EP4132303B1 - Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten - Google Patents

Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten Download PDF

Info

Publication number
EP4132303B1
EP4132303B1 EP21733956.3A EP21733956A EP4132303B1 EP 4132303 B1 EP4132303 B1 EP 4132303B1 EP 21733956 A EP21733956 A EP 21733956A EP 4132303 B1 EP4132303 B1 EP 4132303B1
Authority
EP
European Patent Office
Prior art keywords
hydroentangled nonwoven
hydroentangled
transverse direction
fibers
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21733956.3A
Other languages
English (en)
French (fr)
Other versions
EP4132303A1 (de
Inventor
Dietmar Volgger
Stefan Bachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delfortgroup AG
Original Assignee
Delfortgroup AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delfortgroup AG filed Critical Delfortgroup AG
Publication of EP4132303A1 publication Critical patent/EP4132303A1/de
Application granted granted Critical
Publication of EP4132303B1 publication Critical patent/EP4132303B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/062Use of materials for tobacco smoke filters characterised by structural features
    • A24D3/063Use of materials for tobacco smoke filters characterised by structural features of the fibers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/08Use of materials for tobacco smoke filters of organic materials as carrier or major constituent
    • A24D3/10Use of materials for tobacco smoke filters of organic materials as carrier or major constituent of cellulose or cellulose derivatives
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/14Use of materials for tobacco smoke filters of organic materials as additive
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/17Filters specially adapted for simulated smoking devices

Definitions

  • the invention relates to a filter material suitable for producing a segment in a smoking article, which has favorable plastic expansion behavior in the transverse direction, so that segments for smoking articles can be produced therefrom in an efficient manner.
  • the invention also relates to a segment for a smoking article made from this filter material.
  • Smoking articles are typically rod-shaped articles that consist of at least two rod-shaped segments arranged one after the other.
  • One segment contains a material that is capable of forming an aerosol when heated and at least one further segment serves to influence the properties of the aerosol.
  • the smoking article can be a filter cigarette, in which a first segment contains the aerosol-forming material, in particular tobacco, and in which a further segment is designed as a filter and serves to filter the aerosol.
  • the aerosol is generated by burning the aerosol-forming material, and the filter primarily serves to filter the aerosol and to provide the filter cigarette with a defined draw resistance.
  • the smoking article can also be a so-called tobacco heater, in which the aerosol-forming material is only heated but not burned. This reduces the number and amount of harmful substances in the aerosol.
  • a smoking article also consists of at least two, but more often of more, in particular four, segments.
  • a segment contains the aerosol-forming material, which typically includes tobacco, reconstituted tobacco, or tobacco prepared by other processes. Further, partly optional segments in the smoking article serve to forward the aerosol, cool the aerosol or filter the aerosol.
  • the segments are usually covered by a covering material. Paper is very often used as a wrapping material.
  • segment is understood to mean the segment of a smoking article that does not contain the aerosol-forming material, but rather serves, for example, to forward, cool or filter the aerosol.
  • paper filter segments have not yet found widespread use is also their visual appearance.
  • the cut surface of the segment located at the mouth end is often visible, and the consumer is used to a white, homogeneous surface from the usual segments made of cellulose acetate, in which the individual cut fibers are hardly visible.
  • Paper segments on the other hand, have a coarse structure, which apparently gives the consumer the impression of lower quality. Therefore, paper segments are often only used as a sub-segment in a multi-segment filter, so that the consumer cannot see the cut surface.
  • the segment located at the end of the mouth then often continues to consist of Cellulose acetate. Because of these optical defects, the biodegradability advantages of a paper segment cannot be fully exploited.
  • a filter material with a high proportion of wood pulp fibers can be produced in the form of a hydroentangled nonwoven without the structure of the nonwoven becoming too dense or too compact.
  • a corresponding filter material which can be seen as a starting point for the present invention, is in the unpublished international application PCT/ EP2019/085125 described. This unpublished application also describes folding or crimping the filter material in order to form an endless strand of folded or crimped filter material, which is subsequently covered with wrapping paper and cut into individual rods of a defined length in order to form the segments mentioned.
  • this pattern may be a line pattern oriented in the machine direction of the web.
  • embossed lines stretch and deform the web in the direction orthogonal to the machine direction, the transverse direction, so that an endless strand can then be more easily formed by pushing the web together in the transverse direction.
  • EP3385425A1 describes a nonwoven fabric made of cellulose fibers that is produced directly from a Lyocell spinning solution.
  • the fabric comprises a network of substantially continuous fibers, the fabric having an oil absorption capacity of at least 1900% by mass. Furthermore, a method and an apparatus for producing such a substance, a product or a composite containing such a substance and various possible uses for such a substance are described.
  • DE 12 95 453 B discloses a tobacco product filter made of a covered fiber strand produced by gathering a fiber fleece, the fiber fleece having, in a manner known per se, a proportion of fibers distorted transversely to the direction of travel, but this proportion of transversely distorted fibers has such a size that the not yet covered fiber strand per unit length has a volume that is at least 2:1 larger than a fiber strand produced in the same way from a fiber fleece of the same weight without cross-distorted fibers.
  • EP2228209A1 discloses an elastic laminate, in particular for elastic diaper fastening elements, with outer layers made of nonwoven and an elastic film laminated at least in regions between the outer layers. At least one of the two outer layers consists of a nonwoven material that is stretchable in the transverse direction and solidified by water jets. The hydroentangled nonwoven fabric is pre-stretched in at least one axial direction in the area of the elastic film.
  • the invention is based on the object of providing a web-shaped filter material for a smoking article that can be processed into a segment of a smoking article with high productivity and is otherwise as similar as possible to preferred filter materials in terms of its properties.
  • a filter material for producing a segment for a smoking article the filter material being a web-shaped hydroentangled fleece.
  • hydroentangled initially indicates the underlying manufacturing process, it should be taken into account that a hydroentangled nonwoven has characteristic structural properties that distinguish it from other nonwovens and which, to the knowledge of the inventors, cannot be achieved in an identical manner by another manufacturing process .
  • the strength of the hydroentangled fleece is achieved by the entanglement of the fibers.
  • a hydroentangled fleece has a particularly porous structure, which makes it particularly suitable as a filter material for segments of smoking articles.
  • the hydroentangled nonwoven contains at least 50% and at most 100% cellulose fibers, in each case based on the mass of the hydroentangled nonwoven, the hydroentangled nonwoven having a basis weight of at least 15 g/m 2 and at most 60 g/m 2 .
  • the hydroentangled nonwoven has a machine direction and a transverse direction lying orthogonally thereto in the plane of the web of the hydroentangled nonwoven.
  • the hydroentangled nonwoven has a characteristic plastic deformability in the transverse direction, which is characterized by the fact that in a tensile test in the transverse direction according to ISO 1924-2:2008, the non-linear portion of the deformation energy absorbed by the hydroentangled nonwoven up to half the elongation at break is at least 10% and at most 50 % of the total deformation energy absorbed by the hydroentangled fleece up to half the elongation at break.
  • This characteristic plastic deformability is more pronounced than is the case with conventional filter materials.
  • the hydroentangled nonwoven runs through the machine in one direction, the so-called machine direction, and the hydroentangled nonwoven has a direction orthogonal to the machine direction and lying in the web plane of the hydroentangled nonwoven, the transverse direction.
  • the hydroentangled fleece is preferably crimped.
  • the hydroentangled fleece is passed through, for example, two rollers provided with a pattern, which emboss this pattern onto the web.
  • this pattern is a line pattern oriented in the machine direction of the web.
  • the embossed lines stretch and deform the hydroentangled nonwoven in the direction orthogonal to the machine direction, the transverse direction. A filter material deformed in this way can be pushed together more easily in the transverse direction, thus creating an endless strand for producing the segments.
  • a problem with this method is that the two rollers have to exert a high stretch in the transverse direction on the web in order to achieve the desired deformation of the hydroentangled nonwoven, and there is therefore a risk that the hydroentangled nonwoven will tear in the transverse direction .
  • the person skilled in the art might now be tempted to increase the elongation at break of the hydroentangled nonwoven in the transverse direction so that the hydroentangled nonwoven tolerates larger deformations without tearing.
  • the inventors have recognized that this does not solve the problem, because in order to achieve permanent deformation in the transverse direction, the elongation must then be increased even further, so that the risk of exceeding the breaking load in the transverse direction increases even further.
  • the stretching in the transverse direction to which the hydroentangled fleece is exposed during crimping causes a permanent, plastic and not an elastic deformation. If such a plastic deformation can be achieved with a greater distance between the rollers during crimping, the risk of the hydroentangled fleece tearing in the transverse direction during processing is reduced. In general, it should be sufficient to stretch the hydroentangled fleece in the transverse direction to about half of its elongation at break.
  • hydroentangled fleece can be equipped with a structure using suitable processes that allows good plastic deformability in the transverse direction and thus simplifies crimping. Suitable methods for this are explained below.
  • This plastic deformability in the transverse direction can be characterized by a tensile test in accordance with ISO 1924-2:2008.
  • a tensile test In this tensile test, a strip with a width of 15 mm is taken from the sample in the transverse direction and stretched at a speed of 20 mm/min until it breaks. The strain ⁇ and the applied force F are recorded, resulting in a force-strain curve F( ⁇ ). The elongation at break ⁇ b and the tensile strength F( ⁇ b ) are also recorded.
  • This deformation energy consists of an elastic and a plastic portion.
  • the elastic deformation decreases after relief, so it does not contribute to the crimping result.
  • the plastic deformation is irreversible, so that a good crimping result can be expected even with slight stretching by the two rollers if the proportion of the plastic deformation energy to the total deformation energy is higher than with comparable filter materials from the prior art.
  • Elastic deformation is generally associated with a proportionality between strain and force.
  • Fig. 1 The diagram shown can be illustrated, for example, when carrying out a tensile test in accordance with ISO 1924-2:2008.
  • the elongation ⁇ is plotted on the x-axis 10, while the force F( ⁇ ) required to generate this elongation is plotted on the y-axis 11.
  • the strain ⁇ is increased at a rate of 20 mm/min and at the same time the force F( ⁇ ) is measured, whereby the force-strain curve 13 is created.
  • the elongation is increased until the sample tears in state 14, and from this the elongation at break ⁇ b and the tensile strength F( ⁇ b ) are determined.
  • the hydroentangled fleece When producing a segment from the hydroentangled fleece, the hydroentangled fleece can be loaded in places, for example, up to approximately half the elongation at break ⁇ b /2, point 15, with the associated force F ( ⁇ b /2), so that state 16 is reached.
  • Line 17 connecting points 12 and 16 would represent fictitious linear elastic behavior and the linear deformation energy E lin corresponds to the area of the triangle formed by points 12, 16 and 15.
  • the total deformation energy E corresponds to the area enclosed by the lines from point 12 to point 15, from point 15 to point 16 and line 13 from point 16 to point 12.
  • the nonlinear component E nl of the deformation energy which is used in the context of the invention to characterize the hydroentangled nonwoven according to the invention, corresponds to the area that is delimited by lines 17 and 13, each between points 12 and 16. The more the force-strain curve bends upwards and the more it deviates from a fictitious linear elastic behavior, the greater the potential for plastic and therefore irreversible deformation.
  • the elongation in the transverse direction during crimping can of course deviate from half the elongation at break, and the non-linear portion of the deformation energy can deviate up to half the elongation at break
  • Fig. 2 Shows for comparison Fig. 2 the behavior of a typical conventional filter material not according to the invention.
  • a tensile test according to ISO 1924-2:2008 is carried out on a sample in the transverse direction.
  • the elongation ⁇ is plotted on the x-axis 20, while the force F( ⁇ ) required to generate this elongation is plotted on the y-axis 21.
  • the strain ⁇ is increased at a rate of 20 mm/min and at the same time the force F( ⁇ ) is measured, whereby the force-strain curve 23 is created.
  • the elongation is increased until the sample tears in state 24 and from this the elongation at break ⁇ b and the tensile strength F( ⁇ b ) are determined.
  • the hydroentangled fleece When producing a segment from the hydroentangled fleece, the hydroentangled fleece can, for example, be loaded with the associated force F ( ⁇ b /2) up to approximately half the elongation at break ⁇ b /2, point 25, so that state 26 is reached.
  • the line 27 connecting points 22 and 26 would represent linear elastic behavior and the associated deformation energy E lin corresponds to the area of the triangle formed by points 22, 26 and 25.
  • the total deformation energy E corresponds to the area enclosed by the lines from point 22 to point 25, from point 25 to point 26 and line 23 from point 26 to point 22.
  • the nonlinear component E nl of the deformation energy corresponds to the area that is delimited by lines 27 and 23, each between points 22 and 26. It can be seen that with very similar elongation at break and a very similar linear proportion of the deformation energy, the proportion of non-linear deformation energy is significantly lower. Such a hydroentangled fleece will therefore react to the deformation primarily elastically and, after relief, will essentially recover the entire deformation.
  • the hydroentangled fleece according to the invention contains cellulose fibers. According to the inventors' findings, the cellulose fibers are necessary to provide the hydroentangled nonwoven with sufficient strength so that it can be processed into a segment. According to the invention, the proportion of cellulose fibers in the hydroentangled fleece is at least 50% and at most 100% of the mass of the hydroentangled fleece, but preferably at least 60% and at most 100% and particularly preferably at least 70% and at most 95%, in each case based on the mass of the hydroentangled fleece .
  • the cellulose fibers can be cellulose fibers or fibers of regenerated cellulose or mixtures thereof.
  • the pulp fibers are preferably obtained from softwoods, hardwoods or other plants such as hemp, flax, jute, ramie, kenaf, kapok, coconut, abaca, sisal, bamboo, cotton or esparto grass. Mixtures of cellulose fibers from different origins can also be used to produce the hydroentangled fleece.
  • the pulp fibers are particularly preferably obtained from softwoods because even a small proportion of such fibers give the hydroentangled fleece good strength.
  • the hydroentangled nonwoven according to the invention can contain fibers made from regenerated cellulose.
  • the proportion of fibers made of regenerated cellulose is preferably at least 5% and at most 50%, particularly preferably at least 10% and at most 45% and very particularly preferably at least 15% and at most 40%, in each case based on the mass of the hydroentangled nonwoven.
  • the fibers made of regenerated cellulose are preferably at least partially, in particular more than 70%, formed by viscose fibers, modal fibers, Lyocell® fibers, Tencel® fibers or mixtures thereof. These fibers have good biodegradability and can be used to optimize the strength of the hydroentangled nonwoven and to adjust the filtration efficiency of the segment made from it for the smoking article. Due to their manufacturing process, they are less variable than cellulose fibers obtained from natural sources and help ensure that the properties of a segment made from the hydroentangled nonwoven vary less than if only cellulose fibers are used. However, their production is more complex and they are usually more expensive than cellulose fibers.
  • the basis weight of the hydroentangled nonwoven is at least 15 g/m 2 and at most 60 g/m 2 , preferably at least 18 g/m 2 and at most 55 g/m 2 and particularly preferably at least 20 g/m 2 and at most 50 g/m 2 .
  • the basis weight influences the tensile strength of the hydroentangled nonwoven, with a higher basis weight generally leading to higher strength.
  • the basis weight should not be too high because then the hydroentangled fleece can no longer be processed at high speed into segments for smoking articles.
  • the information refers to a basis weight measured according to ISO 536:2019.
  • the nonlinear portion of the deformation energy absorbed by the hydroentangled fleece up to half the elongation at break is at least 10% and at most 50% of the total deformation energy absorbed by the hydroentangled fleece up to half the elongation at break.
  • the non-linear proportion of the deformation energy absorbed by the hydroentangled fleece up to half the elongation at break is preferably at least 15% and at most 40% of the total deformation energy absorbed by the hydroentangled fleece up to half the elongation at break and particularly preferably the non-linear proportion is at least 15% and at most 35%, and in particular at least 18% and at most 32%.
  • a very good crimping result can be achieved with moderate stretching and the risk of the hydroentangled fleece tearing in the transverse direction is particularly low.
  • the hydroentangled nonwoven according to the invention can contain additives such as alkyl ketene dimers (AKD), acid anhydrides such as alkenyl succinic anhydride (ASA), polyvinyl alcohol, waxes, fatty acids, starch, starch derivatives, carboxymethyl cellulose, alginates, chitosan, wet strength agents or substances for adjusting the pH, such as organic ones or contain inorganic acids or alkalis to adjust specific properties.
  • additives such as alkyl ketene dimers (AKD), acid anhydrides such as alkenyl succinic anhydride (ASA), polyvinyl alcohol, waxes, fatty acids, starch, starch derivatives, carboxymethyl cellulose, alginates, chitosan, wet strength agents or substances for adjusting the pH, such as organic ones or contain inorganic acids or alkalis to adjust specific properties.
  • additives such as alkyl ketene dimers (AKD), acid anhydrides such as alkenyl succ
  • the hydroentangled nonwoven according to the invention can alternatively or additionally also contain one or more additives which are selected from the group consisting of citrates, such as trisodium citrate or tripotassium citrate, malates, tartrates, acetates, such as sodium acetate or potassium acetate, nitrates, succinates, fumarates, gluconates, glycolates , lactates, oxyalates, salicylates, ⁇ -hydroxycaprylates, phosphates, polyphosphates, chlorides and bicarbonates, and mixtures thereof.
  • citrates such as trisodium citrate or tripotassium citrate
  • malates tartrates
  • acetates such as sodium acetate or potassium acetate
  • nitrates succinates
  • fumarates gluconates
  • glycolates glycolates
  • lactates glycolates
  • salicylates ⁇ -hydroxycaprylates
  • phosphates polyphosphates
  • the expert is able to determine the type and amount of such additives based on his or her experience.
  • the hydroentangled nonwoven according to the invention can also comprise other substances which better adapt the filtration efficiency of the hydroentangled nonwoven to that of cellulose acetate.
  • the hydroentangled nonwoven according to the invention comprises a substance selected from the group consisting of triacetin, propylene glycol, sorbitol, glycerol, polyethylene glycol, polypropylene glycol, polyvinyl alcohol and tri-ethyl citrate or mixtures thereof.
  • the cellulose fibers are loaded with a filler, the filler particularly preferably being formed by mineral particles and in particular calcium carbonate particles. Since the structure of the hydroentangled nonwoven is very porous, it is not suitable for holding fillers, so it is advantageous to load the cellulose fibers with the fillers and thus fix them in the structure of the hydroentangled nonwoven. Fillers can be used to give the hydroentangled fleece special properties.
  • the thickness of a layer of the hydroentangled nonwoven is preferably at least 25 ⁇ m and at most 1000 ⁇ m, preferably at least 30 ⁇ m and at most 800 ⁇ m and particularly preferably at least 35 ⁇ m and at most 600 ⁇ m.
  • the thickness influences the amount of hydroentangled web that can be packed into the segment of the smoking article and thus the draw resistance and filtration efficiency of the segment, but also the processability of the hydroentangled web, particularly when it is crimped or folded to produce a segment for a smoking article.
  • a thickness that is too high is unfavorable and thicknesses in the preferred and particularly preferred intervals allow the hydroentangled fleece according to the invention to be processed particularly well into a segment of a smoking article.
  • the mechanical properties of the hydroentangled nonwoven are important for the processing of the hydroentangled nonwoven according to the invention into a segment of a smoking article.
  • the width-related tensile strength of the hydroentangled nonwoven in the transverse direction is preferably at least 0.05 kN/m and at most 5 kN/m, particularly preferably at least 0.07 kN/m and at most 4 kN/m.
  • the elongation at break of the hydroentangled nonwoven in the transverse direction is therefore preferably at least 0.5% and at most 50% and particularly preferably at least 0.8% and at most 40%.
  • the elongation at break is primarily determined by the length of the fibers, with longer fibers leading to higher elongation at break can thus be adapted over a wide range to the specific requirements of the hydroentangled nonwoven.
  • Segments for smoking articles according to the invention can be produced from the hydroentangled fleece according to the invention using methods known per se from the prior art. These methods include, for example, crimping the hydroentangled web, forming an endless strand from the crimped hydroentangled web, covering the endless strand with a wrapping material, and cutting the covered strand into individual rods of defined length. In many cases, the length of such a rod is an integer multiple of the length of the segment that is then to be used in the smoking article according to the invention, and therefore the rods are cut into segments of the desired length before or during manufacture of the smoking article.
  • the segment for smoking articles according to the invention comprises the hydroentangled fleece according to the invention and a wrapping material.
  • the segment comprises a hydroentangled fleece pushed together in the transverse direction and a wrapping material, the hydroentangled fleece containing at least 50% and at most 100% cellulose fibers, in each case based on the mass of the hydroentangled fleece.
  • the hydroentangled fleece has a basis weight of at least 15 g/m 2 and at most 60 g/m 2 . To determine the basis weight, the area of the hydroentangled fleece is taken as a basis when it is spread out (i.e. no longer pushed together).
  • the hydroentangled nonwoven has a transverse direction in which the hydroentangled nonwoven is pushed together. To make it easier to push the hydroentangled fleece together, it can be pre-shaped by crimping or folding.
  • the hydroentangled nonwoven has a characteristic plastic deformability in the transverse direction in the non-collapsed state, which is characterized by the fact that in a tensile test in the transverse direction according to ISO 1924-2:2008, the nonlinear portion of the deformation energy absorbed by the hydroentangled nonwoven up to half the elongation at break is at least 10 % and a maximum of 50% of the to The total deformation energy absorbed by the hydroentangled fleece is equal to half the elongation at break.
  • the segment is cylindrical with a diameter of at least 3 mm and at most 10 mm, particularly preferably at least 4 mm and at most 9 mm and most preferably at least 5 mm and at most 8 mm. These diameters are favorable for using the segments according to the invention in smoking articles.
  • the segment has a length of at least 4 mm and at most 40 mm, particularly preferably at least 6 mm and at most 35 mm and most preferably at least 10 mm and at most 28 mm.
  • the pulling resistance of the segment determines, among other things, what pressure difference the consumer has to apply when using the smoking article in order to generate a certain volume flow through the smoking article, and therefore has a significant influence on the consumer's acceptance of the smoking article.
  • the tensile resistance of the segment can be measured according to ISO 6565:2015 and is given in mm water column (mmWG). To a very good approximation, the tensile resistance of the segment is proportional to the length of the segment, so that the tensile resistance can also be measured on rods that only differ from the segment in length. From this, the tensile resistance of the segment can be easily calculated.
  • the tensile resistance of the segment per length of the segment is preferably at least 1 mmWG/mm and at most 12 mmWG/mm and particularly preferably at least 2 mmWG/mm and at most 10 mmWG/mm.
  • the wrapping material of the segment according to the invention is preferably a paper or a film.
  • the wrapping material of the segment according to the invention preferably has a basis weight according to ISO 536:2019 of at least 20 g/m 2 and at most 150 g/m 2 , particularly preferably at least 30 g/m 2 and at most 130 g/m 2 .
  • a wrapping material with this preferred or particularly preferred basis weight gives the segment according to the invention covered with it a particularly advantageous hardness.
  • Smoking articles according to the invention can be produced from the segment according to the invention using methods known in the prior art.
  • the smoking article of the invention includes a segment containing an aerosol-forming material and a segment comprising the hydroentangled nonwoven fabric of the invention and a wrapping material.
  • the segment of the smoking article closest to the mouth end is a segment according to the invention.
  • the smoking article is a filter cigarette and the aerosol-forming material comprises tobacco.
  • the smoking article is a smoking article, in the intended use of which the aerosol-forming material is only heated but not burned, and the aerosol-forming material preferably comprises a material selected from the group consisting of tobacco, reconstituted tobacco, nicotine, glycerol, propylene glycol or mixtures from it.
  • the aerosol-forming material can also be in liquid form and located in a suitable container in the smoking article.
  • the nonlinear portion of the deformation energy according to the invention can be achieved by aligning the fibers in the hydroentangled nonwoven more strongly in the machine direction of the hydroentangled nonwoven. This can be achieved by the methods according to the invention described below.
  • Steps A1 and A2 can be carried out in such a way that the cellulose fibers in the finished hydroentangled nonwoven tend to be oriented more in the machine direction than in the transverse direction.
  • the water jets directed at the fiber web in step A2 cause the cellulose fibers to be swirled, whereby the structure that is conducive to the favorable plastic behavior in the transverse direction can be created.
  • the person skilled in the art understands the “pressure of the water jet” to mean the pressure that is used to generate the water jet, for example in a pressure chamber.
  • the water jets should be arranged close to one another in the transverse direction. Due to the proximity of the water jets hitting the fiber web at the same time, the water deviates in the machine direction rather than in the transverse direction and orients the fibers in this direction.
  • the pressure of the water jets can be reduced compared to the pressure normally used.
  • the distance and pressure of the water jets also depends significantly on the size of the openings from which the water jets emerge and, above all, on the speed of the fiber web, so that the expert can determine the specific value based on experience, based on the specific exemplary embodiments and can choose through simple experiments.
  • a large number of water jets are used to carry out the hydroentanglement in step A2, wherein the water jets are arranged in at least one row transverse to the machine direction of the fiber web.
  • the hydroentanglement in step A2 is effected by at least two rows of water jets directed onto the fiber web, with at least one row of water jets particularly preferably acting on each of the two sides of the fiber web.
  • the drying in step A3 is at least partially brought about by contact with hot air, by infrared radiation or by microwave radiation. Drying by direct contact with a heated surface is also possible, but is less preferred because the thickness of the hydroentangled nonwoven may decrease.
  • the hydroentangled fleece produced using this process is said to be suitable for use in segments for smoking articles. This means that it can in particular have all of the features, individually or in combination, which were described above in connection with the hydroentangled nonwoven and are defined in the claims directed to the hydroentangled nonwoven.
  • the fiber web is given the desired structure at least partially by the speed at which the suspension flows onto the rotating sieve in step B2 and the speed of the rotating sieve in step B2 being suitably coordinated with one another.
  • the speed at which the suspension flows onto the rotating sieve in step B2 should be smaller than the speed of the rotating sieve. Due to the difference in speed, the suspension is carried along by the sieve and shear forces arise in the suspension, which align the cellulose fibers in the machine direction and thus contribute to a structure of the hydroentangled nonwoven, which leads to the plastic deformability in the transverse direction according to the invention.
  • step B2 the suspension is applied to the rotating sieve at a speed that is only about 90% of the speed of the rotating sieve, for example between 88 % and 93% of the speed of the rotating sieve.
  • the aqueous suspension in step B1 has a solids content of at most 3.0%, particularly preferably at most 1.0%, very particularly preferably at most 0.2% and in particular at most 0.05%.
  • the particularly low solids content of the suspension allows a low-density fiber web to be formed in step B3, which has a positive effect on the filtration efficiency of a segment made from it.
  • the rotating wire of steps B2 and B3 is inclined upwards in the machine direction of the fiber web relative to the horizontal by an angle of at least 3° and at most 40°, particularly preferably by an angle of at least 5° and at most 30° and most preferably at an angle of at least 15° and at most 25°.
  • the method comprises a step in which a pressure difference is generated between the two sides of the rotating sieve in order to support the dewatering of the suspension in step B3, the pressure difference being particularly preferably generated by vacuum boxes or suitably shaped vanes.
  • the method comprises a further step in which one or more additives are applied to the fiber web.
  • the additives are preferably selected from the group consisting of alkyl ketene dimers (AKD), acid anhydrides such as alkenyl succinic anhydrides (ASA), polyvinyl alcohol, waxes, fatty acids, starch, starch derivatives, carboxymethyl cellulose, alginates, chitosan, wet strength agents or substances for adjusting the pH, such as for example organic or inorganic acids or alkalis, and mixtures thereof.
  • one or more additives can also be applied, which are selected from the group consisting of citrates, such as trisodium citrate or tripotassium citrate, malates, tartrates, acetates, such as sodium acetate or potassium acetate, nitrates, succinates, fumarates, gluconates, glycolates, lactates, Oxyalates, salicylates, ⁇ -hydroxycaprylates, phosphates, polyphosphates, chlorides and hydrogen carbonates, and mixtures thereof.
  • citrates such as trisodium citrate or tripotassium citrate
  • malates tartrates
  • acetates such as sodium acetate or potassium acetate
  • nitrates succinates
  • fumarates gluconates
  • glycolates lactates
  • Oxyalates salicylates
  • ⁇ -hydroxycaprylates phosphates, polyphosphates, chlorides and hydrogen carbonates, and mixtures thereof.
  • the one or more additives are applied between steps A2 and A3 of the method according to the invention or after step A3, followed by a further step of drying the fiber web.
  • hydroentangled nonwoven Some preferred embodiments of the hydroentangled nonwoven, the methods for producing the hydroentangled nonwoven, the segment for smoking articles and the smoking article are described below. Furthermore, a comparative example not according to the invention is described.
  • a suspension 31 of pulp fibers and fibers of regenerated cellulose was provided in a storage container 32, step B1, and from there pumped onto a rotating sieve 33 inclined upwards against the horizontal, step B2, and dewatered through vacuum boxes 39, step B3, so that a fiber web 34 formed on the sieve, the general direction of movement of which is indicated by the arrow 310.
  • steps B1 to B3 are concrete sub-steps of the general process step A1 (providing a fiber web comprising cellulose fibers).
  • the speed at which the sieve 33 moves was chosen to be approximately 10% higher than the speed of the suspension 31 flowing out of the storage container 32 in order to orient the fibers primarily in the machine direction.
  • the fiber web 34 was removed from the sieve 33 and transferred to a support sieve 35 which also runs around. There, water jets 311 arranged in several rows transversely to the machine direction of the fiber web 34 were directed onto the fiber web 34 from devices 36 in order to swirl the fibers and solidify the fiber web 34 into a nonwoven fabric, step A2. Continuing from step A2, additional devices 37 also directed water jets 312 to the other side of the fiber web 34.
  • the still-moist nonwoven then passed through a drying device 38 and was dried there, step A3, in order to obtain the hydroentangled nonwoven.
  • hydroentangled nonwoven a mixture of cellulose fibers from softwoods and Lyocell ® fibers was used, with the amounts of fibers chosen so that the finished hydroentangled nonwoven consisted of 65% cellulose fibers and 35% Lyocell ® fibers.
  • the finished hydroentangled fleece had a basis weight of 55 g/m 2 according to ISO 536:2019.
  • step A2 of the manufacturing process three rows of water jets, 311 in Fig. 3 , directed at the first side of the fiber web 34 and then a series of water jets, 312 in Fig. 3 , directed to the second side of the fiber web 34.
  • the pressure of the water jets was varied between 2 MPa and 40 MPa in three stages (low, medium, high) in order to obtain different hydroentangled nonwovens A, B and C according to the invention.
  • the diameter of the openings from which the water jets emerged varied in the rows and was chosen between 80 ⁇ m and 120 ⁇ m; the distance between the openings from center to center was 0.3 mm.
  • Comparative example D relates to the production of a filter material in a process which only contains steps B1 to B3 and A3, but not the step of hydroentanglement of the fiber web.
  • the filter material from comparative example D is not according to the invention in that it is not a hydroentangled fleece.
  • Comparative example D essentially serves to demonstrate that carrying out process steps B1 to B3 (as sub-steps of a preferred embodiment of process step A1) is in fact suitable for contributing to a structure that leads to a desired characteristic plastic deformability in the transverse direction, if in step B2 the suspension is applied to the rotating sieve at a reduced speed.
  • the filter material To produce the filter material, a mixture of cellulose fibers from softwoods and Lyocell ® fibers was used, with the amounts of fiber chosen so that the finished product Filter material consisted of 80% cellulose fibers and 20% Lyocell ® fibers. The finished filter material had a basis weight of 15 g/m 2 according to ISO 536:2019.
  • step B2 of the process the speed of the outflowing suspension was chosen to be approximately 10% lower than the speed of the rotating sieve.
  • step A1 (with reduced application speed of the suspension in step B2) used in exemplary embodiments A to C is not necessary in order to obtain the characteristic plastic deformability according to the invention in the transverse direction in the hydroentangled nonwoven. This can be seen from exemplary embodiment E described below.
  • a mixture of cellulose fibers from softwoods and Lyocell® fibers was used, the amounts of fibers being chosen so that the finished hydroentangled nonwoven consisted of 80% cellulose fibers and 20% Lyocell® fibers.
  • Step A1 was carried out without the pulp fibers in the fiber web first by carrying out step B2 to give a preferred direction transverse to the machine direction.
  • the finished hydroentangled fleece had a basis weight of 15 g/m 2 according to ISO 536:2019.
  • Step A2 of hydroentanglement takes place like step A2 of exemplary embodiment B.
  • a filter material not according to the invention the same mixture of fibers was used as in exemplary embodiment D.
  • the weight per unit area was still 15 g/m 2 , but only machine settings were used as are common in the production of conventional filter papers.
  • Paper-covered filter rods with a length of 100 mm and a diameter of 7.85 mm were made from each hydroentangled fleece of exemplary embodiments A to C and E and the filter material from comparative example Z.
  • the web width of the hydroentangled fleece or filter material and the machine settings during filter production were chosen so that a tensile resistance of 450 ⁇ 10 mmWG resulted.
  • Filter rods could be produced from the hydroentangled nonwovens from exemplary embodiments A to C and E and the filter material from comparative example Z. During production, however, it became apparent that in the case of the hydroentangled nonwovens of exemplary embodiments A to C and E, the crimping process was significantly less sensitive to changes in the machine settings and in particular to the setting of the distance between the rollers during crimping than in comparative example Z.
  • Filter cigarettes were produced from the segments of exemplary embodiments A to C and E and comparative example Z using a conventional method from the prior art. This manufacturing process went smoothly.
  • segments and smoking articles can be manufactured more reliably and easily from the hydroentangled fleece according to the invention than from conventional, hydroentangled fleeces or papers and that a better result can be achieved when crimping due to the favorable plastic expansion behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

    GEBIET DER ERFINDUNG
  • Die Erfindung betrifft ein Filtermaterial geeignet zur Herstellung eines Segments in einem Rauchartikel, das ein günstiges plastisches Dehnungsverhalten in Querrichtung aufweist, sodass daraus in effizienter Weise Segmente für Rauchartikel hergestellt werden können. Die Erfindung betrifft auch ein Segment für einen Rauchartikel, hergestellt aus diesem Filtermaterial.
  • HINTERGRUND UND STAND DER TECHNIK
  • Rauchartikel sind typischerweise stabförmige Artikel, die aus mindestens zwei nacheinander angeordneten stabförmigen Segmenten bestehen. Ein Segment enthält ein Material, das in der Lage ist, beim Aufheizen ein Aerosol zu bilden und mindestens ein weiteres Segment dient dazu, die Eigenschaften des Aerosols zu beeinflussen.
  • Bei dem Rauchartikel kann es sich um eine Filterzigarette handeln, bei der ein erstes Segment das aerosolbildende Material, insbesondere Tabak, enthält und bei der ein weiteres Segment als Filter ausgeführt ist und der Filtration des Aerosols dient. Das Aerosol wird dabei durch Verbrennen des aerosolbildenden Materials erzeugt, und der Filter dient primär dazu, das Aerosol zu filtern und die Filterzigarette mit einem definierten Zugwiderstand auszustatten.
  • Bei dem Rauchartikel kann es sich aber auch um einen sogenannten Tabakerhitzer handeln, bei dem das aerosolbildende Material nur aufgeheizt aber nicht verbrannt wird. Dadurch wird die Zahl und Menge der gesundheitsschädlichen Substanzen im Aerosol vermindert. Ein derartiger Rauchartikel besteht ebenfalls aus mindestens zwei, häufiger aber aus mehr, insbesondere aus vier Segmenten. Ein Segment enthält das aerosolbildende Material, das typischerweise Tabak, rekonstituierten Tabak oder nach anderen Verfahren aufbereiteten Tabak umfasst. Weitere, teilweise optionale Segmente im Rauchartikel dienen dazu, das Aerosol weiterzuleiten, das Aerosol abzukühlen oder das Aerosol zu filtern.
  • Die Segmente sind meistens von einem Umhüllungsmaterial umhüllt. Sehr oft wird Papier als Umhüllungsmaterial verwendet.
  • Im Folgenden wird, soweit nicht explizit darauf hingewiesen wird oder sich direkt aus dem Zusammenhang anderes ergibt, unter "Segment" das Segment eines Rauchartikels verstanden, das nicht das aerosolbildende Material enthält, sondern beispielsweise dazu dient, das Aerosol weiterzuleiten, abzukühlen oder zu filtern.
  • Aus dem Stand der Technik ist bekannt, derartige Segmente aus Polymeren wie Celluloseacetat oder Polylactiden zu bilden. Nach dem Konsum des Rauchartikels muss der Rauchartikel geeignet entsorgt werden. In vielen Fällen wirft der Konsument aber den konsumierten Rauchartikel einfach in der Umwelt weg und Versuche, dieses Verhalten durch Information oder Strafen einzuschränken, waren wenig erfolgreich.
  • Da Celluloseacetat und Polylactide in der Umwelt nur sehr langsam biologisch abgebaut werden, hat die Industrie ein Interesse, die Segmente des Rauchartikels aus anderen Materialien zu fertigen, die besser biologisch abbaubar sind. Zudem sind beispielsweise in der Europäischen Union Regelungen in Diskussion, die die Verwendung von nicht natürlichen Polymeren in Rauchartikeln erheblich reduzieren oder verbieten, sodass auch aus diesem Grund ein Interesse besteht, alternative Segmente für Rauchartikel zur Verfügung zu haben.
  • Es ist im Stand der Technik bekannt, Segmente für Rauchartikel, insbesondere Filtersegmente, aus Papier herzustellen. Derartige Segmente sind zwar generell gut biologisch abbaubar, weisen aber auch Nachteile auf. Beispielsweise haben Filtersegmente aus Papier generell eine hohe Filtrationseffizienz und führen daher zu einem trockenen Aerosol, was den Geschmack des Aerosols verglichen mit Zigaretten mit den üblichen Filtersegmenten aus Celluloseacetat beeinträchtigt. Des Weiteren haben sie aber oft eine niedrigere Filtrationseffizienz für Phenole als Celluloseacetat.
  • Ein wesentlicher Grund dafür, dass Filtersegmente aus Papier noch keine weite Verbreitung gefunden haben liegt aber auch in ihrer optischen Erscheinung. Am Mundende des Rauchartikels ist oft die Schnittfläche des am Mundende gelegenen Segments sichtbar, und der Konsument ist von den üblichen Segmenten aus Celluloseacetat eine weiße homogene Fläche gewohnt, bei der die einzelnen geschnittenen Fasern kaum erkennbar sind. Segmente aus Papier hingegen haben eine grobe Struktur, was dem Konsumenten offenbar den Eindruck geringerer Qualität vermittelt. Daher werden Segmente aus Papier oft nur als ein Teilsegment in einem aus mehreren Segmenten bestehenden Filter eingesetzt, sodass der Konsument die Schnittfläche nicht sehen kann. Das am Mundende gelegene Segment besteht dann weiterhin oft aus Celluloseacetat. Wegen dieser optischen Mängel können die Vorteile der biologischen Abbaubarkeit eines Segments aus Papier nicht in vollem Umfang genutzt werden.
  • Es ist auch im Stand der Technik bekannt, Segmente für Rauchartikel aus Vliesstoffen herzustellen. In EP 2 515 689 ist beispielsweise ein Filtermaterial aus Vliesstoff beschrieben, das allerdings überwiegend Fasern aus Polyvinylalkohol, Polylactiden oder aus anderen nicht natürlichen Polymeren enthält und daher Anforderungen an die biologische Abbaubarkeit nicht gut erfüllen kann. Zudem sind die dort beschriebenen Vliesstoffe zu dünn, um ein optisch ansprechendes Erscheinungsbild an der Schnittfläche des daraus gefertigten Segments zu ergeben.
  • Ebenso ist im Stand der Technik bekannt, Filtermaterial für Rauchartikel aus Papier aus biologisch gut abbaubaren Fasern herzustellen. In US 2015/0374030 ist ein solches Filtermaterial beschrieben, das allerdings zu einem erheblichen Anteil aus Zellstofffasern aus Hanf, Flachs, Abacä, Sisal oder Baumwolle besteht. Diese Fasern sind teuer und weisen wegen ihrer, im Vergleich zu Zellstoffasern aus Holz, kurzen Wachstumsperiode starke Qualitätsschwankungen auf. Gemäß der Lehre in US 2015/0374030 sind sie aber notwendig, um gleichzeitig eine ausreichend poröse Struktur und ausreichend hohe Festigkeit zu erreichen. Von der Verwendung von Holzzellstoff wird abgeraten, weil er eine dichte und kompakte Papierstruktur erzeugt. Tatsächlich soll der Anteil an Holzzellstoff immer kleiner als 50 Gew.-% sein und in den industriell umgesetzten Ausführungsbeispielen beträgt er weniger als 5 Gew.-%. Durch den dafür verwendeten Herstellungsprozess ist auch das optische Erscheinungsbild solcher Filter für den Konsumenten nicht ausreichend ansprechend.
  • Entgegen der Lehre aus dem Stand der Technik haben die Erfinder der vorliegenden Anmeldung gefunden, dass ein Filtermaterial mit einem hohen Anteil an Holzzellstofffasern in Form eines wasserstrahlverfestigten Vliesstoffs hergestellt werden kann, ohne dass die Struktur des Vliesstoffs dabei zu dicht oder zu kompakt wird. Ein entsprechendes Filtermaterial, welches als Ausgangspunkt für die vorliegende Erfindung gesehen werden kann, ist in der nicht vorveröffentlichten internationalen Anmeldung PCT/ EP2019/085125 beschrieben. In dieser nicht vorveröffentlichten Anmeldung ist auch beschrieben, das Filtermaterial zu falten oder zu crimpen, um daraus einen endlosen Strang aus gefaltetem oder gecrimptem Filtermaterial zu bilden, der nachfolgend mit Umhüllungspapier umhüllt und in einzelne Stäbe definierter Länge geschnitten wird um die genannten Segmente zu bilden.
  • Beispielsweise ist es bei der Herstellung eines Segments möglich, eine Bahn aus einem cellulosebasierten Vlies zunächst in Längsrichtung zu crimpen, bevor es zu einem endlosen Strang geformt und mit einem Umhüllungsmaterial umhüllt wird. Abschließend kann der endlose Strang in für die weitere Verarbeitung geeignete Stücke geschnitten werden.
  • Beim Crimpen der Bahn kann die Bahn durch zwei mit einem Muster versehene Rollen durchgeführt werden, die dieses Muster auf die Bahn einprägen. Beispielsweise kann dieses Muster ein in Maschinenrichtung der Bahn orientiertes Linienmuster sein. Derartige eingeprägte Linien dehnen und verformen die Bahn in der zur Maschinenrichtung orthogonalen Richtung, der Querrichtung, sodass danach ein endloser Strang durch Zusammenschieben der Bahn in Querrichtung einfacher gebildet werden kann.
  • Bei der beschriebenen Art des Crimpens kann es allerdings vorkommen, dass die Bahn in Querrichtung reißt. Es besteht daher ein Bedarf an einem Filtermaterial, das diesen Nachteil nicht oder nur in einem geringeren Ausmaß aufweist, aber ansonsten den bevorzugten Filtermaterialien, insbesondere denjenigen, die in der oben genannten nicht vorveröffentlichten Anmeldung PCT/EP2019/085125 beschrieben sind, soweit wie möglich identisch ist.
  • EP3385425A1 beschreibt einen Vliesstoff aus Cellulosefasern, der direkt aus einer Lyocell-Spinnlösung hergestellt wird. Der Stoff umfasst ein Netzwerk aus im Wesentlichen endlosen Fasern, wobei der Stoff ein Ölabsorptionsvermögen von mindestens 1900 Massenprozent aufweist. Ferner werden ein Verfahren und eine Vorrichtung zur Herstellung eines solchen Stoffes, ein Produkt oder ein Verbundstoff, der einen solchen Stoff enthält, und verschiedene Verwendungsmöglichkeiten für einen solchen Stoff beschrieben.
  • DE 12 95 453 B offenbart einen Tabakwarenfilter aus einem durch Zusammenraffen eines Faservlieses hergestellten umhüllten Faserstrang, wobei das Faservlies in an sich bekannter Weise einen Anteil an quer zur Laufrichtung verzerrten Fasern aufweist, wobei jedoch dieser Anteil querverzerrter Fasern eine solche Größe hat, dass der noch nicht umhüllte Faserstrang pro Längeneinheit ein um mindestens 2:1 größeres Volumen als ein in gleicher Weise aus einem gleichschweren Faservlies ohne querverzerrte Fasern hergestellter Faserstrang aufweist.
  • EP2228209A1 offenbart ein elastisches Laminat, insbesondere für elastische Windelverschlusselemente, mit Außenschichten aus Nonwoven und einer zumindest bereichsweise zwischen den Außenschichten einkaschierten elastischen Folie. Zumindest eine der beiden Außenschichten besteht aus einem in Querrichtung dehnbaren, durch Wasserstrahlen verfestigten Vliesstoff. Der wasserstrahlverfestigte Vliesstoff ist im Bereich der elastischen Folie in zumindest einer Achsrichtung vorverstreckt.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, ein bahnförmiges Filtermaterial für einen Rauchartikel zur Verfügung zu stellen, das sich mit hoher Produktivität zu einem Segment eines Rauchartikels verarbeiten lässt und ansonsten hinsichtlich seiner Eigenschaften bevorzugten Filtermaterialien möglichst ähnlich ist.
  • Diese Aufgabe wird durch ein wasserstrahlverfestigtes Vlies nach Anspruch 1, ein Segment für einen Rauchartikel nach Anspruch 6, und einen Rauchartikel nach Anspruch 10 gelöst, sowie durch ein Verfahren zur Herstellung eines Segments nach Anspruch 9 und ein Verfahren zur Herstellung des erfindungsgemäßen wasserstrahlverfestigten Vlieses nach Anspruch 11. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Die Erfinder haben gefunden, dass diese Aufgabe durch ein Filtermaterial zur Herstellung eines Segments für einen Rauchartikel gelöst werden kann, wobei das Filtermaterial ein bahnförmiges wasserstrahlverfestigtes Vlies ist. Obwohl der Begriff "wasserstrahlverfestigt" zunächst auf das zugrundeliegende Herstellungsverfahren hinweist, ist zu berücksichtigen, dass ein wasserstrahlverfestigtes Vlies charakteristische strukturelle Eigenschaften hat, die es von anderen Vliesen unterscheidet, und die nach Wissen der Erfinder nicht auf identische Weise durch ein anderes Herstellungsverfahren erreicht werden können. Anders als beispielsweise bei Papier, bei dem die Festigkeit vornehmlich durch Wasserstoffbrücken bewirkt wird und die Fasern vor allem in der Ebene des Papiers angeordnet sind, wird bei dem wasserstrahlverfestigten Vlies die Festigkeit durch die Verwirbelung der Fasern erreicht. Ein wasserstrahlverfestigtes Vlies weist eine besonders poröse Struktur auf, die es als Filtermaterial für Segmente von Rauchartikeln besonders gut geeignet macht.
  • Erfindungsgemäß enthält das wasserstrahlverfestigte Vlies mindestens 50% und höchstens 100% Cellulosefasern, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses, wobei das wasserstrahlverfestigte Vlies ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 aufweist. Dabei weist das wasserstrahlverfestigte Vlies eine Maschinenrichtung und eine dazu in der Ebene der Bahn des wasserstrahlverfestigten Vlieses orthogonal liegende Querrichtung auf. Ferner weist das wasserstrahlverfestigte Vlies eine charakteristische plastische Verformbarkeit in Querrichtung auf, die dadurch charakterisiert ist, dass in einem Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt. Diese charakteristische plastische Verformbarkeit ist stärker ausgeprägt, als dies bei herkömmlichen Filtermaterialien der Fall ist.
  • Bei der Herstellung und Weiterverarbeitung des wasserstrahlverfestigten Vlieses läuft das wasserstrahlverfestigte Vlies in einer Richtung, der sogenannten Maschinenrichtung durch die Maschine und das wasserstrahlverfestigte Vlies besitzt eine zur Maschinenrichtung orthogonale, in der Bahnebene des wasserstrahlverfestigten Vlieses liegende Richtung, die Querrichtung.
  • Bei der Verarbeitung eines Filtermaterials zu einem Segment eines Rauchartikels wird das wasserstrahlverfestigte Vlies vorzugsweise gecrimpt. Dazu wird das wasserstrahlverfestigte Vlies beispielsweise durch zwei mit einem Muster versehenen Rollen durchgeführt, die dieses Muster auf die Bahn einprägen. Vorzugsweise ist dieses Muster ein in Maschinenrichtung der Bahn orientiertes Linienmuster. Die eingeprägten Linien dehnen und verformen das wasserstrahlverfestigte Vlies in der zur Maschinenrichtung orthogonalen Richtung, der Querrichtung. Ein auf diese Weise verformtes Filtermaterial kann einfacher in Querrichtung zusammengeschoben und so ein endloser Strang zur Herstellung der Segmente erzeugt werden.
  • Ein Problem bei diesem Verfahren besteht allerdings darin, dass durch die beiden Rollen eine hohe Dehnung in Querrichtung auf die Bahn ausgeübt werden muss, um eine erwünschte Verformung des wasserstrahlverfestigten Vlieses zu bewirken, und dass deshalb die Gefahr besteht, dass das wasserstrahlverfestigte Vlies in Querrichtung reißt. Der Fachmann könnte nun versucht sein, die Bruchdehnung des wasserstrahlverfestigten Vlieses in Querrichtung zu erhöhen, sodass das wasserstrahlverfestigte Vlies größere Verformungen toleriert ohne zu reißen. Die Erfinder haben aber erkannt, dass dies das Problem nicht löst, denn um eine bleibende Verformung in Querrichtung zu erreichen, muss dann die Dehnung noch weiter erhöht werden, sodass die Gefahr noch weiter steigt, die Bruchlast in Querrichtung zu überschreiten.
  • Nach den Erkenntnissen der Erfinder kommt es vielmehr darauf an, dass bei der Dehnung in Querrichtung, der das wasserstrahlverfestigte Vlies beim Crimpen ausgesetzt ist, eine bleibende, plastische und keine elastische Verformung bewirkt wird. Wenn eine solche plastische Verformung bereits mit höherem Abstand der Rollen beim Crimpen erreicht werden kann, reduziert sich die Gefahr, dass das wasserstrahlverfestigte Vlies bei der Verarbeitung in Querrichtung reißt. Generell sollte es dabei ausreichen, das wasserstrahlverfestigte Vlies in Querrichtung bis etwa zur Hälfte seiner Bruchdehnung zu dehnen.
  • Die Erfinder haben nun gefunden, dass das wasserstrahlverfestigte Vlies durch geeignete Verfahren mit einer Struktur ausgestattet werden kann, die eine gute plastische Verformbarkeit in Querrichtung erlaubt und so das Crimpen vereinfacht. Dazu geeignete Verfahren sind weiter unten erläutert.
  • Diese plastische Verformbarkeit in Querrichtung kann dabei durch einen Zugversuch gemäß ISO 1924-2:2008 charakterisiert werden. In diesem Zugversuch wird ein Streifen mit 15 mm Breite in Querrichtung aus der Probe entnommen und mit einer Geschwindigkeit von 20 mm/min bis zum Bruch gedehnt. Dabei werden die Dehnung ε und die aufgewendete Kraft F erfasst, sodass sich eine Kraft-Dehnungs-Kurve F(ε) ergibt. Ebenso werden die Bruchdehnung εb und die Zugfestigkeit F(εb) erfasst. Die bis zur halben Bruchdehnung εb/2 vom wasserstrahlverfestigten Vlies aufgenommene Verformungsenergie E ergibt sich dann aus E = ε = 0 ε b / 2 F ε ,
    Figure imgb0001
    wobei in der Praxis das Integral numerisch berechnet wird.
  • Diese Verformungsenergie besteht aus einem elastischen und einem plastischen Anteil. Die elastische Verformung geht nach Entlastung zurück, sodass sie nichts zum Ergebnis des Crimpens beiträgt. Die plastische Verformung hingegen ist irreversibel, sodass schon bei geringer Dehnung durch die beiden Rollen ein gutes Ergebnis beim Crimpen erwartet werden kann, wenn der Anteil der plastischen Verformungsenergie an der gesamten Verformungsenergie höher ist als bei vergleichbaren Filtermaterialien aus dem Stand der Technik.
  • Eine elastische Verformung ist generell mit einer Proportionalität zwischen Dehnung und Kraft assoziiert. Unter der fiktiven Annahme, dass sich das wasserstrahlverfestigte Vlies bis zur halben Bruchdehnung ideal linear elastisch verhält, kann die Verformungsenergie Elin bis zur halben Bruchdehnung durch E lin = 1 2 F ε b 2 ε b 2 = 1 4 F ε b 2 ε b
    Figure imgb0002
    berechnet werden.
  • Der über diese Verformungsenergie hinausgehende nichtlineare Anteil Enl der in das wasserstrahlverfestigte Vlies bis zur halben Bruchdehnung eingebrachten Verformungsenergie ist dann E nl = ε = 0 ε b / 2 F ε E lin = ε = 0 ε b 2 F ε 1 4 F ε b 2 ε b .
    Figure imgb0003
    Nach den Erkenntnissen der Erfinder lassen sich sehr gute Ergebnisse beim Crimpen erzielen, wenn der bis zur halben Bruchdehnung in Querrichtung aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% der gesamten bis zur halben Bruchdehnung in Querrichtung aufgenommenen Verformungsenergie beträgt, also E nl E 0,1
    Figure imgb0004
    gilt.
  • Diese Überlegungen zur Quantifizierung des plastischen Verhaltens können durch das in Fig. 1 dargestellte Diagramm illustriert werden, wie es beispielsweise bei der Durchführung eines Zugversuchs gemäß ISO 1924-2:2008 entstehen kann. Auf der x-Achse 10 ist die Dehnung ε aufgetragen, während auf der y-Achse 11 die zur Erzeugung dieser Dehnung nötige Kraft F(ε) aufgetragen ist. Ausgehend von einem unbelasteten Zustand 12 wird die Dehnung ε mit einer Rate von 20 mm/min erhöht und gleichzeitig die Kraft F(ε) gemessen, wobei die Kraft-Dehnungs-Kurve 13 entsteht. Die Dehnung wird dabei so weit gesteigert, bis die Probe im Zustand 14 reißt, und daraus werden die Bruchdehnung εb und die Zugfestigkeit F(εb) bestimmt.
  • Bei der Herstellung eines Segments aus dem wasserstrahlverfestigten Vlies kann das wasserstrahlverfestigte Vlies stellenweise beispielsweise in etwa bis zur halben Bruchdehnung εb/2, Punkt 15, mit der zugehörigen Kraft F(εb/2) belastet werden, sodass man den Zustand 16 erreicht.
  • Die Linie 17, die die Punkte 12 und 16 verbindet, würde ein fiktives linear elastisches Verhalten repräsentieren und die lineare Verformungsenergie Elin entspricht der Fläche des von den Punkten 12, 16 und 15 gebildeten Dreiecks. Die gesamte Verformungsenergie E hingegen entspricht der durch die Linien von Punkt 12 bis Punkt 15, von Punkt 15 bis Punkt 16 und der Linie 13 von Punkt 16 bis Punkt 12 eingeschlossenen Fläche. Der nichtlineare Anteil Enl der Verformungsenergie, der im Rahmen der Erfindung zur Charakterisierung des erfindungsgemäßen wasserstrahlverfestigten Vlieses herangezogen wird, entspricht jener Fläche, die von den Linien 17 und 13, jeweils zwischen den Punkten 12 und 16 begrenzt wird. Je stärker sich also die Kraft-Dehnungs-Kurve nach oben durchbiegt und je mehr sie von einem fiktiven linear elastischen Verhalten abweicht, umso größer ist das Potenzial für plastische und damit irreversible Verformung.
  • Bei der Herstellung von Segmenten aus dem erfindungsgemäßen wasserstrahlverfestigten Vlies kann die Dehnung in Querrichtung beim Crimpen natürlich von der halben Bruchdehnung abweichen, der nichtlineare Anteil der Verformungsenergie bis zur halben Bruchdehnung hat sich aber unabhängig von der tatsächlich aufgewendeten Dehnung und dem tatsächlichen elastisch-plastischen Verhalten als geeigneter Parameter herausgestellt, um die Struktur des erfindungsgemäßen wasserstrahlverfestigten Vlieses zu charakterisieren und das Verhalten des wasserstrahlverfestigten Vlieses beim Crimpen vorherzusagen.
  • Zum Vergleich zeigt Fig. 2 das Verhalten eines typischen herkömmlichen und nicht erfindungsgemäßen Filtermaterials. Auch hier wird ein Zugversuch gemäß ISO 1924-2:2008 an einer Probe in Querrichtung durchgeführt. Auf der x-Achse 20 ist die Dehnung ε aufgetragen, während auf der y-Achse 21 die zur Erzeugung dieser Dehnung nötige Kraft F(ε) aufgetragen ist. Ausgehend von einem unbelasteten Zustand 22 wird die Dehnung ε mit einer Rate von 20 mm/min erhöht und gleichzeitig die Kraft F(ε) gemessen, wobei die Kraft-Dehnungs-Kurve 23 entsteht. Die Dehnung wird dabei so weit gesteigert, bis die Probe im Zustand 24 reißt und daraus werden die Bruchdehnung εb und die Zugfestigkeit F(εb) bestimmt.
  • Bei der Herstellung eines Segments aus dem wasserstrahlverfestigten Vlies kann das wasserstrahlverfestigte Vlies beispielsweise in etwa bis zur halben Bruchdehnung εb/2, Punkt 25, mit der zugehörigen Kraft F(εb/2) belastet werden, sodass man den Zustand 26 erreicht.
  • Die Linie 27, die die Punkte 22 und 26 verbindet würde ein linear elastisches Verhalten repräsentieren und die zugehörige Verformungsenergie Elin entspricht der Fläche des von den Punkten 22, 26 und 25 gebildeten Dreiecks. Die gesamte Verformungsenergie E hingegen entspricht der durch die Linien von Punkt 22 bis Punkt 25, von Punkt 25 bis Punkt 26 und der Linie 23 von Punkt 26 bis Punkt 22 eingeschlossenen Fläche. Der nichtlineare Anteil Enl der Verformungsenergie entspricht jener Fläche, die von den Linien 27 und 23, jeweils zwischen den Punkten 22 und 26 begrenzt wird. Man erkennt, dass bei sehr ähnlicher Bruchdehnung und sehr ähnlichem linearen Anteil der Verformungsenergie der Anteil der nichtlinearen Verformungsenergie wesentlich geringer ist. Ein solches wasserstrahlverfestigte Vlies wird daher auf die Verformung vor allem elastisch reagieren und nach Entlastung im Wesentlichen die gesamte Verformung zurückbilden. Um eine ähnliche plastische Verformungsenergie wie bei dem in Fig. 1 dargestellten wasserstrahlverfestigten Vlies einzubringen, angedeutet durch die Linie 28, müsste das wasserstrahlverfestigte Vlies bis zum Punkt 29 gedehnt werden. Die dazu nötige Dehnung ist deutlich höher und vor allem kommt die erforderliche Kraft nahe an die Bruchlast in Querrichtung. Bei kleinen Störungen der Maschine oder Schwankungen in der Qualität des wasserstrahlverfestigten Vlieses kann das wasserstrahlverfestigte Vlies daher in Querrichtung reißen. Das erfindungsgemäße wasserstrahlverfestigte Vlies aus Fig. 1 hingegen hat eine Struktur, die bereits bei geringer Dehnung eine bleibende Verformung in Querrichtung erlaubt, weshalb sich daraus Segmente für Rauchartikel zuverlässiger herstellen lassen.
  • Das erfindungsgemäße wasserstrahlverfestigte Vlies enthält Cellulosefasern. Nach den Erkenntnissen der Erfinder sind die Cellulosefasern erforderlich, um das wasserstrahlverfestigte Vlies mit einer ausreichenden Festigkeit auszustatten, sodass es zu einem Segment verarbeitet werden kann. Der Anteil an Cellulosefasern im wasserstrahlverfestigten Vlies beträgt erfindungsgemäß mindestens 50% und höchstens 100% der Masse des wasserstrahlverfestigten Vlieses, bevorzugt aber mindestens 60% und höchstens 100% und besonders bevorzugt mindestens 70% und höchstens 95%, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses.
  • Die Cellulosefasern können Zellstofffasern oder Fasern regenerierter Cellulose oder Mischungen daraus sein.
  • Die Zellstofffasern sind bevorzugt aus Nadelhölzern, Laubhölzern oder anderen Pflanzen wie Hanf, Flachs, Jute, Ramie, Kenaf, Kapok, Kokosnuss, Abacä, Sisal, Bambus, Baumwolle oder aus Espartogras gewonnen. Auch Mischungen aus Zellstofffasern verschiedener Herkunft können für die Herstellung des wasserstrahlverfestigten Vlieses eingesetzt werden. Besonders bevorzugt sind die Zellstofffasern aus Nadelhölzern gewonnen, weil solche Fasern schon in einem geringeren Anteil dem wasserstrahlverfestigten Vlies eine gute Festigkeit verleihen.
  • Das erfindungsgemäße wasserstrahlverfestigte Vlies kann Fasern aus regenerierter Cellulose enthalten. Bevorzugt beträgt der Anteil an Fasern aus regenerierter Cellulose mindestens 5% und höchstens 50%, besonders bevorzugt mindestens 10% und höchstens 45% und ganz besonders bevorzugt mindestens 15% und höchstens 40%, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses.
  • Die Fasern aus regenerierter Cellulose sind bevorzugt zumindest teilweise, insbesondere zu mehr als 70 % durch Viskosefasern, Modalfasern, Lyocell® Fasern, Tencel® Fasern oder Mischungen daraus gebildet. Diese Fasern besitzen eine gute biologische Abbaubarkeit und können dazu eingesetzt werden, die Festigkeit des wasserstrahlverfestigten Vlieses zu optimieren und die Filtrationseffizienz des daraus gefertigten Segments für den Rauchartikel anzupassen. Aufgrund ihres Herstellungsverfahrens sind sie weniger variabel als die aus natürlichen Quellen gewonnenen Zellstofffasern und tragen dazu bei, dass die Eigenschaften eines aus dem wasserstrahlverfestigten Vlies gefertigten Segments weniger variieren, als wenn ausschließlich Zellstofffasern verwendet werden. Ihre Herstellung ist aber aufwändiger und sie sind üblicherweise auch teurer als Zellstofffasern.
  • Das Flächengewicht des wasserstrahlverfestigten Vlieses beträgt erfindungsgemäß mindestens 15 g/m2 und höchstens 60 g/m2, bevorzugt mindestens 18 g/m2 und höchstens 55 g/m2 und besonders bevorzugt mindestens 20 g/m2 und höchstens 50 g/m2. Das Flächengewicht beeinflusst die Zugfestigkeit des wasserstrahlverfestigten Vlieses, wobei ein höheres Flächengewicht generell zu höherer Festigkeit führt. Das Flächengewicht soll aber nicht zu hoch sein, weil dann das wasserstrahlverfestigte Vlies nicht mehr mit hoher Geschwindigkeit zu Segmenten für Rauchartikel verarbeitet werden kann. Die Angaben beziehen sich auf ein Flächengewicht, das nach ISO 536:2019 gemessen wird.
  • Bei dem erfindungsgemäßen wasserstrahlverfestigten Vlies beträgt in einem Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie. Bevorzugt beträgt der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 15% und höchstens 40% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie und besonders bevorzugt beträgt der nichtlineare Anteil mindestens 15% und höchstens 35%, und insbesondere mindestens 18% und höchstens 32%. In den bevorzugten und besonders bevorzugten Intervallen lässt sich bei moderater Dehnung ein sehr gutes Ergebnis beim Crimpen erzielen und das Risiko, dass das wasserstrahlverfestigte Vlies in Querrichtung reißt ist besonders gering.
  • Das erfindungsgemäße wasserstrahlverfestigte Vlies kann Zusatzstoffe, wie Alkylketendimere (AKD), Säureanhydride, wie Alkenylbernsteinsäureanhydride (ASA), Polyvinylalkohol, Wachse, Fettsäuren, Stärke, Stärkederivate, Carboxymethylcellulose, Alginate, Chitosan, Nassfestmittel oder Substanzen zur Einstellung des pH-Werts, wie beispielsweise organische oder anorganische Säuren oder Laugen zur Einstellung spezifischer Eigenschaften enthalten. Das erfindungsgemäße wasserstrahlverfestigte Vlies kann alternativ oder zusätzlich auch einen oder mehrere Zusatzstoffe enthalten, die ausgewählt sind aus der Gruppe bestehend aus Zitraten, wie Trinatriumzitrat oder Trikaliumzitrat, Malaten, Tartraten, Acetaten, wie Natriumacetat oder Kaliumacetat, Nitraten, Succinaten, Fumaraten, Gluconaten, Glycolaten, Lactaten, Oxyalaten, Salicylaten, α-Hydroxycaprylaten, Phosphaten, Polyphosphaten, Chloriden und Hydrogencarbonaten, und Mischungen daraus.
  • Der Fachmann ist in der Lage Art und Menge solcher Zusatzstoffe aus seiner Erfahrung zu bestimmen.
  • Das erfindungsgemäße wasserstrahlverfestigte Vlies kann auch noch andere Substanzen umfassen, die die Filtrationseffizienz des wasserstrahlverfestigten Vlieses besser an jene von Celluloseacetat anpassen. In einer bevorzugten Ausführungsform umfasst das erfindungsgemäße wasserstrahlverfestigte Vlies eine Substanz ausgewählt aus der Gruppe bestehend aus Triacetin, Propylenglykol, Sorbitol, Glycerol, Polyethylenglykol, Polypropylenglykol, Polyvinylalkohol und Tri-Ethlyzitrat oder Mischungen daraus.
  • In einer bevorzugten Ausführungsform des wasserstrahlverfestigten Vlieses ist mindestens ein Teil der Cellulosefasern mit einem Füllstoff beladen, wobei der Füllstoff besonders bevorzugt durch mineralische Partikel und insbesondere Calciumcarbonatpartikel gebildet ist. Da die Struktur des wasserstrahlverfestigten Vlieses sehr porös ist, ist sie nicht dafür geeignet, Füllstoffe festzuhalten, sodass es günstig ist, die Cellulosefasern mit den Füllstoffen zu beladen und sie so in der Struktur des wasserstrahlverfestigten Vlieses zu fixieren. Füllstoffe können dazu dienen, dem wasserstrahlverfestigten Vlies spezielle Eigenschaften zu verleihen.
  • Die Dicke einer Lage des wasserstrahlverfestigten Vlieses, gemessen nach ISO 534:2011, beträgt vorzugsweise mindestens 25 µm und höchstens 1000 µm, bevorzugt mindestens 30 µm und höchstens 800 µm und besonders bevorzugt mindestens 35 µm und höchstens 600 µm. Die Dicke beeinflusst die Menge an wasserstrahlverfestigtem Vlies, die in das Segment des Rauchartikels gepackt werden kann und damit Zugwiderstand und Filtrationseffizienz des Segments, aber auch die Verarbeitbarkeit des wasserstrahlverfestigten Vlieses, insbesondere wenn es zur Herstellung eines Segments für einen Rauchartikel gecrimpt oder gefaltet wird. Für solche Prozessschritte ist eine zu hohe Dicke ungünstig und Dicken in den bevorzugten und besonders bevorzugten Intervallen erlauben eine besonders gute Verarbeitbarkeit des erfindungsgemäßen wasserstrahlverfestigten Vlieses zu einem Segment eines Rauchartikels.
  • Die mechanischen Eigenschaften des wasserstrahlverfestigten Vlieses sind für die Verarbeitung des erfindungsgemäßen wasserstrahlverfestigten Vlieses zu einem Segment eines Rauchartikels von Bedeutung. Die breitenbezogene Zugfestigkeit des wasserstrahlverfestigten Vlieses in Querrichtung, gemessen nach ISO 1924-2:2008, beträgt bevorzugt mindestens 0,05 kN/m und höchstens 5 kN/m, besonders bevorzugt mindestens 0,07 kN/m und höchstens 4 kN/m.
  • Die Bruchdehnung des wasserstrahlverfestigten Vlieses in Querrichtung, gemessen nach ISO 1924-2:2008, beträgt daher bevorzugt mindestens 0,5% und höchstens 50% und besonders bevorzugt mindestens 0,8% und höchstens 40%. Die Bruchdehnung wird vor allem durch die Länge der Fasern bestimmt, wobei längere Fasern zu höherer Bruchdehnung führen, und sie kann so in einem weiten Bereich an die spezifischen Anforderungen des wasserstrahlverfestigten Vlieses angepasst werden.
  • Aus dem erfindungsgemäßen wasserstrahlverfestigten Vlies können nach aus dem Stand der Technik an sich bekannten Verfahren erfindungsgemäße Segmente für Rauchartikel hergestellt werden. Diese Verfahren umfassen beispielsweise das Crimpen des wasserstrahlverfestigten Vlieses, das Formen eines endlosen Strangs aus dem gecrimpten wasserstrahlverfestigten Vlies, das Umhüllen des endlosen Strangs durch ein Umhüllungsmaterial und das Schneiden des umhüllten Strangs in einzelne Stäbe definierter Länge. In vielen Fällen beträgt die Länge eines solchen Stabs ein ganzzahliges Vielfaches der Länge des Segments, das dann im erfindungsgemäßen Rauchartikel verwendet werden soll, und deshalb werden die Stäbe vor oder während der Herstellung des Rauchartikels in Segmente der gewünschten Länge geschnitten.
  • Das erfindungsgemäße Segment für Rauchartikel umfasst das erfindungsgemäße wasserstrahlverfestigte Vlies und ein Umhüllungsmaterial.
  • Konkret umfasst das Segment ein in Querrichtung zusammengeschobenes wasserstrahlverfestigtes Vlies und ein Umhüllungsmaterial, wobei das wasserstrahlverfestigte Vlies mindestens 50% und höchstens 100% Cellulosefasern, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält. Dabei weist das wasserstrahlverfestigte Vlies ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 auf. Zur Bestimmung des Flächengewichts wird die Fläche des wasserstrahlverfestigten Vlieses zugrunde gelegt, wenn dieses ausgebreitet (also nicht mehr zusammengeschoben) ist. Das wasserstrahlverfestigte Vlies weist eine Querrichtung auf, in der das wasserstrahlverfestigte Vlies zusammengeschoben ist. Um das Zusammenschieben des wasserstrahlverfestigten Vlieses zu erleichtern, kann dieses durch Crimpen oder Falten vorgeformt werden. Der Begriff "Zusammenschieben" ist hierbei weit zu verstehen, und das darin enthaltene Verb "schieben" soll keine bestimmte mechanische Art suggerieren, auf die der "zusammengeschobene" Zustand hergestellt wird. Auch ein "geraffter" Zustand ist beispielsweise ein "zusammengeschobener" Zustand im Sinne der vorliegenden Offenbarung, unabhängig davon, auf welche mechanische Weise die Raffung oder Verkürzung in Querrichtung erzeugt wird. Ferner weist das wasserstrahlverfestigte Vlies im nicht zusammengeschobenen Zustand eine charakteristische plastische Verformbarkeit in Querrichtung auf, die dadurch charakterisiert ist, dass in einem Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Segments ist das Segment zylindrisch mit einem Durchmesser von mindestens 3 mm und höchstens 10 mm, besonders bevorzugt von mindestens 4 mm und höchstens 9 mm und ganz besonders bevorzugt von mindestens 5 mm und höchstens 8 mm. Diese Durchmesser sind für die Verwendung der erfindungsgemäßen Segmente in Rauchartikeln günstig.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Segments hat das Segment eine Länge von mindestens 4 mm und höchstens 40 mm, besonders bevorzugt von mindestens 6 mm und höchstens 35 mm und ganz besonders bevorzugt von mindestens 10 mm und höchstens 28 mm.
  • Der Zugwiderstand des Segments bestimmt unter anderem, welche Druckdifferenz der Konsument beim Gebrauch des Rauchartikels aufbringen muss, um einen bestimmten Volumenstrom durch den Rauchartikel zu erzeugen, und er beeinflusst daher wesentlich die Akzeptanz des Rauchartikels beim Konsumenten. Der Zugwiderstand des Segments kann nach ISO 6565:2015 gemessen werden und wird in mm Wassersäule (mmWG) angegeben. In sehr guter Näherung ist der Zugwiderstand des Segments proportional zur Länge des Segments, sodass die Messung des Zugwiderstands auch an Stäben erfolgen kann, die sich vom Segment nur in der Länge unterscheiden. Daraus kann der Zugwiderstand des Segments einfach berechnet werden.
  • Der Zugwiderstand des Segments pro Länge des Segments beträgt bevorzugt mindestens 1 mmWG/mm und höchstens 12 mmWG/mm und besonders bevorzugt mindestens 2 mmWG/mm und höchstens 10 mmWG/mm.
  • Das Umhüllungsmaterial des erfindungsgemäßen Segments ist bevorzugt ein Papier oder eine Folie.
  • Das Umhüllungsmaterial des erfindungsgemäßen Segments hat bevorzugt ein Flächengewicht gemäß ISO 536:2019 von mindestens 20 g/m2 und höchstens 150 g/m2, besonders bevorzugt von mindestens 30 g/m2 und höchstens 130 g/m2. Ein Umhüllungsmaterial mit diesem bevorzugten oder besonders bevorzugten Flächengewicht verleiht dem damit umhüllten, erfindungsgemäßen Segment eine besonders vorteilhafte Härte.
  • Aus dem erfindungsgemäßen Segment können nach den im Stand der Technik bekannten Verfahren erfindungsgemäße Rauchartikel hergestellt werden.
  • Der erfindungsgemäße Rauchartikel umfasst ein Segment, das ein aerosolbildendes Material enthält, und ein Segment, das das erfindungsgemäße wasserstrahlverfestigte Vlies und ein Umhüllungsmaterial umfasst.
  • Da die Schnittfläche des erfindungsgemäßen Segments der eines Segments aus Celluloseacetat optisch sehr ähnlich ist, ist in einer bevorzugten Ausführungsform das dem Mundende am nächsten gelegene Segment des Rauchartikels ein erfindungsgemäßes Segment.
  • In einer bevorzugten Ausführungsform ist der Rauchartikel eine Filterzigarette und das aerosolbildende Material umfasst Tabak.
  • In einer bevorzugten Ausführungsform ist der Rauchartikel ein Rauchartikel, in dessen bestimmungsgemäßem Gebrauch das aerosolbildende Material nur aufgeheizt, aber nicht verbrannt wird und das aerosolbildende Material umfasst vorzugsweise ein Material ausgewählt aus der Gruppe bestehend aus Tabak, rekonstituiertem Tabak, Nikotin, Glycerol, Propylenglykol oder Mischungen daraus. Das aerosolbildende Material kann dabei auch in flüssiger Form vorliegen und sich in einem geeigneten Behältnis im Rauchartikel befinden.
  • Nach den Erkenntnissen der Erfinder kann der erfindungsgemäße nichtlineare Anteil der Verformungsenergie dadurch erreicht werden, dass die Fasern im wasserstrahlverfestigten Vlies stärker in Maschinenrichtung des wasserstrahlverfestigten Vlieses ausgerichtet werden. Dies lässt sich durch die im folgenden beschriebenen erfindungsgemäßen Verfahren erreichen.
  • Das erfindungsgemäße wasserstrahlverfestigte Vlies kann nach einem Verfahren hergestellt werden, das die folgenden Schritte A1 bis A3 umfasst.
    • A1 - Bereitstellen einer Faserbahn umfassend Cellulosefasern, die eine Maschinenrichtung und eine dazu orthogonale in der Bahnebene liegende Querrichtung aufweist,
    • A2 - Wasserstrahlverfestigen der Faserbahn durch auf die Faserbahn gerichtete Wasserstrahlen, um eine wasserstrahlverfestigte Faserbahn herzustellen,
    • A3 - Trocknen der wasserstrahlverfestigten Faserbahn,
    wobei in Schritt A1 der Anteil der Cellulosefasern in der Faserbahn so gewählt ist, dass das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 mindestens 50% und höchstens 100% Cellulosefasern, bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält, und wobei die Schritte A1 und A2 so durchgeführt werden, dass dem wasserstrahlverfestigten Vlies eine charakteristische plastische Verformbarkeit in Querrichtung verliehen wird, die dadurch charakterisiert ist, dass in einem am wasserstrahlverfestigten Vlies nach dem Trocknen in Schritt A3 durchgeführten Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der nichtlineare Anteil der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt, und wobei das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 aufweist.
  • Dabei können die Schritte A1 und A2 so durchgeführt werden, dass die Cellulosefasern im fertiggestellten wasserstrahlverfestigten Vlies tendenziell mehr in Maschinenrichtung ausgerichtet sind, als in Querrichtung.
  • Die in Schritt A2 auf die Faserbahn gerichteten Wasserstrahlen bewirken eine Verwirbelung der Cellulosefasern, wobei die für das günstige plastische Verhalten in Querrichtung förderliche Struktur erzeugt werden kann. Unter dem "Druck des Wasserstrahls" versteht dabei der Fachmann jenen Druck, der zur Erzeugung des Wasserstrahls, beispielsweise in einer Drucckammer, aufgewendet wird. Nach den Erkenntnissen der Erfinder kommt es zur Erzielung eines günstigen plastischen Verhaltens des wasserstrahlverfestigten Vlieses darauf an, dass der Anteil der in Querrichtung orientierten Fasern im wasserstrahlverfestigten Vlies gering ist und die Fasern mehr in Maschinenrichtung und Dickenrichtung ausgerichtet sind. Um diese erfindungsgemäße Struktur im wasserstrahlverfestigten Vlies zu erzeugen sollen die Wasserstrahlen in Querrichtung nahe nebeneinander angeordnet sein. Durch die Nähe der gleichzeitig auf die Faserbahn auftreffenden Wasserstrahlen weicht das Wasser eher in Maschinenrichtung als in Querrichtung aus und orientiert die Fasern entsprechend dieser Richtung.
  • Der Druck der Wasserstrahlen kann dabei gegenüber dem üblicherweise verwendeten Druck reduziert werden. Der Abstand und der Druck der Wasserstrahlen hängt aber auch erheblich von der Größe der Öffnungen ab, aus denen die Wasserstrahlen austreten, und vor allem auch von der Geschwindigkeit der Faserbahn, sodass der Fachmann den konkreten Wert anhand der Erfahrung, in Anlehnung an die konkreten Ausführungsbeispiele und durch einfache Experimente wählen kann.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Vielzahl von Wasserstrahlen verwendet, um das Wasserstrahlverfestigen in Schritt A2 auszuführen, wobei die Wasserstrahlen in mindestens einer Reihe quer zur Maschinenrichtung der Faserbahn angeordnet sind.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Wasserstrahlverfestigen in Schritt A2 durch mindestens zwei Reihen von auf die Faserbahn gerichteten Wasserstrahlen bewirkt, wobei besonders bevorzugt auf jede der beiden Seiten der Faserbahn mindestens eine Reihe der Wasserstrahlen wirkt.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Trocknen in Schritt A3 zumindest teilweise durch Kontakt mit Heißluft, durch Infrarotstrahlung oder durch Mikrowellenstrahlung bewirkt. Eine Trocknung durch direkten Kontakt mit einer beheizten Oberfläche ist ebenfalls möglich, aber weniger bevorzugt, weil dabei die Dicke des wasserstrahlverfestigten Vlieses abnehmen kann.
  • Das nach diesem Verfahren hergestellte wasserstrahlverfestigte Vlies soll zur Verwendung in Segmenten für Rauchartikel geeignet sein. Dies bedeutet, dass es insbesondere sämtliche Merkmale einzeln oder in Kombination aufweisen kann, die oben im Zusammenhang mit dem wasserstrahlverfestigten Vlies beschrieben wurden und in den auf das wasserstrahlverfestigte Vlies gerichteten Ansprüchen definiert sind.
  • In einer vorteilhaften Weiterbildung umfasst der genannte Schritt A1 des Bereitstellens der Faserbahn die folgenden Teilschritte B1 bis B3:
    • B1 - Herstellen einer wässrigen Suspension umfassend Cellulosefasern,
    • B2 - Aufbringen der Suspension aus Schritt B1 auf ein umlaufendes Sieb,
    • B3 - Entwässern der Suspension durch das umlaufende Sieb, um die genannte Faserbahn zu bilden,
    • wobei in Schritt B1 die Menge oder der Anteil der Cellulosefasern so gewählt ist, dass das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 mindestens 50% und höchstens 100% Cellulosefasern, bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält, und wobei in Schritt B3 durch die Laufrichtung des Siebs die genannte Maschinenrichtung der Faserbahn definiert wird und durch die dazu orthogonale in der Ebene der Faserbahn liegende Richtung die genannte Querrichtung definiert wird, und
    • wobei in Schritt B2 die Suspension mit einer Geschwindigkeit auf das umlaufende Sieb aufgebracht wird, die geringer ist als die Geschwindigkeit des umlaufenden Siebs. Dabei sind die Geschwindigkeiten des umlaufenden Siebs und der Suspension jeweils in Bezug auf dasselbe Bezugssystem zu verstehen, sodass voneinander abweichende Geschwindigkeiten zu einer Relativgeschwindigkeit zwischen Suspension und umlaufendem Sieb führt, die bei dieser Ausführungsform des Verfahrens ausgenutzt wird.
  • In dieser Ausführungsform des Verfahrens erhält die Faserbahn die gewünschte Struktur zumindest teilweise dadurch, dass die Geschwindigkeit, mit der die Suspension in Schritt B2 auf das umlaufende Sieb strömt, und die Geschwindigkeit des umlaufenden Siebs in Schritt B2 aufeinander geeignet abgestimmt werden. Insbesondere soll nach den Erkenntnissen der Erfinder die Geschwindigkeit, mit der die Suspension in Schritt B2 auf das umlaufende Sieb strömt, kleiner sein als die Geschwindigkeit des umlaufenden Siebs. Durch den Geschwindigkeitsunterschied wird die Suspension vom Sieb mitgenommen und es entstehen in der Suspension Scherkräfte, die die Cellulosefasern in Maschinenrichtung ausrichten und so zu einer Struktur des wasserstrahlverfestigten Vlieses beitragen, die zu der erfindungsgemäßen plastischen Verformbarkeit in Querrichtung führt. Die Größe des Geschwindigkeitsunterschieds kann der Fachmann nach seiner Erfahrung und anhand der Ausführungsbeispiele oder durch einfache Experimente bestimmen. Nach Erfahrungen der Erfinder kann eine Struktur mit der gewünschten plastischen Verformbarkeit in Querrichtung in vielen Fällen erreicht werden, wenn in Schritt B2 die Suspension mit einer Geschwindigkeit auf das umlaufende Sieb aufgebracht wird, die lediglich etwa 90 % der Geschwindigkeit des umlaufenden Siebs, beispielsweise zwischen 88 % und 93 % der Geschwindigkeit des umlaufenden Siebs beträgt. Diese Angabe dient indes lediglich als Anhaltspunkt, ein geeigneter numerischer Wert der Differenzgeschwindigkeit wird zumindest teilweise von den übrigen Prozessparametern abhängen, und der Fachmann wird ihn deshalb in der Praxis experimentell ermitteln, wobei als Leitlinie und letztlich entscheidendes Kriterium die erhaltene charakteristische plastische Verformbarkeit des so hergestellten wasserstrahlverfestigten Vlieses in Querrichtung dient, die wie oben beschrieben unter Bezugnahme auf den Zugversuch in Querrichtung gemäß ISO 1924-2:2008 charakterisiert ist.
  • In einer bevorzugten Weiterbildung hat die wässrige Suspension in Schritt B1 einen Feststoffgehalt von höchstens 3,0%, besonders bevorzugt höchstens 1,0%, ganz besonders bevorzugt höchstens 0,2% und insbesondere höchstens 0,05%. Der besonders geringe Feststoffgehalt der Suspension erlaubt es, in Schritt B3 eine Faserbahn mit geringer Dichte zu bilden, was sich günstig auf die Filtrationseffizienz eines daraus gefertigten Segments auswirkt.
  • In einer bevorzugten Ausführungsform ist das umlaufende Sieb der Schritte B2 und B3 in Maschinenrichtung der Faserbahn gegen die Horizontale um einen Winkel von mindestens 3° und höchstens 40° aufwärts geneigt, besonders bevorzugt um einen Winkel von mindestens 5° und höchstens 30° und ganz besonders bevorzugt um einen Winkel von mindestens 15° und höchstens 25°.
  • In einer bevorzugten Ausführungsform umfasst das Verfahren einen Schritt, in dem eine Druckdifferenz zwischen den beiden Seiten des umlaufenden Siebs erzeugt wird, um das Entwässern der Suspension in Schritt B3 zu unterstützen, wobei die Druckdifferenz besonders bevorzugt durch Vakuumkästen oder geeignet geformte Flügel erzeugt wird.
  • In einer bevorzugten Ausführungsform umfasst das Verfahren einen weiteren Schritt, in dem ein oder mehrere Zusatzstoffe auf die Faserbahn aufgetragen werden. Die Zusatzstoffe sind bevorzugt ausgewählt aus der Gruppe bestehend aus Alkylketendimeren (AKD), Säureanhydriden, wie Alkenylbernsteinsäureanhydriden (ASA), Polyvinylalkohol, Wachsen, Fettsäuren, Stärke, Stärkederivaten, Carboxymethylcellulose, Alginaten, Chitosan, Nassfestmitteln oder Substanzen zur Einstellung des pH-Werts, wie beispielsweise organischen oder anorganischen Säuren oder Laugen, und Mischungen daraus. Alternativ oder zusätzlich können auch ein oder mehrere Zusatzstoffe aufgetragen werden, die ausgewählt sind aus der Gruppe bestehend aus Zitraten, wie Trinatriumzitrat oder Trikaliumzitrat, Malaten, Tartraten, Acetaten, wie Natriumacetat oder Kaliumacetat, Nitraten, Succinaten, Fumaraten, Gluconaten, Glycolaten, Lactaten, Oxyalaten, Salicylaten, α-Hydroxycaprylaten, Phosphaten, Polyphosphaten, Chloriden und Hydrogencarbonaten, und Mischungen daraus.
  • In einer bevorzugten Ausführungsform erfolgt das Auftragen des einen Zusatzstoffs oder der Zusatzstoffe zwischen den Schritten A2 und A3 des erfindungsgemäßen Verfahrens oder nach dem Schritt A3, gefolgt von einem weiteren Schritt des Trocknens der Faserbahn.
  • KURZE BESCHREIBUNG DER FIGUREN
  • Figur 1
    zeigt ein beispielhaftes Kraft-Dehnungs-Diagramm eines erfindungsgemäßen wasserstrahlverfestigten Vlieses.
    Figur 2
    zeigt ein beispielhaftes Kraft-Dehnungs-Diagramm eines nicht erfindungsgemäßen Filtermaterials.
    Figur 3
    zeigt eine Vorrichtung, mittels der ein erfindungsgemäßes Verfahren zur Herstellung eines erfindungsgemäßen wasserstrahlverfestigten Vlieses durchgeführt werden kann.
    Figur 4
    zeigt an den erfindungsgemäßen Ausführungsbeispielen A, B und C in Querrichtung gemessene Kraft-Dehnungs-Kurven.
    Figur 5
    zeigt an dem nicht erfindungsgemäßen Vergleichsbeispiel Z in Querrichtung gemessene Kraft-Dehnungs-Kurven.
    BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN UND EINES VERGLEICHSBEISPIELS
  • Im Folgenden werden einige bevorzugte Ausführungsformen des wasserstrahlverfestigten Vlieses, der Verfahren zur Herstellung des wasserstrahlverfestigten Vlieses, des Segments für Rauchartikel und des Rauchartikels beschrieben. Ferner wird ein nicht erfindungsgemäßes Vergleichsbeispiel beschrieben.
  • Ausführungsbeispiele A, B und C
  • Zur Herstellung der erfindungsgemäßen Ausführungsbeispiele A, B und C wurde die in Figur 3 dargestellte Vorrichtung verwendet.
  • Eine Suspension 31 aus Zellstofffasern und Fasern aus regenerierter Cellulose wurde in einem Vorratsbehälter 32 bereitgestellt, Schritt B1, und von dort auf ein umlaufendes, gegen die Horizontale aufwärts geneigtes Sieb 33 gepumpt, Schritt B2, und durch Vakuumkästen 39 entwässert, Schritt B3, sodass sich auf dem Sieb eine Faserbahn 34 bildete, deren generelle Bewegungsrichtung durch den Pfeil 310 angedeutet ist. Man beachte, dass die Schritte B1 bis B3 konkrete Teilschritte des allgemeinen Verfahrensschritts A1 (Bereitstellen einer Faserbahn umfassend Cellulosefasern) sind. Dabei wurde die Geschwindigkeit mit der sich das Sieb 33 bewegt um etwa 10% höher gewählt als die Geschwindigkeit der aus dem Vorratsbehälter 32 ausströmenden Suspension 31, um die Fasern vor allem in Maschinenrichtung zu orientieren. Die Faserbahn 34 wurde vom Sieb 33 abgenommen und auf ein ebenfalls umlaufendes Stützsieb 35 übergeführt. Dort wurden aus Vorrichtungen 36 in mehreren Reihen quer zur Maschinenrichtung der Faserbahn 34 angeordnete Wasserstrahlen 311 auf die Faserbahn 34 gerichtet, um die Fasern zu verwirbeln und die Faserbahn 34 zu einem Vliesstoff zu verfestigen, Schritt A2. In Fortsetzung von Schritt A2 wurden durch zusätzliche Vorrichtungen 37 auch Wasserstrahlen 312 auf die andere Seite der Faserbahn 34 gerichtet. Danach durchlief der noch feuchte Vliesstoff eine Trocknungseinrichtung 38 und wurde dort getrocknet, Schritt A3, um das wasserstrahlverfestigte Vlies zu erhalten.
  • Zur Herstellung des wasserstrahlverfestigten Vlieses wurde ein Gemisch aus Zellstofffasern aus Nadelhölzern und Lyocell® Fasern verwendet, wobei die Fasermengen so gewählt wurden, dass das fertige wasserstrahlverfestigte Vlies aus 65% Zellstofffasern und 35% Lyocell® Fasern bestand. Das fertige wasserstrahlverfestigte Vlies hatte ein Flächengewicht, gemäß ISO 536:2019, von 55 g/m2.
  • In Schritt A2 des Herstellungsprozesses wurden zunächst in drei Reihen Wasserstrahlen, 311 in Fig. 3, auf die erste Seite der Faserbahn 34 gerichtet und danach wurde eine Reihe Wasserstrahlen, 312 in Fig. 3, auf die zweite Seite der Faserbahn 34 gerichtet. Der Druck der Wasserstrahlen wurde dabei zwischen 2 MPa und 40 MPa in drei Stufen (niedrig, mittel, hoch) variiert, um unterschiedliche erfindungsgemäße wasserstrahlverfestigte Vliese A, B und C zu erhalten. Der Durchmesser der Öffnungen, aus denen die Wasserstrahlen austraten, war in den Reihen unterschiedlich und wurden zwischen 80 µm und 120 µm gewählt, der Abstand der Öffnungen von Mittelpunkt zu Mittelpunkt betrug 0,3 mm.
  • Von diesen wasserstrahlverfestigten Vliesen wurden Proben in Querrichtung entnommen und in einem Zugversuch gemäß ISO 1924-2:2008 das Kraft-Dehnungs-Diagramm aufgenommen. Das Ergebnis ist in Figur 4 dargestellt. Auf der x-Achse 40 ist die Dehnung in % aufgetragen, während auf der y-Achse 41 die Kraft in N aufgetragen ist. Die drei mit A, B und C beschrifteten Linien zeigen die Kraft-Dehnungs-Diagramme der drei erfindungsgemäßen wasserstrahlverfestigten Vliese A, B und C. Beispielhaft ist die Bestimmung des nichtlinearen Anteils der bis zu halben Bruchdehnung aufgenommenen Verformungsenergie an der gesamten bis zur halben Bruchdehnung aufgenommenen Verformungsenergie für das wasserstrahlverfestigte Vlies C erläutert.
  • Bei der halben Bruchdehnung εb/2 wird die zugehörige Kraft F(εb/2) ermittelt und daraus kann der lineare Anteil der Verformungsenergie Elin durch E lin = 1 4 F ε b 2 ε b
    Figure imgb0005
    berechnet werden.
  • Die gesamte bis zur halben Bruchdehnung aufgenommene Verformungsenergie E entspricht der aus der von x-Achse 40 und Kurve C von ε=0 bis ε=εb/2 aufgespannten Fläche und kann durch Verfahren der numerischen Integration problemlos mit ausreichender Genauigkeit bestimmt werden. Zieht man davon den linearen Anteil der Verformungsenergie Elin ab, so verbleibt die als schraffiert dargestellte Fläche, die dem nichtlinearen Anteil der Verformungsenergie Enl entspricht.
  • Die Bestimmung der Verformungsenergien bis zur halben Bruchdehnung wurde für alle drei wasserstrahlverfestigten Vliese A, B und C durchgeführt und die Ergebnisse sind in Tabelle 1 angegeben, wobei E die gesamte Verformungsenergie, Elin den linearen Anteil der Verformungsenergie und Enl den nichtlinearen Anteil der Verformungsenergie jeweils in Querrichtung bis zur halben Bruchdehnung bedeuten. Die Verformungsenergien wurden numerisch aus der Kraft-Dehnungs-Kurve ermittelt und besitzen formal die Einheit N·%. Um auf die übliche Einheit J/m2 zu kommen, ist noch die Probengeometrie zu berücksichtigen. Da es hier aber nur auf die Verhältnisse zueinander ankommt und die Probengeometrien identisch sind, wird darauf verzichtet. Die Bruchdehnung εb und die Kraft bei halber Bruchdehnung F(εb/2) sind ebenfalls angegeben. Tabelle 1
    Bsp. Druck εb [%] F(εb/2) [N] E Elin Enl Enl/E [%]
    A niedrig 43,0 4,28 59,3 46,0 13,3 22,4
    B mittel 40,8 3,92 55,3 40,0 15,3 27,7
    C hoch 32,4 3,24 34,1 26,2 7,9 23,0
  • Die Werte aus Tabelle 1 zeigen, dass bei den erfindungsgemäßen Ausführungsbeispielen A, B und C ein nichtlinearer Anteil der Verformungsenergie von etwa 20% bis etwa 30% vorliegt. Es ist auch erkennbar, dass bei steigendem Druck der Wasserstrahlen die Bruchdehnung abnimmt. Aus diesem Grund kann es von Vorteil sein, einen geringen Druck der Wasserstrahlen zu wählen, weil neben dem guten plastischen Dehnungsverhalten dann auch noch größere bleibende Verformungen beim Crimpen möglich sind.
  • Vergleichsbeispiel D
  • Vergleichsbeispiel D betrifft die Herstellung eines Filtermaterials in einem Verfahren, welches lediglich die Schritte B1 bis B3 und A3 enthält, nicht aber den Schritt des Wasserstrahlverfestigens der Faserbahn. Das Filtermaterial aus Vergleichsbeispiel D ist insofern nicht erfindungsgemäß, als es kein wasserstrahlverfestigtes Vlies darstellt. Das Vergleichsbeispiel D dient im Wesentlichen dazu nachzuweisen, dass die Durchführung der Verfahrensschritte B1 bis B3 (als Teilschritte einer bevorzugten Ausführungsform des Verfahrensschritts A1) in der Tat geeignet sind, zu einer Struktur beizutragen, die zu einer gewünschten charakteristischen plastischen Verformbarkeit in Querrichtung führt, wenn in Schritt B2 die Suspension mit einer verringerten Geschwindigkeit auf das umlaufende Sieb aufgebracht wird.
  • Zur Herstellung des Filtermaterials wurde ein Gemisch aus Zellstofffasern aus Nadelhölzern und Lyocell® Fasern verwendet, wobei die Fasermengen so gewählt wurden, dass das fertige Filtermaterial aus 80% Zellstofffasern und 20% Lyocell® Fasern bestand. Das fertige Filtermaterial hatte ein Flächengewicht, gemäß ISO 536:2019, von 15 g/m2.
  • In Schritt B2 des Verfahrens wurde die Geschwindigkeit der ausströmenden Suspension etwa 10% geringer gewählt als die Geschwindigkeit des umlaufenden Siebs.
  • Von dem so erhaltenen Filtermaterial D wurden vier Proben in Querrichtung entnommen und in einem Zugversuch gemäß ISO 1924-2:2008 das Kraft-Dehnungs-Diagramm aufgenommen. Die Auswertung der Kraft-Dehnungs-Diagramme erfolgte analog zu den Ausführungsbeispielen A bis C. Die Ergebnisse der vier Messungen sind in Tabelle 2 angeführt Tabelle 2
    Bsp. εb [%] F(εb/2) [N] E Elin Enl Enl/E [%]
    D 4,20 5,97 9,19 6,27 2,92 31,8
    D 3,13 5,43 5,91 4,25 1,66 28,1
    D 3,56 5,79 7,39 5,15 2,24 30,3
    D 4,08 5,90 8,55 6,02 2,53 29,6
  • Die Werte aus Tabelle 2 zeigen, dass bei dem so hergestellten Filtermaterial D ein nichtlinearer Anteil der Verformungsenergie von etwa 30% vorliegt und dass Wiederholmessungen am gleichen Probenmaterial eine geringe Streuung aufweisen. Dadurch wird belegt, dass die Verfahrensschritte B1 bis B3 in der Tat zu der gewünschten plastischen Verformbarkeit in Querrichtung beitragen, wenn die Suspension in Schritt B2 mit verringerter Geschwindigkeit auf das umlaufende Sieb aufgebracht wird.
  • Ausführungsbeispiel E
  • Andererseits ist die in den Ausführungsbeispielen A bis C verwendete spezielle Durchführung des Schritts A1 (mit verringerter Auftragsgeschwindigkeit der Suspension in Schritt B2) nicht notwendig, um die erfindungsgemäße charakteristische plastische Verformbarkeit in Querrichtung im wasserstrahlverfestigten Vlies zu erhalten. Dies ist aus dem im folgenden beschriebenen Ausführungsbeispiel E ersichtlich.
  • Zur Herstellung des wasserstrahlverfestigten Vlieses wurde im Ausführungsbeispiel E ein Gemisch aus Zellstofffasern aus Nadelhölzern und Lyocell® Fasern verwendet, wobei die Fasermengen so gewählt wurden, dass das fertige wasserstrahlverfestigte Vlies aus 80% Zellstofffasern und 20% Lyocell® Fasern bestand. Der Schritt A1 wurde durchgeführt, ohne den Zellstofffasern in der Faserbahn zunächst durch die Durchführung des Schritts B2 eine Vorzugsrichtung quer zur Maschinenrichtung zu verleihen. Das fertige wasserstrahlverfestigte Vlies hatte ein Flächengewicht, gemäß ISO 536:2019, von 15 g/m2.
  • Der Schritt A2 des Wasserstrahlverfestigens erfolgt wie Schritt A2 des Ausführungsbeispiels B.
  • Von dem so erhaltenen wasserstrahlverfestigten Vlies E wurden zwei Proben in Querrichtung entnommen und in einem Zugversuch gemäß ISO 1924-2:2008 das Kraft-Dehnungs-Diagramm aufgenommen. Die Auswertung der Kraft-Dehnungs-Diagramme erfolgte analog zu den Ausführungsbeispielen A bis C. Die Ergebnisse der zwei Messungen sind in Tabelle 3 angeführt. Tabelle 3
    Bsp. εb [%] F(εb/2) [N] E Elin Enl Enl/E [%]
    E 3,26 2,75 3,01 2,47 0,53 17,72
    E 3,95 2,85 3,42 2,82 0,59 17,37
  • Die Werte aus Tabelle 3 zeigen, dass bei dem so hergestellten wasserstrahlverfestigten Vlies E ein Anteil der nichtlinearen Verformungsenergie von etwa 17% vorliegt. Der Vergleich mit Ausführungsbeispielen A bis C, die mittels der Kombination aus geeigneter Durchführung des Wasserstrahlverfestigens in Schritt A2 und Vorstrukturierung der Faserbahn durch verringerte Auftragsgeschwindigkeit in Schritt B2 hergestellt wurden, zeigt, dass diese Kombination höhere Anteile der nichtlinearen Verformungsenergie von etwa 22% bis etwa 28% erlaubt und so zu einem besseren Verhalten beim Crimpen führen kann. Der Aufwand des kombinierten Verfahrens ist natürlich etwas höher als wenn, wie in Ausführungsbeispiel E, die erfindungsgemäße charakteristische plastische Verformbarkeit in Querrichtung nur durch geeignete Durchführung der Wasserstrahlverfestigung in Schritt A2 erhalten wird. Das Ausführungsbeispiel E demonstriert, dass dies in der Tat möglich ist.
  • Vergleichsbeispiel Z
  • Zur Herstellung eines nicht erfindungsgemäßen Filtermaterials wurde dasselbe Gemisch aus Fasern verwendet wie in Ausführungsbeispiel D. Das Flächengewicht war weiterhin 15 g/m2, es wurden aber nur Maschineneinstellungen verwendet, wie sie bei der Herstellung herkömmlicher Filterpapiere üblich sind.
  • Von dem Filtermaterial des Vergleichsbeispiels Z wurden drei Proben in Querrichtung entnommen und in einem Zugversuch gemäß ISO 1924-2:2008 das Kraft-Dehnungs-Diagramm aufgenommen. Die Auswertung der Kraft-Dehnungs-Diagramme erfolgte analog zu den Ausführungsbeispielen A bis C. Die Ergebnisse der drei Messungen sind in Tabelle 4 angeführt. Tabelle 4
    Bsp. εb [%] F(εb/2) [N] E Elin Enl Enl/E [%]
    Z 3,21 8,38 7,22 6,71 0,52 7,17
    Z 3,23 7,42 6,40 5,97 0,42 6,64
    Z 3,15 7,10 5,89 5,58 0,32 5,38
  • Die Kraft-Dehnungs-Kurven von Vergleichsbeispiel Z sind in Fig. 5 dargestellt. Auch ohne quantitative Analyse ist bereits erkennbar, dass das Verhalten deutlich näher an einem linear elastischen Verhalten liegt, sodass Verformungen bei Entlastung im Wesentlichen wieder zurückgebildet werden und viel größere Dehnungen und Kräfte nötig sind um bleibende Verformungen zu erreichen. Dabei kann leicht die Bruchlast oder die Bruchdehnung in Querrichtung überschritten werden.
  • Herstellung von Segmenten und Rauchartikeln
  • Aus jedem wasserstrahlverfestigten Vlies der Ausführungsbeispiele A bis C und E und dem Filtermaterial aus Vergleichsbeispiel Z wurden mit Papier umhüllte Filterstäbe mit einer Länge von 100 mm und einem Durchmesser von 7,85 mm gefertigt. Die Bahnbreite des wasserstrahlverfestigten Vlieses bzw. des Filtermaterials und die Maschineneinstellungen bei der Filterherstellung wurden dabei so gewählt, dass sich ein Zugwiderstand von 450±10 mmWG ergab.
  • Es konnten aus den wasserstrahlverfestigten Vliesen der Ausführungsbeispiele A bis C und E und dem Filtermaterial aus Vergleichsbeispiel Z Filterstäbe hergestellt werden. Es zeigt sich bei der Herstellung aber, dass bei den wasserstrahlverfestigten Vliesen der Ausführungsbeispiele A bis C und E der Vorgang des Crimpens wesentlich weniger empfindlich auf Änderung der Maschineneinstellungen und insbesondere auf die Einstellung des Abstands der Rollen beim Crimpen reagierte als beim Vergleichsbeispiel Z.
  • Aus den Segmenten der Ausführungsbeispiele A bis C und E und dem Vergleichsbeispiel Z wurden Filterzigaretten nach einem üblichen Verfahren aus dem Stand der Technik hergestellt. Dieser Herstellungsprozess verlief problemlos.
  • Es zeigt sich also, dass sich aus dem erfindungsgemäßen wasserstrahlverfestigten Vlies Segmente und Rauchartikel zuverlässiger und einfacher fertigen lassen als aus herkömmlichen, wasserstrahlverfestigten Vliesen oder Papieren und dass durch das günstige plastische Dehnungsverhalten ein besseres Ergebnis beim Crimpen erzielt werden kann.

Claims (15)

  1. Wasserstrahlverfestigtes Vlies zur Herstellung eines Segments für einen Rauchartikel, wobei das wasserstrahlverfestigte Vlies bahnförmig ist und mindestens 50% und höchstens 100% Cellulosefasern, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält,
    wobei das wasserstrahlverfestigte Vlies ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 aufweist, wobei das wasserstrahlverfestigte Vlies eine Maschinenrichtung und eine dazu in der Ebene der Bahn des wasserstrahlverfestigten Vlieses orthogonal liegende Querrichtung aufweist, und wobei das wasserstrahlverfestigte Vlies eine charakteristische plastische Verformbarkeit in Querrichtung aufweist, die dadurch charakterisiert ist, dass in einem Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt.
  2. Wasserstrahlverfestigtes Vlies nach Anspruch 1, bei dem der Anteil an Cellulosefasern im wasserstrahlverfestigten Vlies mindestens 60% und höchstens 100%, bevorzugt mindestens 70% und höchstens 95% beträgt, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses.
  3. Wasserstrahlverfestigtes Vlies nach Anspruch 1 oder 2, bei dem die Cellulosefasern durch Zellstofffasern, durch Fasern regenerierter Cellulose oder Mischungen daraus gebildet sind,
    wobei die Zellstofffasern vorzugsweise aus Nadelholz oder Nadelhölzern, Laubholz oder Laubhölzern oder anderen Pflanzen, insbesondere Hanf, Flachs, Jute, Ramie, Kenaf, Kapok, Kokosnuss, Abacä, Sisal, Bambus, Baumwolle oder aus Espartogras gewonnen sind; oder durch eine Mischung aus Zellstofffasern verschiedener dieser Herkunftsarten gebildet sind, und/oder
    bei dem der Anteil an Fasern aus regenerierter Cellulose vorzugsweise mindestens 5% und höchstens 50%, bevorzugt mindestens 10% und höchstens 45% und besonders bevorzugt mindestens 15% und höchstens 40% beträgt, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses, und/oder
    bei dem die Fasern aus regenerierter Cellulose vorzugsweise zumindest teilweise durch Viskosefasern, Modalfasern, Lyocell® Fasern, Tencel® Fasern oder Mischungen daraus gebildet sind.
  4. Wasserstrahlverfestigtes Vlies nach einem der vorhergehenden Ansprüche, dessen Flächengewicht mindestens 18 g/m2 und höchstens 55 g/m2, bevorzugt mindestens 20 g/m2 und höchstens 50 g/m2 beträgt, und/oder
    wobei das wasserstrahlverfestigte Vlies eine charakteristische plastische Verformbarkeit in Querrichtung aufweist, die dadurch charakterisiert ist, dass in dem genannten Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 15% und höchstens 40%, vorzugsweise mindestens 15% und höchstens 35%, und insbesondere mindestens 18% und höchstens 32% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt, und/oder
    bei dem mindestens ein Teil der Cellulosefasern mit einem Füllstoff beladen ist, wobei der Füllstoff vorzugsweise durch mineralische Partikel, insbesondere Calciumcarbonatpartikel gebildet ist.
  5. Wasserstrahlverfestigtes Vlies nach einem der vorhergehenden Ansprüche, bei dem die Dicke einer Lage des wasserstrahlverfestigten Vlieses, gemessen nach ISO 534:2011, mindestens 25 µm und höchstens 1000 µm, bevorzugt mindestens 30 µm und höchstens 800 µm und besonders bevorzugt mindestens 35 µm und höchstens 600 µm beträgt, und/oder
    bei dem die breitenbezogene Zugfestigkeit des wasserstrahlverfestigten Vlieses in Querrichtung, gemessen nach ISO 1924-2:2008, mindestens 0,05 kN/m und höchstens 5 kN/m, bevorzugt mindestens 0,07 kN/m und höchstens 4 kN/m beträgt, und/oder bei dem die Bruchdehnung des wasserstrahlverfestigten Vlieses in Querrichtung, gemessen nach ISO 1924-2:2008, mindestens 0,5% und höchstens 50%, bevorzugt mindestens 0,8% und höchstens 40% beträgt.
  6. Segment für einen Rauchartikel, umfassend ein in Querrichtung zusammengeschobenes wasserstrahlverfestigtes Vlies und ein Umhüllungsmaterial, wobei das wasserstrahlverfestigte Vlies mindestens 50% und höchstens 100% Cellulosefasern, jeweils bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält,
    wobei das wasserstrahlverfestigte Vlies ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 aufweist, wobei das wasserstrahlverfestigte Vlies eine Querrichtung aufweist, in der das wasserstrahlverfestigte Vlies zusammengeschoben ist, und wobei das wasserstrahlverfestigte Vlies im nicht zusammengeschobenen Zustand eine charakteristische plastische Verformbarkeit in Querrichtung aufweist, die dadurch charakterisiert ist, dass in einem Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt.
  7. Segment nach Anspruch 6, bei dem das wasserstrahlverfestigte Vlies eines oder mehrere der zusätzlichen Merkmale aufweist, die in Ansprüchen 2 bis 5 definiert sind, und/oder wobei das Segment zylindrisch ist mit einem Durchmesser von mindestens 3 mm und höchstens 10 mm, bevorzugt von mindestens 4 mm und höchstens 9 mm und besonders bevorzugt von mindestens 5 mm und höchstens 8 mm, und/oder wobei das Segment eine Länge von mindestens 4 mm und höchstens 40 mm, bevorzugt von mindestens 6 mm und höchstens 35 mm und besonders bevorzugt von mindestens 10 mm und höchstens 28 mm hat.
  8. Segment nach einem der Ansprüche 6 oder 7, wobei der Zugwiderstand des Segments nach ISO 6565:2015 pro Länge des Segments mindestens 1 mmWG/mm und höchstens 12 mmWG/mm, und bevorzugt mindestens 2 mmWG/mm und höchstens 10 mmWG/mm beträgt, und/oder
    dessen Umhüllungsmaterial durch ein Papier oder eine Folie gebildet wird, und/oder dessen Umhüllungsmaterial ein Flächengewicht gemäß ISO 536:2019 von mindestens 20 g/m2 und höchstens 150 g/m2, bevorzugt von mindestens 30 g/m2 und höchstens 130 g/m2 hat.
  9. Verfahren zum Herstellen eines Segments nach einem der Ansprüche 6 bis 8, bei dem ein wasserstrahlverfestigtes Vlies nach einem der Ansprüche 1 bis 5 gecrimpt oder gefaltet wird, ein vorzugsweise endloser Strang aus gecrimptem oder gefaltetem wasserstrahlverfestigten Vlies gebildet wird, der Strang aus gecrimptem oder gefaltetem wasserstrahlverfestigten Vlies mit einem Umhüllungsmaterial umhüllt und der umhüllte Strang in einzelne Stäbe definierter Länge geschnitten wird.
  10. Rauchartikel, umfassend ein Segment, welches ein aerosolbildendes Material enthält, und ein Segment nach einem der Ansprüche 6 bis 8, wobei das genannte Segment nach einem der Ansprüche 6 bis 8 vorzugsweise das dem Mundende am nächsten gelegene Segment des Rauchartikels bildet,
    wobei der Rauchartikel insbesondere eine Filterzigarette ist und das aerosolbildende Material Tabak ist oder enthält, oder
    wobei der Rauchartikel insbesondere ein Rauchartikel ist, bei dessen bestimmungsgemäßem Gebrauch das aerosolbildende Material nur aufgeheizt, aber nicht verbrannt wird, wobei das aerosolbildende Material vorzugsweise ein Material umfasst, dass ausgewählt ist aus der Gruppe bestehend aus Tabak, rekonstituiertem Tabak, Nikotin, Glycerol, Propylenglykol oder Mischungen daraus,
    wobei das aerosolerzeugende Material vorzugsweise in flüssiger Form vorliegt und sich in einem zugehörigen Behältnis im Rauchartikel befindet.
  11. Verfahren zur Herstellung eines wasserstrahlverfestigten Vlieses, wobei das Verfahren die folgenden Schritte umfasst:
    A1 - Bereitstellen einer Faserbahn umfassend Cellulosefasern, die eine Maschinenrichtung und eine dazu orthogonale in der Bahnebene liegende Querrichtung aufweist,
    A2 - Wasserstrahlverfestigen der Faserbahn durch auf die Faserbahn gerichtete Wasserstrahlen, um eine wasserstrahlverfestigte Faserbahn herzustellen,
    A3 - Trocknen der wasserstrahlverfestigten Faserbahn,
    wobei in Schritt A1 der Anteil der Cellulosefasern in der Faserbahn so gewählt ist, dass das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 mindestens 50% und
    höchstens 100% Cellulosefasern, bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält, und
    wobei die Schritte A1 und A2 so durchgeführt werden, dass dem wasserstrahlverfestigten Vlies eine charakteristische plastische Verformbarkeit in Querrichtung verliehen wird,
    die dadurch charakterisiert ist, dass in einem am wasserstrahlverfestigten Vlies nach dem Trocknen in Schritt A3 durchgeführten Zugversuch in Querrichtung gemäß ISO 1924-2:2008 der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommene nichtlineare Anteil der Verformungsenergie mindestens 10% und höchstens 50% der bis zur halben Bruchdehnung vom wasserstrahlverfestigten Vlies aufgenommenen gesamten Verformungsenergie beträgt,
    und wobei das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 ein Flächengewicht von mindestens 15 g/m2 und höchstens 60 g/m2 aufweist.
  12. Verfahren nach Anspruch 11, bei dem eine Vielzahl von Wasserstrahlen verwendet wird, um das Wasserstrahlverfestigen in Schritt A2 auszuführen, wobei die Wasserstrahlen in mindestens einer Reihe quer zur Maschinenrichtung der Faserbahn angeordnet sind, wobei das Wasserstrahlverfestigen in Schritt A2 vorzugsweise durch mindestens zwei Reihen von auf die Faserbahn gerichteten Wasserstrahlen bewirkt wird, wobei bevorzugt auf jede der beiden Seiten der Faserbahn mindestens eine Reihe der Wasserstrahlen wirkt.
  13. Verfahren nach einem der Ansprüche 11 oder 12, bei dem das Trocknen in Schritt A3 zumindest teilweise durch Kontakt mit Heißluft, durch Infrarotstrahlung oder durch Mikrowellenstrahlung bewirkt wird, und/oder
    wobei das nach diesem Verfahren hergestellte wasserstrahlverfestigte Vlies ein wasserstrahlverfestigtes Vlies nach einem der Ansprüche 1 bis 5 ist.
  14. Verfahren nach einem der Ansprüche 11 bis 13, bei dem der Schritt A1 des Bereitstellens der Faserbahn die folgenden Teilschritte B1 bis B3 umfasst:
    B1 - Herstellen einer wässrigen Suspension umfassend Cellulosefasern,
    B2 - Aufbringen der Suspension aus Schritt B1 auf ein umlaufendes Sieb,
    B3 - Entwässern der Suspension durch das umlaufende Sieb, um die genannte Faserbahn zu bilden,
    wobei in Schritt B1 die Menge oder der Anteil an Cellulosefasern so gewählt wird, dass das wasserstrahlverfestigte Vlies nach dem Trocknen in Schritt A3 mindestens 50% und
    höchstens 100% Cellulosefasern, bezogen auf die Masse des wasserstrahlverfestigten Vlieses, enthält,
    wobei durch die Laufrichtung des Siebs in Schritt B3 die genannte Maschinenrichtung der Faserbahn definiert wird und durch die dazu orthogonale in der Ebene der Faserbahn liegende Richtung die genannte Querrichtung definiert wird, und
    wobei in Schritt B2 die Suspension mit einer Geschwindigkeit auf das umlaufende Sieb aufgebracht wird, die geringer ist als die Geschwindigkeit des umlaufenden Siebs,
    wobei die wässrige Suspension in Schritt B1 vorzugsweise einen Feststoffgehalt von höchstens 3,0%, besonders bevorzugt höchstens 1,0%, ganz besonders bevorzugt höchstens 0,2% und insbesondere höchstens 0,05% hat, und/oder
    bei dem vorzugsweise das umlaufende Sieb der Schritte B2 und B3 in Maschinenrichtung der Faserbahn gegen die Horizontale um einen Winkel von mindestens 3° und höchstens 40° aufwärts geneigt ist, bevorzugt um einen Winkel von mindestens 5° und höchstens 30° und besonders bevorzugt um einen Winkel von mindestens 15° und höchstens 25°, und/oder
    das vorzugsweise ferner einen Schritt umfasst, in dem eine Druckdifferenz zwischen den beiden Seiten des umlaufenden Siebs erzeugt wird, um das Entwässern der Suspension in Schritt B3 zu unterstützen, wobei die Druckdifferenz besonders bevorzugt durch Vakuumkästen oder geeignet geformte Flügel erzeugt wird.
  15. Verfahren nach einem der Ansprüche 11 bis 14, welches einen weiteren Schritt umfasst, in dem ein oder mehrere Zusatzstoffe auf die Faserbahn aufgetragen werden, wobei der eine oder die mehreren Zusatzstoffe ausgewählt ist bzw. sind aus der Gruppe bestehend aus Alkylketendimeren (AKD), Säureanhydriden, insbesondere Alkenylbernsteinsäureanhydriden (ASA), Polyvinylalkohol, Wachsen, Fettsäuren, Stärke, Stärkederivaten, Carboxymethylcellulose, Alginaten, Chitosan, Nassfestmitteln und Substanzen zur Einstellung des pH-Werts, insbesondere organischen oder anorganischen Säuren oder Laugen, und Mischungen daraus, und/oder
    welches einen weiteren Schritt umfasst, in dem ein oder mehrere Zusatzstoffe auf die Faserbahn aufgetragen werden, wobei der eine oder die mehreren Zusatzstoffe ausgewählt ist bzw. sind aus der Gruppe bestehend aus Zitraten, insbesondere Trinatriumzitrat oder Trikaliumzitrat, Malaten, Tartraten, Acetaten, insbesondere Natriumacetat oder Kaliumacetat, Nitraten, Succinaten, Fumaraten, Gluconaten, Glycolaten, Lactaten, Oxyalaten, Salicylaten, α-Hydroxycaprylaten, Phosphaten, Polyphosphaten, Chloriden und Hydrogencarbonaten, und Mischungen daraus, wobei
    der eine oder die mehreren Zusatzstoffe vorzugsweise zwischen den Schritten A2 und A3 aufgetragen wird bzw. werden, oder nach dem Schritt A3, gefolgt von einem weiteren Schritt des Trocknens der Faserbahn.
EP21733956.3A 2021-06-15 2021-06-15 Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten Active EP4132303B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/066102 WO2022262955A1 (de) 2021-06-15 2021-06-15 Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten

Publications (2)

Publication Number Publication Date
EP4132303A1 EP4132303A1 (de) 2023-02-15
EP4132303B1 true EP4132303B1 (de) 2023-11-01

Family

ID=76553769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21733956.3A Active EP4132303B1 (de) 2021-06-15 2021-06-15 Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten

Country Status (4)

Country Link
EP (1) EP4132303B1 (de)
KR (1) KR20240023097A (de)
CN (1) CN117479851A (de)
WO (1) WO2022262955A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL256446A (de) * 1959-10-02
EP2228209A1 (de) * 2009-03-11 2010-09-15 Nordenia Deutschland Gronau GmbH Elastisches Laminat, insbesondere für elastische Windelverschlusselemente
US10076135B2 (en) 2014-05-23 2018-09-18 Greenbutts Llc Biodegradable cigarette filter tow and method of manufacture
EP3385425A1 (de) * 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Cellulosefaservliesstoff mit erhöhter ölabsorptionsfähigkeit
EP3861159B1 (de) * 2019-12-13 2022-05-25 delfortgroup AG Wasserstrahlverfestigtes filtermaterial für rauchartikel

Also Published As

Publication number Publication date
CN117479851A (zh) 2024-01-30
EP4132303A1 (de) 2023-02-15
KR20240023097A (ko) 2024-02-20
WO2022262955A1 (de) 2022-12-22

Similar Documents

Publication Publication Date Title
EP3861159B1 (de) Wasserstrahlverfestigtes filtermaterial für rauchartikel
EP1299012B1 (de) Rezessfilter und rauchbarer gegenstand mit einem rezessfilter
EP1796488B1 (de) Tabakrauchfilter oder-filterelemente mit einem gehalt an zusatzstoffen
DE102020119388B4 (de) Plissiertes filtermaterial für rauchartikel
EP3568523B1 (de) Verbessertes filterpapier
EP3298198B1 (de) Umhüllungspapier mit durchscheinenden bereichen
EP3970521B1 (de) Biologisch abbaubares segment eines rauchartikels
DE2333732C3 (de) Verfahren und Vorrichtung zur Herstellung von Papier oder Pappe
DE1632236C3 (de) Tabakfilter und Verfahren zu seiner Herstellung
DE2020115B2 (de) Verfahren zur Herstellung von Filtermaterial für Rauchwaren
EP0543959B1 (de) Verfahren zur herstellung eines mehrlagigen kartons
EP4132303B1 (de) Wasserstrahlverfestigtes filtermaterial für rauchartikel mit verbessertem dehnungsverhalten
DE102021115450A1 (de) Filtermaterial für rauchartikel mit verbessertem dehnungsverhalten
WO2009083092A1 (de) Filter tow ballen, vorrichtung und verfahren zur herstellung eines filter tow ballens sowie filter tow streifen
DE102021104011B4 (de) Strukturiertes filtermaterial für nikotinabgabeprodukte
DE102021115456A1 (de) Filtermaterial für segmente für rauchartikel mit reduzierter kriechneigung
DE10123351B4 (de) Verfahren und Vorrichtung zur Herstellung von Zigarettenfiltern
EP3453266A1 (de) Tabakfolie, stabförmiger rauchartikel und verfahren zum herstellen einer tabakfolie
DE102022102066A1 (de) Segment für rauchartikel mit kalandrierter faserbahn
DE102020119356A1 (de) Verfahren zum Herstellen eines Filterstrangs der Tabak verarbeitenden Industrie und Filterstrangherstellmaschine
DE102020116399A1 (de) Verfahren zur Herstellung einer Faserstoffbahn mit Polylactid-Fasern
DE1532152C (de) Filtermaterial für Tabakrauchfilter od. dgl. und Verfahren zu dessen Herstellung
AT309200B (de) Verfahren zur Behandlung von endlosen Bahnen aus faserhaltigem Material
DE1532152B (de) Filtermaterial für Tabakrauchfilter od. dgl. und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502021001876

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A24D0003100000

Ipc: A24D0001020000

Ref legal event code: R079

Ipc: A24D0001020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A24D 3/17 20200101ALN20230426BHEP

Ipc: D04H 1/492 20120101ALI20230426BHEP

Ipc: D04H 1/4258 20120101ALI20230426BHEP

Ipc: D04H 1/425 20120101ALI20230426BHEP

Ipc: A24D 3/14 20060101ALI20230426BHEP

Ipc: A24D 3/10 20060101ALI20230426BHEP

Ipc: A24D 3/06 20060101ALI20230426BHEP

Ipc: A24D 3/02 20060101ALI20230426BHEP

Ipc: A24D 1/20 20200101ALI20230426BHEP

Ipc: A24D 1/02 20060101AFI20230426BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230510

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001876

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301