EP4136285A1 - Verfahren zur herstellung eines verformten vliesstoffes - Google Patents

Verfahren zur herstellung eines verformten vliesstoffes

Info

Publication number
EP4136285A1
EP4136285A1 EP20930723.0A EP20930723A EP4136285A1 EP 4136285 A1 EP4136285 A1 EP 4136285A1 EP 20930723 A EP20930723 A EP 20930723A EP 4136285 A1 EP4136285 A1 EP 4136285A1
Authority
EP
European Patent Office
Prior art keywords
nonwoven
water content
deformed
fibers
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20930723.0A
Other languages
English (en)
French (fr)
Other versions
EP4136285B1 (de
Inventor
Xiaoxin LIU
Li Tang
Kun Sun
Jun Fu
Shrish Yashwant Rane
Fancheng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP4136285A1 publication Critical patent/EP4136285A1/de
Application granted granted Critical
Publication of EP4136285B1 publication Critical patent/EP4136285B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/013Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/015Natural yarns or filaments

Definitions

  • the present invention relates to a process for producing deformed nonwoven having deformations with high clarity.
  • Nonwovens are widely used in a variety of absorbent articles for personal hygiene, such as disposable diapers for infants, training pants for toddlers, adult incontinence undergarments and/or sanitary napkins which are designed to absorb and contain body exudates, in particular large quantities of urine, runny bowel movement (BM) and/or menses.
  • BM runny bowel movement
  • topsheets for absorbent articles from the standpoints of skin sensation, a feeling of dryness, comfort, absorption of expelled bodily fluids, and prevention of fluid flow-back.
  • nonwovens have a visible image or pattern at least one surface thereof as considered that nonwoven having images or patterns may have a breathable appearance, and delight users with a unique pattern.
  • nonwovens used as a component of absorbent articles are deformed to improve performance of the article as well as to provide aesthetic visual impression.
  • deformations such as apertures, protrusion, and embossing have a clean and clear shape and a size regularity to provide a desirable visual quality and efficient handling of body exudates.
  • nonwovens comprise natural fibers or regenerated cellulose-based fibers. These fibers however do not behave like the synthetic fibers in deformation process.
  • nonwovens contain natural fibers or regenerated cellulose-based fibers
  • conventional mechanical aperturing process like pin aperturing as well as water jet aperturing may result in low quality apertures such as apertures having an insufficient small size, less number of apertures than intended to form, apertures in non-uniform aperture shapes and sizes, or apertures having a low clarity. All these may lead to unsatisfactory visual quality of the nonwovens and/or deteriorated body exudates handling.
  • the present invention relates to a process for producing a deformed nonwoven comprising; adjusting a water content of a nonwoven in such a way that the nonwoven comprises at least one area having a water content of at least about 12wt%, and subjecting the nonwoven to a mechanical deformation process, the deformation process comprising mechanical deformation of the nonwoven and dewatering of the nonwoven.
  • the present invention also relates to a process for producing a deformed nonwoven comprising; subjecting a fibrous web to an entanglement process to obtain a nonwoven, adjusting a water content of a nonwoven in such a way that the nonwoven comprises at least one area having a water content of a least about 12wt%, and subjecting the nonwoven to a mechanical deformation process, the deformation process comprising mechanical deformation of the nonwoven and dewatering of the nonwoven.
  • the present invention also relates to an absorbent article comprising the nonwoven produced by the process discloses herein.
  • Fig. 1 is a schematic representation of a process according to the present invention for making a deformed nonwoven.
  • Fig. 2 is schematic representation of an example of deforming process.
  • Fig. 3 is a schematic representation of another process according to the present invention for making a deformed nonwoven.
  • Fig. 4 is a schematic representation of a hydroentanglement process.
  • Fig. 5 is a microscopic image of an apertured nonwoven (Nonwoven 1) produced by a pin aperturing process.
  • Fig. 6 is a microscopic image of an apertured nonwoven (Nonwoven 2) produced by a pin aperturing process.
  • Fig. 7 is a microscopic image of an apertured nonwoven (Nonwoven 4) produced by a pin aperturing process.
  • Fig. 8 is a microscopic image of an apertured nonwoven (Nonwoven 6) produced by a pin aperturing process.
  • Fig. 9 is a microscopic image of an apertured nonwoven (Nonwoven 7) produced by a pin aperturing process.
  • Fig. 10 is a microscopic image of an apertured nonwoven (Nonwoven 9) produced by a pin aperturing process.
  • Fig. 11 is a microscopic image of an apertured nonwoven (Nonwoven 10) produced by a pin aperturing process.
  • Fig. 12 is a microscopic image of an apertured nonwoven (Nonwoven 11) produced by a water-jet aperturing process.
  • Fig. 13 is a microscopic image of an embossed nonwoven (Nonwoven 12) produced by an embossing process.
  • Fig. 14 is a microscopic image of an embossed nonwoven (Nonwoven 13) produced by an embossing process.
  • Absorbent article refers to wearable devices, which absorb and/or contain liquid, and more specifically, refers to devices, which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body.
  • Absorbent articles can include diapers, training pants, adult incontinence undergarments, feminine hygiene products such as sanitary napkins and pantyliners, and wipes.
  • the term “comprising” means that the various components, ingredients, or steps can be conjointly employed in practicing the present invention. Accordingly, the term “comprising” is open-ended and encompasses the more restrictive terms “consisting essentially of” and “consisting of” .
  • cellulose-based fibers intends to include both natural cellulose-based fibers, regenerated cellulose-based fibers such as rayon and viscose, and synthetic fibers that comprise cellulose-based content.
  • Natural cellulose-based fibers include cellulosic matter such as wood pulp; seed hairs, such as cotton; stem (or bast) fibers, such as flax and hemp; leaf fibers, such as sisal; and husk fibers, such as coconut.
  • deformation process means a process to change a material shape or density in at least one area in the material by applying stresses, heat, pressure, or strains.
  • deformed nonwoven means a nonwoven comprising discrete deformations formed therein.
  • the deformations may be features in the form of apertures, protrusions, depression (embossing) , or any combinations thereof. These features may extend out from the surface on one side of the web, or from both of the surfaces of the web. Different features may be intermixed with one another.
  • forming elements refers to any elements on the surface of a forming member such as a roll, plate and belt that are capable of deforming a nonwoven.
  • Nonwoven refers to a manufactured web of directionally or randomly orientated fibers, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled.
  • Nonwoven materials and processes for making them are known in the art.
  • processes for making nonwoven materials comprise laying fibers onto a forming surface, which can comprise spunlaying, meltblowing, carding, airlaying, wetlaying, coform and combinations thereof.
  • the fibers can be of natural or man-made origin and may be staple fibers or continuous filaments or be formed in situ.
  • Natural fibers refers to elongated substances produced by plants and animals and comprises animal-based fibers and plant-based fibers. Natural fibers may comprise fibers harvested without any post-harvest treatment step as well as those having a post-treatment step, such as, for example, washing, scouring, and bleaching.
  • plant-based fibers comprises both harvested fibers and synthetic fibers that comprise bio-based content.
  • Harvested plant-based fibers may comprise cellulosic matter, such as wood pulp; seed hairs, such as cotton; stem (or bast) fibers, such as flax and hemp; leaf fibers, such as sisal; and husk fibers, such as coconut.
  • a process according to the present invention comprises adjusting a water content of a nonwoven in such a way that the nonwoven comprises at least one area having a water content of at least about 12%by weight of the nonwoven in the area, and subjecting the nonwoven to a mechanical deformation process, the deformation process comprising mechanical deformation of the nonwoven and dewatering of the nonwoven.
  • nonwoven 20 is supplied to a water content adjustment unit 200 where a water content of nonwoven 20 is adjusted, so that the nonwoven 20 comprises at least one area having a water content of at least about 12%, or at least 20%, or at least about 30%, or at least about 40%by weight of the nonwoven in the area.
  • a water content of nonwoven 20 in the water content adjustment unit 200 may can be adjusted by for example, applying moisture to nonwoven 20 or drying nonwoven 20 using any known and suitable method.
  • a water content of a nonwoven may be adjusted by applying moisture to the nonwoven.
  • a water content of a nonwoven may be adjusted by moisturizing a nonwoven utilizing a chamber equipped with a moisture generation machine to make the chamber is filled with moistures. Nonwoven is supplied to and goes through the chamber, and the nonwoven gets moisturized while it passes the chamber so that the nonwoven has a water content in a target range.
  • a water content of a nonwoven can be adjusted by moisturizing a nonwoven utilizing a water pipe with a plurality of nozzles.
  • the water pipe may be positioned above a nonwoven to be moisturized, and water spray is applied through the nozzles to apply water so that the nonwoven has a water content in a target range.
  • the entire area of the nonwoven is moisturized.
  • a water content of a nonwoven may be adjusted by drying the nonwoven to remove excess water from the nonwoven, for example when the process of the present invention is on-line process conducted continuously following hydroentanglement to produce a nonwoven web.
  • Nonwoven from the hydroentanglement containing excess amount of water may be passed through a dewatering device such as a drying system where excess water is removed so that the nonwoven has a water content in a target range.
  • a water content of at least one pre-determined region in a nonwoven may be adjusted by a positioned moisturizing process.
  • printing technology like flex printing or engraving printing well known in the industry can be used to print/supply water into specific determined region (s) on nonwoven so that the pre-determined regions are moisturized as desired.
  • nonwoven 20 leaving the water content adjustment unit 200 may comprise at least one area having a water content of about at least 12%, or at least 20%, or at least about 30%, or at least about 40%by weight of the nonwoven in the area.
  • the entire area of nonwoven 20 is moisturized to have a water content of about at least 12%, or at least 20%, or at least about 30%, or at least about 40%by weight of the nonwoven.
  • nonwoven 20 comprises a plurality of moisturized areas, each moisturized area having a water content about at least 12%, or at least 20%, or at least about 30%, or at least about 40%by weight of the nonwoven in the area.
  • the moisturized areas may be pre-determined areas where deformations are formed.
  • a water content of nonwoven may affect to deformation quality.
  • nonwoven comprising cellulose-based fibers
  • the cellulose-based fibers in a dry condition are connected via hydrogen bonds.
  • hydrogen bonds connecting fibers are released and the fibers get more flexible to move, so that nonwoven gets easier to be deformed.
  • Fibers forming the nonwoven 20 can be of natural or man-made origin and may be staple fibers or continuous filaments or be formed in situ.
  • the nonwoven 20 may comprise cellulose-based fibers, for example, at least 15%, or at least 20%, or at least 50%, or at least 90%by weight of the nonwoven. In one embodiment, 100%of fibers constituting the nonwoven 20 is cellulose-based fibers.
  • the nonwoven 20 may comprise a single layer. It may comprise two or more layers, which may form a unitary structure or may remain as discrete layers which may be attached at least partially to each other by, for example, thermal bonding, adhesive bonding or a combination thereof.
  • a unitary structure herein intends to mean that although it may be formed by several sub-layers that have distinct properties and/or compositions from one another, they are somehow intermixed at the boundary region so that, instead of a definite boundary between sub-layers, it would be possible to identify a region where the different sub-layers transition one into the other.
  • Such a unitary structure is typically built by forming the various sub-layers one on top of the other in a continuous manner, for example using air laid or wet laid deposition.
  • adhesives and/or binders can be present although typically in a lower amount that in multilayer materials formed by separate layers.
  • the nonwoven 20 may has a basis weight of 20gsm-100gsm, or 25gsm-50gsm, or 30gsm-50gms.
  • nonwoven 20 leaving the water content adjustment unit 200 is transferred to a deformation unit 300 where the nonwoven 20 is mechanically deformed and dewatered to produce a deformed nonwoven 30.
  • Mechanical deformation of nonwoven may be conducted via various processes known to those skilled in the art.
  • Mechanical deformation process may comprise a process using a deformation apparatus selected from the group consisting of an aperture forming process, a protrusion forming process, an embossing forming process and any combination thereof.
  • Mechanical deformation of a nonwoven may be conducted using a mechanical deformation apparatus.
  • Mechanical deformation apparatuses forming embossing and/or apertures are well known in the art such as WO2011/090974 and WO2015/134359.
  • a deformation process may comprise subjecting a nonwoven to a deformation apparatus, the deformation apparatus comprising a first forming member and a second forming member, and moving the nonwoven through a nip that is formed between the first and second forming members so that deformations are formed in the nonwoven as the first forming member and the second forming member are engaged.
  • Fig. 2 is a schematic illustration of an example of mechanical deformation of nonwoven.
  • a nonwoven 20 is passed through a nip 502 formed by a pair of rolls 500, two intermeshing rolls 504 and 506, to form deformations in nonwoven web 20.
  • the first roll 504 may comprise a plurality of first elements such as protrusions extending outwardly from the first roll 504.
  • the first elements on the first roll 504 may be various in a size, shape, height, area, width and/or dimension which may determine the size, shape and dimension of deformations such as apertures and embossing.
  • the second roll 506 may have a flat surface. Or, the second roll 506 may comprise grooves intermeshing with the protrusions of the first roll 504.
  • the nonwoven 20 comprises thermoplastic fibers
  • at least one of the rolls 504 and 506 may be heated to a temperature to soften fibers constituting the nonwoven 20 but lower than the melting point the fibers.
  • the fiber comprises a sheath/core type bicopolymer
  • at least one of the rolls 504 and 506 may be heated to a temperature higher than the melting point of the sheath polymer.
  • a first roll 504 may create the apertures (in combination with the second roll) and a second roll 506 may create projections (in combination with the first roll) in the nonwoven 20.
  • the first roll 506 may comprise a plurality of first forming elements such as teeth, and a plurality of second recesses formed in a radial outer surface of the first roll 504.
  • the second roll 506 may comprise a plurality of second forming element extending radially outwardly from the second roll 506 configured to at least partially engage with the second recesses in the first roll 504.
  • the nonwoven 20 mechanically deformed is dewatered to produce a deformed nonwoven.
  • the nonwoven 20 may be dewatered by introducing heat to the nonwoven to evaporate at least part of water the nonwoven contains.
  • Any of various heat sources known in the nonwoven manufacturing process such as a heated roller, oven, burner, and/or infrared radiation, and any combination thereof can be employed to introduce heat to the nonwoven to evaporate the water.
  • heat may be introduced to the nonwoven by directly contacting a hear source such as a heated roller to the nonwoven.
  • heat may be introduced to the nonwoven by providing a hot air using an oven, a burner, or infrared radiation source.
  • the nonwoven 20 may be dewatered by providing compression to the nonwoven.
  • the dewatered nonwoven may have a water content less than about 20%, or less than about 15%, or less than about 12%, or less than about 10%.
  • prompt reduction of moisture (or water) in the mechanically deformed nonwoven while deformations formed in the nonwoven are maintained results in formation of new hydrogen bonds among fibers which may stabilize the deformation.
  • the deformation process suitable for the present invention comprises subjecting the nonwoven to a deformation apparatus, the deformation apparatus comprising a first forming member and a second member, wherein the first forming member comprises first forming elements on its surface, wherein at least one of the first forming member and the second forming member is heated, and moving the nonwoven through a nip that is formed between the first and second forming members so that deformations are formed in the nonwoven as the first forming member and the second forming member are engaged, wherein the nonwoven contacts the first and second forming members for sufficient time the deformations are formed and dewatering of the nonwoven occurs.
  • a first roll 504 may comprise a plurality of first forming elements such as teeth being tapered from a base and a tip, the teeth being joined to the first roll.
  • the second roll 506 may comprise a plurality of first recesses which intermesh with the first forming elements on the first roll at the nip.
  • At least one of the rolls 504 and 506 may be heated to introduce enough heat to the nonwoven during a contact time to form apertures as intended and the moisture in the nonwoven can be evaporated.
  • a roll temperature may be determined considering a contact time of the nonwoven and the heated roll.
  • the first and/or second forming member such as a roll may be heated to a temperature higher than 70°C, or higher than 80°C, or higher than 100°C, or higher than 110°C, or higher than 120°C.
  • the deformed nonwoven 30 is optionally subjected to a drying unit 400 to further dry the deformed nonwoven 30.
  • the deformed nonwoven 30 may be further dried to have a water or other solution content, less than about 12%, less than about 10%, or less than about 5%by weight to prevent an issue due to microorganism growth.
  • a process of the present invention comprises (a) subjecting a fibrous web to an entanglement process to obtain a nonwoven, (b) adjusting a water content of the nonwoven in such a way that the nonwoven comprises at least one area having a water content of at least 12%by weight of the nonwoven, and (c) subjecting the nonwoven to a mechanical deformation process to produce a deformed nonwoven.
  • the entanglement process is a hydroentanglement process or a needle punching process.
  • the (b) and the (c) steps may be carried out simultaneously.
  • Fig. 3 depicts a simplified, schematic view of another exemplary process according to the present invention.
  • a fibrous web 10 is supplied to an entanglement unit 100 for fiber entanglement to produce a nonwoven web 20.
  • the nonwoven 20 is supplied to a water content adjustment unit 200 where a water content of the nonwoven 20 is adjusted so that the nonwoven 20 comprises at least one area having a water content of a least about 12%by weight of the nonwoven in the area.
  • the nonwoven 20 is subjected to a deformation unit 300 to mechanically deform the nonwoven and dewater the nonwoven.
  • the deformed nonwoven 30 may be subjected to a drying unit 400 to dry the deformed nonwoven 30 to have a water content of less than 10%by weight of the nonwoven.
  • the fiber entanglement in the entanglement unit 100 can be carried out by any method known for fiber entanglement such as a needle punching method, a hydro-entangling method, a water vapor flow (steam jetting) entangling method, and the like. In some embodiments, the fiber entanglement is carried out using a hydroentangling method.
  • Fig. 4 depicts a simplified, schematic view of one example hydroentangled nonwoven manufacturing process.
  • hydroentanglement (sometimes referred to as spunlacing, jet entanglement, water entanglement, hydroentanglement or hydraulic needling)
  • the formed web of various fibrous components usually airlaid, wetlaid, or carded, but sometimes spunbond or melt-blown, etc. ) can first be compacted and prewetted to eliminate air pockets and then water-needled.
  • a fibrous web 10 upstream of a jet head 32 passes under the jet head 32 and go through hydroentanglement.
  • the fibrous web 10 is passed by the jet head 32 that comprises a plurality of injectors that are positioned to generally form a water curtain (for simplicity of illustration, only one injector 34 is illustrated in Fig. 4) .
  • a water jet 36 is directed through the fibrous web 10 at high pressures, such as 150 or 400 bar.
  • multiple rows of injectors 34 are typically used, which can be positioned on one or both sides of the fibrous web 10.
  • Hydroentangled nonwoven 20 can be supported by any suitable support system 39, such as a moving wire screen (as illustrated) or on a rotating porous drum, for example. While not illustrated, it is to be appreciated that hydroentanglement systems can expose the fibrous web 10 to a series of jet heads 32 along the machine direction, with each delivering water jets at different pressures. The particular number of jet heads 32 utilized can be based on, for example, desired basis weight, degree of bonding required, characteristics of the web, and so forth. As the water jet 36 penetrates the web, a suction slot 38 positioned proximate beneath the fibrous web 10 collects the water so that it can be filtered and returned to the jet head 32 for subsequent injection. The water jet 36 delivered by the jet head 32 exhausts most of its kinetic energy primarily in rearranging fibers within the fibrous web 10 to turn and twist the fibers to form a series of interlocking knots.
  • the dewatering device 42 can be any suitable dewatering system including a drying system such as a multi-segment multi-level bed dryer, a vacuum system, and/or an air drum dryer, for example.
  • the dewatering device 42 serves to dewater and dry the nonwoven 20, so that the nonwoven 20 has a water content (in the range of from about 20wt%to about 70wt%.
  • the deformed nonwoven 30 after being dried may be further treated with additional heat especially when the nonwoven includes synthetic fibers.
  • the synthetic fibers begin to soften, and these softened fibers touch each other, bonds will form between the fibers, thereby increasing the overall flexural rigidity of the structure due to the formation of these bond sites.
  • Deformed nonwoven produced by a process according to the present invention may provide apertures exhibiting a high geometric quality such that more numbers of apertures having an intended size as compared to the apertures of the comparative examples.
  • deformed nonwoven produced by a process according to the present invention may provide apertures having higher clarity when indicated as a percent occlusion. Without wishing to be bound by theory, it is believed that increased deformation numbers in a given apertured pattern and deformation clarity may result in a deformed nonwoven with improved bodily exudate handling performance as well as an improved visible perception, and increased robustness during the manufacture of absorbent articles or apertured nonwoven webs.
  • Fig. 5 is a microscopic image of a related art deformed nonwoven 30 (Nonwoven 1) apertured by a conventional pin aperturing process where a water content of a nonwoven was not adjusted.
  • Figs. 6-11 are microscopic images of deformed nonwovens, Nonwovens 2, 4, 6, 7, 9 and 10, respectively, produced by a process according to the present invention.
  • Figs. 2-10 has an image size of 31mm x 26mm
  • Fig. 11 has an image size of 37mm x 33mm.
  • Nonwovens 2-10 of the present invention have more numbers of quality apertures in a given aperture pattern than deformed Nonwoven 1 produced using the same toolings.
  • Given Nonwovens 1-9 were produced using the same toolings with a pin pattern intended to form an identical aperture pattern with the same number of target apertures, the nonwovens were supposed to have the same number of apertures in a given pattern.
  • Deformed nonwoven produced by a process according to the present invention may have a high aperture rate, measured according to Aperture Quality Test under MEASUREMENT, such as higher than 30%, higher than 50%, higher than 60%, higher than 70, higher than 80%, higher than 90%, and higher than 95%when the aperture rate is defined as below.
  • Aperture rate (number of quality apertures/number of target apertures) X100
  • the number of target apertures herein means the total number of apertures intended to form which may be determined by tooling designs such as number of pins in a pin-aperturing apparatus.
  • This high aperture rate may be important when designing aperture patterns as aperture patterns are important both for visual quality as well as for robustness of the nonwoven web, especially during the process of manufacturing an absorbent article, and aiding in distribution of strain evenly across a nonwoven web, aiding in robustness while under strain during a manufacturing process.
  • Fig. 12 is a microscopic image (image size: 36mm x 20mm) of a related art nonwoven, Nonwoven 11, apertured by a water jet aperturing process where apertures exhibit stray fibers extending across the apertures.
  • deformations, apertures in these cases, of deformed nonwoven 30 produced by the process of the present invention may have improved aperture clarity as compared to those of the related art such as water jet aperturing process.
  • the deformed nonwoven 30 may be substantially less fibers extending across or into the plurality of apertures. This may improve desirable visual quality, and provide for better bodily exudate acquisition in that the aperture opening is large enough to overcome the surface tension of the bodily exudate.
  • the plurality of apertures in nonwovens produced by a process according to the present invention having fewer fibers extending therethrough or thereacross may lead to improved bodily exudate acquisition, especially in a hydrophobic nonwoven topsheet context.
  • the plurality of apertures formed by a process of the present invention may be about 6%or less occluded, or 5%or less occluded, or 4.5%or less occluded, according to the Aperture Clarity Test as described below.
  • Deformed nonwoven produced by a process according to the present may comprise a second plurality of deformations, such that a first plurality of apertures and the second plurality of apertures forming zones in the deformed nonwoven.
  • Each zone may comprise a plurality of apertures that may exhibit a highly regular geometric quality such that there is little variance in the shape and/or size of one aperture as compared to another aperture within the same zone, but the aperture size and/or shape varies between zones.
  • the deformed nonwoven according to the present invention can be incorporated into, for example, an absorbent article.
  • an absorbent article may have a component such as a topsheet and/or an outer most sheet comprising the deformed nonwoven.
  • the deformed nonwoven may comprise a plurality of apertures or a plurality of embosses over the entirety of the nonwoven, or may comprise a plurality of apertures or embosses over one or more discrete areas or zones of the nonwoven.
  • the nonwoven may comprise two or more zones which each define a plurality of apertures or a plurality of embosses, and the apertures or the emboss exhibiting a high degree of regularity in shape and size within each zone, but having different sizes and/or different shapes between the zones.
  • the apertures or embosses may also form any fanciful pattern in the nonwoven.
  • the present invention also provides an absorbent article comprising a layer comprising a nonwoven or a laminate according to the present invention.
  • the absorbent article of the present invention may comprise a topsheet and a backsheet joined to the topsheet.
  • the absorbent article of the present invention may further comprise an absorbent core disposed between the topsheet and the backsheet.
  • the absorbent article of the present invention comprises a topsheet or a layer disposed below the topsheet comprising a nonwoven or a laminate according to the present invention.
  • the absorbent articles of the present invention may be produced industrially by any suitable means.
  • the different layers may thus be assembled using standard means such as embossing, thermal bonding, gluing or any combination thereof.
  • Topsheet can catch body fluids and/or allow the fluid penetration inside the absorbent article.
  • the first web layer is preferably, disposed on a side in contact with the skin.
  • backsheet Any conventional liquid impervious backsheet materials commonly used for absorbent articles may be used as backsheet.
  • the backsheet may be impervious to malodorous gases generated by absorbed bodily discharges, so that the malodors do not escape.
  • the backsheet may or may not be breathable.
  • the absorbent article further comprises an absorbent core disposed between the topsheet and the backsheet.
  • absorbent core refers to a material or combination of materials suitable for absorbing, distributing, and storing fluids such as urine, blood, menses, and other body exudates. Any conventional materials for absorbent core suitable for absorbent articles may be used as absorbent core.
  • Water content is measured using ISO method ISO 287: 2017 specifying an oven-drying method for the determination of the water content of nonwoven.
  • a specimen with a size of 50 mm x 50 mm is cut from the raw material.
  • a nonwoven is a component of a finished product
  • the nonwoven is removed from the finished product using a razor blade to excise the nonwoven from other components of the finished product to provide a nonwoven specimen with a size of 50 mm x 50 mm.
  • a cryogenic spray (such as Cyto-Freeze, Control Company, Houston TX) may be used to remove the nonwoven specimen from other components of the finished product, if necessary.
  • Aperture quality such as aperture size, aperture aspect ratio, aperture rate, and aperture clarity measurements for a nonwoven are performed on images generated by placing the specimen flat against a dark background under uniform surface lighting conditions and acquiring a digital image using an optical microscope such as Keyence 3D Measurement System VR-3200 or equivalent. Analyses are performed using image analysis program such as ImageJ software (version 1.52p or above, National Institutes of Health, USA) and equivalent. The image needs to be distance calibrated with an image of the ruler to give an image resolution, i.e. 67.8 pixels per mm.
  • the microscope After performing an auto-focus step, the microscope acquires a specimen image with a rectangular field of view that includes an aperture region, which is a region containing i) one entire discrete apertured pattern, or ii) at least 35mm x 20mm area containing at least 20apertures, whichever is available.
  • an aperture region which is a region containing i) one entire discrete apertured pattern, or ii) at least 35mm x 20mm area containing at least 20apertures, whichever is available.
  • the threshold gray level value t is defined as that value for which P t-1 > P t and P t ⁇ P t+1 .
  • the histogram is iteratively smoothed using a windowed arithmetic mean of size 3, and this smoothing is performed iteratively until exactly two local maxima exist.
  • the threshold gray level value t is defined as that value for which P t-1 > P t and P t ⁇ P t+1 . This procedure identifies the gray level (GL) value for the minimum population located between the dark pixel peak of openings and the lighter pixel peak of the specimen material. If the histogram contains either zero or one local maximum, the method cannot proceed further, and no output parameters are defined.
  • aspect ratio which is the ratio between the major and minor axis length of a fitted ellipse, after replacing an area selection with the best fit ellipse by keeping the same area, orientation and centroid as the original selection.
  • Area values for all the quality apertures are analyzed to calculate the mean and standard deviation of the aperture size to the nearest 0.01 mm 2 .
  • the mean aperture size is reported as aperture size.
  • the relative standard deviation (RSD, defined as the standard deviation divided by the mean and multiplied by 100) of the area values for all the quality apertures is calculated to the nearest 1%.
  • Aspect ratio values for all the quality apertures are analyzed to calculate the mean and standard deviation of the aspect ratio to the nearest 0.01 as describing the aperture shape.
  • the mean aspect ratio is reported as aspect ratio.
  • the relative standard deviation (RSD, defined as the standard deviation divided by the mean and multiplied by 100) of the aspect ratio values for all the quality apertures is calculated to the nearest 1%.
  • Aperture rate is obtained by the equation below.
  • Aperture rate (number of quality apertures /number of target apertures) x100
  • the number of target apertures herein means the total number of apertures intended to form which may be determined by tooling designs such as number of pins in a pin-aperturing apparatus.
  • the number of quality apertures is divided by the number of target apertures and multiplied by 100 to give the result of aperture rate.
  • Aperture clarity is determined by the measurement of percent occlusion (i.e. the percentage of the aperture area occluded by stray fibers. )
  • Create a filtered image by removing small openings in the binary image generated in (3) Image Analysis –Binary Image using an outlier removing median filter, which replaces a pixel with the median of the surrounding area of 6 pixels in radius if the pixel is darker than the surrounding.
  • Nonwoven 1 35gsm spunlace 100%cotton nonwoven (CHTC, China) without moisturizing was supplied. Water content of the nonwoven measured by Water content Measurement disclosed herein, was 8%by weight of the nonwoven. The nonwoven was continuously proceeded with a pin aperturing process using an apparatus to form a plurality of apertures to obtain nonwoven 1. A temperature of pins in the apparatus was 105°C, and contact time of the nonwoven at tooling was 20 seconds.
  • Fig. 5 is a microscopic image of nonwoven 1 taken according to the Microscopic Image under MEASUREMENT.
  • Nonwoven 2 35gsm spunlace 100%cotton nonwoven was supplied and moisturized so that the nonwoven has a water content of 20%. The nonwoven was continuously proceeded with a pin aperturing process using the same aperturing apparatus and process as used to produce nonwoven 1.
  • Fig. 6 is a microscopic image of Nonwoven 2 taken according to the Microscopic Image under MEASUREMENT.
  • Nonwovens 3-5 were produced using the same nonwoven, aperturing apparatus and process as used to produce Nonwoven 2 except for using water contents of 32%, 40%and 53%, respectively.
  • Fig. 7 is a microscopic image of Nonwoven 4 taken according to the Microscopic Image under MEASUREMENT.
  • Nonwoven 6 was produced using the same aperturing apparatus and process as used to produce nonwoven 2 except using 35gsm 100%rayon (from Beijing Dayuan) instead of 35gsm 100%cotton and a water content of 55%.
  • Fig. 8 is a microscopic image of Nonwoven 6 taken according to the Microscopic Image herein.
  • Nonwovens 7-9 were produced using the same nonwoven, aperturing apparatus and process used to produce Nonwoven 2 under deformation conditions described in Table 1 below.
  • Figs. 9 and 10 are microscopic images of Nonwovens 7 and 9 respectively taken according to the Microscopic Image under MEASUREMENT.
  • Nonwoven 10 was produced using 35gsm spunlace 100%cotton nonwoven by moisturizing the nonwoven to have a water content of 16%, and conducting a pin-aperturing under deformation conditions described in Table 1.
  • Fig. 11 is a microscopic image of Nonwoven 10 taken according to the Microscopic Image under MEASUREMENT.
  • Nonwoven 11 35gsm 100%cotton nonwoven was produced using a water jet punching process to obtain nonwoven 11.
  • Fig. 12 is a microscopic image of Nonwoven 11 taken according to the Microscopic Image under MEASUREMENT.
  • Nonwovens 12 and 13 Embossed Nonwovens 12 and 13 were produced using 35gsm spunlace 100%cotton nonwoven, and the same embossing apparatus and process except for water contents (8%in Nonwoven 12 and 32%in Nonwoven 13) of nonwoven as indicated in Table 1 below.
  • Figs. 13 and 14 are microscopic images (image size: 35mm x 11mm) of Nonwovens 12 and 13, respectively, taken according to the Microscopic Image under MEASUREMENT.
  • Image field-of-view sizes are 31mm x 26mm for Nonwovens 1-9; 37mm x 33mm for Nonwoven 10; 36mm x 20mm for Nonwoven 11; and 35mm x 11mm for Nonwovens 12 and 13.
  • Nonwovens 2-9 produced by a process according to the present invention have more apertures than Nonwoven 1 produced by a related art using the same aperturing device.
  • Nonwovens 2-10 produced by a process according to the present invention have a higher aperture rate than Nonwoven 1 produced by a related art.
  • Nonwovens 2-10 produced by a process according to the present invention have a lower aspect ratio than Nonwovens 1 and 11 produced by related art.
  • Nonwovens 2-10 produced by a process according to the present invention have apertures with higher aperture clarity than Nonwovens 1 and 11 produced by relative art.
  • Nonwoven 12 produced by a process according to the present invention has more clear embossing than Nonwoven 13 produced by a related art using the same embossing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
EP20930723.0A 2020-04-16 2020-04-16 Verfahren zur herstellung eines verformten vliesstoffes Active EP4136285B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085101 WO2021208009A1 (en) 2020-04-16 2020-04-16 Process for producing deformed nonwoven

Publications (2)

Publication Number Publication Date
EP4136285A1 true EP4136285A1 (de) 2023-02-22
EP4136285B1 EP4136285B1 (de) 2024-09-11

Family

ID=78080640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20930723.0A Active EP4136285B1 (de) 2020-04-16 2020-04-16 Verfahren zur herstellung eines verformten vliesstoffes

Country Status (4)

Country Link
US (1) US20240200247A9 (de)
EP (1) EP4136285B1 (de)
CN (1) CN115380138A (de)
WO (1) WO2021208009A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521105A (ja) 2020-04-16 2023-05-23 ザ プロクター アンド ギャンブル カンパニー 有孔不織布

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432936A (en) * 1967-05-31 1969-03-18 Scott Paper Co Transpiration drying and embossing of wet paper webs
US3881490A (en) * 1973-12-20 1975-05-06 Kimberly Clark Co Thin, flexible absorbent pads
US4559050A (en) * 1984-08-17 1985-12-17 Personal Products Company Thin, soft, absorbent product
US5160582A (en) * 1989-06-07 1992-11-03 Chisso Corporation Cellulose-based, inflammable, bulky processed sheets and method for making such sheets
SE508627C2 (sv) * 1994-05-04 1998-10-19 Sca Hygiene Prod Ab Förfarande för framställning av en absorberande struktur innefattande ett skikt av superabsorberande material
US6224811B1 (en) * 1999-01-29 2001-05-01 Celanese Acetate Llc Thermal bonding of wet cellulose based fibers
US7459179B2 (en) * 2004-12-02 2008-12-02 The Procter & Gamble Company Process for making a fibrous structure comprising an additive
AU2005333449B2 (en) * 2005-06-21 2011-04-14 Essity Operations Mannheim GmbH Multi-ply tissue paper, paper converting device and method for producing a multi-ply tissue paper
EP1873289A1 (de) * 2006-06-23 2008-01-02 Marco Maranghi Perforierter Vliesstoff und Verfahren zur Herstellung
JP5599165B2 (ja) * 2009-06-11 2014-10-01 ユニ・チャーム株式会社 水解性繊維シート
AU2011202074A1 (en) 2010-01-21 2011-08-04 Med-El Elektromedizinische Geraete Gmbh Incus replacement partial ossicular replacement prosthesis
US10745836B2 (en) * 2013-03-15 2020-08-18 Georgia-Pacific Nonwovens LLC Multistrata nonwoven material
US10206826B2 (en) 2014-03-06 2019-02-19 The Procter & Gamble Company Three-dimensional substrates
EP3212144A1 (de) * 2014-09-12 2017-09-06 The Procter and Gamble Company Verfahren zur herstellung von vliesmaterial mit diskreten dreidimensionalen verformungen mit öffnungen mit breiter basis unter verwendung von formungselementen mit oberflächentextur
JP6647129B2 (ja) * 2015-04-28 2020-02-14 旭化成株式会社 圧密化された柄を有するセルロース不織布
US20170000663A1 (en) * 2015-06-30 2017-01-05 The Procter & Gamble Company Nonwoven web formed with loft-enhancing calender bond shapes and patterns, and articles including the same
WO2017120299A1 (en) * 2016-01-08 2017-07-13 Avintiv Specialty Materials Inc. Nonwoven fabric with improved hand-feel
CN107460634A (zh) * 2017-07-12 2017-12-12 大源无纺新材料(天津)有限公司 一种纯棉打孔非织造布及其制备方法和应用
CN107475893A (zh) * 2017-08-09 2017-12-15 大连瑞光非织造布集团有限公司 超柔婴幼儿用湿法水刺复合非织造布及生产方法
CN108049023B (zh) * 2017-12-12 2019-12-17 杭州可靠护理用品股份有限公司 凹凸型无纺布及其在纸尿裤上的应用和纸尿裤

Also Published As

Publication number Publication date
CN115380138A (zh) 2022-11-22
US20210324557A1 (en) 2021-10-21
WO2021208009A1 (en) 2021-10-21
EP4136285B1 (de) 2024-09-11
US20240200247A9 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US20220178059A1 (en) Airlaid composite sheet material
US4127637A (en) Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
EP1825048B1 (de) Verfahren zur herstellung eines geprägtes vliesstoffes
DE69833280T2 (de) Saugfähige Bahnen mit zwei Zonen
US11850820B2 (en) Apertured nonwoven
CN111194262A (zh) 具有良好机械强度的包括天然纤维的顶片
WO1993015701A1 (en) Textile-like apertured plastic films
US20180001591A1 (en) High performance nonwoven structure
CA2484696C (en) Embossed tissue having loosened surface fibers and method for its production
US20210324557A1 (en) Process For Producing Deformed Nonwoven
EP0595927B1 (de) Verfahren zum einheitlichen herstellen einer absorbierenden anordnung mit einer transfer- und einer speicherschicht
JP6399826B2 (ja) 吸収性物品
EP3947810B1 (de) Gekräuselte fasermatten und verfahren zu deren herstellung und verwendung
WO2005013873A1 (en) Forming wire for airland manufacturing process and products made therefrom
JP5988848B2 (ja) 吸収性物品
US20190360136A1 (en) Nonwoven, and process and apparatus for producing the same
JP6708107B2 (ja) 賦形不織布
WO2022088996A1 (en) Nonwoven and absorbent articles having the same
JP7498014B2 (ja) 吸収性物品用表面シート及びこれを備える吸収性物品
WO2021237507A1 (en) Absorbent article with topsheet comprising cellulose-based fibers
US20190360139A1 (en) Process for producing nonwoven and apparatus suitable therefor
CN116348076A (zh) 非织造物和具有非织造物的吸收制品
CN112869955A (zh) 卫生巾、一次性尿布等吸液性物品
JP2024134657A (ja) 衛生材料用不織布の製造方法
CN118806528A (zh) 获取和分配复合材料、吸收性卫生制品和生产其的方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240410

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE PROCTER & GAMBLE COMPANY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020037746

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D