und jeder der zweiten Erstreckungsabschnitte (120P2, 120P2-A) eine Länge L entlang der zweiten Richtung aufweist;
    eine Vielzahl von Antennen (140, 140A, 140B, 140D), die auf dem Substrat (100, SUB) und benachbart zu der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) angeordnet sind; und
    eine Vielzahl von abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163), überlappend an einer Vielzahl von Abschnitten der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124), sich zwischen den Antennen (140, 140A, 140B, 140D) befinden, wobei jede der abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) eine erste Elektrodenschicht (EL1, EL1-A, EL1-B) und eine steuerbare dielektrische Schicht (CDL) aufweist, die einander überlappen, wobei die steuerbare dielektrische Schicht (CDL) zwischen der ersten Elektrodenschicht (EL1, EL1-A, EL1-B) und der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) angeordnet ist und die Neigung P, der Abstand S und die Länge L die folgende Beziehung erfüllen: S P 2 = ck sspp ω ε r 2 1 cot 2 2 L ε r ω c ,
    Figure imgb0004
    wobei ksspp eine Wellenzahl eines elektromagnetischen Wellensignals ist, das über die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) übertragen wird, εr eine effektive Dielektrizitätskonstante der steuerbaren dielektrischen Schicht (CDL) ist, ω eine Winkelfrequenz des elektromagnetischen Wellensignals ist, das über die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) übertragen wird, und c eine Lichtgeschwindigkeit ist.
  2. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei jede der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) einen Übertragungsabschnitt (120ts), einen Empfangsabschnitt (120rs) und einen Sendeabschnitt (120es) aufweist, wobei der Übertragungsabschnitt (120ts) zwischen dem Empfangsabschnitt (120rs) und dem Sendeabschnitt (120es) verbunden ist, die abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) eine Vielzahl erster abstimmbarer dielektrischer Einheiten umfassen, die mit einem von dem Sendeabschnitt (120es) und dem Empfangsabschnitt (120rs) überlappt sind, und die Antennen (140), 140A, 140B, 140D) und die ersten abstimmbaren dielektrischen Einheiten benachbart zu einem von dem Sendeabschnitt (120es) und dem Empfangsabschnitt (120rs) abwechselnd entlang einer Erstreckungsrichtung der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) angebracht sind.
  3. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 2, wobei die abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) ferner eine Vielzahl von zweiten abstimmbaren dielektrischen Einheiten umfasst, die mit einem anderen von dem Sendeabschnitt (120es) und dem Empfangsabschnitt (120rs) und einem anderen Abschnitt der Antennen (140, 140A, 140B, 140D) und den zweiten abstimmbaren dielektrischen Einheiten überlappt sind, benachbart zu den anderen von dem Sendeabschnitt (120es) und dem Empfangsabschnitt (120rs) abwechselnd entlang der Erstreckungsrichtung angebracht sind.
  4. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 3, wobei die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) eine Vielzahl von Übertragungsleitungen (120, 120A, 121, 122, 123, 124) ist, die sich in der ersten Richtung erstreckt, wobei die Übertragungsleitungen (120, 120A, 121, 122, 123, 124) entlang der zweiten Richtung angebracht sind, die Antennen (140, 140A, 140B, 140D) jeweils benachbart zu einer Vielzahl von Empfangsabschnitten (120rs) und einer Vielzahl von Sendeabschnitten (120es) der Übertragungsleitungen (120, 120A, 121, 122, 123, 124) sind, die abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) ferner eine Vielzahl von dritten abstimmbaren dielektrischen Einheiten umfassen, die mit einer Vielzahl von Übertragungsabschnitten (120ts) der Übertragungsleitungen (120, 120A, 121, 122, 123, 124) überlappend sind und die dritten abstimmbaren dielektrischen Einheiten in einer Vielzahl von Spalten und einer Vielzahl von Reihen entlang der ersten Richtung bzw. der zweiten Richtung angeordnet sind.
  5. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 4, wobei die erste Elektrodenschicht (EL1, EL1-A, EL1-B) von jeder der abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) einen Bodenabschnitt (EL1bp), der parallel zu dem Substrat (100, SUB) ist, und einen Seitenwandabschnitt (EL1sp) aufweisen, der sich von dem Bodenabschnitt (EL1bp) in einer gebogenen Weise erstreckt, wobei der Seitenwandabschnitt (EL1sp) die steuerbare dielektrische Schicht (CDL) umgibt, und die erste Elektrodenschicht (EL1, EL1-A, EL1-B) und die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) zur Erzeugung eines elektrischen Feldes geeignet sind, das konfiguriert ist, eine effektive Dielektrizitätskonstante der steuerbaren dielektrischen Schicht (CDL) zu ändern.
  6. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 5, wobei eine Isolierschicht (INS1, INS2) zwischen den zwei Seitenwandabschnitten (EL1sp) von zwei benachbarten von den ersten Elektrodenschichten (EL1, EL1-A, EL1-B) der dritten abstimmbaren dielektrischen Einheiten bereitgestellt ist, die entlang der ersten Richtung angeordnet sind.
  7. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei jede der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) einen Übertragungsabschnitt (120ts), einen Empfangsabschnitt (120rs) und einen Sendeabschnitt (120es) aufweist, wobei der Übertragungsabschnitt (120ts) zwischen dem Empfangsabschnitt (120rs) und dem Sendeabschnitt (120es) verbunden ist, die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) eine Vielzahl von Übertragungsleitungen (120, 120A, 121, 122, 123, 124) ist, die sich in der ersten Richtung erstrecken, wobei die Übertragungsleitungen (120, 120A, 121, 122, 123, 124) entlang der zweiten Richtung angeordnet sind, wobei die Antennen (140, 140A, 140B, 140D) jeweils benachbart zu einer Vielzahl von Empfangsabschnitten (120rs) und einer Vielzahl von Sendeabschnitten (120es) der Übertragungsleitungen (120, 120A, 121, 122, 123, 124) sind, und wenigstens ein Abschnitt der abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) mit einer Vielzahl von dem Übertragungsabschnitt (120ts) der Übertragungsleitungen (120, 120A, 121, 122, 123, 124) überlappt und in einer Vielzahl von Spalten und einer Vielzahl von Zeilen entlang der ersten Richtung bzw. der zweiten Richtung angeordnet ist.
  8. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die erste Elektrodenschicht (EL1, EL1-A, EL1-B) von jeder der abstimmbaren dielektrische Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) einen Bodenabschnitt (EL1bp), der parallel zu dem Substrat (100, SUB) ist, und einen Seitenwandabschnitt (EL1sp) aufweist, der sich von dem Bodenabschnitt (EL1bp) in einer gebogenen Weise erstreckt, wobei der Seitenwandabschnitt (EL1sp) die steuerbare dielektrische Schicht (CDL) umgibt und die erste Elektrodenschicht (EL1, EL1-A, EL1-B) und die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) zur Erzeugung eines elektrischen Feldes geeignet sind, konfiguriert, um eine effektive Dielektrizitätskonstante der steuerbaren dielektrischen Schicht (CDL) zu ändern.
  9. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) ist, ein Abstand (d) zwischen jeder der Antennen (140, 140A, 140B, 140D) und der Übertragungsleitung (120, 120A, 121, 122, 123, 124) gleich ist, die Antennen (140, 140A, 140B, 140D) entlang einer Erstreckungsrichtung der Übertragungsleitung (120, 120A, 121, 122, 123, 124) angebracht sind und eine Symmetrieachse (SA) aufweisen, und ein Durchmesser jeder der Antennen (140, 140A, 140B, 140D) von der Symmetrieachse (SA) weg verringert oder vergrößert wird.
  10. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) ist, ein geometrischer Mittelpunkt (C) jeder der Antennen (140, 140A, 140B, 140D) den gleichen Abstand (d) von der Übertragungsleitung ( 120, 120A, 121, 122, 123, 124) aufweist, wobei die Antennen (140, 140A, 140B, 140D) entlang einer Erstreckungsrichtung der Übertragungsleitung (120, 120A, 121, 122, 123, 124) angeordnet sind und eine Symmetrieachse (SA) und ein Durchmesser jeder der Antennen (140, 140A, 140B, 140D) von der Symmetrieachse (SA) weg verringert oder vergrößert wird.
  11. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die wenigstens eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) eine Übertragungsleitung (120, 120A, 121, 122, 123, 124) ist, jede der Antennen (140, 140A, 140B, 140D) den gleichen Durchmesser aufweist, die Antennen (140, 140A, 140B, 140D) entlang einer Erstreckungsrichtung der Übertragungsleitung (120, 120A, 121, 122, 123, 124) angebracht sind und eine Symmetrieachse (SA) aufweisen und ein Abstand (s1, s2) zwischen jeder der Antennen (140, 140A, 140B, 140D). ) und der Übertragungsleitung (120, 120A, 121, 122, 123, 124) weg von der Symmetrieachse (SA) vergrößert wird.
  12. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei jede der abstimmbaren dielektrischen Einheiten (160, 160A, 160B, 160C, 160D, 161, 162, 163) ferner umfasst:
    eine zweite Elektrodenschicht (EL2), die auf einer Seitenfläche (100s) des Substrats (100, SUB) angeordnet ist, die von der wenigstens einen Übertragungsleitung (120, 120A, 121, 122, 123, 124) abgewandt ist und mit der steuerbaren dielektrischen Schicht (CDL) überlappt, wobei die erste Elektrodenschicht (EL1, EL1-A, EL1-B) und die zweite Elektrodenschicht (EL2) zur Erzeugung eines elektrischen Feldes geeignet sind, das konfiguriert ist, um eine effektive Dielektrizitätskonstante der steuerbaren dielektrischen Schicht (CDL) zu ändern.
  13. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die steuerbare dielektrische Schicht (CDL) eine Flüssigkristallschicht ist.
  14. Struktur zur Übertragung elektromagnetischer Wellen (10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 20, 30) gemäß Anspruch 1, wobei die erste Elektrodenschicht (EL1, EL1-A, EL1-B) eine Vielzahl von ersten Streifenelektroden (SE1) und eine Vielzahl von zweiten Streifenelektroden (SE2) aufweist, wobei die ersten Streifenelektroden (SE1) und die zweiten Streifenelektroden (SE2) abwechselnd entlang der ersten Richtung und parallel zu den zweiten Erstreckungsabschnitten (120P2, 120P2-A) angebracht sind und benachbarte der ersten Streifenelektroden (SE1) und der zweiten Streifenelektroden (SE2) geeignet sind, um ein elektrisches Feld zu erzeugen, das konfiguriert ist, um eine effektive Dielektrizitätskonstante der steuerbaren dielektrischen Schicht (CDL) zu ändern.
EP22152928.2A 2021-09-07 2022-01-24 Struktur zur übertragung elektromagnetischer wellen Active EP4145636B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163241503P 2021-09-07 2021-09-07
US202163254537P 2021-10-12 2021-10-12
TW110148503A TWI788156B (zh) 2021-09-07 2021-12-23 電磁波傳輸結構

Publications (2)

Publication Number Publication Date
EP4145636A1 EP4145636A1 (de) 2023-03-08
EP4145636B1 true EP4145636B1 (de) 2024-03-06

Family

ID=80001436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22152928.2A Active EP4145636B1 (de) 2021-09-07 2022-01-24 Struktur zur übertragung elektromagnetischer wellen

Country Status (3)

Country Link
EP (1) EP4145636B1 (de)
JP (1) JP7371184B2 (de)
CN (1) CN115775961A (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351506A1 (de) * 2003-11-05 2005-06-02 Robert Bosch Gmbh Vorrichtung sowie Verfahren zur Phasenverschiebung
CN208655852U (zh) * 2018-05-21 2019-03-26 京东方科技集团股份有限公司 一种移相器、天线、通信设备
US10862182B2 (en) * 2018-08-06 2020-12-08 Alcan Systems Gmbh RF phase shifter comprising a differential transmission line having overlapping sections with tunable dielectric material for phase shifting signals
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线
EP3745526A1 (de) * 2019-05-28 2020-12-02 ALCAN Systems GmbH Hochfrequenzphasenschiebervorrichtung
CN110197939B (zh) * 2019-06-03 2024-04-19 北京华镁钛科技有限公司 一种超材料可调电容器结构

Also Published As

Publication number Publication date
EP4145636A1 (de) 2023-03-08
JP7371184B2 (ja) 2023-10-30
JP2023038918A (ja) 2023-03-17
CN115775961A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
EP3656020B1 (de) Antenne mit variabler dielektrischer konstante mit geteilter masseelektrode
EP3736911B1 (de) Phasengesteuerte antenne, anzeigetafel und anzeigevorrichtung
US11196134B2 (en) Phase shifter including a dielectric layer having liquid crystal molecules configured to be rotated so as to cause phase shift
US11152714B2 (en) Electronically steerable planar phase array antenna
KR102368374B1 (ko) 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
RU2590937C2 (ru) Антенны поверхностного рассеяния
US11837802B2 (en) Liquid crystal antenna unit and liquid crystal phased array antenna
US11569584B2 (en) Directional coupler feed for flat panel antennas
EP4016733B1 (de) Speisestruktur, mikrowellenfunkfrequenzvorrichtung und antenne
CN113728512B (zh) 移相器及天线
US20210367336A1 (en) Feeding structure, microwave radio frequency device and antenna
US11018439B2 (en) Scanned antenna and liquid crystal device
US20240235020A1 (en) Antenna, manufacturing method, driving method, and antenna system
CN112164875A (zh) 微带天线、通信设备
TW202118136A (zh) 接地平面加熱器
JP2023058014A (ja) 電磁波リフレクトアレイ
US20220052429A1 (en) Phase shifter and method for operating the same, antenna and communication device
EP4145636B1 (de) Struktur zur übertragung elektromagnetischer wellen
WO2023140243A1 (ja) リフレクトアレイ
US12034222B2 (en) Electromagnetic wave transmission structure
TWI788156B (zh) 電磁波傳輸結構
WO2023181614A1 (ja) リフレクトアレイ
CN116683191A (zh) 天线及其制作方法、天线组
WO2023058399A1 (ja) 電波反射装置
WO2023188734A1 (ja) 液晶材料を用いた電波の反射素子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022002181

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240706