EP4125922A1 - Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d'altérations de la fonction respiratoire lors d'une infection virale - Google Patents

Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d'altérations de la fonction respiratoire lors d'une infection virale

Info

Publication number
EP4125922A1
EP4125922A1 EP21732362.5A EP21732362A EP4125922A1 EP 4125922 A1 EP4125922 A1 EP 4125922A1 EP 21732362 A EP21732362 A EP 21732362A EP 4125922 A1 EP4125922 A1 EP 4125922A1
Authority
EP
European Patent Office
Prior art keywords
respiratory
composition
group
treatment
sars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21732362.5A
Other languages
German (de)
English (en)
Inventor
Pierre Dilda
René LAFONT
Stanislas Veillet
Samuel AGUS
Waly Dioh
Serge CAMELO
Mathilde Latil
Mounia CHABANE DE SAINT AUBIN
Cendrine TOURETTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorbonne Universite
Biophytis SA
Original Assignee
Sorbonne Universite
Biophytis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sorbonne Universite, Biophytis SA filed Critical Sorbonne Universite
Publication of EP4125922A1 publication Critical patent/EP4125922A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Definitions

  • the invention relates to the use of phytoecdysones and semisynthetic derivatives of phytoecdysones for the treatment of alterations in respiratory function, particularly in the context of pathologies of viral origin.
  • viruses responsible for these infections are numerous. These include rhinovirus, respiratory syncytial virus, influenza virus (influenza), influenza A (H1N1) virus and coronaviruses.
  • ARDS represents the main cause of death in patients infected with coronaviruses (Greenland et al. 2020; Zhou et al. 2020). Therefore, it is essential to detect and treat respiratory disease as early as possible.
  • the three main fatal coronavirus epidemics in the 21 st century are those of 2003 (SARS-CoV originating in the province of Guangdong, China), that of 2012 (MERS-CoV originating in the middle east) and that of 2019 (SARS -CoV2, from Hubei, China).
  • SARS-CoV originating in the province of Guangdong, China
  • 2012 MERS-CoV originating in the middle east
  • 2019 SARS -CoV2
  • respiratory failure characterized by the inability of the respiratory system to provide adequate oxygenation and elimination of carbon dioxide, is common in patients infected with coronaviruses.
  • the angiotensin-2 converting enzyme (ACE2), especially expressed in pulmonary epithelial and endothelial cells, is the receptor for SARS-CoV and SARS-CoV-2, respectively responsible for SARS epidemics of 2003 and 2019 (Hoffmann et al. 2020; Wan et al. 2020; Xu et al. 2020).
  • ACE2 which is part of the renin angiotensin (RAS) system, converts angiotensin II (Ang II) to angiotensin 1-7 (Ang-1-7).
  • Ang-1-7 mediates anti-inflammatory, antioxidant and vasodilator effects by binding to the Mas receptor (MasR) (Magalhaes et al. 2018; Jiang et al.
  • ACE converts angiotensin I (Ang I) into angiotensin II (Ang II).
  • Ang II angiotensin II
  • AT1 Ang II type 1 receptor
  • the axes ACE / Ang II / AT1 and ACE2 / Ang-1-7 / MasR are respectively known as the “harmful” and “protective” arm of the ARS (Santos et al. 2013).
  • Angiotensin 1-7 also has vasodilator properties and has hypotensive (Benter et al. 1993) and antihypertensive (Zhang et al. 2019) effects.
  • Phytoecdysones represent an important family of polyhydroxylated phytosterols structurally related to insect molting hormones. These molecules are produced by many plant species and participate in their defense against insect pests. The major phytoecdysone is 20-hydroxyecdysone (20E).
  • 20E is pharmacologically active in mammals. It activates the Mas receptor on the protective arm of the ARS (Dilda et al. 2019). Mas engagement by 20E is responsible for a number of preclinical beneficial activities in normal and pathological settings.
  • 20-Hydroxyecdysone has anti-inflammatory effects in vivo in a mouse model of acute lung injury (ALI). Inflammatory (TNF- ⁇ , IL-2, IL-6, IL-8) and anti-inflammatory (IL-4, IL-10) cytokines in plasma are respectively reduced and increased by treatment with 20-hydroxyecdysone. Modulation of inflammation is associated with decreased lung lesions, as shown by histological examination of the lungs of treated animals (Xia et al. 2016; Song et al. 2019).
  • BIO101 is an oral preparation of 20-hydroxyecdysone with a purity greater than or equal to 97%. Its method of preparation is disclosed in international patent application WO2018197731 (Lafont et al. 2018). BI0101 is a new drug candidate clinically developed in sarcopenia and Duchenne muscular dystrophy. This latter therapeutic application is the subject of international patent application WO201 8197708 (Dilda et al. 2018). Hemi-synthetic derivatives of 20-hydroxyecdysone have also been developed, as disclosed in international patent application WO2015177469 (Lafont et al. 2015), and are used for such therapeutic applications.
  • ACE enzyme converting agent
  • AT1 angiotensin 2 receptor antagonists
  • the invention relates to a composition
  • a composition comprising at least one phytoecdysone and / or at least one semisynthetic derivative of phytoecdysone, for its use in the treatment of an impairment of respiratory function resulting from an infection viral in mammals.
  • a hypotensive effect can be harmful in a situation of respiratory distress linked in particular to a viral infection and a state of shock (Bitker & Burell et al. 2019; Wujtewicz et al. 2020).
  • Phytoecdysones and their synthetic hemi derivatives also advantageously have no effect on peak inspiratory flow (PID), on peak expiratory flow (PEF), on respiratory rate and finally on PenH.
  • the invention further meets the following characteristics, implemented separately or in each of their technically operative combinations.
  • the phytoecdysones and their derivatives are advantageously purified to pharmaceutical grade.
  • a phytoecdysone that can be used according to the invention is, for example, 20-hydroxyecdysone and a semisynthetic derivative of phytoecdysone that can be used is, for example, a semisynthetic derivative of 20-hydroxyecdysone.
  • the composition comprises 20-hydroxyecdysone and / or at least one synthetic hemi derivative of 20-hydroxyecdysone.
  • 20-hydroxyecdysone and its derivatives are advantageously purified to pharmaceutical grade.
  • the 20-hydroxyecdysone used is preferably in the form of a plant extract rich in 20-hydroxyecdysone or of a composition comprising 20-hydroxyecdysone as an active agent.
  • Plant extracts rich in 20-hydroxyecdysone are, for example, extracts of Stemmacantha carthamoides (also called Leuzea carthamoides), Cyanotis arachnoidea and Cyanotis vaga.
  • the extracts obtained are preferably purified to pharmaceutical grade.
  • the 20-hydroxyecdysone is in the form of a plant extract or a part of a plant, said plant being chosen from plants containing at least 0.5% of 20-hydroxyecdysone by dry weight of said plant, said extract comprising at least 95%, and preferably at least 97%, of 20-hydroxyecdysone.
  • Said extract is preferably purified to pharmaceutical grade.
  • Said extract is hereinafter called BIO101. It remarkably comprises between 0 and 0.05%, by dry weight of the extract, of impurities, such as minor compounds, liable to affect the harmlessness, availability or efficacy of a pharmaceutical application of said. extract.
  • the impurities are compounds with 19 or 21 carbon atoms, such as Rubrosterone, Dihydrorubrosterone or Poststerone.
  • BIO101 is produced is preferably chosen from Stemmacantha carthamoides (also called Leuzea carthamoides), Cyanotis arachnoidea and Cyanotis vaga.
  • the phytoecdysone derivatives and in particular of 20-hydroxyecdysone are obtained by semisynthesis and can in particular be obtained as described in international patent application No. WO2015177469 (Lafont et al. 2015).
  • the invention is aimed at the composition for its use in the treatment of an impairment of respiratory function resulting from a viral infection in mammals by a virus chosen from rhinovirus, respiratory virus. syncytial, influenza virus (influenza), influenza virus A H1 N1) and coronavirus.
  • a virus chosen from rhinovirus, respiratory virus. syncytial, influenza virus (influenza), influenza virus A H1 N1) and coronavirus.
  • the direct activation of the "protective" arm of the renin angiotensin system (RAS), downstream of the angiotensin-2 converting enzyme (ACE2), via the activation of the Mas receptor seems to be an option of effective treatment to restore the balance of the ARS and thus protect patients infected with an acute respiratory distress syndrome (ARDS) coronavirus.
  • RAS renin angiotensin system
  • ACE2 angiotensin-2 converting enzyme
  • the invention is aimed at the composition for its use in the treatment of an alteration in respiratory function resulting from a viral infection by a coronavirus using ACE2 as a receptor on the surface of mammalian cells. .
  • the invention relates to the composition for its use in the treatment of impaired respiratory function resulting from a viral infection with SARS-CoV in mammals.
  • SARS-CoV is a coronavirus that causes severe acute respiratory syndrome.
  • the invention relates to the composition for its use in the treatment of an impairment of respiratory function resulting from a viral infection by SARS-CoV2 in mammals.
  • SARS-CoV2 is a type 2 coronavirus responsible for the severe acute respiratory syndrome of the COVID-19 pandemic.
  • the treatment of impaired respiratory function comprises the prevention and treatment of respiratory failure in mammals suffering from viral infection.
  • the treatment of impaired respiratory function comprises the prevention and treatment of acute respiratory distress syndrome in mammals affected by the viral infection.
  • the invention relates to the composition for its use in the treatment of at least one or more of the alterations of the respiratory function in the mammal affected by the viral infection, chosen from hypoxia and the decrease in the ability to remove CO2.
  • the treatment of the impairment of the respiratory function comprises the treatment of the respiratory muscle function.
  • the invention is aimed at the composition for its use in mammals in the treatment of an alteration in respiratory function linked to the evolution of at least one of the parameters chosen from:
  • the phytoecdysones are administered at a dose of between 1 and 15 milligrams per kilogram per day in humans.
  • the term “phytoecdysone” is understood here to mean both phytoecdysones in general and their derivatives, 20-hydroxyecdysone (in particular in the form of an extract) and its derivatives.
  • the phytoecdysones are administered at a dose of 200 to 1000 mg / day, in one or more intakes, in an adult human, and a dose of 5 to 350 mg / day, in one or more intakes, in the human child or infant.
  • the term “phytoecdysone” is understood here to mean both phytoecdysones in general and their derivatives, 20-hydroxyecdysone (in particular in the form of an extract) and its derivatives.
  • the composition comprises at least one compound considered to be a phytoecdysone derivative, said at least one compound being of general formula (I): [Chem. 1] in which :
  • Q is a carbonyl group
  • R 1 is chosen from: a (Ci-C6) W (Ci-C6) group; a (Ci-C6) W (Ci-C6) W (Ci-C 6 ) group; a (Ci-C6) W (Ci-C6) CC> 2 (Ci-C6) group; a (CI-C6) A group, A representing a heterocycle optionally substituted by a group of OH, OMe, (C1-C6), N (CI-C6), C02 (C1-C6) type; a CH2Br group;
  • W being a heteroatom chosen from N, O and S, preferably O and even more preferably S.
  • (C1-C6) any alkyl group of 1 to 6 carbon atoms, linear or branched, in particular, methyl, ethyl, n-propyl, iso -propyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, n-hexyl.
  • it is a methyl, ethyl, iso-propyl or t-butyl group, in particular a methyl or ethyl group, more particularly a methyl group.
  • Y is a hydroxyl group
  • R 1 is chosen from: a (Ci-C6) W (Ci-C6) group; a (Ci-C6) W (Ci-C6) W (Ci-C 6 ) group; a (Ci-C6) W (Ci-C6) CC> 2 (Ci-C6) group; a (CI-C6) A group, A representing a heterocycle optionally substituted by a group of OH, OMe, (OI-OQ), N (OI-OQ), C02 (CI-Ce) type; W being a heteroatom chosen from N, O and S, preferably O and more preferably S.
  • the composition comprises at least one compound chosen from the following compounds: No. 1: (2S, 3R, 5R, 10R, 13R, 14S, 17S) -2,3,14-trihydroxy-10 , 13-dimethyl-17- (2-morpholinoacetyl) -2,3,4,5,9,11, 12,15,16,17-decahydro-1 H-cyclopenta [a] phenanthren-6-one, no.
  • n ° 6 2- [2-oxo-2 - [(2S, 3R, 5R, 10R, 13R, 14S, 17S) -2,3,14-trihydroxy-10,13-dimethyl-6-oxo-2, 3,4,5,9,11,12,15,16,17-decahydro-1 H-cyclopenta [a] phenanthren-17-yl] ethyl] sulfanylacetate; n ° 7: (2S, 3R, 5R, 10R, 13R, 14S, 17S) -17- (2-ethylsulfanylacetyl) -2,3,14- trihydroxy-10,13-dimethyl-2,3,4,5, 9,11,12,15,16,17-decahydro-1 H-cyclopenta [a] phenanthren-6-one; n ° 8: (2S,
  • the composition comprises at least one compound considered to be a phytoecdysone derivative, said at least one compound being of formula (II): [Chem. 2]
  • the compound of formula (II) is hereinafter called BI0103.
  • composition is incorporated into an acceptable pharmaceutical formulation which can be administered orally.
  • acceptable pharmaceutical which is useful in the preparation of a pharmaceutical composition which is generally safe, non-toxic and which is acceptable for veterinary use as well as human pharmaceutical.
  • Figure 1 is a diagram illustrating the scientific rationale for activating the ACE2 / Ang 1-7 / Mas arm in patients with coronavirus using ACE2 as a receptor.
  • FIG. 2A represents a graph illustrating the absence of an antihypertensive effect of BIO101 in spontaneously hypertensive animals.
  • the effects of BIO101 alone were evaluated after single oral administration.
  • Six SH rats were used in cross-treatments (crossover treatment) with a minimum elimination period of 72 hours between treatments. Prior to treatment, the animals were fitted with telemetry instruments for blood pressure measurements.
  • the animals received the treatments following: vehicle, or BIO101 at 5 mg / kg, or BIO101 at 50 mg / kg, or Enalapril at 50 mg / kg.
  • FIG. 2B represents a graph illustrating the absence of a hypotensive effect of BIO101 in hypertensive animals already treated with an antihypertensive agent: Enalapril.
  • Enalapril is a converting enzyme inhibitor (ACE).
  • ACE converting enzyme inhibitor
  • the effects of BIO101 alone were evaluated after repeated administration in animals treated for 4 days with Enalapril (30 mg / kg * day).
  • Six SH rats were used in cross-treatments (cross-over treatment) with a minimum elimination period of 72 hours between treatments. Prior to treatment, the animals were fitted with telemetry instruments for blood pressure measurements. For the experiment described in FIG.
  • the animals received the following treatments: Enalapril at 30 mg / kg for 4 days, or Enalapril at 30 mg / kg + BI0101 at 5 mg / kg for 4 days, or Enalapril at 30 mg / kg / kg + BI0101 at 50 mg / kg for 4 days.
  • FIG. 3A represents a graph illustrating the effects of BIO101 on the mean arterial pressure evaluated after single oral administration.
  • Four beagle dogs were used in cross-treatments (crossover treatment) with a elimination period of at least 72 hours between treatments. Prior to treatment, the animals were fitted with telemetry instruments for blood pressure measurements. For the experiment described in Figure 3A, the animals received the following oral treatments: vehicle, or BIO101 at 30 mg / kg, or BIO101 at 120 mg / kg, or BIO101 at 500 mg / kg.
  • FIG. 3B represents a graph illustrating the effects of BIO101 on heart rate evaluated after single oral administration.
  • Four beagle dogs were used in cross-treatments (crossover treatment) with a minimum elimination period of 72 hours between treatments. Prior to treatment, the animals were fitted with telemetry instruments for heart rate measurements. For the experiment described in FIG. 3B, the animals received the following oral treatments: vehicle, or BIO101 at 30 mg / kg, or BIO101 at 120 mg / kg, or BIO101 at 500 mg / kg.
  • FIG. 4A represents a graph illustrating the absence of effects of BIO101 on the peak inspiratory flow (PID) after oral administration of single doses. Eight rats were used in cross-treatments (cross-over treatment) with a minimum elimination period of 72 hours between treatments.
  • PID peak inspiratory flow
  • the animals received the following oral treatments: vehicle, or BIO101 at 100 mg / kg, or BIO101 at 300 mg / kg, or BIO101 at 1000 mg / kg.
  • the respiratory parameters are measured by plethysmography for 4 h 30 min.
  • Figure 4B is a graph illustrating the lack of effect of BI0101 on peak expiratory flow (PEF) after oral administration of single doses.
  • Eight rats were used in cross-treatments (cross-over treatment) with a elimination period of at least 72 hours between treatments.
  • the animals received the following oral treatments: vehicle, or BIO101 at 100 mg / kg, or BIO101 at 300 mg / kg, or BIO101 at 1000 mg / kg.
  • the respiratory parameters are measured by plethysmography for 4 h 30 min.
  • Figure 4C is a graph illustrating the lack of effect of BI0101 on respiratory rate after oral administration of single doses.
  • Eight rats were used in cross-treatments (crossover treatment) with a elimination period of at least 72 hours between treatments.
  • the animals received the following oral treatments: vehicle, or BIO101 at 100 mg / kg, or BIO101 at 300 mg / kg, or BIO101 at 1000 mg / kg.
  • the respiratory parameters are measured by plethysmography for 4 h 30 min.
  • FIG. 4D represents a graph illustrating the absence of effect of BI0101 on Penh after oral administration of single doses.
  • Eight rats were used in cross-treatments (cross-over treatment) with a minimum elimination period of 72 hours between treatments. For this experiment, the animals received the following oral treatments: vehicle, or BIO101 at 100 mg / kg, or BIO101 at 300 mg / kg, or BIO101 at 1000 mg / kg.
  • the respiratory parameters are measured by plethysmography for 4 h 30 min.
  • Figure 5 shows the pharmacokinetic profiles of BIO101 in Syrian hamster plasma. These are graphs representing the plasma concentrations as a function of time after a single oral administration (PO) of BIO101 at 50 mg / kg formulated in 4000 cP 0.5% methylcellulose medium in water (Figure 5A) or after a single intraperitoneal (IP) administration at 10 mg / kg formulated in 0.9% NaCl medium (FIG. 5B).
  • PO oral administration
  • IP intraperitoneal
  • Figure 6 shows the timing diagram of the study of the treatment of impaired respiratory function in Syrian hamsters infected with the SARS-CoV-2 virus as well as the various parameters studied.
  • Respiratory function is assessed by whole body plethysmography before inoculation and 5 days after viral infection.
  • the pulmonary infectious viral load is quantified.
  • FIG. 7 represents a histogram illustrating the quantification of the pulmonary viral load of the different groups of control animals not infected with SARS-CoV-2 (control), infected with SARS-CoV-2 and treated with the vehicle (SARS-CoV-2 + vehicle) or infected with SARS- CoV-2 treated with BIO101 IP (SARS-CoV-2 + BIO101).
  • FIG. 8A is the schematic representation of a plot of the recording of a breathing cycle (inspiration then expiration) and of the various data that can be recorded by whole body plethysmography.
  • DIP Peak inspiratory flow
  • DEP Peak expiratory flow
  • PTE Tele-expiratory pause
  • TE Expiration time
  • Tl Inspiration time
  • TR expiration time required to expire 65% of the total volume d 'air.
  • FIG. 8B represents the Penh values of the non-controlled control groups.
  • FIG. 9 represents different respiratory parameters measured by whole body plethysmography of the different groups of control animals not infected with SARS-CoV-2 (control), infected with SARS-CoV-2 and treated with the vehicle ( SARS-CoV-2 + vehicle) or infected with SARS-CoV-2 treated with BIO101 IP (SARS-CoV-2 + BIO101).
  • the parameters measured are: inspiration time in milliseconds ( Figure 9A), expiration time in milliseconds ( Figure 9B), tele-expiratory pause in milliseconds ( Figure 9C) with * p ⁇ 0.05, and
  • the study concerns adults aged 18 and over, suffering from a SARS-CoV-2 infection proven by PCR, during the last 28 days and who have developed severe manifestations, during the last 7 days, defined as: signs of respiratory decompensation by one of the following parameters: a respiratory rate greater than or equal to 25 respiratory cycles (inspiration and expiration) per minute and / or arterial oxygen saturation less than or equal to 92% in air ambient or with 3 liters of oxygen per minute.
  • BI0101 is administered orally daily.
  • BIO101 is a plant extract chosen from plants containing at least 0.5% of 20-hydroxyecdysone by dry weight of said plant, said extract comprising at least 97% of 20-hydroxyecdysone.
  • the effect of treatment with BIO101 on patients affected by the SARS-CoV2 coronavirus is evaluated after 7, 14 and 28 days on the basis of the following measurements:
  • the effect of the treatment is also evaluated using parameters such as the sequential assessment score for respiratory failure (SOFA, Zhou et al. 2020), the pulmonary severity index (PSI, Liu et al. 2020) and medical imaging which allows the level of progression of exudative inflammatory pathology to be graded.
  • SOFA sequential assessment score for respiratory failure
  • PSI pulmonary severity index
  • medical imaging which allows the level of progression of exudative inflammatory pathology to be graded.
  • BIO101 The effect of BIO101 on the plasma level of pro-inflammatory and anti-inflammatory cytokines is also evaluated.
  • BIO101 at doses of 5 and 50 mg / kg does not induce a decrease in the mean arterial pressure of hypertensive animals, whatever the dose used (FIG. 2A). BIO101 therefore has no anti-hypertensive effect.
  • Enalapril an ACE inhibitor, has antihypertensive activity.
  • BIO101 on the respiratory parameters by plethysmography in vigilant rats after oral administration at doses of 100, 300 and 1000 mg / kg.
  • single oral administration of BIO101 at 100, 300 or 1000 mg / kg had no effect on peak inspiratory flow (PID, Figure 4A), on peak expiratory flow ( DEP, Figure 4B), on the respiratory rate (Figure 4C) and finally on the PenH (Figure 4D).
  • a pharmacokinetic study of BI0101 was previously carried out in healthy hamsters, without viral infection, in order to determine which route of administration made it possible to obtain plasma exposure in hamsters, similar to the plasma exposure found in male, after oral administration at 350 mg bid of BI0101 for 14 days in a phase 1 clinical study.
  • BIO101 The pharmacokinetic study of BIO101 was performed using female Syrian hamsters, 6-7 weeks old.
  • the BIO101 molecule was administered either orally (PO, gavage) at a dose of 50 mg / kg of body weight, or intraperitoneally (IP), at a dose of 10 mg / kg of body weight.
  • PO orally
  • IP intraperitoneally
  • the blood samples were centrifuged and the plasmas collected.
  • a calibration curve is carried out with 9 standards (from 10,000 ng / mL to 10 ng / mL) and three quality controls (from 4000 ng / mL to 40 ng / mL).
  • the dilution of the standards is carried out in hamster plasma.
  • a part of each sample (standard solutions, or quality control) is transferred to a 96-well plate (200 ⁇ L).
  • 4 ⁇ L of an internal standard is added (Cyasterone at 10 ⁇ g / mL in MeOH). Samples are prepared by deproteinization with the addition of 4 volumes of MeOH (80 ⁇ l). After centrifugation, the supernatants of the samples are transferred to a 96-well plate (150 ⁇ l) before injection.
  • LC-MS / MS analysis is carried out with a 1260 Infinity HPLC chain, and a QQQ6420 mass spectrometer with an ESI source in positive mode (MRM).
  • the injection volume is 5pL.
  • BIO101 is eluted on a C18 reversed phase column (2.1 * 50 mm, particles 3.5 ⁇ m; Fortis) with a gradient of acetonitrile and water (containing 0.1% formic acid) and a flow rate of 0.3 mL / min.
  • the assay of the plasma samples made it possible to determine the pharmacokinetic parameters, namely the Cmax, which corresponds to the maximum concentration observed after administration of the molecule, the Tmax which is the time required to reach the maximum concentration after administration of the molecule and the AUC: the area under the curve which corresponds to the plasma exposure.
  • BIO101 allows a plasma exposure very close to that found in humans after oral administration of BIO101 for 14 days, at 350 mg bid (3841 ng.h / ml).
  • BIO101 in order to test the efficacy of BI0101 in hamsters, after viral infection with SARS-CoV-2, the IP administration of BIO101 was chosen.
  • a stock inoculum was prepared, with a titre of 10 6 TCID 50 / mL of the strain BetaCov / Belgium / Sart-Tilman / 2020/1 (Misset et al., 2020) from SARS-CoV-2.
  • An inoculum consisting of 100 microliters of this stock was inoculated into each hamster, ie 50 microliters in each nostril. Inoculation was performed under brief general anesthesia with isoflurane. Animals waking up from anesthesia after 90 seconds or less.
  • BIO101 was administered daily, for 7 days, intraperitoneally (IP) at 10 mg / kg formulated in 0.9% NaCl medium.
  • VeroE6 cells are seeded (7.5 ⁇ 10 3 cells per 100 ⁇ l in DMEM / 10% FBS culture medium) then left to incubate overnight. The next day the cells are visualized under a light microscope to confirm that the cells are evenly distributed and have reached about 75% confluence.
  • serial dilutions (1:10) of lung homogenates are prepared in infection medium (DMEM / FBS2%). After removing the growth medium from the cells, the various preparations of pulmonary homogenates are transferred to the previously prepared VeroE6 cell mats. The cells are incubated for 2 hours at 37 ° C. then 100 ⁇ L of infection medium is added to each well. The plates are incubated at 37 ° C.
  • the viral titer is calculated according to the standard method of Reed and Muench. For example, a titer expressed as 10 3 TCID50 / mL in 5 days in the VeroE6 cell line can be translated as: 1 mL of pulmonary homogenate diluted to 1: 1000 will infect 50% of cells in 5 days when using the Vero E6 cell line. Seven days after the inoculation of SARS-CoV-2, a pulmonary viral load is still detectable in the lungs of infected hamsters.
  • Penh is an important index to define because its variations evolve in parallel with those of the respiratory resistance and it therefore represents a predictive parameter of the changes in the resistive properties of the respiratory system (Hamelmann et al., 1997; Bergren; , 2001; Onclinx et al., 2003).
  • Penh is significantly increased in the group of hamsters infected with SARS-CoV-2 treated with the vehicle , compared to the uninfected control group (respectively 0.63 ⁇ 0.11 versus 0.28 ⁇ 0.01; p ⁇ 0.01).
  • the Penh value (0.35 ⁇ 0.02) is significantly lower when compared to the animals infected and treated with the vehicle (p ⁇ 0.05) (FIG. 8B).
  • TEP tele-expiratory pause
  • Figure 8A and 9C Another parameter of the respiratory cycle was evaluated. This is the tele-expiratory pause (TEP) ( Figure 8A and 9C).
  • the TEP corresponds to the expiratory flow plateau at the end of expiration.
  • the bronchioles are at least partially obstructed, therefore resistance to flow is increased, which slows emptying and prolongs TEP (Menachery et al., 2015).
  • the length of the TEP therefore provides a measure of the difficulty in exhaling at the end of the tidal volume and this difficulty is proportional to the degree of obstruction of the lower airways (either by a luminal obstacle or simply because the inflammatory edema of the wall narrows the section area).
  • the expiratory pause time significantly increases in hamsters infected with SARS-CoV-2 compared to hamsters of the uninfected control group (respectively 18.8 ⁇ 1.6 msec versus 12.4 ⁇ 0.5 msec; p ⁇ 0.01).
  • this expiratory pause time was significantly lower (12.6 ⁇ 0.3 msec; p ⁇ 0.01) compared to infected animals treated with the vehicle.
  • BIO101 The daily administration of BIO101 for 5 days restores the expiratory pause time of the treated animals (95% CI: 11.9-13.4), to a level comparable to that found in the uninfected control animals (CI 95%: 11.3-13.4) ( Figure 9C).
  • BIO101 administered intraperitoneally at a dose of 10 mg / kg * day, provides plasma exposure of BIO101 in hamsters similar to that obtained in patients exposed to 350 mg of BI0101 twice daily for 14 days. In addition, 7 days post infection, BI0101 had no significant effect on pulmonary viral load.
  • this study demonstrates significant beneficial effects of treatment with BIO101, on the respiratory parameters of hamsters infected with SARS-CoV-2, in particular on indicators which measure the resistance of the respiratory tract to air passage (Penh, PTE).
  • the viral disease has been shown to increase the resistance of the airways, which is expected in acute lung infections.
  • This study on respiratory function performed by whole body plethysmography reveals that BIO101 significantly attenuates this dysfunction (Penh, PTE) but also the prolongation of the expiration time during the disease, which confirms the attenuation of PTE.
  • Bitker L, Burrell LM. Classic and nonclassic renin-angiotensin Systems in the critically ill. Crit. Clin Care 2019; 35: 213-227.
  • Angiotensin-converting enzyme 2 / angiotensin- (1-7) / Mas axis protects against lung fibrosis by inhibiting the MAPK / NF-kB pathway. Am J Respir Cell Mol Biol. 2014; 50 (4): 723-736.
  • the angiotensin-converting enzyme 2 / angiotensin (1-7) / Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA / Rho kinase pathway. Antioxid Redox Signal.
  • Onclinx C Relationship between total pulmonary resistance and Penh according to the anatomical location of the airway obstruction (in-depth dissertation). University of Liège, Faculty of veterinary medicine: Liège, (2003).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne les phytoecdysones et des dérivés hémi-synthétiques de phytoecdysones, destinés à être utilisés dans le traitement de l'altération de la fonction respiratoire chez le mammifère, notamment dans le cadre d'une infection virale et plus particulièrement lors d'une infection par un coronavirus.

Description

Description
Titre de l'invention : Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d’altérations de la fonction respiratoire lors d’une infection virale
Domaine technique de l’invention
[0001] L’invention relève de l’utilisation de phytoecdysones et de dérivés hémi- synthétiques de phytoecdysones pour le traitement d’altérations de la fonction respiratoire, particulièrement dans le cadre de pathologies d’origine virale.
Technique antérieure
[0002] Les infections respiratoires d’origine virale affectent le tractus respiratoire supérieur et inférieur. Les virus responsables de ces infections sont nombreux. Il s’agit notamment du rhinovirus, du virus respiratoire syncytial, du virus de la grippe (influenza), du virus de la grippe A (H1N1) et des coronavirus.
[0003] Il existe une grande diversité de coronavirus animaux. Au cours des vingt dernières années, la transmission de coronavirus à l’homme a provoqué plusieurs épidémies mortelles. Les coronavirus humains provoquent des infections des voies respiratoires supérieures et inférieures.
[0004] Une proportion de patients, variable selon les épidémies et les coronavirus impliqués, développe une aggravation rapide de l'insuffisance respiratoire et un syndrome de détresse respiratoire aiguë (SDRA, Mckay & Al-Haddad 2009) nécessitant une intubation.
[0005] Le SDRA représente la principale cause de mortalité chez les patients infectés par des coronavirus (Greenland et al. 2020 ; Zhou et al. 2020). Par conséquent, il est primordial de détecter et traiter le plus tôt possible l’atteinte respiratoire.
[0006] Les trois principales épidémies mortelles à coronavirus au 21e siècle sont celles de 2003 (SRAS-CoV originaire de la province de Guangdong, Chine), celle de 2012 (MERS-CoV originaire du moyen orient) et celle de 2019 (SRAS-CoV2, originaire de Hubei, Chine). [0007] Pour exemple, le taux de mortalité chez les patients lors de la pandémie COVID-19 en cours est de 3,6%. Treize pour cent des patients atteints sont considérés comme graves (c'est-à-dire avec décompensation respiratoire). À ce jour, on dénombre plus de 500.000 cas et plus de 25.000 morts à travers le monde provoqués par le SRAS-CoV2.
[0008] Pour conclure, l’insuffisance respiratoire, caractérisée par l’incapacité du système respiratoire à fournir une oxygénation et une élimination du dioxyde de carbone adéquates, est commune chez les patients infectés par les coronavirus.
[0009] Par conséquent, l’évaluation du dysfonctionnement de la fonction respiratoire est un paramètre important à considérer dans la mise en place et l’évaluation de solutions thérapeutiques dans le cadre d’une infection par coronavirus.
[0010] L'enzyme de conversion de l'angiotensine-2 (ACE2), notamment exprimée dans les cellules épithéliales et endothéliales pulmonaires, est le récepteur du SRAS-CoV et du SRAS-CoV-2, respectivement responsables des épidémies de SRAS de 2003 et 2019 (Hoffmann et al. 2020 ; Wan et al. 2020 ; Xu et al. 2020). L'ACE2, qui fait partie du système rénine angiotensine (SRA), convertit l'angiotensine II (Ang II) en angiotensine 1-7 (Ang-1-7). Ang-1-7 assure la médiation des effets anti-inflammatoires, anti oxydants et vasodilatateurs en se liant au récepteur Mas (MasR) (Magalhaes et al. 2018 ; Jiang et al. 2013 ; van Twist et al. 2014). A l'inverse, l'ACE convertit l'angiotensine I (Ang I) en angiotensine II (Ang II). La liaison de Ang II à son récepteur (récepteur Ang II de type 1 (AT1) induit des effets vasoconstricteurs, pro-inflammatoires et pro-oxydants. Les axes ACE / Ang II / AT1 et ACE2 / Ang-1-7 / MasR sont respectivement connus sous le nom de bras « nocif » et « protecteur » du SRA (Santos et al. 2013).
[0011] Sur la base des connaissances accumulées avec le SRAS-CoV, il semblerait que l'interaction du SRAS-CoV-2 avec l'ACE2 réduise l'activité de l'ACE2, ce qui se traduit par une production plus faible d’Ang-1-7 et une production excessive de Ang II par l’ACE, conduisant à une dérégulation générale du SRA. Le déséquilibre entre les bras « protecteur » et « nocif » du SRA semble jouer un rôle central dans la lésion pulmonaire aiguë (PLA) et le syndrome de détresse respiratoire aiguë (SDRA) associé à COVID-19 (Kuba et al. 2005 ; Imai et al. 2005).
[0012] L'inhibition du bras ACE2 / Ang-1 -7 / MasR « protecteur » de SRA au profit de la signalisation de l’axe ACE/ Ang II / AT1 « nocif » semble être à l'origine de vasoconstrictions pulmonaires (Lipworth & Dagg 1994), et de lésions inflammatoires / oxydantes des organes, progressant finalement vers la PLA / SDRA chez les patients infectés par le SRAS-CoV-2 (Zhang & Baker
2017). Cette théorie est appuyée par une étude récente montrant que les niveaux d'Ang II sériques chez les patients COVID-19 étaient significativement plus élevés que chez les individus non infectés et, plus important encore, étaient linéairement associés à la charge virale et aux lésions pulmonaires (Liu et al. 2020).
[0013] Un certain nombre d'études ont démontré le potentiel de la stimulation de l'axe ACE2 / Ang-1 -7 / Mas pour produire des effets bénéfiques sur le tissu pulmonaire et la fonction respiratoire. C'est notamment le cas dans le contexte de l'emphysème pulmonaire (Candida Bastos et al. 2019), de la fibrose pulmonaire (Meng et al. 2014 ; Meng et al. 2015 ; Shao et al. 2019), de l'hypertension pulmonaire (Daniell et al. 2020), de l'inflammation pulmonaire (Ye et al. 2020 ; Chen et al. 2013) et du tabagisme (Zhang et al.
2018).
[0014] L’angiotensine 1-7 possède par ailleurs des propriétés vasodilatatrices et a des effets hypotenseurs (Benter et al. 1993) et anti-hypertenseurs (Zhang ét al. 2019).
[0015] Les phytoecdysones représentent une importante famille de phytostérols polyhydroxylés structuralement apparentés aux hormones de mue des insectes. Ces molécules sont produites par de nombreuses espèces végétales et participent à leur défense contre les insectes ravageurs. La phytoecdysone majoritaire est la 20-hydroxyecdysone (20E).
[0016] La 20E est pharmacologiquement active chez les mammifères. Elle active le récepteur Mas sur le bras protecteur du SRA (Dilda et al. 2019). L'engagement de Mas par la 20E est responsable d'un certain nombre d'activités bénéfiques précliniques dans des contextes normaux et pathologiques. [0017] La 20-hydroxyecdysone a des effets anti-inflammatoires in vivo dans un modèle murin de lésion pulmonaire aiguë (ALI). Les cytokines inflammatoires (TNF-a, IL-2, IL-6, IL-8) et anti-inflammatoires (IL-4, IL-10) plasmatiques sont respectivement diminuées et augmentées par le traitement avec la 20-hydroxyecdysone. La modulation de l'inflammation est associée à une diminution des lésions pulmonaires, comme le montre l'examen histologique des poumons des animaux traités (Xia et al. 2016 ; Song et al. 2019).
[0018] BIO101 est une préparation orale de 20-hydroxyecdysone de pureté supérieure ou égale à 97%. Son procédé de préparation est divulgué dans la demande de brevet internationale WO2018197731 (Lafont et al. 2018). BI0101 est un nouveau candidat médicament développé cliniquement dans la sarcopénie et dans la dystrophie musculaire de Duchenne. Cette dernière application thérapeutique fait l’objet de la demande de brevet internationale WO201 8197708 (Dilda et al. 2018). Des dérivés hémi-synthétiques de 20- hydroxyecdysone ont également été développés, comme divulgué dans la demande de brevet internationale WO2015177469 (Lafont et al. 2015), et sont utilisés pour de telles applications thérapeutiques.
[0019] Une option visant à rétablir l’équilibre du système rénine angiotensine (SRA) chez les patients infectés par SRAS-CoV ou SRAS-CoV2 est d’inhiber le bras « nocif » du SRA en utilisant soit des inhibiteurs de l’enzyme de conversion (ACE), soit des antagonistes du récepteur de l’angiotensine 2 (AT1). Toutefois, il semble inapproprié et potentiellement dangereux d'interférer avec l'axe ACE / Ang II / AT1 dans le contexte d’une infection par coronavirus. En effet, les inhibiteurs de l'ACE sont connus pour induire des effets respiratoires indésirables (Kostis et al. 2005) et l'utilisation d’antagonistes du récepteur AT1 est connue pour induire l'expression de l'ACE2 (Wang et al. 2016 ; Klimas et al. 2015) qui est le récepteur des SRAS-CoV et SRAS-CoV2, un effet susceptible de favoriser l’entrée du virus dans les cellules.
[0020] Il apparaît donc intéressant de trouver une autre voie pour rétablir l’équilibre du système rénine angiotensine (SRA) chez les patients infectés. Présentation de l'invention
[0021] À cet effet, l’invention vise une composition comprenant au moins une phytoecdysone et/ou au moins un dérivé hémi-synthétique de phytoecdysone, pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale chez le mammifère.
[0022] L’activation directe, avec une phytoecdysone et/ou un dérivé hémi synthétique de phytoecdysone, du bras « protecteur » du système rénine angiotensine (SRA), en aval de l'enzyme de conversion de l'angiotensine-2 (ACE2), via l'activation du récepteur Mas semble être une option de traitement efficace pour rétablir l'équilibre du SRA lors d’une infection virale chez le mammifère. De plus, les phytoecdysones et leurs dérivés hémi synthétiques ne récapitulent pas l’ensemble des effets de l’angiotensine 1- 7 (Ang-1 -7) (Benter et al. 1993 ; Zhang F. et al. 2019). Si elles en possèdent les effets anti-inflammatoires et antifibrotiques, elles n’ont pas d’effet sur les paramètres cardiovasculaires du mammifère. Or un effet hypotenseur peut s’avérer dommageable dans une situation de détresse respiratoire liée en particulier à une infection virale et à un état de choc (Bitker & Burell et al. 2019 ; Wujtewicz et al. 2020). Les phytoecdysones et leurs dérivés hémi synthétiques n’ont avantageusement pas non plus d’effet sur le débit inspiratoire de pointe (DIP), sur le débit expiratoire de pointe (DEP), sur la fréquence respiratoire et enfin sur le PenH.
[0023] Dans des modes particuliers de réalisation, l’invention répond en outre aux caractéristiques suivantes, mises en œuvre séparément ou en chacune de leurs combinaisons techniquement opérantes.
[0024] Les phytoecdysones et leurs dérivés sont avantageusement purifiés au grade pharmaceutique.
[0025] Une phytoecdysone utilisable selon l’invention est par exemple la 20- hydroxyecdysone et un dérivé hémi-synthétique de phytoecdysone utilisable est par exemple un dérivé hémi-synthétique de 20- hydroxyecdysone.
[0026] A cet effet, selon un mode particulier de réalisation, la composition comporte de la 20-hydroxyecdysone et/ou au moins un dérivé hémi synthétique de 20-hydroxyecdysone. [0027] La 20-hydroxyecdysone et ses dérivés sont avantageusement purifiés au grade pharmaceutique.
[0028] La 20-hydroxyecdysone utilisée est de préférence sous forme d’un extrait de végétaux riches en 20-hydroxyecdysone ou d’une composition comportant à titre d’agent actif la 20-hydroxyecdysone. Des extraits de végétaux riches en 20-hydroxyecdysone sont par exemple des extraits de Stemmacantha carthamoides (aussi appelée Leuzea carthamoides), Cyanotis arachnoidea et Cyanotis vaga.
[0029] Les extraits obtenus sont de préférence purifiés au grade pharmaceutique.
[0030] Dans un mode de réalisation la 20-hydroxyecdysone est sous forme d’extrait de plante ou d’une partie de plante, ladite plante étant choisie parmi les végétaux contenant au moins 0,5% de 20-hydroxyecdysone en poids sec dudit végétal, ledit extrait comportant au moins 95%, et de préférence au moins 97%, de 20-hydroxyecdysone. Ledit extrait est de préférence purifié au grade pharmaceutique.
[0031] Ledit extrait est appelé par la suite BIO101. Il comporte de façon remarquable entre 0 et 0,05 %, en poids sec de l’extrait, d’impuretés, comme des composés mineurs, susceptibles d’affecter l’innocuité, la disponibilité ou l’efficacité d’une application pharmaceutique dudit extrait.
[0032] Selon un mode de réalisation de l’invention, les impuretés sont des composés à 19 ou 21 atomes de carbone, tels que la Rubrostérone, la Dihydrorubrostérone ou la Poststérone.
[0033] La plante à partir de laquelle est produit BIO101 est de préférence choisie parmi Stemmacantha carthamoides (aussi appelée Leuzea carthamoides), Cyanotis arachnoidea et Cyanotis vaga.
[0034] Les dérivés de phytoecdysones et notamment de 20-hydroxyecdysone sont obtenus par hémisynthèse et peuvent notamment être obtenus de la façon décrite dans la demande de brevet internationale n° WO2015177469 (Lafont et al. 2015).
[0035] Selon un mode de réalisation particulier, l’invention vise la composition pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale chez le mammifère par un virus choisi parmi le rhinovirus, le virus respiratoire syncytial, le virus de la grippe (influenza), le virus de la grippe A H1 N1 ) et un coronavirus. [0036] L’activation directe du bras « protecteur » du système rénine angiotensine (SRA), en aval de l'enzyme de conversion de l'angiotensine-2 (ACE2), via l'activation du récepteur Mas semble être une option de traitement efficace pour rétablir l'équilibre du SRA et ainsi protéger les patients infectés par un coronavirus du syndrome de détresse respiratoire aiguë (SDRA).
[0037] Selon un mode de réalisation particulier, l’invention vise la composition pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale par un coronavirus utilisant ACE2 comme récepteur à la surface des cellules de mammifère.
[0038] Selon un mode de réalisation préféré, l’invention vise la composition pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale par un SRAS-CoV chez le mammifère. Un SRAS-CoV est un coronavirus responsable d’un syndrome respiratoire aigu sévère.
[0039] Selon un mode de réalisation particulier, l’invention vise la composition pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale par un SRAS-CoV2 chez le mammifère. Un SRAS-CoV2 est un coronavirus de type 2 responsable du syndrome respiratoire aigu sévère de la pandémie COVID-19.
[0040] Selon un mode de réalisation particulier, le traitement de l’altération de la fonction respiratoire comprend la prévention et le traitement d’une insuffisance respiratoire chez le mammifère atteint de l’infection virale.
[0041] Selon un mode de réalisation particulier, le traitement de l’altération de la fonction respiratoire comprend la prévention et le traitement du syndrome de détresse respiratoire aigüe chez le mammifère atteint par l’infection virale.
[0042] Dans un mode de réalisation particulier, l’invention vise la composition pour son utilisation dans le traitement d’au moins une ou plusieurs des altérations de la fonction respiratoire chez le mammifère atteint de l’infection virale, choisies parmi l'hypoxie et la diminution de la capacité à éliminer le CO2.
[0043] Dans un mode de réalisation particulier, le traitement de l’altération de la fonction respiratoire comprend le traitement de la fonction musculaire respiratoire. [0044] Dans un mode de réalisation, l’invention vise la composition pour son utilisation chez le mammifère dans le traitement d’une altération de la fonction respiratoire liée à l’évolution d’au moins un des paramètres choisi parmi :
- la mortalité et la guérison caractérisée par le transfert du patient vers son domicile ou vers un service de soins de médecine générale,
- le nombre d’événements de type d'insuffisance respiratoire, définis par une saturation artérielle en oxygène insuffisante, la nécessité d’une ventilation mécanique (y compris les patients qui n’auront pas subi une intubation) et par la nécessité d’un soutien respiratoire non-invasif tel que la ventilation en pression positive continue des voies respiratoires ou de l'oxygène à haut débit,
- le score d’évaluation séquentielle de la défaillance respiratoire (SOFA), l’indice de sévérité pulmonaire (PSI) et l’imagerie médicale qui permet de graduer le niveau de progression de la pathologie inflammatoire exsudative,
- le taux plasmatique de cytokines pro-inflammatoires et anti inflammatoires
[0045] Dans un mode de réalisation particulier, les phytoecdysones sont administrées à une dose comprise entre 1 et 15 milligrammes par kilogramme par jour chez l’humain. On entend ici par phytoecdysone, aussi bien les phytoecdysones de manière générale que leurs dérivés, la 20- hydroxyecdysone (notamment sous forme d’extrait) et ses dérivés.
[0046] De préférence, les phytoecdysones sont administrées à une dose de 200 à 1000 mg/jour, en une ou plusieurs prises, chez un humain adulte, et une dose de 5 à 350 mg/jour, en une ou plusieurs prises, chez l’humain enfant ou nourrisson. On entend ici par phytoecdysone, aussi bien les phytoecdysones de manière générale que leurs dérivés, la 20- hydroxyecdysone (notamment sous forme d’extrait) et ses dérivés.
[0047] Dans des modes de réalisation la composition comporte au moins un composé considéré comme un dérivé de phytoecdysone, ledit au moins un composé étant de formule générale (I) : [Chem. 1] dans laquelle :
V-U est une liaison simple carbone-carbone et Y est un groupement hydroxyle ou un hydrogène, ou V-U est une liaison éthylénique C=C ;
X est un oxygène,
Q est un groupement carbonyle ;
R1 est choisi parmi : un groupement (Ci-C6)W(Ci-C6) ; un groupement (Ci- C6)W(Ci-C6)W(Ci-C6) ; un groupement (Ci-C6)W(Ci-C6)CC>2(Ci-C6); un groupement (CI-C6)A, A représentant un hétérocycle éventuellement substitué par un groupement de type OH, OMe, (C1-C6), N(CI-C6), C02(Ci- C6) ; un groupement CH2Br ;
W étant un hétéroatome choisi parmi N, O et S, de préférence O et encore plus préférentiellement S.
[0048] Dans le cadre de la présente invention on entend par « (C1-C6) », tout groupe alkyle de 1 à 6 atomes de carbones, linéaire ou ramifié, en particulier, les groupes méthyle, éthyle, n-propyle, iso-propyle, n-butyle, iso- butyle, sec-butyle, t-butyle, n-pentyle, n-hexyle. Avantageusement il s’agit d’un groupe méthyle, éthyle, iso-propyle ou t-butyle, en particulier d’un groupe méthyle ou éthyle, plus particulièrement d’un groupe méthyle. [0049] Dans un mode de réalisation préféré, dans la formule (I) :
Y est un groupement hydroxyle ;
R1 est choisi parmi : un groupement (Ci-C6)W(Ci-C6) ; un groupement (Ci- C6)W(Ci-C6)W(Ci-C6) ; un groupement (Ci-C6)W(Ci-C6)CC>2(Ci-C6); un groupement (CI-C6)A, A représentant un hétérocycle éventuellement substitué par un groupement de type OH, OMe, (OI-OQ), N(OI-OQ), C02(CI- Ce) ; W étant un hétéroatome choisi parmi N, O et S, de préférence O et de préférence encore S.
[0050] Dans des modes de réalisation la composition comporte au moins un composé choisi parmi les composés suivants : n° 1 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-diméthyl-17- (2-morpholinoacétyl)-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-6-one, n° 2 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(3- hydroxypyrrolidin-1 -yl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1 H-cyclopenta[a]phénanthrèn-6-one; n° 3 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(4-hydroxy-1- pipéridyl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-6-one; n° 4 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-[4-(2- hydroxyéthyl)-1 -pipéridyl]acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1 H-cyclopenta[a]phénanthrèn-6-one; n° 5 : (2S,3R,5R,10R,13R,14S,17S)-17-[2-(3-diméthylaminopropyl
(méthyl)amino)acétyl]-2,3,14-trihydroxy-10,13-diméthyl-
2, 3, 4, 5, 9,11 ,12,15,16,17-décahydro-1 H-cyclopenta[a]phénanthrèn-6-one; n° 6 : 2-[2-oxo-2-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13- diméthyl-6-oxo-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-17-yl]éthyl]sulfanylacétate d’éthyle; n° 7 : (2S,3R,5R,10R,13R,14S,17S)-17-(2-éthylsulfanylacétyl)-2,3,14- trihydroxy-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-6-one; n° 8 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(2- hydroxyéthyl sulfanyl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1 H cyclopenta[a]phénanthrèn-6-one.
[0051] Dans des modes de réalisation la composition comporte au moins un composé considéré comme un dérivé de phytoecdysone, ledit au moins un composé étant de formule (II) : [Chem. 2]
[0052] Le composé de formule (II) est par la suite appelé BI0103.
[0053] Dans des modes de réalisation la composition est incorporée à une formulation pharmaceutique acceptable pouvant être administrée par voie orale.
[0054] Dans le cadre de la présente invention on entend par « pharmaceutique acceptable » ce qui est utile dans la préparation d'une composition pharmaceutique qui est généralement sûre, non toxique et qui est acceptable pour une utilisation vétérinaire de même que pharmaceutique humaine.
Brève description des figures
[0055] L’invention sera mieux comprise à la lecture de la description suivante, donnée à titre d’exemple nullement limitatif, et faite en se référant aux figures qui représentent :
[0056] La figure 1 représente un schéma illustrant le rationnel scientifique de l’activation du bras ACE2/Ang 1-7/Mas dans le cadre de patients atteints par un coronavirus utilisant l’ACE2 comme récepteur.
[0057] La figure 2A représente un graphe illustrant l’absence d’effet anti hypertenseur de BIO101 chez des animaux spontanément hypertendus. Les effets de BIO101 seul ont été évalués après administration orale unique. Six rats SH ont été utilisés en traitements croisés (traitement crossover) avec une période d’élimination de 72h minimum entre les traitements. Préalablement au traitement, les animaux ont été équipés d'instruments de télémétrie pour les mesures de pression artérielle. Pour l’expérimentation décrite en figure 2A les animaux ont reçu les traitements suivants : véhicule, ou BIO101 à 5 mg/kg, ou BIO101 à 50 mg/kg, ou Enalapril à 50 mg/kg.
[0058] La figure 2B représente un graphe illustrant l’absence d’effet hypotenseur de BIO101 chez des animaux hypertendus déjà traités par un anti hypertenseur : Enalapril. L’Enalapril est un inhibiteur de l’enzyme de conversion (ACE). Les effets de BIO101 seul ont été évalués après administration répétée chez des animaux ayant été traité pendant 4 jours avec l’Enalapril (30 mg/kg*jour). Six rats SH ont été utilisés en traitements croisés (traitement cross-over) avec une période d’élimination de 72h minimum entre les traitements. Préalablement au traitement, les animaux ont été équipés d'instruments de télémétrie pour les mesures de pression artérielle. Pour l’expérimentation décrite en figure 2B les animaux ont reçu les traitements suivants : Enalapril à 30 mg/kg pendant 4 jours, ou Enalapril à 30 mg/kg + BI0101 à 5 mg/kg pendant 4 jours, ou Enalapril à 30 mg/kg + BI0101 à 50 mg/kg pendant 4 jours.
[0059] La figure 3A représente un graphe illustrant les effets de BIO101 sur la pression artérielle moyenne évalués après administration orale unique. Quatre chiens beagle ont été utilisés en traitements croisés (traitement crossover) avec une période d’élimination de 72h minimum entre les traitements. Préalablement au traitement, les animaux ont été équipés d'instruments de télémétrie pour les mesures de pression artérielle. Pour l’expérimentation décrite en figure 3A les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 30 mg/kg, ou BIO101 à 120 mg/kg, ou BIO101 à 500 mg/kg.
[0060] La figure 3B représente un graphe illustrant les effets de BIO101 sur la fréquence cardiaque évalués après administration orale unique. Quatre chiens beagle ont été utilisés en traitements croisés (traitement crossover) avec une période d’élimination de 72h minimum entre les traitements. Préalablement au traitement, les animaux ont été équipés d'instruments de télémétrie pour les mesures de fréquence cardiaque. Pour l’expérimentation décrite en figure 3B les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 30 mg/kg, ou BIO101 à 120 mg/kg, ou BIO101 à 500 mg/kg. [0061] La figure 4A représente un graphe illustrant l’absence d’effets de BIO101 sur le débit inspiratoire de pointe (DIP) après administration par voie orale de doses uniques. Huit rats ont été utilisés en traitements croisés (traitement cross-over) avec une période d’élimination de 72h minimum entre les traitements. Pour cette expérimentation les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 100 mg/kg, ou BIO101 à 300 mg/kg, ou BIO101 à 1000 mg/kg. Les paramètres respiratoires sont mesurés par pléthysmographie pendant 4h 30 min.
[0062] La figure 4B représente un graphe illustrant l’absence d’effet de BI0101 sur le débit expiratoire de pointe (DEP) après administration par voie orale de doses uniques. Huit rats ont été utilisés en traitements croisés (traitement cross-over) avec une période d’élimination de 72h minimum entre les traitements. Pour cette expérimentation, les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 100 mg/kg, ou BIO101 à 300 mg/kg, ou BIO101 à 1000 mg/kg. Les paramètres respiratoires sont mesurés par pléthysmographie pendant 4h 30 min.
[0063] La figure 4C représente un graphe illustrant l’absence d’effet de BI0101 sur la fréquence respiratoire après administration par voie orale de doses uniques. Huit rats ont été utilisés en traitements croisés (traitement crossover) avec une période d’élimination de 72h minimum entre les traitements. Pour cette expérimentation les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 100 mg/kg, ou BIO101 à 300 mg/kg, ou BIO101 à 1000 mg/kg. Les paramètres respiratoires sont mesurés par pléthysmographie pendant 4h 30 min.
[0064] La figure 4D représente un graphe illustrant l’absence d’effet de BI0101 sur le Penh après administration par voie orale de doses uniques. Le Penh est représentatif de la réactivité bronchique. Il se calcule de la manière suivante : (DIP/DEP) x Pause où Pause = (TE-TR) / TR . TR = temps de relaxation (temps nécessaire pour expirer 65% du volume courant) et TE = temps expiratoire (temps depuis début d'expiration au début de l'inspiration suivante). Huit rats ont été utilisés en traitements croisés (traitement cross- over) avec une période d’élimination de 72h minimum entre les traitements. Pour cette expérimentation les animaux ont reçu les traitements suivants par voie orale : véhicule, ou BIO101 à 100 mg/kg, ou BIO101 à 300 mg/kg, ou BIO101 à 1000 mg/kg. Les paramètres respiratoires sont mesurés par pléthysmographie pendant 4h 30 min.
[0065] La figure 5 représente les profils pharmacocinétiques de BIO101 dans le plasma de hamster syrien. Il s’agit de graphiques représentant les concentrations plasmatiques en fonction du temps après administration unique par voie orale (PO) de BIO101 à 50 mg/kg formulé en milieu méthylcellulose 4000 cP 0,5% dans de l’eau (Figure 5A) ou après une administration unique par voie intrapéritonéale (IP) à 10 mg/kg formulé en milieu NaCI 0,9% (Figure 5B).
[0066] La figure 6 représente le chronogramme de l’étude du traitement de l’altération la fonction respiratoire chez le hamster syrien infecté par le virus SRAS-CoV-2 ainsi que les différents paramètres étudiés. L’étude présente 3 groupes d’animaux : hamsters contrôles non infectés par le SRAS-CoV-2 (n=10), hamsters infectés avec le SRAS-CoV-2 et traités avec le véhicule (n=10) et hamsters infectés avec le SRAS-CoV-2 traités avec BIO101 IP (10mg/kg*jour ; n=10). La fonction respiratoire est évaluée par pléthysmographie sur corps entier avant l’inoculation et 5 jours après l’infection virale. A la fin de l’étude (7 jours après inoculation virale), une quantification de la charge virale infectieuse pulmonaire est réalisée.
[0067] La figure 7 représente un histogramme illustrant la quantification de la charge virale pulmonaire des différents groupes d’animaux contrôles non infectés par le SRAS-CoV-2 (contrôle), infectés avec le SRAS-CoV-2 et traités avec le véhicule (SRAS-CoV-2 + véhicule) ou infectés avec le SRAS- CoV-2 traités avec BIO101 IP (SRAS-CoV-2 + BIO101).
[0068] La figure 8A est la représentation schématique d’un tracé de l’enregistrement d’un cycle de respiration (inspiration puis expiration) et des différentes données pouvant être enregistrées par pléthysmographie sur corps entier. Penh est une mesure sans unité, calculée en mesurant plusieurs paramètres de la courbe de réponse respiratoire, selon la formule : (DIP/DEP) x Pause où Pause = (TE-TR) / TR (Adler et al., 2004). DIP : Débit inspiratoire de pointe, DEP : Débit expiratoire de pointe, PTE : Pause télé-expiratoire, TE : Temps d’expiration, Tl : Temps d’inspiration, TR : temps d’expiration nécessaire pour expirer 65% du volume total d’air. La figure 8B représente les valeurs de Penh des groupes contrôles non infectés par le SRAS-CoV-2 (contrôle), infectés avec le SRAS-CoV-2 et traités avec le véhicule (SRAS-CoV-2 + véhicule) et infectés avec le SRAS- CoV-2 et traités avec BIO101 IP (SRAS-CoV-2 + BIO101) avec *p<0,05, et
**p<0,01.
[0069] La figure 9 représente différents paramètres respiratoires mesurés par pléthysmographie sur corps entiers des différents groupes d’animaux contrôles non infectés par le SRAS-CoV-2 (contrôle), infectés avec le SRAS-CoV-2 et traités avec le véhicule (SRAS-CoV-2 + véhicule) ou infectés avec le SRAS-CoV-2 traités avec BIO101 IP (SRAS-CoV-2 + BIO101). Les paramètres mesurés sont : le temps d’inspiration en millisecondes (Figure 9A), le temps d’expiration en millisecondes (Figure 9B), la pause télé-expiratoire en millisecondes (Figure 9C) avec *p<0,05, et
**p<0,01.
Description des modes de réalisation
[0070] 1. Essai clinique
[0071] Les inventeurs ont testé les phytoecdysones et plus particulièrement BIO101 sur la fonction respiratoire et les paramètres respiratoires de patients atteints par le coronavirus SRAS-CoV-2 responsable de la pandémie COVID-19.
[0072] L'étude concerne des adultes de 18 ans et plus, atteints d'une infection par le SRAS-CoV-2 prouvée par PCR, au cours des 28 derniers jours et qui ont développé des manifestations sévères, au cours des 7 derniers jours, définies comme : signes de décompensation respiratoire par l'un des paramètres suivants : une fréquence respiratoire supérieure ou égale à 25 cycles respiratoires (inspiration et expiration) par minute et/ou une saturation artérielle en oxygène inférieure ou égale à 92% sous air ambiant ou avec 3 litres d’oxygène par minute.
[0073] BI0101 est administré par voie orale quotidiennement.
[0074] BIO101 est un extrait de plante choisie parmi les végétaux contenant au moins 0,5% de 20-hydroxyecdysone en poids sec dudit végétal, ledit extrait comportant au moins 97% de 20-hydroxyecdysone. [0075] L’effet du traitement par BIO101 sur les patients atteints par le coronavirus SRAS-CoV2 est évalué après 7, 14 et 28 jours sur la base des mesures suivantes :
- La mortalité et la guérison caractérisée par le transfert du patient vers son domicile ou vers un service de soins de médecine générale,
- Le nombre d’événements de type d'insuffisance respiratoire, définis par une saturation artérielle en oxygène insuffisante, la nécessité d’une ventilation mécanique (y compris les patients qui n’auront pas subi une intubation) et par la nécessité d’un soutien respiratoire non-invasif tel que la ventilation en pression positive continue des voies respiratoires ou de l'oxygène à haut débit,
- L’effet du traitement est aussi évalué à l’aide des paramètres que sont le score d’évaluation séquentielle de la défaillance respiratoire (SOFA, Zhou et al. 2020), l’indice de sévérité pulmonaire (PSI, Liu et al. 2020) et l’imagerie médicale qui permet de graduer le niveau de progression de la pathologie inflammatoire exsudative.
- L’effet de BIO101 sur le taux plasmatique de cytokines pro inflammatoires et anti-inflammatoires est également évalué.
[0076] 2. Évaluation préclinigue concernant les effets sur les paramètres cardiovasculaires et respiratoires
[0077] Les inventeurs ont testé les phytoecdysones et plus particulièrement BI0101 sur la pression artérielle moyenne par télémétrie chez des animaux hypertendus après administration orale aux doses de 5 et 50 mg/kg. L’étude concerne des rats hypertendus de type SH (spontaneously hypertensive).
[0078] Dans les conditions expérimentales retenues, BIO101 aux doses de 5 et 50 mg/kg n'induit pas de diminution de la pression artérielle moyenne des animaux hypertendus et ce quelle que soit la dose utilisée (Figure 2A). BIO101 n’a donc pas d’effet anti-hypertenseur. En revanche, l’Enalapril, un inhibiteur d’ACE, possède une activité d’anti-hypertenseur.
[0079] Lorsque la pression artérielle moyenne des animaux est normalisée par l’utilisation d’Enalapril à 30 mg/kg pendant 4 jours, le traitement par BI0101 aux doses de 5 et 50 mg/kg n'induit pas de diminution supplémentaire de la pression artérielle moyenne des animaux et ce quelle que soit la dose utilisée (Figure 2B). Ceci démontre que BI0101 n’a pas d’effet hypotenseur. [0080] Les inventeurs ont testé les phytoecdysones et plus particulièrement BIO101 sur la pression artérielle moyenne et le rythme cardiaque par télémétrie chez des animaux normo tendus après administration orale aux doses de 30, 120 et 500 mg/kg. L’étude concerne des chien beagle. Dans les conditions expérimentales de cette étude, l'administration orale unique de BIO101 à 30, 120 ou 500 mg/kg n'a eu aucun effet sur la pression artérielle (Figure 3A) et la fréquence cardiaque (Figure 3B) chez des chiens beagle mâles conscients.
[0081] Les inventeurs ont testé les phytoecdysones et plus particulièrement BIO101 sur les paramètres respiratoires par pléthysmographie chez des rats vigiles après administration orale aux doses de 100, 300 et 1000 mg/kg. Dans les conditions expérimentales de cette étude, l'administration orale unique de BIO101 à 100, 300 ou 1000 mg/kg n'a eu aucun effet sur le débit inspiratoire de pointe (DIP, Figure 4A), sur le débit expiratoire de pointe (DEP, Figure 4B), sur la fréquence respiratoire (Figure 4C) et enfin sur le PenH (Figure 4D).
[0082] 3. Tests réalisés sur des hamsters syriens
[0083] Les hamsters syriens ( Mesocricetus auratus) sont de petits mammifères qui ont été utilisés comme modèles d'infection par des virus respiratoires, tels que le SRAS-CoV, le virus influenza ou les adenovirus (Miao et al., 2019; Roberts et al., 2005 ; Iwatsuki-Horimoto, K. et al., 2018 ; Wold et al., 2012). Plus récemment, il a été montré que le lors d'une infection intranasale expérimentale avec le SRAS-CoV-2, les hamsters syriens présentent une maladie modérée avec une perte de poids progressive, ainsi que des signes de détresse respiratoire (Chan et al. 2020 ; Boudewijns et al. 2020). Chez les hamsters, l'infection par le SRAS-CoV-2 est associée à des niveaux élevés de réplication du virus et des preuves histopathologiques de la maladie. La maladie pulmonaire a également été mise en évidence par tomodensitométrie montrant une dilatation des voies respiratoires et des consolidations substantielles dans les poumons de hamsters infectés (Boudewijns et al. 2020).
[0084] Les manifestations cliniques de la COVID-19 chez l’homme partage des caractéristiques communes avec la pathologie pulmonaire développée chez le hamster syrien infecté par SRAS-CoV2 telle qu’une réplication virale dans les voies respiratoires inférieures, des difficultés respiratoires, une affection pulmonaire bilatérale, ainsi que la présence d’œdèmes et d’inflammation focalisés (Munoz-Fontela et al. 2020). Il est donc admis que le hamster syrien constitue un modèle d’intérêt afin d’étudier l’infection et la transmission du virus SRAS-CoV-2 et permet des tester diverses solutions thérapeutiques.
[0085] Différentes approches expérimentales permettent de suivre l’évolution de l’altération des capacités respiratoires chez le petit animal. C’est en particulier le cas de la pléthysmographie sur corps entier. Les avantages de cette technique résident dans le fait qu’elle permet de réaliser un suivi sur un animal vigile, libre de ses mouvements dans une enceinte hermétique et ce, de manière non invasive. Par conséquent, le stress dû aux manipulations des animaux est diminué et il est possible de répéter les mesures au cours de périodes prolongées. La pléthysmographie barométrique est donc très utilisée pour mesurer la fonction respiratoire et la réactivité bronchique chez les petits animaux (Chong et al., 1998 ; Djuric et al., 1998 ; Hoffman et al., 1999).
[0086] A. Etude pharmacocinétique par voie orale et intrapéritonéale de BIO101 chez le hamster sain.
[0087] Une étude pharmacocinétique de BI0101 a préalablement été réalisée chez des hamsters sains, sans infection virale, afin de déterminer quelle voie d’administration permettait d’obtenir une exposition plasmatique chez les hamsters, similaire à l’exposition plasmatique retrouvée chez l’homme, après une prise orale à 350 mg bid de BI0101 , pendant 14 jours lors d’une étude clinique de phase 1.
[0088] L’étude pharmacocinétique de BIO101 a été réalisée en utilisant des hamsters Syriens femelles, âgées de 6-7 semaines. La molécule BIO101 a été administrée soit per os (PO, gavage) à une dose de 50 mg/kg de poids corporel, soit par voie intrapéritonéale (IP), à une dose de 10 mg/kg de poids corporel. Après administration de BIO101, le sang a été prélevé au niveau de la queue aux temps : t = 0,08 h ; 0.25 h ; 0.5 h ; 1 h ; 2 h ; 4 h ; 6 h ; 8 h : 10 h ; 12 h et 24 h.
[0089] Les échantillons de sang ont été centrifugés et les plasmas prélevés. [0090] Une courbe de calibration est effectuée avec 9 standards (de 10000 ng/mL à 10 ng/mL) et trois contrôles qualité (de 4000 ng/mL à 40 ng/mL). La dilution des standards est réalisée dans du plasma de hamster. Une partie de chaque échantillon (solutions standards, ou contrôle qualité) est transférée dans une plaque 96 puits (200 pL). Ensuite, 4 pL d’un standard interne est ajouté (Cyasterone à 10 pg/mL dans le MeOH). Les échantillons sont préparés par déprotéinisation avec l’ajout de 4 volumes de MeOH (80 pi). Après centrifugation, les surnageants des échantillons sont transférés dans une plaque 96 puits (150pL) avant l’injection.
[0091] L’analyse LC-MS/MS est effectuée avec une chaîne HPLC 1260 Infinity, et un spectromètre de masse QQQ6420 avec une source ESI en mode Positif (MRM). Le volume d’injection est 5pL. BIO101 est élué sur une colonne de phase inverse C18 (2.1*50 mm, particules 3.5 pm ; Fortis) avec un gradient d’acétonitrile et eau (contenant 0.1% acide formique) et un débit de 0.3 mL/min.
[0092] Le dosage des échantillons de plasma (selon la méthode décrite ci-dessus) a permis la détermination des paramètres pharmacocinétiques, à savoir le Cmax, qui correspond à la concentration maximale observée après l’administration de la molécule, le Tmax qui est le temps requis pour atteindre la concentration maximale après administration de la molécule et l’AUC : l’aire sous la courbe qui correspond à l’exposition plasmatique.
[0093] Après une administration PO de 50 mg/kg, le Cmax = 58 ng/ml, Tmax = 0,25 h, et l’exposition plasmatique est de 243 ng.h/ml (Figure 5A).
[0094] Après une administration IP de 10 mg/kg, le Cmax = 3221 ng/ml, Tmax = 0,5 h, et l’exposition plasmatique est de 3393 ng.h/ml (Figure 5B).
[0095] L’administration IP de BIO101 permet une exposition plasmatique très proche de celle retrouvée chez l’homme après une administration orale de BIO101 pendant 14 jours, à 350mg bid { 3841 ng.h/ml).
[0096] Par conséquent, afin de tester l’efficacité de BI0101 chez le hamster, après une infection virale avec SRAS-CoV-2, l’administration IP de BIO101 a été choisie.
[0097] B. Infection des hamsters au SRAS-CoV-2 et administration de BIO101
[0098] Un inoculum-stock a été préparé, avec un titre de 106 TCIDso/mL de la souche BetaCov/Belgium/Sart-Tilman/2020/1 (Misset et al., 2020) du SRAS-CoV-2. Un inoculum consistant en 100 microlitres de ce stock a été inoculé à chaque hamster, soit 50 microlitres dans chaque narine. L’inoculation a été réalisée sous brève anesthésie générale avec de l’isoflurane. Les animaux se réveillant de l’anesthésie après 90 secondes maximum.
[0099] BIO101 a été administré quotidiennement, pendant 7 jours, par voie intrapéritonéale (IP) à 10 mg/kg formulés en milieu NaCI 0,9%.
[00100] Trois groupes d’animaux de hamsters femelles de 6-7 semaines ont été comparés : des hamsters non-infectés et traités avec le véhicule, des hamsters infectés avec le SRAS-CoV-2 et traités avec le véhicule, et des hamsters infectés avec le SRAS-CoV-2 et traités par le BIO101 par voie intrapéritonéale (Figure 6). L’effectif de chaque groupe est de 10 animaux.
[00101] C. Analyse de la charge virale pulmonaire après infection au SRAS-CoV-2
[00102] A la fin de l’étude, 7 jours après inoculation du virus SRAS-CoV-2, les charges virales pulmonaires des différents groupes d’animaux ont été comparées (Figure 7).
[00103] Des cellules VeroE6 sont ensemencées (7,5 x 103 cellules par 100 pl dans du milieu de culture DMEM / FBS 10%) puis laissées à incuber la nuit entière. Le jour suivant, les cellules sont visualisées au microscope optique pour confirmer que les cellules sont uniformément réparties et ont atteint environ 75% de confluence. Dans un environnement de niveau 3 de biosécurité, des dilutions sériées (1 :10) d’homogénats pulmonaires sont préparées dans du milieu d’infection (DMEM / FBS2%). Après avoir retiré le milieu de croissance des cellules, les différentes préparations d’homogénats pulmonaires sont transférées sur les tapis cellulaires de VeroE6 préalablement préparés. Les cellules sont incubées pendant 2 heures à 37°C puis 100 pL de milieu d'infection est ajouté à chaque puits. Les plaques sont incubées à 37°C pendant 5 jours afin de contrôler l’effet cytopathique des différents homogénats pulmonaires. Le titre viral est calculé selon la méthode standard de Reed et Muench. Pour exemple, un titre exprimé comme 103 TCID50 / mL en 5 jours dans la lignée cellulaire VeroE6 peut être traduit par : 1 mL d'homogénat pulmonaire dilué à 1 : 1000 infectera 50% des cellules en 5 jours lors de l'utilisation de la lignée cellulaire Vero E6. [00104] Sept jours après l’inoculation du SRAS-CoV-2, une charge virale pulmonaire est toujours détectable dans les poumons des hamsters infectés. La charge virale pulmonaire des animaux infectés au SRAS-CoV- 2 traités avec le véhicule n’est pas différente de celle observée chez les animaux infectés au SRAS-CoV-2 traités avec BIO101 (respectivement 4,85 ± 0,018 versus 4,83 ± 0,011 ; p=ns).
[00105] Tel qu’attendu, après 7 jours de traitement quotidien, BI0101 n’a pas d’effet sur la charge virale pulmonaire des animaux infectés.
[00106] D. Analyse de la fonction respiratoire chez le hamster par pléthysmographie sur corps entier
[00107] Des analyses de pléthysmographie sur corps entier ont été réalisées en début de protocole, sur tous les animaux de l’étude, avant toute infection virale, afin de s’assurer que les propriétés respiratoires de chacun des groupes soient bien identiques (résultats non présentés). Au nadir du poids vif des animaux infectés par SRAS-CoV-2 (Chan et al. 2020), c’est-à-dire 5 jours après inoculation du virus, l’analyse de la fonction respiratoire a été réalisée sur les trois différents groupes : des hamsters non-infectés et traités avec le véhicule, des hamsters infectés avec le SRAS-CoV-2 et traités avec le véhicule, et des hamsters infectés avec le SRAS-CoV-2 et traités par le BIO101 par voie intrapéritonéale.
[00108] Lors de l’analyse par pléthysmographie, les variations de pressions mesurées par rapport à une chambre de référence permettent de définir de nombreux paramètres respiratoires tels que les pics et les temps de pression inspiratoire et expiratoire, la fréquence respiratoire, ainsi qu’une grandeur sans unité appelée Penh ( enhanced Pause) qui permet d’évaluer la réactivité bronchique (Menachery et al., 2015) (Figure 8A).
[00109] La valeur de la Penh est un index important à définir car ses variations évoluent en parallèle avec celles de la résistance respiratoire et elle représente donc un paramètre prédictif des changements des propriétés résistives du système respiratoire (Hamelmann et al., 1997 ; Bergren, 2001 ; Onclinx et al., 2003).
[00110] De plus, lors de pathologies virales infectieuses, notamment à coronavirus, l’altération des voies respiratoires inférieures provoque une modification des paramètres respiratoires mesurées à l’aide de la pléthysmographie, avec, pour exemples, une augmentation de la Penh, et du temps d’expiration (Menachery et al., 2015 ; Dinnon et al., 2020).
[00111] Tel que préalablement décrit dans la littérature (Menachery et al., 2015 ; Dinnon et al., 2020), la valeur de Penh est significativement augmentée dans le groupe de hamsters infectés par le SRAS-CoV-2 traités avec le véhicule, par rapport au groupe contrôle non infectés (respectivement 0.63 ± 0.11 versus 0.28 ± 0.01 ; p<0.01 ). Lorsque les animaux infectés ont reçu le traitement par BI0101 pendant 5 jours, on constate que la valeur du Penh (0.35 ± 0.02) est significativement plus basse par apport aux animaux infectés et traités avec le véhicule (p<0.05) (Figure 8B).
[00112] Le temps d’inspiration et le temps d’expiration tendent à augmenter dans le groupe de hamsters infectés traités au véhicule en comparaison au groupe de hamsters contrôles, non infectés (Figure 8A, 9A et 9B). En effet, le temps d’inspiration augmente de 75.9 ± 2.9 msec à 88.4± 6.87 msec et le temps d’expiration augmente de 133.2 ± 7.4 msec à 150.7± 5.2 msec (p=0.06). Dans le groupe des hamsters infectés par SRAS-CoV-2 et ayant reçu le traitement BIO101 pendant 5 jours, on observe un temps d’inspiration significativement plus faible (66.4 ± 2.6 msec ; p<0.01) par rapport au groupe infecté traité avec le véhicule (88.4± 6.87 msec). De la même manière, on observe un temps d’expiration significativement plus bas (134.9 ± 3.2 msec ; p<0.05) par rapport au groupe infecté traité avec le véhicule (150.7± 5.2 msec).
[00113] Un autre paramètre du cycle respiratoire a été évalué. Il s’agit de la pause télé-expiratoire (PTE) (Figure 8A et 9C). La PTE correspond au plateau du débit expiratoire en fin d'expiration. Lors d’une pathologie respiratoire profonde, les bronchioles sont au moins partiellement obstruées, par conséquent la résistance à l'écoulement est augmentée, ce qui ralentit la vidange et prolonge la PTE (Menachery et al., 2015). La longueur de la PTE fournit donc une mesure de la difficulté à expirer la fin du volume courant et cette difficulté est proportionnelle au degré d'obstruction des voies respiratoires inférieures (soit par un obstacle luminal, soit simplement du fait que l'œdème inflammatoire de la paroi rétrécit la surface de section).
[00114] Tel qu’attendu, le temps de pause expiratoire augmente significativement chez les hamsters infectés avec le SRAS-CoV-2 par rapport aux hamsters du groupe contrôle non infectés (respectivement 18,8 ± 1,6 msec versus 12,4 ± 0,5 msec ; p<0,01). De manière remarquable, dans le groupe de hamsters infectés au SRAS-CoV-2 ayant reçu le traitement BIO101, ce temps de pause expiratoire est significativement plus faible (12,6 ± 0,3 msec ; p<0,01) par rapport aux animaux infectés traités avec le véhicule.
[00115] L’administration quotidienne de BIO101 pendant 5 jours restaure le temps de pause expiratoire des animaux traités (IC 95% : 11,9-13,4), à un niveau comparable à celui retrouvé des animaux contrôles, non infectés (IC 95% : 11,3-13,4) (Figure 9C).
[00116] E. Conclusion
[00117] Le hamster syrien constitue un modèle d’intérêt afin d’étudier l’infection et la transmission du virus SRAS-CoV-2 et permet des tester diverses solutions thérapeutiques. BIO101, administré par voie intrapéritonéale à une dose de 10mg/kg*jour permet d’obtenir une exposition plasmatique de BIO101 chez le hamster semblable à celle obtenue chez des patients exposés à 350 mg de BI0101 deux fois par jour et ce pendant 14 jours. De plus, à 7 jours post infection, BI0101 n’a pas d’effet significatif sur la charge virale pulmonaire.
[00118] En revanche, et de manière remarquable cette étude démontre des effets bénéfiques significatifs du traitement par BIO101, sur des paramètres respiratoires de hamsters infectés par le SRAS-CoV-2, en particulier sur des indicateurs qui mesurent la résistance des voies respiratoires au passage de l'air (Penh, PTE). Il a été démontré que la maladie virale augmente la résistance des voies respiratoires, ce qui est attendu lors d’infections pulmonaires aigües. Cette étude sur la fonction respiratoire réalisée par pléthysmographie sur corps entier révèle que BIO101 atténue significativement cette dysfonction (Penh, PTE) mais également l’allongement du temps d’expiration pendant la maladie, ce qui confirme l’atténuation de la PTE.
[00119] Un traitement avec les phytoecdysones, notamment BIO101, permet d’améliorer les fonctions pulmonaires dans un modèle de mammifères infectés par le SRAS-CoV-2. [00120] Références bibliographiques
Adler A, Cieslewicz G, Irvin CG. Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J. Appl. Physiol. (1985). (2004); 97(1):286-92.
Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of Angiotensin(1-7). Peptides 1993; 14: 679-684.
Bitker L, Burrell LM. Classic and nonclassic renin-angiotensin Systems in the critically ill. Crit. Clin Care 2019; 35: 213-227.
Boudewijns, R. et al. STAT2 signaling as double-edged sword restricting viral dissémination but driving severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communication, 11, 5838 (2020).
Candida Bastos A, Magalhâes GS, Gregôrio JF, Matos NA et al. Oral formulation angiotensin-(1-7) therapy atténuâtes pulmonary and systemic damage in mice with emphysema induced by elastase. Immunobiology. 2020: 151893.
Chan, J. F.-W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. ciaa325 (2020).
Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H. Angiotensin-(1-7) atténuâtes lung fibrosis by way of Mas receptor in acute lung injury. Journal of Surgical Research 2013; 185 : 740-747.
Chen QF, Kuang XD, Yuan QF, Hao H et al. Lipoxin A4 atténuâtes LPS- induced acute lung injury via activation of the ACE-Ang-(1-7)-Mas axis. Innate Immunity 2018; 24(5): 285-296.
Chong BT, Agrawal DK, Romero FA, Townley RG. Measurement of bronchoconstriction using whole-body plethysmograph: comparison of freely moving versus restrained guinea pigs. J. Pharmacol. Toxicol. Methods (1998); 39:163-8.
Daniell H, Mangu V, Yakubov B, Park J et al. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials 2020 ; 119750. Dilda P, Lafont R, Latil M, Serova M, Agbulut O, Veillet S. Use of 20- hydroxyecdysone and the derivatives thereof in the treatment of myopathies. PCT Application 2018; WO2018197708.
Dilda P, Latil M, Serova M, Didry-Barca B, On S, Veillet S, Lafont R. SARCONEOS (API BIO101 ) targets Mas receptor within the protective arm of the renin angiotensin System and proves efficacy in various models of muscle wasting. The Journal ofFrailty & Aging, 2019, 8 (S1), S14 Dinnon, K.H., Leist, S. R., Schàfer, A. et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560-566 (2020).
Djuric VJ, Cox G, Overstreet DH, Smith I, Dragomir A, Steiner M. Genetically transmitted cholinergic hyperresponsiveness prédisposés to experimental asthma. Brain Behav. Immun. (1998); 12:272-84.
Greenland JR, Michelow MD, Wang L, London MJ. COVID-19 infection: implications for perioperative and citical care physicians. Anaesthesiology 2020; DOI: 10.1097/ALN.0000000000003303.
Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW. Noninvasive measurement of airway responsiveness in allergie mice using barometric plethysmography. Am. J. Respir. Crit. Care Med.; 156:766-75 (1997).
Hoffman AM, Dhupa N, Cimetti L. Airway reactivity measured by barometric whole-body plethysmography in healthy cats. Am. J. Vet. Res., (1999); 60:1487-92.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N et al. SARS-CoV-2 cell entry dépends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; https://doi.Org/10.1016/j. cell.2020.02.052.
Imai Y, Kuba K, Rao S, Huan Y et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112-116.
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA117, 16587-16595 (2020). Iwatsuki-Horimoto, K. et al. Syrian hamster as an animal model for the study of human influenza virus infection. J. Virol. 92, e01693-17 (2018).
Jiang T, Gao L, Shi J, Lu J et al. Angiotensin-(1-7) modulâtes renin- angiotensin System associated with reducing oxidative stress and attenuating neuronal apoptosis inthe brain of hypertensibe rats. Pharmacological Research 2013; 67: 84-93.
Klein S, Herath CB, Schierwagen R, Grâce J et al. Hémodynamie effects of the non-peptidic angiotensin-(1-7) agonist AVE0991 in liver cirrhosis. PLoS ONE 2015; 10(9): e0138732.
Klimas J, Olvedy M, Ochodnicka-Mackovicova K, Kruzliak P et al. Perinatally administered losartan augments rénal ACE2 expression but not cardiac or rénal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med 2015; 19(8): 1965-2015.
Kostis JB, Kim HJ, Rusnak J, Casale T, Kaplan A, Corren J, et al. Incidence and characteristics of angioedema associated with enalapril. Arch Intern Med. 2005 Jul; 165 (14): 1637-42
Kuba K, Imai Y, Rao S, et al. A crucial rôle of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine 2005; 11 (8): 875-879.
Lafont R, Dilda P, Dioh W, Dupont P, Del Signore S, Veillet S. Pharmaceutical grade 20-hydroxyecdysone extract, use of the same and préparation thereof. PCT Application 2018; WO2018197731 .
Lafont R, Dioh W, Raynal S, Veillet S, Lepifre F, Durand JD. Composés chimiques et leur utilisation pour l’amélioration de la qualité musculaire. PCT Application 2015; WO2015177469.
Lipworth BJ, Dagg KD. Vasoconstrictor effects of Angiotensin II on the Pulmonary Vascular bed. Chest 1994; 105 (5): 1360-1364.
Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and elderly patients. J Infection 2020; https://doi.Org/10.1016/j.jinf.2020.03.005.
Liu Y, Yang Y, Zhang F, Huang F et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China 2020; 63(3): 364-374. Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG et al. Angiotensin-(1-7) promotes resolution of éosinophilie inflammation in an experimental model of asthma. Frontiers in Immunology 2018; 9: 58. MckayA, Al-Haddad M. Acute lung injury and acute respiratory distress syndrome. Anaesthesia, Critical Care & Pain 2009, Volume 9 Number 5, 152-156
Menachery VD, Gralinski LE, Baric RS, Ferris MT. New Metrics for Evaluating Viral Respiratory Pathogenesis. PLoS ONE 10(6): e0131451 (2015)
Meng Y, Yu CH, Li W, Li T et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kB pathway. Am J Respir Cell Mol Biol. 2014; 50(4): 723-736. Meng Y, Li T, Zhou GS, Chen Y, Yu CH et al. The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rho kinase pathway. Antioxid Redox Signal. 2015; 22(3): 241-258. Miao, J., Chard, L. S., Wang, Z. & Wang, Y. Syrian hamster as an animal model for the study on infectious diseases. Front. Immunol. 10, 2329 (2019). Muhoz-Fontela, C., Dowling, W.E., Funnell, S. G. P. et al. Animal models for COVID 19. Nature 586, 509-515 (2020).
Misset, B., Hoste, E., Donneau A. F., Grimaldi, D., Meyfroidt, G., Moutschen, M., Compernolle, V., Gothot, A., Desmecht, D., Garigliany, M., Najdovski, T., and Laterre, P. F. A multicenter randomized trial to assess the efficacy of CONvalescent plasma therapy in patients with Invasive COVID-19 and acute respiratory failure treated with mechanical ventilation: the CONFIDENT trial protocol BMC Pulm Med 20:317, (2020)
Onclinx C. Relation entre la résistance pulmonaire totale et la Penh en fonction de la localisation anatomique de l’obstruction des voies aériennes (mémoire-diplôme d’étude approfondie). Université de Liège, Faculté de médecine vétérinaire : Liège, (2003).
Roberts, A. et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 79, 503-511 (2005). Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin- converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin- angiotensin System. Journal of Endocrinology 2013; 216(2): R1-R17.
Shao M, Wen ZB, Yang HH, Zhang CY et al. Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-bΐ in alveolar épithélial cells. Biomedicine & Pharmacotherapy 2019; 117: 109193.
Song G, Xia XC, Zhang K, et al. Protective effect of 20-hydroxyecdysone against lipopolysaccharides-induced acute lung injury in mice. Journal of Pharmaceutics and Drug Research 2019; 2(3): 109-114.
Supé S, Kohse F, Gembardt F, Kuebler WM, Walther T. Therapeutic time window for angiotensin-(1-7) in acute lund injury. British Journal of Pharmacology 2016; 173: 1618-1628.
Tirupula KC, Desnoyer R, Speth RC, Karnik SS. Atypical signaling and functional desensitization response of mas receptor to peptide ligands. PLoS ONE 2014; 9(7): e103520.
Van Twist DJ, Kroon AA, de Leeuw PW. 2014. Angiotensin-(1-7) as a strategy in the treatment of hypertension? Curr Opin Nephrol Hypertension 2014; 23(5): 480-486.
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor récognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology 2020; 94(7): e00127-20.
Wang X, Ye Y, Gong H, Wu J, Yuan J, Wang S, Yin P, Ding Z, Kang L, Jiang Q, Zhang W, Li Y, Ge J, Zou Y. The effects of different angiotensin II type 1 receptor blockers on the régulation of the ACE-Angll-AT1 and ACE2- Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. J Mol Cell Cardiol. 2016, 97:180-910
Wold, W. S. M. & Toth, K. Chapter three - Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds. Adv. Cancer Res. 115, 69-92 (2012).
Wujtewicz M, Dylczyk-Sommer A, Aszkietowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19 - what should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 2020;52(1):34-41. doi: 10.5114/ait.2020.93756. Xia XC, Tang NY, Xue SP, Wang XY, Wang WN, Liu RZ, Effects of 20- hydroxyecdysone on expression of inflammation cytokines in acute lung injury mice. Modem Préventive Medicine 2016; 5.
Xu H, Zhong L, Deng J et al. High expression of ACE2 receptor of 2019- nCoV on the épithélial cells of oral mucosa. International Journal of Oral Science 2020; 12: 8.
Ye R, Liu Z. ACE2 exhibits protective effect against LPS-induced acute lung injury in mice by inhibiting thr LPS-TLR4 pathway. Experimental and Molecular Pathology 2020; 113: 104350.
Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Critical Care 2017; 21 (1 ): 305.
Zhang F, Tang H, Sun S, Luo Y et al. Angiotensin-(1-7) induced vascular relaxation in spontaneously hypertensive rats. Nitric Oxide 2019; 88: 1-9. Zhang Y, Li Y, Shi C, Fu X et al. Angiotensin-(1-7)-mediated Mas1 receptor/NF-kB-p65) signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model. Environmental Toxicology 2018; 33: 5-15
Zhou F, Yu T, Du R, Fan G et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a rétrospective cohort study. Lancet 2020; 395: 1054-1062.

Claims

Revendications Revendication 1. Composition comprenant : - au moins la 20-hydroxyecdysone ; et/ou, - au moins un dérivé hémi-synthétique de phytoecdysone de formule générale(I) :
[Chem. 1] dans laquelle :
V-U est une liaison simple carbone-carbone et Y est un groupement hydroxyle ou un hydrogène, ou V-U est une liaison éthylénique C=C ;
X est un oxygène,
Q est un groupement carbonyle ;
R1 est choisi parmi : un groupement (Ci-C6)W(Ci-C6) ; un groupement (Ci- C6)W(Ci-C6)W(Ci-Ce) ; un groupement (Ci-C6)W(Ci-C6)C02(Ci-C6); un groupement (CI-C6)A, A représentant un hétérocycle éventuellement substitué par un groupement de type OH, OMe, (C1-C6), N(CI-C6), C02(Ci- C6) ; un groupement CH2Br ;
W étant un hétéroatome choisi parmi N, O et S, de préférence O et encore plus préférentiellement S ; et/ou, au moins un dérivé hémi-synthétique de phytoecdysone de formule (II) : [Chem. 2] pour son utilisation dans le traitement d’une altération de la fonction respiratoire résultant d’une infection virale chez le mammifère.
Revendication 2. Composition pour son utilisation selon la revendication 1, dans laquelle l’altération de la fonction respiratoire résulte d’une infection par un virus choisi parmi le rhinovirus, le virus respiratoire syncytial, le virus de la grippe, le virus de la grippe A et un coronavirus.
Revendication 3. Composition pour son utilisation selon l’une quelconque des revendications 1 et 2, dans laquelle l’altération de la fonction respiratoire résulte d’une infection par un coronavirus utilisant ACE2 comme récepteur à la surface des cellules de mammifère.
Revendication 4. Composition pour son utilisation selon l’une quelconque des revendications 1 à 3, dans laquelle l’altération de la fonction respiratoire résulte d’une infection par coronavirus de type SRAS-CoV.
Revendication 5. Composition pour son utilisation selon l’une quelconque des revendications 1 à 3, dans laquelle l’altération de la fonction respiratoire résulte d’une infection par coronavirus de type SRAS-CoV-2.
Revendication 6. Composition pour son utilisation selon l’une quelconque des revendications 1 à 5, dans laquelle le traitement de l’altération de la fonction respiratoire comprend la prévention et le traitement d’une insuffisance respiratoire chez le mammifère atteint de l’infection virale.
Revendication 7. Composition pour son utilisation selon l’une quelconque des revendications 1 à 6, dans laquelle le traitement de l’altération de la fonction respiratoire comprend la prévention et le traitement du syndrome de détresse respiratoire aigüe chez le mammifère atteint de l’infection virale. Revendication 8. Composition pour son utilisation selon l’une quelconque des revendications 1 à 7, dans laquelle le traitement de l’altération de la fonction respiratoire comprend le traitement de la fonction musculaire respiratoire. Revendication 9. Composition pour son utilisation selon l’une quelconque des revendications 1 à 8, dans laquelle le traitement de l’altération de la fonction respiratoire comprend le traitement d’au moins une des affections de la fonction respiratoire chez le mammifère atteint de l’infection virale choisies parmi l'hypoxie, la diminution de la capacité à éliminer le CO2.
Revendication 10. Composition pour son utilisation selon l’une quelconque des revendications 1 à 9, dans laquelle l’altération de la fonction respiratoire est liée à l’évolution d’au moins un des paramètres choisis parmi :
- la mortalité et la guérison caractérisée par le transfert du patient vers son domicile ou vers un service de soins de médecine générale
- le nombre d’événements de type d'insuffisance respiratoire définis par la nécessité d’une ventilation mécanique et par la nécessité d’un soutien respiratoire non-invasif tel que la ventilation en pression positive continue des voies respiratoires ou de l'oxygène à haut débit,
- le score d’évaluation séquentielle de la défaillance respiratoire (SOFA) et l’indice de sévérité pulmonaire (PSI) et l’imagerie médicale qui permet de graduer le niveau de progression de la pathologie inflammatoire exsudative.
- le taux plasmatique de cytokines pro-inflammatoires et anti-inflammatoires. Revendication 11. Composition pour son utilisation selon l’une quelconque des revendications 1 à 10, dans laquelle la 20-hydroxyecdysone est sous forme d’extrait de plante ou d’une partie de plante, ladite plante étant choisie parmi les végétaux contenant au moins 0,5% de 20-hydroxyecdysone en poids sec dudit végétal, ledit extrait comportant au moins 95%, et de préférence au moins 97%, de 20-hydroxyecdysone.
Revendication 12. Composition pour son utilisation selon la revendication 11, comportant de façon remarquable entre 0 et 0,05 %, en poids sec de l’extrait, d’impuretés susceptibles d’affecter l’innocuité, la disponibilité ou l’efficacité d’une application pharmaceutique dudit extrait.
Revendication 13. Composition pour son utilisation selon l’une quelconque des revendications 11 à 12, dans laquelle la plante est choisie parmi Stemmacantha carthamoides, Cyanotis arachnoidea et Cyanotis vaga. Revendication 14. Composition pour son utilisation selon l’une quelconque des revendications 1 à 13, dans laquelle dans la formule générale (I) :
Y est un groupement hydroxyle ;
R1 est choisi parmi : un groupement (Ci-C6)W(Ci-C6) ; un groupement (Ci- C6)W(Ci-C6)W(Ci-Ce) ; un groupement (Ci-C6)W(Ci-C6)CC>2(Ci-C6); un groupement (CI-C6)A, A représentant un hétérocycle éventuellement substitué par un groupement de type OH, OMe, (C1-C6), N(CI-C6), C02(Ci-C6) ;
W étant un hétéroatome choisi parmi N, O et S, de préférence O et de préférence encore S.
Revendication 15. Composition pour son utilisation selon l’une quelconque des revendications 1 à 14, dans laquelle ledit au moins un composé de formule générale (I) est choisi parmi :
- n°1 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-diméthyl-17-(2- morpholinoacétyl)-2,3,4,5,9,11,12,15,16,17-décahydro-1H- cyclopenta[a]phénanthrèn-6-one;
- n°2 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(3- hydroxypyrrolidin-1 -yl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1H-cyclopenta[a]phénanthrèn-6-one;
- n°3 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(4-hydroxy-1- pipéridyl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-6-one;
- n°4 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-[4-(2- hydroxyéthyl)-1 -pipéridyl]acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1 H-cyclopenta[a]phénanthrèn-6-one;
- n°5 : (2S,3R,5R,10R,13R,14S,17S)-17-[2-(3- diméthylaminopropyl(méthyl)amino)acétyl]-2,3,14-trihydroxy-10,13-diméthyl- 2, 3, 4, 5, 9,11 ,12,15,16,17-décahydro-1 H-cyclopenta[a]phénanthrèn-6-one;
- n°6 : 2-[2-oxo-2-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13- diméthyl-6-oxo-2,3,4,5,9,11,12,15,16,17-décahydro-1H- cyclopenta[a]phénanthrèn-17-yl]éthyl]sulfanylacétate d’éthyle;
- n°7 : (2S,3R,5R,10R,13R,14S,17S)-17-(2-éthylsulfanylacétyl)-2,3,14- trihydroxy-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17-décahydro-1 H- cyclopenta[a]phénanthrèn-6-one; - n°8 : (2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-17-[2-(2- hydroxyéthylsulfanyl)acétyl]-10,13-diméthyl-2,3,4,5,9,11 ,12,15,16,17- décahydro-1H-cyclopenta[a]phénanthrèn-6-one.
EP21732362.5A 2020-03-30 2021-03-24 Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d'altérations de la fonction respiratoire lors d'une infection virale Pending EP4125922A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003131A FR3108504B1 (fr) 2020-03-30 2020-03-30 Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d’altérations de la fonction respiratoire lors d’une infection virale
PCT/FR2021/050503 WO2021198588A1 (fr) 2020-03-30 2021-03-24 Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d'altérations de la fonction respiratoire lors d'une infection virale

Publications (1)

Publication Number Publication Date
EP4125922A1 true EP4125922A1 (fr) 2023-02-08

Family

ID=70614301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21732362.5A Pending EP4125922A1 (fr) 2020-03-30 2021-03-24 Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d'altérations de la fonction respiratoire lors d'une infection virale

Country Status (12)

Country Link
US (1) US20230128105A1 (fr)
EP (1) EP4125922A1 (fr)
JP (1) JP2023519710A (fr)
KR (1) KR20230011278A (fr)
CN (1) CN115776892A (fr)
AU (1) AU2021250695A1 (fr)
BR (1) BR112022019679A2 (fr)
CA (1) CA3173112A1 (fr)
FR (1) FR3108504B1 (fr)
IL (1) IL296757A (fr)
MX (1) MX2022012262A (fr)
WO (1) WO2021198588A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105037471B (zh) * 2014-05-02 2018-03-23 扬州蓝色生物医药科技有限公司 一种甾体类抗病毒剂
FR3021318B1 (fr) 2014-05-20 2017-04-28 Inst Biophytis Produits derives de la 20-hydroxyecdysone et leur utilisation dans la preparation de medicaments
KR20180096079A (ko) * 2017-02-20 2018-08-29 충남대학교산학협력단 20-he를 유효성분으로 하는 항결핵 조성물
FR3065644B1 (fr) 2017-04-28 2020-02-21 Biophytis Extrait de 20-hydroxyecdysone de qualite pharmaceutique, son utilisation et sa preparation
FR3093641B1 (fr) * 2019-03-15 2023-11-03 Biophytis Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement de l’altération de la fonction respiratoire

Also Published As

Publication number Publication date
MX2022012262A (es) 2023-01-18
US20230128105A1 (en) 2023-04-27
AU2021250695A1 (en) 2022-10-27
IL296757A (en) 2022-11-01
FR3108504A1 (fr) 2021-10-01
KR20230011278A (ko) 2023-01-20
CA3173112A1 (fr) 2021-10-07
BR112022019679A2 (pt) 2022-12-20
FR3108504B1 (fr) 2023-03-31
WO2021198588A1 (fr) 2021-10-07
JP2023519710A (ja) 2023-05-12
CN115776892A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
EP3528835B1 (fr) Compositions antivirales pour le traitement des infections liees aux coronavirus
ES2569391T3 (es) Tritocualina para uso en el tratamiento de la fibrosis quística
KR101638637B1 (ko) 알레르기성 또는 바이러스성 호흡기 질환 치료용 오스모라이트
JP2024510035A (ja) エピネフリン粒子を含む複合口腔粘膜フィルム組成物
US20210346453A1 (en) Compositions and methods for treatment of covid-19
EP4125922A1 (fr) Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d&#39;altérations de la fonction respiratoire lors d&#39;une infection virale
JP2023531872A (ja) 急性呼吸窮迫症候群、喘息、又はアレルギー性鼻炎を治療するための製剤及び方法
EP3937949B1 (fr) Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement de l&#39;altération de la fonction respiratoire
CA3107080A1 (fr) Nouvelle souche virale attenuee et son utilisation en tant que vaccin
EP3897682B1 (fr) Souche de levure saccharomyces cerevisiae pour le traitement et/ou la prévention de candidoses oropharyngées
WO2017174593A1 (fr) Nouvelles compositions antivirales pour le traitement de la grippe
WO2021236626A1 (fr) Technologies antivirales mucorétentives
CA3124178A1 (fr) Utilisation d&#39;un antagoniste de par-1 pour le traitement d&#39;une maladie inflammatoire chronique intestinale
CA3170621A1 (fr) Composition comprenant du diltiazem pour traiter l&#39;infection virale par les virus sars-cov-2
CA3212743A1 (fr) Nouvelle application d&#39;une composition immunogene ou vaccinale contre la covid-19
Tian et al. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick
WO2022200384A1 (fr) Nouvelle application d&#39;une composition immunogene ou vaccinale contre la covid-19
EP4090334A1 (fr) Combinaison de diltiazem et des inhibiteurs de polymerase(s) virale(s)
US20150072943A1 (en) Mixture of polar glycolipids for use in the treatment of pain and copd
WO2021255226A1 (fr) Utilisation antivirale de calixarènes
WO2024134105A1 (fr) Phytoecdysones pour leur utilisation dans le traitement de pathologies respiratoires inflammatoires
IT202000022294A1 (it) Prodotto per uso nella prevenzione e/o nel trattamento di un&#39;infezione da coronavirus.
BR112021009572A2 (pt) métodos e composições para prevenção ou tratamento de exacerbações agudas com imunoglobulina policlonal
CN107737105A (zh) 一种鼻腔用盐酸氮卓斯汀组合物喷雾剂及生产工艺

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231004