EP4142676A1 - Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide - Google Patents

Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide

Info

Publication number
EP4142676A1
EP4142676A1 EP21732401.1A EP21732401A EP4142676A1 EP 4142676 A1 EP4142676 A1 EP 4142676A1 EP 21732401 A EP21732401 A EP 21732401A EP 4142676 A1 EP4142676 A1 EP 4142676A1
Authority
EP
European Patent Office
Prior art keywords
plant material
gas
mute
matrix
odorous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21732401.1A
Other languages
German (de)
English (en)
Inventor
Guillaume Gillet
Isabelle Desjardins-Lavisse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genialis Biotech SAS
Original Assignee
Genialis Biotech SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genialis Biotech SAS filed Critical Genialis Biotech SAS
Publication of EP4142676A1 publication Critical patent/EP4142676A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/02Recovery or refining of essential oils from raw materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/02Recovery or refining of essential oils from raw materials
    • C11B9/027Recovery of volatiles by distillation or stripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/84Products or compounds obtained by lyophilisation, freeze-drying

Definitions

  • the invention relates to the field of natural odors and perfumes. More particularly, the invention relates to a process for extracting an odor from a plant material and its provision in solid form. This process combines steps of extraction, gas dissolution, cryogenics, or even lyophilization. The odor thus captured in the form of a frozen matrix or of a dehydrated powder can be used as a natural perfuming ingredient, in particular in cosmetics.
  • the invention relates very particularly to the production of perfume extracts derived from mute flowers.
  • Patent FR3011848A1 describes a process for obtaining an oily plant extract from plant material comprising the steps of: a) mixing said raw material with at least one fatty substance; b) heating said mixture by microwave at a power of 0.1 to 5 watts per gram of mixture to a temperature of 25 ° C to 60 ° C; and c) recovering the fatty substance which forms after mixing and heating the oily extract.
  • Patent FR3081684A1 describes a process for obtaining a product in the form of frozen granules, particles or balls rich in dissolved gas and associated equipment from a liquid, semi-liquid or pasty matrix comprising the steps of gasifying the matrix by incorporation of a gas, in dispensing the matrix in the form of drops and cryogenizing the matrix drops by immersion in a cryogenic fluid, characterized in that the step of gasification of the matrix consists in dissolving a large quantity of the gas generated by evaporation of the cryogenic fluid in the matrix drops by increasing the number of gas molecules in a zone of high gas density, called a zone of high molecular density, located above the surface of the cryogenic fluid and on the trajectory of drops of matrix before their immersion in the fluid, said zone of high molecular density being created by carrying out the gasification and cryogenization of the gasified drops within a closed enclosure arranged to allow evacuation of the gas generated by the evaporation of the cryogenic fluid by natural convection.
  • the inventors have developed a process making it possible to extract an odor from a plant material and to preserve it in solid form, either frozen or in the form of a dehydrated powder. Remarkably, it extracts the smells of mute flowers.
  • This extraction process comprises the following steps: a) Disposing of a plant material b) Carrying out a treatment of said plant material, optionally under an inert atmosphere, in order to have a product in the form of a liquid matrix, semi- liquid or pasty c) dissolving a gas in said matrix by passing through a zone dense in gas molecules, such a density being obtained (i) either by a flow of gas generated by the evaporation of a cryogenic fluid, (ii ) or by an increase in pressure; d) Cryogenizing said gas-rich matrix obtained in step c) under pressure and temperature conditions making it possible to maintain said gas in said matrix to obtain frozen granules, particles or beads.
  • the frozen granules, particles or beads can be lyophilized so as to obtain an odorous extract in the form of a dehydrated powder.
  • the present invention has many advantages with regard to the state of the art.
  • the proposed extraction process is simple, fast and inexpensive. It uses two technologies known to those skilled in the art, namely cryogenics and lyophilization.
  • the first step is a step of freezing or deep freezing by cryogenics.
  • the method involves first of all the dissolution of a gas in the matrix before cryogenics, then carrying out the cryogenics step under pressure so as to maintain throughout the process the gas trapped in the matrix and in particular in the frozen granules, particles or beads.
  • the presence of the gas in particular when it is an inert gas, protects the odorous matrix during freezing and allows substantial improvements both in the properties of the products obtained and in the drying by freeze-drying.
  • the second step is a freeze-drying step.
  • Lyophilization is a process of dehydration by sublimation of water under conditions of temperature and pressure allowing the water contained in solid form in the products to be transformed directly into water vapor for elimination. It makes it possible to obtain dehydrated products in powder form, the odorous properties of which are maintained.
  • the extraction process according to the invention has the advantage of being rapid. Cryogenics is an almost instantaneous process, making it possible to continuously produce and at high rates (several hundred kg per hour on standard equipment) balls of initially fluid product. The time saving is considerable compared to freezing in a cold room, even if they operate at very low temperatures (-40 ° C to -80 ° C in general).
  • the cryogenized beads are extracted from the materials producing them at temperatures generally between -80 ° C and -120 ° C, which makes it possible to start freeze-drying directly, with products whose temperature is around - 60 ° C, without a prior step of cooling. More surprisingly, the lyophilization time itself is very greatly reduced (down to a factor of at least 2).
  • the combination of gas dissolution with cryogenics makes it possible to obtain frozen products containing a large amount of gas.
  • this gas is not oxygen, oxidation reactions are avoided.
  • the lyophilization of such products makes it possible to eliminate the major part of the water contained in the product.
  • the quality of the dehydrated products is higher than that of the lyophilized products obtained by a conventional process because the conditions set implemented in this process are on the whole softer, less aggressive and less destructuring for the matrix. These properties, odorous in particular, are therefore better preserved.
  • the frozen granules, particles or beads as well as the lyophilized powder obtained at the end of the process contain the odorous molecules extracted from the biological material and the odorous ingredient is of high quality.
  • the inventors have in fact observed that the odor contained in these solid ingredients faithfully reproduces the odor of fresh plant material and that this odor lasts for a very long time without deteriorating.
  • these fragrant ingredients do not contain alcohol and therefore make it possible to formulate perfumes without alcohol. The fragrant ingredients therefore have significantly improved properties compared to the extracts available hitherto.
  • the method of the invention makes it possible to extract the odors from mute flowers. This result is extremely interesting and opens new horizons in the world of perfumery which can now access the complex scents of mute flowers thanks to natural ingredients of high olfactory quality at acceptable costs.
  • the formulation of perfuming compositions from odorous ingredients offered in the form of dehydrated powder is also advantageous. It provides ease of use, dosage and storage and the shelf life is long due to the stability of the product.
  • the use can in particular be facilitated by a formulation of the powder in a compressed form (compact powder), offered for example in a format of small pebbles of a determined weight, or of granules.
  • Another advantage of the dehydrated powders according to the invention is that they dissolve quickly and leave no deposit, which allows them to be easily introduced into liquid perfume compositions.
  • a first object of the invention relates to a process for preparing an odorous ingredient in solid form from a plant material comprising the steps of: a) disposing of a plant material b) carrying out a mechanical treatment of the raw material , optionally under an inert atmosphere, in order to have a product in the form of a liquid, semi-liquid or pasty matrix c) Dissolving a gas in said matrix by passing through a zone dense in gas molecules, such a density being obtained (i) either by a flow of gas generated by the evaporation of a cryogenic fluid, (ii) or by an increase in pressure; d) Cryogenizing said gas-rich matrix obtained in step c) under pressure and temperature conditions making it possible to maintain said trapped gas in order to obtain frozen granules, particles or beads.
  • the method further comprising the steps of: a) Lyophilization of said granules, particles or beads; b) Obtaining said odorous ingredient in the form of a dehydrated powder.
  • the dissolved gas can be an inert gas such as nitrogen, argon ... or a non-inert gas such as CO 2 or nitrous oxide, or a mixture of gases.
  • a particularly preferred cryogenic fluid is liquid nitrogen.
  • under pressure within the meaning of the invention, is meant conditions which allow the dissolution and / or trapping of a gas in a matrix and / or its maintenance in said matrix during deep freezing. Pressurization can be obtained either by increasing the pressure or by bringing the matrix into contact with a cryogenic fluid, the evaporation of this gas creating a gas molecule density equivalent to pressurization so that the gas molecules dissolve in the matrix.
  • this pressure is greater than atmospheric pressure, and may in particular be greater than 0.5 bar, 1 bar, 2 bars, 5 bars, 10 bars, 50 bars, 100 bars, 200 bars, or even 250 bars or more. In a particular embodiment, it is between 2 and 100 bars.
  • the pressures expressed in this document correspond to relative pressures, that is to say that atmospheric pressure is considered as a pressure of 0 bar.
  • the zone dense in gas molecules is obtained at least in part by virtue of a flow of gas generated by the evaporation of a cryogenic fluid. It can be obtained by combining the evaporation of a cryogenic fluid with an increase in pressure.
  • a gas flow generated by the evaporation of a cryogenic fluid cover the flow resulting directly from the evaporation of a cryogenic fluid as well as any controlled flow (direction, flow rate, etc.), by injection gas or by suction for example, which allows the creation of one or more exchange zones between the matrix and a large number of gas molecules.
  • step d) The pressure and temperature conditions applied in step d) must make it possible to maintain the gas trapped in the matrix in step c).
  • Those skilled in the art will know how to adjust the pressure and temperature conditions during step d), so that the solubility of the gas in the matrix is greater than or equal to that used during step c). Said solubility is in particular influenced by the temperature (for gases it increases when the temperature decreases) and by the pressure (balance of the partial pressures between the matrix and the gas).
  • steps c) and d) take place under correlated conditions (between these two steps) in order to allow the gas to dissolve in the matrix and its conservation inside the matrix during cryonics.
  • the process As regards the implementation of the process as a whole, it is possible to chain the stages of the process one after the other and in particular to carry out the lyophilization stage immediately after the cryogenics stage. In addition, the process can be carried out continuously. It is also possible to keep the product in frozen form at the end of the cryogenics step and to carry out the lyophilization subsequently, after a negative cold storage time to keep the products in the solid state (for example at - 20 ° C). In both cases, the advantage of the process is retained.
  • the lyophilization step can be carried out either immediately following the cryogenics step, or subsequently after storage of said frozen granules, particles or beads.
  • the conditions of the process can be adapted according to the shape of the matrix to be dehydrated, in particular the pressure during the cryogenic step, and the lyophilization parameters. Those skilled in the art will know how to make such adaptations.
  • the matrix obtained by treating the plant material is transferred rapidly to the gas dissolution and cryogenics apparatus in order to limit the degradation or denaturation of the compounds.
  • plant material within the meaning of the invention is understood to mean plants in the general sense, considering that all plant material is odorous, the intensity of this odor being able to vary. It may be in particular flowers or parts of flowers such as the petals, pistils, leaves, stems, but also herbaceous plants such as aromatic herbs, fruits of any type such as raspberries, lychees, apples, vanilla pods or roots such as ginger, or spices.
  • the plant material is preferably fresh, or freshly cut, so that the odorous molecules are not altered, and that the odor emanating from the plant material is as close as possible to the natural state.
  • the plant material consists of flowers and its different parts, in particular the petals.
  • treatment of the plant material is meant any transformation of the plant material into a liquid, semi-liquid or pasty matrix such as mechanical extraction (using a juice extractor), pressing, mixing. .
  • flower within the meaning of the invention, is meant a flower from which neither essence nor absolute can be extracted.
  • mute flowers are, for example, lily, violet, hyacinth, duddleia, peony, freesia, lily of the valley, honeysuckle, gardenia, carnation, pittosporum, syringa, sweet pea , glycine and heliotrope.
  • the plant material originates from a mute flower.
  • the plant material consists exclusively of petals or exclusively of petals and pistils of flowers.
  • a second subject of the invention relates to a natural odorous ingredient obtained according to the process described above, in the form of frozen granules, particles or balls.
  • a third subject of the invention relates to a natural odorous ingredient obtained according to the process described above, which is in the form of a dehydrated powder.
  • This powder can be 100% derived from the fragrant plant material.
  • Such a product if it is technically feasible (sufficient yield, non-oily extracted product, etc.) will be very concentrated, which can be a high quality index.
  • the powder may also contain, in addition to the plant material, a support which makes it possible to fix the odorous molecules.
  • a support can consist of maltodextrins or of a natural vegetable support for a 100% vegetable ingredient.
  • the fragrant ingredient which is provided in frozen form or as a dehydrated powder is obtained from a mute flower.
  • a fourth subject of the invention relates to an odorous composition comprising at least one odorous ingredient as defined above.
  • such a composition comprises at least one fragrant ingredient obtained from a mute flower.
  • a fifth subject of the invention relates to a process for preparing a liquid odorous composition comprising a step of dissolving at least one odorous ingredient in the form of a dehydrated powder as defined above.
  • the fragrant ingredients and the compositions containing them can be used in perfumery, namely in body perfumes and room fragrances, but also in cosmetics.
  • Figure 1 Chromatograms obtained following analysis by a Héraclès II electronic nose of AlphaMos (double ultra-rapid gas phase chromatography) of the lilac powders prepared by applying the extraction process according to the invention (A: column 1; B: column 2) .
  • the petals were separated from the flowers manually before being passed through an ANGEL 7500 horizontal juice extractor.
  • the juice thus collected was immediately treated in equipment allowing it to be cryogenized while trapping dissolved gas therein, according to the process described in patent WO2019 / 234341 for example.
  • the frozen beads thus obtained were then lyophilized according to standard conditions in a CHRIST alpha 1-8 freeze-dryer, until “dry” powders were obtained (more weight loss measured).
  • the first remarkable element comes from the quantity of powder thus obtained.
  • the powder yields were around 5%, which is very high since no support was added and it is therefore only material initially present in the flowers. petals.
  • Lyophilization supports are generally added to the preparations to be lyophilized, in order to guarantee the presence of a sufficient dry extract for the binding of molecules of interest during the treatment and also to reduce production costs.
  • the yield obtained during this preparation is already very convincing on these two points without having to add anything.
  • the second very remarkable element is the smell of the products thus obtained, which were very clearly identified as being those of the two respective flowers by the various panels consulted.
  • Electronic nose analyzes ( Figures IA and IB) have also made it possible to confirm the presence in the product of characteristic peaks associated with chemical compounds known to be significant contributors to the scents of lilac flowers:
  • (E) -ocimere which is the major component; lilac aldehydes and lilac alcohols, which each have several dimers and are among the most characteristic compounds; benzyl methyl ether, 1,4-dimethoxybenzene and indole, which are the other characteristic compounds of the scent of lilac.
  • the reference data used are those of the software coupled to the Héraclès II measuring device and of the NIST WebBook available in particular from the address: https://webbook.nist.gOv/chemistry/#Search.
  • Jasmine flowers were collected.
  • the petals and pistils were separated manually before being passed through an ANGEL 7500 horizontal juice extractor.
  • a portion of the juices thus collected were immediately treated in equipment allowing them to be cryogenized while trapping dissolved gas therein, according to the report. process described in patent WO2019 / 234341 for example.
  • the frozen beads thus obtained were then lyophilized according to standard conditions in a CHRIST alpha 1-8 freeze-dryer, until “dry” powders were obtained (no more weight loss measured).
  • 50 g of maltodextrins were added each time, then the mixtures thus obtained underwent the same process as described above, until powders were obtained.
  • a support such as maltodextrins
  • the dry powder alone can become liquid again, this is the case in particular when the oily fraction is too large; it is then necessary to add a support at the time of lyophilization.
  • by adding a support we increase the yield as illustrated above, which is economically advantageous, and allows the standardization of products.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Fats And Perfumes (AREA)

Abstract

L'invention se rapporte au domaine des odeurs et parfums naturels. Plus particulièrement, l'invention concerne un procédé d'extraction d'odeur à partir d'une matière végétale et sa mise à disposition sous forme solide. Ce procédé combine des étapes d'extraction, de dissolution de gaz, de cryogénie, voire de lyophilisation. L'odeur ainsi capturée sous la forme d'une matrice surgelée ou de poudre déshydratée, peut être utilisée en tant qu'ingrédient parfumant naturel, notamment en cosmétique. L'invention concerne très particulièrement l'obtention d'extraits parfumants issus de fleurs muettes.

Description

PROCEDE D'EXTRACTION D'ODEUR A PARTIR D'UNE MATIERE VEGETALE, NOTAMMENT DE FLEURS MUETTES, SOUS FORME SOLIDE
L'invention se rapporte au domaine des odeurs et parfums naturels. Plus particulièrement, l'invention concerne un procédé d'extraction d'odeur à partir d'une matière végétale et sa mise à disposition sous forme solide. Ce procédé combine des étapes d'extraction, de dissolution de gaz, de cryogénie, voire de lyophilisation. L'odeur ainsi capturée sous la forme d'une matrice surgelée ou de poudre déshydratée, peut être utilisée en tant qu'ingrédient parfumant naturel, notamment en cosmétique. L'invention concerne très particulièrement l'obtention d'extraits parfumants issus de fleurs muettes.
Domaine de l'invention
A l'exception de la rose, du jasmin, de la tubéreuse, du magnolia, du narcisse, de la jonquille, du mimosa, du cassia, de la fleur d'oranger, de la lavande, du genêt, de l'ylang-ylang et de l'osmanthus, toutes les autres fleurs sont dites « muettes ». Une fleur est dite « muette » lorsqu'il n'est pas possible, par les techniques d'extraction classiques de distillation à la vapeur d'eau ou d'extraction aux solvants volatils, ni même d'effleurage, d'obtenir un extrait utilisable en parfumerie car les rendements d'extractions sont trop faibles, voire nuis. A titre d'exemple, si la tubéreuse peut se trouver sous forme d'absolu, son prix est très élevé, de l'ordre de 5000 € le kg, le destinant exclusivement à des parfums d'exception.
Depuis la seconde moitié du XIXème siècle, les chimistes ont proposé des solutions pour tenter de pallier ce manque, en isolant et en identifiant des composés susceptibles de permettre la recomposition des senteurs attendues par le jeu de leur combinaison, sans jamais permettre de reproduire fidèlement les odeurs subtiles naturelles dégagées par les fleurs muettes.
Par ailleurs, on peut noter que les recherches pour mettre au point de nouvelles techniques d'extraction ou améliorer les techniques existantes sont très actives. Les bases de données de brevets révèlent par exemple près de 4000 demandes sur les seules années 2018 et 2019. Il s'agit pour l'essentiel de propositions d'optimisation de procédés connus, en choisissant des solvants ou combinaisons de solvants plus adaptés et plus naturels par exemple, en optimisant les paramètres de traitement pour des couples donnés composés/matière première, ou encore en sélectionnant de manière plus favorable l'extraction de tel ou tel composé. Peu de nouvelles techniques d'extraction ont émergé ces dernières années, n'offrant aucune alternative à la problématique des fleurs muettes en particulier.
D'autre part, les extraits odorants naturels sont habituellement extraits sous forme liquide. La conservation de ces préparations est délicate car les molécules les constituant sont instables, les odeurs pouvant se modifier en fonction de la température, de l'exposition à la lumière... ce qui pose des problèmes de conservation, de stockage et de transport. Il existe un réel besoin de disposer d'un procédé plus performant et moins coûteux de préparation d'ingrédients odorants naturels à partir de matière végétale sous des formes stabilisées et utilisables industriellement. En particulier, il n'existe aucun procédé capable d'extraire les odeurs des fleurs muettes.
Art antérieur
Le brevet FR3011848A1 décrit un procédé d'obtention d'un extrait huileux de plantes à partir de matière végétale comprenant les étapes de : a) mélange de ladite matière première avec au moins un corps gras ; b) chauffage dudit mélange par hyperfréquence à une puissance comprise de 0,1 à 5 watt par gramme de mélange jusqu'à une température de 25°C à 60°C ; et c) récupération du corps gras qui se forme après mélange et chauffage de l'extrait huileux.
Le brevet FR3081684A1 décrit un procédé d'obtention d'un produit sous forme de granules, particules ou billes surgelés riches en gaz dissous et équipement associé à partir d'une matrice liquide, semi- liquide ou pâteuse comprenant les étapes consistant à gazéifier la matrice par incorporation d’un gaz, à dispenser la matrice sous forme de gouttes et cryogéniser les gouttes de matrice par immersion dans un fluide cryogénique, caractérisé en ce que l’étape de gazéification de la matrice consiste à dissoudre en grande quantité le gaz généré par l'évaporation du fluide cryogénique dans les gouttes de matrice par accroissement du nombre de molécules de gaz dans une zone de haute densité de gaz, dite zone de haute densité moléculaire, située au-dessus de la surface du fluide cryogénique et sur la trajectoire des gouttes de matrice avant leur immersion dans le fluide, ladite zone de haute densité moléculaire étant créée en réalisant la gazéification et la cryogénisation des gouttes gazéifiées au sein d'une enceinte fermée aménagée pour permettre une évacuation du gaz généré par l'évaporation du fluide cryogénique par convection naturelle.
Exposé de l'invention
Les inventeurs ont mis au point un procédé permettant d'extraire une odeur à partir d'une matière végétale et de la conserver sous forme solide, soit congelée, soit sous la forme d'une poudre déshydratée. De manière remarquable, il permet d'extraire les odeurs des fleurs muettes.
Ce procédé d'extraction comprend les étapes suivantes : a) Disposer d'une matière végétale b) Réaliser un traitement de ladite matière végétale, éventuellement sous atmosphère inerte, afin de disposer d'un produit sous forme d'une matrice liquide, semi-liquide ou pâteuse c) Dissoudre un gaz dans ladite matrice par passage dans une zone dense en molécules de gaz, une telle densité étant obtenue (i) soit grâce à un flux du gaz généré par l'évaporation d'un fluide cryogénique, (ii) soit par une élévation de la pression ; d) Cryogéniser ladite matrice riche en gaz obtenue à l'étape c) dans des conditions de pression et de température permettant de maintenir ledit gaz dans ladite matrice pour obtention de granules, de particules ou de billes surgelées.
Les granules, particules ou billes surgelées peuvent être lyophilisées de sorte à obtenir un extrait odorant sous la forme d'une poudre déshydratée.
Avantages de l'invention
La présente invention présente de nombreux avantages au regard de l'état de la technique.
Le procédé d'extraction proposé est simple, rapide et peu onéreux. Il met en oeuvre deux technologies connues de l'homme du métier à savoir la cryogénie et la lyophilisation.
La première étape est une étape de congélation ou surgélation par cryogénie. Afin de préserver l'intégrité de la matrice végétale, la méthode implique tout d'abord la dissolution d'un gaz dans la matrice avant cryogénie, puis la réalisation de l'étape de cryogénie sous pression de sorte à maintenir tout au long du procédé le gaz piégé dans la matrice et notamment dans les granules, particules ou billes surgelées. La présence du gaz, en particulier lorsqu'il s'agit d'un gaz inerte, protège la matrice odorante lors de la congélation et permet des améliorations conséquentes aussi bien au niveau des propriétés des produits obtenus que du séchage par lyophilisation.
La seconde étape est une étape de lyophilisation. La lyophilisation est un procédé de déshydratation par sublimation de l'eau dans des conditions de température et de pression permettant à l'eau contenue sous forme solide dans les produits d'être transformée directement en vapeur d'eau pour être éliminée. Il permet d'obtenir des produits déshydratés sous forme de poudre dont les propriétés odorantes sont maintenues.
Le procédé d'extraction selon l'invention a l'avantage d'être rapide. La cryogénie est un procédé quasi- instantané, permettant de produire en continu et à des cadences élevées (plusieurs centaines de kg par heure sur des équipements standards) des billes de produit initialement fluide. Le gain de temps est considérable par rapport à de la congélation en chambre froide, y compris si celles-ci fonctionnent à des températures très basses (-40°C à -80°C en général). Les billes cryogénisées sont extraites des matériels les produisant à des températures généralement comprises entre -80°C et -120°C, ce qui permet de démarrer directement la lyophilisation, avec des produits dont la température avoisine - 60°C, sans étape préalable de refroidissement. De manière plus surprenante, le temps de lyophilisation lui-même est très fortement réduit (jusqu'à un facteur 2 au moins).
En ce qui concerne le produit obtenu, la combinaison de la dissolution de gaz avec la cryogénie permet d'obtenir des produits surgelés contenant une grande quantité de gaz. Quand ce gaz n'est pas de l'oxygène, les réactions d'oxydation sont évitées. De plus, la lyophilisation de tels produits permet d'éliminer la majeure partie de l'eau contenue dans le produit. La qualité des produits déshydratés est plus élevée que celle des produits lyophilisés obtenus par un procédé classique car les conditions mises en œuvre dans ce procédé sont dans l'ensemble plus douces, moins agressives et moins déstructurantes pour la matrice. Ces propriétés, odorantes en particulier, sont donc mieux préservées.
De manière inattendue, il est possible d'obtenir des poudres avec un bon rendement d'extraction en partant d'une matière végétale sans ajout de support. Une telle poudre 100% issue de la matière végétale est d'une grande qualité. Toutefois selon les espèces végétales, il peut être nécessaire d'ajouter un support, soit parce que l'extraction conduit à un produit huileux inapte à être façonné sous forme de poudre, soit pour fixer certaines molécules odorantes et ainsi augmenter le rendement. L'ajout de support est également utile pour la standardisation de poudres commerciales.
Les granules, particules ou billes surgelées ainsi que la poudre lyophilisée obtenus à l'issue du procédé renferment les molécules odorantes extraites de la matière biologique et l'ingrédient odorant est de grande qualité. Les inventeurs ont en effet constaté que l'odeur contenue dans ces ingrédients solides reproduit fidèlement l'odeur de la matière végétale fraîche et que cette odeur perdure très longtemps sans s'altérer. De plus, ces ingrédients odorants ne contiennent pas d'alcool et permettent donc de formuler des parfums sans alcool. Les ingrédients odorants présentent donc des propriétés significativement améliorées par rapport aux extraits disponibles jusqu'alors.
De manière remarquable, le procédé de l'invention permet d'extraire les odeurs des fleurs muettes. Ce résultat est extrêmement intéressant et ouvre de nouveaux horizons dans le monde de la parfumerie qui peut maintenant accéder aux parfums complexes des fleurs muettes grâce à des ingrédients naturels de grande qualité olfactive à des coûts acceptables.
Ces ingrédients odorants - 100% naturels - vont également pouvoir être intégrés dans des parfums naturels jusqu'à présent privés des arômes des fleurs muettes, puisque disponibles uniquement via des combinaisons de molécules de synthèse. Il est à parier que ces ingrédients vont révolutionner ce secteur en plein essor.
D'un point de vue de l'utilisateur, en particulier des industriels du parfum, la formulation de compositions parfumantes à partir d'ingrédients odorants proposés sous la forme de poudre déshydratée est également avantageuse. Elle procure une facilité d'usage, de dosage et de stockage et la durée de conservation est longue du fait de la stabilité du produit. L'usage peut notamment être facilité par une formulation de la poudre sous une forme compressée (poudre compacte), proposée par exemple sous un format de petits galets d'un poids déterminé, ou de granulés.
Un autre avantage des poudres déshydratées selon l'invention est que celles-ci se solubilisent vite et ne laissent pas de dépôt, ce qui permet de les introduire facilement dans des compositions de parfums liquides.
Ainsi, les inventeurs ont mis au point un nouveau procédé de préparation d'extraits de matrices végétales naturelles offrant un rendu olfactif de grande qualité et des rendements permettant l'utilisation industrielle des ingrédients obtenus. DESCRIPTION DETAILLEE DE L'INVENTION
Un premier objet de l'invention concerne un procédé de préparation d'un ingrédient odorant sous forme solide à partir d'une matière végétale comprenant les étapes de : a) Disposer d'une matière végétale b) Réaliser un traitement mécanique de la matière première, éventuellement sous atmosphère inerte, afin de disposer d'un produit sous forme d'une matrice liquide, semi- liquide ou pâteuse c) Dissoudre un gaz dans ladite matrice par passage dans une zone dense en molécules de gaz, une telle densité étant obtenue (i) soit grâce à un flux du gaz généré par l'évaporation d'un fluide cryogénique, (ii) soit par une élévation de la pression ; d) Cryogéniser ladite matrice riche en gaz obtenue à l'étape c) dans des conditions de pression et de température permettant de maintenir ledit gaz piégé pour obtention de granules, de particules ou de billes surgelées.
Dans un mode de réalisation avantageux, le procédé comprenant en outre les étapes de : a) Lyophilisation desdites granules, particules ou billes ; b) Obtention dudit ingrédient odorant sous forme de poudre déshydratée.
Le gaz dissout peut être un gaz inerte tel que l'azote, l'argon... ou un gaz non inerte tel que du C02 ou du protoxyde d'azote, ou un mélange de gaz. Lorsque l'on souhaite protéger la matrice contre l'oxydation, un fluide cryogénique particulièrement préféré est l'azote liquide.
Par les termes « sous pression » au sens de l'invention, on entend des conditions qui permettent la dissolution et /ou le piégeage d'un gaz dans une matrice et/ou son maintien dans ladite matrice pendant la surgélation. La mise sous pression peut être obtenue soit par une élévation de la pression, soit par la mise en contact de la matrice avec un fluide cryogénique, l'évaporation de ce gaz créant une densité de molécule de gaz équivalente à une mise sous pression de sorte que les molécules de gaz se dissolvent dans la matrice.
Lorsque la zone dense de molécules est obtenue par une élévation de la pression, cette pression est supérieure à la pression atmosphérique, et peut notamment être supérieure à 0,5 bar, 1 bar, 2 bars, 5 bars, 10 bars, 50 bars, 100 bars, 200, bars, voire 250 bars ou plus. Dans un mode de réalisation particulier, elle est comprise entre 2 et 100 bars. Par souci de clarté, il est précisé que les pressions exprimées dans ce document correspondent à des pressions relatives, c'est-à-dire que l'on considère la pression atmosphérique comme une pression de 0 bar.
Dans un mode de réalisation préféré, la zone dense en molécules de gaz est obtenue au moins en partie grâce à un flux du gaz généré par l'évaporation d'un fluide cryogénique. Elle peut être obtenue en associant l'évaporation d'un fluide cryogénique à une augmentation de la pression. Les termes « un flux du gaz généré par l'évaporation d'un fluide cryogénique » recouvrent le flux résultant directement de l'évaporation d'un fluide cryogénique ainsi que tout flux contrôlé (direction, débit...), par injection de gaz ou par aspiration par exemple, qui permet la création d'une ou plusieurs zones d'échange entre la matrice et de très nombreuses molécules de gaz.
Les conditions de pression et de température appliquées à l'étape d) doivent permettre de maintenir le gaz piégé dans la matrice à l'étape c). L'homme du métier saura régler les conditions de pression et de température lors de l'étape d), de telle sorte que la solubilité du gaz dans la matrice soit supérieure ou égale à celle mise en oeuvre lors de l'étape c). Ladite solubilité est en particulier influencée par la température (pour les gaz elle augmente lorsque la température diminue) et par la pression (équilibre des pressions partielles entre la matrice et le gaz).
Ainsi, les étapes c) et d) s'opèrent à des conditions corrélées (entre ces deux étapes) afin de permettre la dissolution du gaz dans la matrice et sa conservation à l'intérieur de la matrice lors de la cryogénisation.
Concernant la mise en oeuvre du procédé dans sa globalité, il est possible d'enchaîner les étapes du procédé à la suite les unes des autres et notamment de réaliser l'étape de lyophilisation immédiatement après l'étape de cryogénie. De plus, le procédé peut être mené en continu. Il est également possible de conserver le produit sous forme surgelée à l'issue de l'étape de cryogénie et de réaliser la lyophilisation ultérieurement, après un temps de stockage en froid négatif pour conserver les produits à l'état solide (par exemple à -20°C). Dans les deux cas, l'avantage du procédé est conservé.
Ainsi, selon des modes de réalisation alternatifs, l'étape de lyophilisation peut être réalisée soit immédiatement à la suite de l'étape de cryogénie, soit ultérieurement après stockage desdites granules, particules ou billes surgelées.
Les conditions du procédé peuvent être adaptées en fonction de la forme de la matrice à déshydrater, notamment la pression lors de l'étape de cryogénie, et les paramètres de lyophilisation. L'homme du métier saura réaliser de telles adaptations.
De manière avantageuse, la matrice obtenue par traitement de la matière végétale est transférée rapidement dans l'appareil de dissolution de gaz et cryogénie afin de limiter la dégradation ou la dénaturation des composés.
Par « matière végétale » au sens de l'invention, on entend les végétaux au sens général en considérant que toute matière végétale est odorante, l'intensité de cette odeur pouvant varier. Il peut s'agir notamment de fleurs ou de parties de fleurs telles que les pétales, les pistils, les feuilles, les tiges, mais également d'herbacées telles que les herbes aromatiques, les fruits de tout type tels que les framboises, litchis, pommes, les gousses de vanille ou les racines telles que le gingembre, ou les épices. La matière végétale est de préférence fraîche, ou fraîchement coupée, pour que les molécules odorantes ne soient pas altérées, et que l'odeur émanant de la matière végétale soit au plus proche de l'état naturel. Dans un mode de réalisation préféré, la matière végétale est constituée de fleurs et de ses différentes parties, en particulier les pétales.
Par « traitement » de la matière végétale, on entend toute transformation de la matière végétale en une matrice liquide, semi-liquide ou pâteuse telle qu'une extraction mécanique (grâce à un extracteur de de jus), un pressage, un mixage...
Par « fleur muette » au sens de l'invention, on entend une fleur dont on ne peut extraire ni essence, ni absolu. Les techniques connues à ce jour de l'homme du métier de la parfumerie telles que l'extraction par solvants volatils et la distillation à la vapeur, ne permettent pas d'extraire leur parfum. Parmi les fleurs muettes, on compte par exemple le lys, la violette, la jacinthe, le duddleia, la pivoine, le freesia, le muguet, le chèvrefeuille, le gardénia, l'œillet, le pittosporum, le seringa, le pois de senteur, la glycine et l'héliotrope. Ainsi, dans un mode de réalisation préféré de l'invention, la matière végétale provient d'une fleur muette.
Dans un autre mode de réalisation préféré de l'invention, la matière végétale est constituée exclusivement de pétales ou exclusivement des pétales et des pistils des fleurs.
Un deuxième objet de l'invention concerne un ingrédient odorant naturel obtenu selon le procédé décrit précédemment se présentant sous la forme de granules, particules ou billes surgelées.
Un troisième objet de l'invention concerne un ingrédient odorant naturel obtenu selon le procédé décrit précédemment se présentant sous la forme d'une poudre déshydratée.
Cette poudre peut être 100% issue de la matière végétale odorante. Un tel produit, s'il est réalisable techniquement (rendement suffisant, produit extrait non huileux...) sera très concentré, ce qui peut être un indice de haute qualité.
La poudre peut également contenir, en plus de la matière végétale, un support qui permet de fixer les molécules odorantes. Un tel support peut être constitué de maltodextrines ou d'un support naturel végétal pour un ingrédient 100% végétal.
Dans un mode de réalisation préféré de l'invention, l'ingrédient odorant se présentant sous forme surgelée ou de poudre déshydratée est obtenu à partir d'une fleur muette.
Un quatrième objet de l'invention concerne une composition odorante comprenant au moins un ingrédient odorant tel que défini précédemment.
Dans un mode de réalisation préféré de l'invention, une telle composition comprend au moins un ingrédient odorant obtenu à partir d'une fleur muette. Un cinquième objet de l'invention concerne un procédé de préparation d'une composition odorante liquide comprenant une étape de dissolution d'au moins un ingrédient odorant sous forme de poudre déshydratée tel que défini précédemment.
Les ingrédients odorants et les compositions les contenant peuvent être utilisés en parfumerie, à savoir dans les parfums corporels et les parfums d'ambiance, mais aussi en cosmétique.
La présente invention est illustrée à l'aide des exemples qui suivent, ceux-ci ne devant en aucun cas être considérés comme limitant la portée de la présente invention.
BREVE DESCRIPTION DES FIGURES
Figure 1 : Chromatogrammes obtenus suite à analyse par un nez électronique Héraclès II de AlphaMos (double chromatographie phase gaz ultrarapide) des poudres de lilas préparées en appliquant le procédé d'extraction selon l'invention (A : colonne 1 ; B : colonne 2).
EXEMPLES
EXEMPLE 1 : Préparation de poudres de lilas
Procédé de préparation
Des fleurs de Lilas blanc et de lilas mauve ont été récoltées et traitées séparément.
Les pétales ont été séparés des fleurs manuellement avant d'être passés dans un extracteur de jus horizontal ANGEL 7500. Le jus ainsi récolté a été immédiatement traité dans un équipement permettant de le cryogéniser tout en y emprisonnant du gaz dissous, selon le procédé décrit dans le brevet WO2019/234341 par exemple. Les billes congelées ainsi obtenues ont ensuite été lyophilisées selon des conditions classiques dans un lyophilisateur CHRIST alpha 1-8, jusqu'à obtention de poudres « sèches » (plus de perte de poids mesurée).
Caractéristiques des poudres
Le premier élément remarquable vient de la quantité de poudre ainsi obtenue. Pour les deux fleurs traitées, les rendements en poudre ont été d'environ 5%, ce qui est très élevé dans la mesure ou aucun support n'a été ajouté et qu'il ne s'agit donc que de matière présente initialement dans les pétales. Des supports de lyophilisation sont généralement ajoutés aux préparations à lyophiliser, afin de garantir la présence d'un extrait sec suffisant à la fixation de molécules d'intérêt lors du traitement et également à réduire les coûts de production. Le rendement obtenu lors de cette préparation est déjà très convainquant sur ces deux points sans qu'il n'ait été besoin d'ajouter quoi que ce soit. Le deuxième élément très remarquable est l'odeur des produits ainsi obtenus, qui ont été très clairement identifiées comme étant celles des deux fleurs respectives par les différents panels consultés. Des analyses au nez électronique (Figures IA et IB) ont par ailleurs permis de confirmer la présence dans le produit de pics caractéristiques associés à des composés chimiques connus pour être significativement contributeurs des parfums des fleurs de lilas :
(E)-ocimere, qui est le composant majeur ; lilac aldéhydes et lilac alcohols, qui présentent plusieurs dimères chacun et font partie des composés les plus caractéristiques ; benzyl methyl ether, 1,4-dimethoxybenzene et indole, qui sont les autres composés caractéristiques du parfum de lilas.
Les pics ont été identifiés sur les chromatogrammes à l'aide de leurs indices de rétention sur chaque colonne. Les données de référence utilisées sont celles du logiciel couplé à l'appareil de mesure Héraclès II et du WebBook du NIST disponible notamment depuis l'adresse : https://webbook.nist.gOv/chemistry/#Search.
Le lilas faisant partie des fleurs dites « muettes », il est d'autant plus remarquable d'avoir réussi à obtenir, en quantité relativement importante, un produit conforme en termes d'odeur pouvant servir d'ingrédients pour des produits de parfumerie ou de cosmétique.
EXEMPLE 2 : Préparation de poudres de jasmin
Des fleurs de jasmin ont été ramassées. Les pétales et les pistils ont été séparés manuellement avant d'être passés dans un extracteur de jus horizontal ANGEL 7500. Une partie des jus ainsi récoltés ont été immédiatement traités dans un équipement permettant de les cryogéniser tout en y emprisonnant du gaz dissous, selon le procédé décrit dans le brevet WO2019/234341 par exemple. Les billes congelées ainsi obtenues ont ensuite été lyophilisées selon des conditions classiques dans un lyophilisateur CHRIST alpha 1-8, jusqu'à obtention de poudres « sèches » (plus de perte de poids mesurée). Dans les autres fractions de jus, représentant 200g chacune, 50g de maltodextrines ont été ajoutés à chaque fois, puis les mélanges ainsi obtenus ont subi le même procédé que décrit précédemment, jusqu'à l'obtention de poudres.
Les rendements en poudre ainsi obtenus sont de :
5% environ pour les pétales sans ajout de maltodextrines ;
10% environ pour les pistils sans ajout de maltodextrines ;
30% environ pour les pétales avec ajout de maltodextrines ;
35% environ pour les pistils avec ajout de maltodextrines ;
Tous les produits obtenus offrent une odeur bien semblable à celle de la fleur de départ.
Le choix d'ajouter ou non un support tel que des maltodextrines dépend de la matrice de départ et de la qualité de produit recherchée. Pour certains produits, la poudre sèche seule peut redevenir liquide, c'est le cas notamment quand la fraction huileuse est trop importante ; il est alors nécessaire d'ajouter un support au moment de la lyophilisation. D'autre part, en ajoutant un support, on augmente le rendement comme illustré ci-dessus, ce qui est avantageux économiquement, et permet la standardisation des produits.
5

Claims

REVENDICATIONS
1. Procédé de préparation d'un ingrédient odorant sous forme solide à partir d'une matière végétale comprenant les étapes de : a) Disposer d'une matière végétale b) Réaliser un traitement de ladite matière végétale, éventuellement sous atmosphère inerte, afin de disposer d'un produit sous forme d'une matrice liquide, semi-liquide ou pâteuse c) Dissoudre un gaz dans ladite matrice par passage dans une zone dense en molécules de gaz, une telle densité étant obtenue (i) soit grâce à un flux du gaz généré par l'évaporation d'un fluide cryogénique, (ii) soit par une élévation de la pression ; d) Cryogéniser ladite matrice riche en gaz obtenue à l'étape c) dans des conditions de pression et de température permettant de maintenir ledit gaz piégé pour obtention de granules, de particules ou de billes surgelées ;
2. Procédé selon la revendication 1 comprenant en outre les étapes de : a) Lyophilisation desdites granules, particules ou billes ; b) Obtention dudit extrait odorant sous forme de poudre déshydratée.
3. Procédé selon l'une des revendications précédentes dans lequel ladite matière végétale provient d'une fleur muette.
4. Procédé selon la revendication 3 dans lequel ladite fleur muette est choisie parmi le lys, la violette, la jacinthe, le buddleia, le lilas, la pivoine, le freesia, le muguet, le chèvrefeuille, le gardénia, l'œillet, le pittosporum, le seringa, le pois de senteur, la glycine et l'héliotrope.
5. Procédé selon l'une des revendications précédentes dans lequel ladite matière végétale est constituée exclusivement de pétales.
6. Ingrédient odorant naturel obtenu selon le procédé défini à l'une des revendications 1, 3, 4 ou 5 se présentant sous la forme de granules, particules ou billes surgelées.
7. Ingrédient odorant naturel obtenu selon le procédé défini à l'une des revendications 1 à 5 se présentant sous la forme d'une poudre déshydratée.
8. Ingrédient selon l'une des revendications 6 ou 7 obtenu à partir d'une fleur muette.
9. Composition odorante comprenant au moins un ingrédient odorant obtenu à partir d'une fleur muette tel que défini à la revendication 8.
10. Procédé de préparation d'une composition odorante liquide comprenant une étape de dissolution d'au moins un ingrédient odorant tel que défini à l'une des revendications 7 ou 8.
EP21732401.1A 2020-04-29 2021-04-29 Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide Pending EP4142676A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004245A FR3109731B1 (fr) 2020-04-29 2020-04-29 Procede d’extraction d’odeur a partir d’une matiere vegetale, notamment de fleurs muettes, sous forme solide
PCT/FR2021/050741 WO2021219963A1 (fr) 2020-04-29 2021-04-29 Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide

Publications (1)

Publication Number Publication Date
EP4142676A1 true EP4142676A1 (fr) 2023-03-08

Family

ID=71094611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21732401.1A Pending EP4142676A1 (fr) 2020-04-29 2021-04-29 Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide

Country Status (5)

Country Link
US (1) US20230174891A1 (fr)
EP (1) EP4142676A1 (fr)
CA (1) CA3176032A1 (fr)
FR (1) FR3109731B1 (fr)
WO (1) WO2021219963A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011848B1 (fr) * 2013-10-16 2016-08-05 Laboratoires M&L Procede d’obtention d’un extrait huileux de plantes
FR3081684B1 (fr) * 2018-06-04 2021-08-06 Genialis Procede d’obtention d’un produit sous forme de granules, particules ou billes surgelees riches en gaz dissous et equipement associe

Also Published As

Publication number Publication date
CA3176032A1 (fr) 2021-11-04
FR3109731B1 (fr) 2022-04-01
US20230174891A1 (en) 2023-06-08
WO2021219963A1 (fr) 2021-11-04
FR3109731A1 (fr) 2021-11-05

Similar Documents

Publication Publication Date Title
EP0698076B1 (fr) Procede et installation d'extraction sans solvant de produits naturels par micro-ondes
EP0398798B1 (fr) Extraction de produits naturels assistée par micro-ondes
EP0092680B1 (fr) Procédé de préparation de substances antioxygènes et leur utilisation
EP2655583B1 (fr) Procede pour l'obtention d'un extrait odorant de fleurs et/ou feuilles fraiches par des solvants naturels
JP2008503617A (ja) 溶剤を用いた植物抽出物
US5338557A (en) Microwave extraction of volatile oils
FR3077203A1 (fr) Heptane de source vegetale pour l'extraction de produits naturels
EP2694179B1 (fr) Procédé d'extraction d'un extrait odorant par un solvant alternatif aux solvants conventionnels
EP4142676A1 (fr) Procede d'extraction d'odeur a partir d'une matiere vegetale, notamment de fleurs muettes, sous forme solide
EP1409102B1 (fr) Procede et installation de mise a l'etat adsorbe sur un support poreux de composes actifs contenus dans un produit
FR3109733A1 (fr) Parfum sous forme de poudre seche et utilisation des poudres pour la preparation d’un parfum complexe
FR3042498A1 (fr) Nouveau solvant d'extraction et/ou de solubilisation organique, procede d'extraction mettant en oeuvre ledit solvant, et extraits issus dudit procede
WO2022079171A1 (fr) Concrete et absolue de parfum obtenues par extraction de solvant heterocyclique a partir de matieres naturelles solides
WO1989000187A1 (fr) Procede d'extraction des huiles essentielles de plantes aromatiques et produits obtenus
FR2960149A1 (fr) Composition parfumante comprenant un melange d'alcanes ; procedes de parfumage
FR2952529A1 (fr) Composition parfumante anhydre comprenant au moins un alcool volatil et au moins un alcane lineaire volatil ; procede de parfumage
FR3120545A1 (fr) Nouveau procédé de préparation d’absolues
FR3138267A1 (fr) Procédé d’extraction, de concentration et de conservation d’arômes naturelles de truffes sans autre excipient sur un support sec
FR2563702A1 (fr) Procede d'extraction de bourgeons de cassis par co2 supercritique
EP2048238A2 (fr) Procédé de préparation d'un extrait végétal
EP2295026A1 (fr) Procédé d'obtention d'un extrait végétal, extrait végétal obtenu selon le procédé et composition cosmétique ou dermatologique contenant l'extrait
FR2955331A1 (fr) Procede et installation d'extraction de biomasse assistee par micro-onde
FR2658836A1 (fr) Procede de preparation d'une essence aromatique vegetale hydrosoluble de haute qualite organoleptique, stable dans le temps et son utilisation dans des boissons et compositions diverses.
FR2567042A1 (fr) Procede de broyage par explosion d'une matiere contenant des cellules
FR2952530A1 (fr) Composition parfumante anhydre sans alcool comprenant au moins un alcane lineaire volatil ; procede de parfumage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)