EP4122590A1 - Vorkonditionierer für den labor- oder versuchsbetrieb, insbesondere zum behandeln von trockenen lebens- oder futtermitteln - Google Patents

Vorkonditionierer für den labor- oder versuchsbetrieb, insbesondere zum behandeln von trockenen lebens- oder futtermitteln Download PDF

Info

Publication number
EP4122590A1
EP4122590A1 EP22185926.7A EP22185926A EP4122590A1 EP 4122590 A1 EP4122590 A1 EP 4122590A1 EP 22185926 A EP22185926 A EP 22185926A EP 4122590 A1 EP4122590 A1 EP 4122590A1
Authority
EP
European Patent Office
Prior art keywords
mixing chamber
preconditioner
shaft
nozzle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22185926.7A
Other languages
English (en)
French (fr)
Inventor
Prof. Dr. Uwe GRUPA
Johannes Schmitt
Carl DOLGOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochschule Fulda
Original Assignee
Hochschule Fulda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochschule Fulda filed Critical Hochschule Fulda
Publication of EP4122590A1 publication Critical patent/EP4122590A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/62Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis comprising liquid feeding, e.g. spraying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/625Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis the receptacle being divided into compartments, e.g. with porous divisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2115Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/40Mounting or supporting mixing devices or receptacles; Clamping or holding arrangements therefor
    • B01F35/41Mounting or supporting stirrer shafts or stirrer units on receptacles
    • B01F35/412Mounting or supporting stirrer shafts or stirrer units on receptacles by supporting both extremities of the shaft
    • B01F35/4122Mounting or supporting stirrer shafts or stirrer units on receptacles by supporting both extremities of the shaft at the side walls of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/715Feeding the components in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • B01F2101/18Mixing animal food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0409Relationships between different variables defining features or parameters of the apparatus or process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof

Definitions

  • the invention relates to a preconditioner for laboratory or experimental operation, in particular for treating dry food or feed, comprising a housing with a mixing chamber, the quotient of the length of the mixing chamber and the inside diameter of the clear cross section of the mixing chamber being between 12 and 15 .
  • the invention has variable design options for the process length and dosing positions.
  • the conditioning of e.g. food and feed serves to hydrate the raw material mixture and/or to introduce thermal energy, e.g. in the form of steam, into the product.
  • a preconditioner is intended to achieve the best quality and improved bioavailability of food and feed.
  • the treatment serves to prepare for subsequent process steps, such as pelleting using an extruder downstream of the preconditioner.
  • a preconditioner can be used to achieve an effective and at the same time cost-effective mixing and heat treatment of such foodstuffs and feedstuffs.
  • Prior art industrial preconditioners are designed for throughput. This means that they have comparatively large dimensions, i.e. relatively large-volume mixing chambers in order to treat as much material as possible in the shortest possible time. Mass flows of 0.3 to 30 tons per hour are common. However, it is problematic if the production of new products is to be tested on such systems. Correspondingly large test quantities of food and feed to be treated are then necessary. In the tests on these industrial plants, the corresponding process parameters often have to be tested and adjusted for the new product. This usually requires several test runs with correspondingly large quantities of raw material. This means that a lot of waste is produced in the test operation, which then has to be disposed of as waste. Setting up, starting up and shutting down as well as cleaning such industrial plants also involves considerable effort.
  • the present invention relates to the objects mentioned at the outset.
  • dosing opening when, according to the invention, dosing opening is mentioned, this also means a feed for additives to the mixing chamber of the preconditioner.
  • a preconditioner for laboratory or experimental operation in particular for treating dry food or feed, comprising a housing with a mixing chamber, the quotient of the length of the mixing chamber and the inside diameter of the clear cross section of the Mixing chamber between 12 and 15, preferably between 13 and 14 and more preferably between 13.5 and 13.8 is dissolved.
  • Preferred embodiments of the invention are specified in the dependent claims, which can optionally be combined with one another.
  • the inventors have recognized that a skilful choice of the quotient of the length of the mixing chamber and the inside diameter of the clear cross section of the mixing chamber results in particularly optimal treatment, above all thorough mixing of the material treated in the preconditioner. On the other hand, it and its individual parts are particularly easy to handle, e.g. when cleaning.
  • the stated quotient is between 12 and 15, preferably between 13 and 14 and particularly preferably between 13.5 and 13.8.
  • the length of the mixing chamber can be between 90 and 120 cm and preferably between 90 and 100 cm, with the inside diameter of the clear cross-section being between 6 and 10 cm, preferably between 6 and 8 cm.
  • the mixing chamber preferably comprises at least three connections for water or steam in combination with a dosing opening for solids to feed the same to the mixing chamber, wherein the connections can be arranged at the periphery, preferably at the top of the mixing chamber.
  • a nozzle can be connected to the connection in order to supply water to the mixing chamber, with the nozzle being designed as an atomizer nozzle, such as a two-component nozzle, in order to supply water to the mixing chamber using atomizer air, with the nozzle preferably being set up in such a way that the mixing chamber has 5 to 80 g of water per liter, preferably 10 to 50 g of water per liter of the volume of the mixing chamber can be supplied.
  • a quantity sensor such as a flow meter, can be connected upstream of the connection in order to detect or set the quantity of water or steam supplied to the mixing chamber. Such low amounts of water can only be supplied to the mixing chamber with such a nozzle and such a flow rate meter.
  • the preconditioner is set up according to the invention in such a way that it can in principle be operated on a laboratory bench.
  • the dwell time is between 300 and 800 seconds when the process length (position 14) is fully utilized, at the dosing opening 17 between 240 and 470 seconds and at the dosing opening 18 at 170 and 400 seconds.
  • the bulk density of the material to be treated is between 300 and 800 g/l, preferably between 400 and 600 g/l.
  • the mixing chamber is filled to a maximum of one third, so that the material quantities in the mixing chamber range from 1 to 3 kg. If the process length is shortened, a cut-off disc can be attached to the mixing and conveying screw. This prevents the sample material from being pushed back into the rear space and the uncontrolled escape of steam. About 5 to 15 kg of material per hour can be treated in such a preconditioner.
  • the amount of water vapor to be supplied to the mixing chamber can be 10 to 50 percent by weight, preferably 20 to 40 percent by weight, and the water content to be supplied can be 5 to 80 percent by weight, preferably 15 to 40 percent by weight of the material.
  • the mixing chamber can be essentially cylindrical on the inside, so that inexpensive round material can be used for the preconditioner.
  • a shaft is preferably arranged in the mixing chamber, with a multiplicity of paddles arranged on the circumference of the shaft.
  • paddles which serve as mixer or conveyor screws, are inexpensive to produce and optimally convey and mix the material added to the mixing chamber.
  • the shaft can be mounted at each of its axial ends by means of radial bearings, the radial bearings being supported directly or indirectly on the housing and preferably being accommodated in openings in the housing.
  • a simple, cost-effective construction of the preconditioner can also be specified in which wearing parts, such as the radial bearings, can be easily replaced.
  • the shaft can be driven in rotation via a drive assigned to the preconditioner, with a controller being assigned to the drive, by means of which the speed of the shaft can be adjusted in order to keep the food or feed in the mixing chamber between 300 and 800 seconds at the dosing opening 17 between 240 and 470 seconds and at the dosing opening 18 at 170 and 400 seconds. It has been shown that these are the optimal process parameters.
  • a sensor for recording the temperature in the mixing chamber or the housing can be assigned to it.
  • FIGS 1a and 1b show a preconditioner 1 according to the invention in a highly schematic and therefore not to scale side view.
  • This comprises a housing 2 in which a mixing chamber 3 is accommodated.
  • the preconditioner 1 has a plurality of feeds 14, 17, 18 in order to feed the material to be treated, such as food or feed, to the mixing chamber 3 and a discharge 15 in order to discharge the material from this again after it has been treated.
  • the feed 14 and the discharge 15 are arranged on the circumference of the housing 2 .
  • a shaft 4 (see 2 ) arranged. This comprises a multiplicity of paddles 5 arranged on the circumference of the shaft 4.
  • the shaft 4 can be driven by means of a drive 7, to which a controller 8 is assigned for setting its speed.
  • a controller 8 is assigned for setting its speed.
  • the material supplied to the mixing chamber 3 via the feed 14 is mixed along the length L of the mixing chamber by the rotationally driven shaft 4 and the paddle 5 and discharged from the latter again via the discharge 15 .
  • a cutting disc 19 (see Fig 3 ) to be attached. This separates the mixing chamber 3 into two separate chambers that are separate from one another. With this, the L/D ratio according to the invention for the mixing and conveying screw, ie the shaft 4 equipped with paddles 5, can be adjusted. In this way, the dwell time of the raw material in the mixing chamber 3 can be controlled in a more targeted manner.
  • the separating disc 19 prevents the sample material (raw material possibly with other additives) from being pressed back into the second chamber (rear space) and the uncontrolled escape of steam from it.
  • the shaft 4 can be mounted at both of its axial ends in or on the housing 2 by means of radial bearings 6 .
  • connections 9, 10 for water and steam are distributed around the circumference of the housing between the feed 14 and the discharge 15. Connections 9 are for steam and connection 10 is for water.
  • the connections 10 for water connect directly to the single supply 14 ( Fig. 1a ) and the three feeders 14, 17 and 18 ( Fig. 1b ) on.
  • a nozzle 11 for water is connected as well as a quantity sensor 12.
  • the quantity sensor 12 such as a flow meter and then the nozzle 11
  • the nozzle 11 flows through first, before the water flows through the connection 10 into the Mixing chamber 3 is reached, for example, by nebulization.
  • the nozzle 11 is preferably designed as a two-component nozzle, wherein it has a compressed air connection (not shown) in order to supply atomizing air to the nozzle 11 .
  • connection 9 for steam can also be preceded by a corresponding quantity sensor 12 for adjusting the quantity of steam to be fed into the mixing chamber 3, although this is only shown for one connection 9 .
  • the material within the mixing chamber 3 can be warmed up or heated by means of the steam supply via the connections 9 . Alternatively or additionally, an electric heater would also be conceivable in order to supply thermal energy to the material along the mixing chamber 3 .
  • Fig. 1b serve as a chimney in order to dissipate thermal energy in the form of steam from the preconditioner 1 at an early stage.
  • a sensor 13 for recording the temperature in the mixing chamber 3 or that of the housing 2 is assigned to the central connection 9 for steam.
  • Another sensor 13 can also be arranged in the area of the drop 15 .
  • the sensors 13 are intended to detect the temperature of the material to be treated in the mixing chamber 3 .
  • the preconditioner 1 is dimensioned according to the invention such that the quotient of the length L of the mixing chamber 3 and the inner diameter of the clear cross section D of the mixing chamber 3 is between 12 and 15, preferably between 13 and 14 and particularly preferably between 13.5 and 13.8 lies.
  • the preconditioner 1 can thus be dimensioned so small that it fits on a laboratory bench, but at the same time includes all the functions of a corresponding industrial plant.
  • Preconditioner 1 With one provided for laboratory or test operation Preconditioner 1 comparatively small test quantities of food and feedstuffs to be treated can be processed. In the test operation, there is comparatively much less waste that has to be disposed of as waste.
  • the set-up, start-up and shut-down as well as the cleaning of such a pre-conditioner also involves significantly less effort than is the case with industrial systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

Die Erfindung betrifft einen Vorkonditionierer (1) für den Labor- oder Versuchsbetrieb, insbesondere zum Behandeln von trockenen Lebens- oder Futtermitteln, umfassend ein Gehäuse (2) mit einer Mischkammer (3), wobei der Quotient aus der Länge der Mischkammer und dem Innendurchmesser des lichten Querschnitts der Mischkammer zwischen 12 und 15 beträgt.

Description

  • Die Erfindung betrifft einen Vorkonditionierer für den Labor- oder Versuchsbetrieb, insbesondere zum Behandeln von trockenen Lebens- oder Futtermitteln, umfassend ein Gehäuse mit einer Mischkammer, wobei der Quotient aus der Länge der Mischkammer und dem Innendurchmesser des lichten Querschnitts der Mischkammer zwischen 12 und 15 beträgt. Zudem verfügt die Erfindung über variable Auslegungsmöglichkeiten der Verfahrenslänge und Dosierpositionen.
  • Die Konditionierung von z.B. Lebens- und Futtermitteln dient dazu, die Rohstoffmischung zu hydratisieren und/oder Wärmeenergie, z.B. in Form von Dampf in das Produkt einzubringen. Mittels eines Vorkonditionierers soll die beste Qualität sowie eine verbesserte Bioverfügbarkeit von Lebens- und Futtermitteln erzielt werden. Gleichzeitig dient die Behandlung der Vorbereitung für anschließende Prozessschritte, wie beispielsweise der Pelletierung mittels eines sich an den Vorkonditionierer anschließenden Extruders. Mittels eines Vorkonditionierers lässt sich eine effektive und gleichzeitig kostengünstige Misch- und Wärmebehandlung derartiger Lebens- und Futtermittel erzielen.
  • Durch die Vorbehandlung im Vorkonditionierer ergeben sich folgende Vorteile für den Herstellungsprozess:
    • Verarbeitung von Rohmaterialien mit unerwünschten Eigenschaften, wie niedrige Schüttdichte, hochviskose und feuchte Materialien,
    • Verbesserung der Bioverfügbarkeit von Inhaltsstoffen,
    • Erhöhung des Massenstroms der kompletten Verarbeitungsanlage,
    • Dosieren von temperaturempfindlichen Rohmaterialien und/oder Zusatzstoffen,
    • Verbesserte Prozessstabilität.
  • Durch den flexiblen Aufbau des Vorkonditionierers können an unterschiedlichen Positionen entlang des Verfahrensraumes sowohl Schüttgüter als auch Wasser, Dampf und weitere, teilweise hochviskose Flüssigkeiten dem Ausgangsprodukt in einem fest definierten Verhältnis von Verweilzeit und Durchsatz zudosiert werden. Ein exakt definierter Füllgrad erzielt dabei beste Ergebnisse im Bereich der Ad- und Absorption von Zusatzstoffen. So wird eine ideale Produktbehandlung der einzelnen Inhaltstoffe erreicht, mit exakter Einhaltung der Betriebsparameter, wie Verweilzeit, Temperatur und Wassergehalt.
  • Aus dem Stand der Technik bekannte Industrie-Vorkonditionierer sind auf Durchsatz ausgelegt. Das bedeutet, dass diese vergleichsweise große Abmessungen haben, also relativ großvolumige Mischkammern aufweisen, um möglichst viel Material innerhalb kürzester Zeit zu behandeln. So sind Massenströme von 0,3 bis 30 Tonnen pro Stunde üblich. Problematisch ist jedoch, wenn auf solchen Anlagen die Herstellung neuer Produkte getestet werden soll. Dann sind entsprechend große Versuchsmengen an zu behandelnden Lebens- und Futtermitteln nötig. Bei den Versuchen auf diesen Industrie-Anlagen müssen entsprechende Prozessparameter beim neuen Produkt oftmals erprobt und angepasst werden. Dies erfordert meist mehrere Versuchsdurchläufe mit entsprechend großen Mengen an Rohmaterial. So entsteht im Versuchsbetrieb auch viel Ausschuss, welcher dann als Abfall entsorgt werden muss. Auch das Rüsten, An- und Abfahren sowie die Reinigung solcher Industrie-Anlagen ist mit erheblichem Aufwand verbunden.
  • Die vorliegende Erfindung betrifft die eingangs genannten Gegenstände.
  • Ausgehend hiervon besteht daher die Aufgabe, einen Vorkonditionierer für den Labor- oder Versuchsbetrieb anzugeben, mittels dem Versuche in der Konditionierung von insbesondere Lebens- und Futtermitteln durchgeführt werden können, ohne dass dabei große Mengen an Ausschuss und damit einhergehend Abfall entstehen. Zusätzlich können durch die variable Anordnung der Dosierpositionen von Feststoff- und Flüssigkeitsdosierungen verschiedene Rohmaterialen zu unterschiedlichen Zeitpunkten dem Prozess hinzugefügt werden. Daraus ergeben sich verschiedene Vorteile. Zum einen können temperaturempfindliche Rohstoffe zu einem späteren Zeitpunkt in den Prozess zugegeben werden. Des Weiteren können native Rohstoffe in eine bereits thermisch- und mechanisch beanspruchte Matrix eingebracht werden. So können Wechselwirkungseffekte zwischen den Rohmaterialien gezielter gesteuert werden. Zusätzlich zu den genannten Aspekten, kann durch die variabel auslegbare Verfahrenslänge die Verweilzeit des Prozesses angepasst werden. Dafür wird der Rohstoff an einer, weiter zum Abwurf orientierten Dosieröffnung, eingebracht. Auch soll die Reinigung einer solchen Vorrichtung erheblich vereinfacht werden.
  • Wenn gemäß der Erfindung von Dosieröffnung die Rede ist, dann ist damit auch eine Zuführung für Zusatzstoffe zu der Mischkammer des Vorkonditionierers gemeint.
  • Die der Erfindung zu Grunde liegende Aufgabe wird durch einen Vorkonditionierer für den Labor- oder Versuchsbetrieb, insbesondere zum Behandeln von trockenen Lebens- oder Futtermitteln, umfassend ein Gehäuse mit einer Mischkammer, wobei der Quotient aus der Länge der Mischkammer und dem Innendurchmesser des lichten Querschnitts der Mischkammer zwischen 12 und 15, bevorzugt zwischen 13 und 14 und besonders bevorzugt zwischen 13,5 und 13,8 beträgt, gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben, die wahlweise miteinander kombiniert werden können.
  • Die Erfinder haben erkannt, dass durch eine geschickte Wahl des Quotienten aus der Länge der Mischkammer und dem Innendurchmesser des lichten Querschnitts der Mischkammer zum einen eine besonders optimale Behandlung, vor allem Durchmischung des im Vorkonditionierer behandelten Materials stattfindet. Zum anderen lässt sich dieser und dessen Einzelteile, z.B. bei der Reinigung besonders gut handhaben. Der genannte Quotient liegt dabei erfindungsgemäß zwischen 12 und 15, bevorzugt zwischen 13 und 14 und besonders bevorzugt zwischen 13,5 und 13,8. Dabei kann die Länge der Mischkammer zwischen 90 und 120 cm und bevorzugt zwischen 90 und 100 cm betragen, wobei bevorzugt der Innendurchmesser des lichten Querschnitts zwischen 6 und 10 cm, bevorzugt zwischen 6 und 8 cm liegt.
  • Die Erfinder haben weiter erkannt, dass eine reine Miniaturisierung bekannter Industrie-Anlagen, auf den Labor- oder Tischmaßstab nicht das gewünschte Ergebnis brachte. Es hat sich gezeigt, dass auch die Art und Weise der Zuführung und Dosierung von Medien, wie Dampf oder Wasser in die Mischkammer des Vorkonditionierers nicht von den Industrie-Anlagen übernommen werden kann. So kann Wasser einem Vorkonditionierer im Labormaßstab nicht mittels Schweredruck oder mittels Leitungsdruck zugeführt werden, da die Menge an zugeführtem Wasser deutlich geringer ist und auch schwerer zu dosieren ist. Zudem ist eine Kombination aus Dampf und Wasser in Form einer Zweistoffdüse nachteilig, da bei solch einer Bauweise der Wasserdampf durch die Öffnung der Feststoffdosierung entweicht und diese blockiert. Das durch die Düse vernebelte Wasser bildet eine Barriere für den Wasserdampf. Daher umfasst die Mischkammer bevorzugt mindestens drei Anschlüsse für Wasser oder Dampf in Kombination mit einer Dosieröffnung für Feststoffe, um selbiges der Mischkammer zuzuführen, wobei die Anschlüsse am Umfang, bevorzugt an der Oberseite der Mischkammer angeordnet sein können. Dabei ist an den Anschluss eine Düse anschließbar ist, um der Mischkammer Wasser zuzuführen, wobei die Düse als Zerstäuberdüse, wie Zweistoffdüse, ausgebildet ist, um der Mischkammer Wasser mittels Zerstäuberluft zuzuführen, wobei die Düse bevorzugt derart eingerichtet ist, dass der Mischkammer 5 bis 80 g Wasser pro Liter, bevorzugt 10 bis 50 g Wasser pro Liter des Volumens der Mischkammer zuführbar ist. Dabei kann dem Anschluss ein Mengensensor, wie Durchflussmengenmesser vorgeschaltet sein, um die der Mischkammer zugeführte Menge an Wasser oder Dampf zu erfassen oder einzustellen. Erst mit einer solchen Düse und einem solchen Durchflussmengenmesser sind derartig niedrige Mengen an Wasser der Mischkammer zuführbar.
  • Wenn gemäß der Erfindung von Labor- oder Versuchsbetrieb die Rede ist, der Vorkonditionierer also derart erfindungsgemäß eingerichtet ist, dass er prinzipiell auf einem Labortisch betrieben werden kann. Damit ist gemeint, dass dieser derart eingerichtet ist, dass die Verweilzeit des Materials im Vorkonditionierer je nach Prozesslänge flexibel eingestellt werden kann. So liegt die Verweilzeit bei dem vollen Nutzen der Verfahrenslänge (Position 14) zwischen 300 und 800 Sekunden, bei der Dosieröffnung 17 zwischen 240 und 470 Sekunden und bei der Dosieröffnung 18 bei 170 und 400 Sekunden. Die Schüttdichte des zu behandelnden Materials liegt dabei zwischen 300 und 800 g/l, bevorzugt zwischen 400 und 600 g/l. Die Mischkammer ist im Betrieb maximal zu einem Drittel gefüllt, sodass sich die Materialmengen in der Mischkammer im Bereich zwischen 1 bis 3 kg ergeben. Bei einer Verkürzung der Verfahrenslänge kann eine Abtrennscheibe auf der Misch- und Förderschnecke angebracht werden. Diese verhindert das Zurückdrücken des Probenmaterials in den Rückraum und das unkontrollierte Entweichen von Dampf. So können in einem solchen Vorkonditionierer etwa 5 bis 15 kg Material pro Stunde behandelt werden. Dabei kann die Menge des der Mischkammer zuzuführenden Wasserdampfs 10 bis 50 Gewichtsprozent, bevorzugt 20 bis 40 Gewichtsprozent und der zuzuführende Wassergehalt, 5 bis 80 Gewichtsprozent, bevorzugt 15 bis 40 Gewichtsprozent des Materials betragen.
  • Mit Vorteil kann die Mischkammer im Inneren im Wesentlichen zylindrisch ausgebildet sein, sodass kostengünstiges Rundmaterial für den Vorkonditionierer zum Einsatz kommen kann.
  • Bevorzugt ist in der Mischkammer eine Welle angeordnet ist, mit einer Vielzahl von am Umfang der Welle angeordneten Paddeln. Derartige als Mischer- oder Förderschnecken dienende Paddel sind kostengünstig herzustellen und fördern und mischen das der Mischkammer zugegebene Material optimal.
  • Dabei kann die Welle jeweils an ihren axialen Enden mittels Radiallagern gelagert sein, wobei sich die Radiallager mittelbar oder unmittelbar an dem Gehäuse abstützen und bevorzugt in Öffnungen des Gehäuses aufgenommen sind. So kann ebenfalls eine einfache, kostengünstige Konstruktion des Vorkonditionierers angegeben werden, bei der Verschleißteile, wie die Radiallager einfach ausgetauscht werden können.
  • Die Welle kann über einen dem Vorkonditionierer zugeordneten Antrieb drehantreibbar sein, wobei dem Antrieb eine Steuerung zugeordnet sein kann, mittels welcher die Drehzahl der Welle einstellbar ist, um die Verweilzeit des Lebens- oder Futtermittels in der Mischkammer zwischen 300 und 800 Sekunden, bei der Dosieröffnung 17 zwischen 240 und 470 Sekunden und bei der Dosieröffnung 18 bei 170 und 400 Sekunden einzustellen. Es hat sich gezeigt, dass dies die optimalen Prozessparameter sind.
  • Um auch den weiteren Prozessparameter, nämlich die Temperatur des zu behandelnden Materials bzw. des Gehäuses des Vorkonditionierers zu erfassen und zu überwachen, kann diesem ein Sensor zur Aufnahme der Temperatur in der Mischkammer oder des Gehäuses zugeordnet sein.
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt.
  • Es zeigen:
  • Fig. 1a, b
    je eine schematische Seitenansicht eines erfindungsgemäßen Vorkonditionierers gemäß zweier unterschiedlicher Ausführungsformen;
    Fig. 2
    eine mögliche Ausführungsform der Welle des Vorkonditionierers aus Fig. 1;
    Fig. 3
    eine Seitenansicht auf die Lagerung der Welle aus Fig. 2.
  • Fig. 1a und 1b zeigen in einer stark schematischen und daher unmaßstäblichen Seitenansicht einen erfindungsgemäßen Vorkonditionierer 1. Dieser umfasst ein Gehäuse 2, in dem eine Mischkammer 3 untergebracht ist. Der Vorkonditionierer 1 weist mehrere Zuführungen 14, 17,18, um das zu behandelnde Material, wie Lebens- oder Futtermittel der Mischkammer 3 zuzuführen und einen Abwurf 15, um das Material nach dessen Behandlung aus dieser wieder abzuführen. Die Zuführung 14 und der Abwurf 15 sind vorliegend am Umfang des Gehäuses 2 angeordnet. In dem Gehäuse 2, genauer gesagt, in der Mischkammer 3 ist eine Welle 4 (siehe Fig. 2) angeordnet. Diese umfasst eine Vielzahl von am Umfang der Welle 4 angeordneten Paddeln 5. Die Welle 4 kann mittels eines Antriebs 7, dem eine Steuerung 8 zur Einstellung dessen Drehzahl zugeordnet ist, angetrieben werden. So wird das der Mischkammer 3 über die Zuführung 14 zugeführte Material entlang der Länge L der Mischkammer durch die drehangetriebene Welle 4 und die Paddel 5 vermischt und über den Abwurf 15 wieder aus dieser abgeführt. Zusätzlich kann an der Welle 4 eine Abtrennscheibe 19 (siehe Fig. 3) angebracht werden. Diese trennt die Mischkammer 3 in zwei separate, voneinander getrennte Kammern. Hiermit kann das erfindungsgemäße L/D - Verhältnis für die Misch- und Förderschnecke, also die mit Paddeln 5 ausgestattete Welle 4 eingestellt werden. So kann die Verweilzeit des Rohmaterials in der Mischkammer 3 gezielter gesteuert werden. Gleichzeitig verhindert die Abtrennscheibe 19 das Zurückdrücken des Probenmaterials (Rohmaterials ggf. mit weiteren Zusatzstoffen) in die zweite Kammer (Rückraum) und das unkontrollierte Entweichen von Dampf hieraus.
  • Wie in Fig. 3 dargestellt, kann die Welle 4 an deren beiden axialen Enden in oder an dem Gehäuse 2 mittels Radiallagern 6 gelagert sein.
  • Zwischen der Zuführung 14 und dem Abwurf 15 sind am Umfang des Gehäuses verteilt mehrere Anschlüsse 9, 10 für Wasser und Dampf angeordnet. Die Anschlüsse 9 sind für Dampf, der Anschluss 10 für Wasser vorgesehen.
  • Die Anschlüsse 10 für Wasser schließen sich unmittelbar an die einzige Zuführung 14 (Fig. 1a) und die drei Zuführungen 14, 17 und 18 (Fig. 1b) an. An diesen ist eine Düse 11 für Wasser angeschlossen sowie ein Mengensensor 12. In Strömungsrichtung des Wassers wird zunächst der Mengensensor 12, wie Durchflussmengenmesser und hiernach die Düse 11 durchströmt, bevor das Wasser über den Anschluss 10 in die Mischkammer 3 z.B. durch Vernebeln gelangt wird. Dazu ist die Düse 11 bevorzugt als Zweistoffdüse ausgeführt, wobei sie einen Druckluftanschluss aufweist (nicht gezeigt), um der Düse 11 Zerstäuberluft zuzuführen. So kann vergleichsweise einfach der Mischkammer 10 bis 50 g Wasser pro Liter des Volumens der Mischkammer 3 zugeführt werden. Überschüssiger Wasserdampf kann über den Schornstein 16 nach oben hin in die Umgebung entweichen. Auch jedem Anschluss 9 für Dampf kann, obwohl dies nur für einen Anschluss 9 gezeigt ist, ein entsprechender Mengensensor 12 zur Einstellung der in die Mischkammer 3 zuzuführenden Dampfmenge vorgeschaltet sein. Mittels der Dampfzuführung über die Anschlüsse 9 kann das Material innerhalb der Mischkammer 3 erwärmt bzw. erhitzt werden. Alternativ oder zusätzlich wäre auch eine elektrische Heizung denkbar, um dem Material entlang der Mischkammer 3 Wärmeenergie zuzuführen.
  • Durch die modulare Bauweise ergeben sich Vorteile in Variabilität der Prozessführung. So können durch die Zuführungen 14, 17 und 18 Feststoffdosierungen und Dosierpumpen gleichzeitig weitere Zusatzstoffe (Feststoff, Wasser, Öl, etc.) in die Mischkammer 3 eindosieren. Dadurch können temperatur- und/oder scherempfindliche Materialen (Fette, Enzyme, Vitamine, Hormone, etc.) zu einem späteren Zeitpunkt in den Prozess zugegeben werden, die schonender im Prozess verarbeitet werden. Grundsätzlich könnte eine der weiteren Zuführungen aus Fig. 1b als Schornstein dienen, um frühzeitig Wärmeenergie in Form von Dampf aus dem Vorkonditionierer 1 abzuleiten.
  • Vorliegend ist dem mittleren Anschluss 9 für Dampf ein Sensor 13 zur Aufnahme der Temperatur in der Mischkammer 3 oder der des Gehäuses 2 zugeordnet. Ein weiterer Sensor 13 kann auch im Bereich des Abwurfs 15 angeordnet sein. Die Sensoren 13 sollen die Temperatur des zu behandelnden Materials in der Mischkammer 3 erfassen.
  • Der Vorkonditionierer 1 ist dabei erfindungsgemäß derart dimensioniert, dass der Quotient aus der Länge L der Mischkammer 3 und dem Innendurchmesser des lichten Querschnitts D der Mischkammer 3 zwischen 12 und 15, bevorzugt zwischen 13 und 14 und besonders bevorzugt zwischen 13,5 und 13,8 liegt. Damit kann der Vorkonditionierer 1 derart klein dimensioniert werden, dass er auf einen Labortisch passt, gleichzeitig aber alle Funktionen einer entsprechenden Industrie-Anlage umfasst. Mit einem solchen für den Labor- oder Versuchsbetrieb vorgesehenen Vorkonditionierer 1 können vergleichsweise kleine Versuchsmengen an zu behandelnden Lebens- und Futtermitteln verarbeitet werden. So entsteht im Versuchsbetrieb vergleichsweise viel weniger Ausschuss, welcher als Abfall entsorgt werden muss. Auch das Rüsten, An- und Abfahren sowie die Reinigung eines solchen Vorkonditionierers ist mit wesentlich weniger Aufwand verbunden, als dies bei Industrie-Anlagen der Fall ist.
  • Bezugszeichen
  • 1
    Vorkonditionierer
    2
    Gehäuse
    3
    Mischkammer
    4
    Welle
    5
    Paddel
    6
    Radiallager
    7
    Antrieb
    8
    Steuerung
    9, 10
    Anschluss
    11
    Düse
    12
    Mengensensor
    13
    Temperatursensor
    14
    Zuführung
    15
    Abwurf
    16
    Schornstein
    17
    Zuführung
    18
    Zuführung
    19
    Abtrennscheibe
    D
    Innendurchmesser des lichten Querschnitts
    L
    Länge der Mischkammer

Claims (12)

  1. Vorkonditionierer (1) für den Labor- oder Versuchsbetrieb, insbesondere zum Behandeln von trockenen Lebens- oder Futtermitteln als Rohmaterial, umfassend ein Gehäuse (2) mit einer Mischkammer (3), wobei der Quotient aus der Länge (L) der Mischkammer (3) und dem Innendurchmesser des lichten Querschnitts (D) der Mischkammer (3) zwischen 12 und 15, bevorzugt zwischen 13 und 14 und besonders bevorzugt zwischen 13,5 und 13,8 beträgt.
  2. Vorkonditionierer (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Länge der Mischkammer (3) zwischen 90 und 120 cm und bevorzugt zwischen 90 und 100 cm beträgt, wobei bevorzugt der Innendurchmesser des lichten Querschnitts (D) zwischen 6 und 10 cm, bevorzugt zwischen 6 und 8 cm liegt.
  3. Vorkonditionierer (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mischkammer (3) im Inneren im Wesentlichen zylindrisch ausgebildet ist.
  4. Vorkonditionierer (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der Mischkammer (3) eine Welle (4) angeordnet ist, mit einer Vielzahl von am Umfang der Welle angeordneten Paddeln (5).
  5. Vorkonditionierer (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass auf die in der Mischkammer (3) befindliche Welle (4) eine Abtrennscheibe (19) aufsetzbar ist, welche die Mischkammer (3) in zwei Kammern teilt, um die Verfahrenslänge und den Quotient aus der Länge (L) der Mischkammer (3) und dem Innendurchmesser des lichten Querschnitts (D) der Mischkammer (3) zu variieren.
  6. Vorkonditionierer (1) nach Anspruch 5, dadurch gekennzeichnet, dass die Welle (4) jeweils an ihren axialen Enden mittels Radiallagern (6) gelagert ist, wobei sich die Radiallager (6) mittelbar oder unmittelbar an dem Gehäuse (2) abstützen und bevorzugt in Öffnungen des Gehäuses (2) aufgenommen sind.
  7. Vorkonditionierer (1) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Welle (4) über einen dem Vorkonditionierer (1) zugeordneten Antrieb (7) drehantreibbar ist, wobei dem Antrieb (7) eine Steuerung (8) zugeordnet ist, mittels welcher die Drehzahl der Welle (4) einstellbar ist, um die Verweilzeit des Lebens- oder Futtermittels in der Mischkammer (3) zwischen 300 und 800 Sekunden bevorzugt zwischen 240 und 470 Sekunden und besonders bevorzugt zwischen 170 und 400 Sekunden einzustellen.
  8. Vorkonditionierer (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Vorkonditionierer (1) mehrere Zuführungen (14, 17, 18) umfasst, um der Mischkammer (3) Rohmaterial oder dem bereits in der Mischkammer (3) vorliegenden, zu behandelnden Rohmaterial weitere Zusatzstoffe, wie Feststoffe oder Flüssigkeiten zuzuführen.
  9. Vorkonditionierer (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Mischkammer (3) mindestens drei Anschlüsse (9, 10) für Wasser oder Dampf umfasst, um selbiges der Mischkammer (3) zuzuführen, wobei die wenigstens drei Anschlüsse (9, 10) am Umfang der Mischkammer (3), bevorzugt an deren Oberseite, und bevorzugt bei Ausbildung nach Anspruch 8, zwischen den mehreren Zuführungen (14, 17, 18) angeordnet sind.
  10. Vorkonditionierer (1) nach Anspruch 9, dadurch gekennzeichnet, dass an den Anschluss (9, 10) eine Düse (11) anschließbar ist, um der Mischkammer (3) Wasser zuzuführen, wobei die Düse (11) als Zerstäuberdüse, wie Zweistoffdüse, ausgebildet ist, um der Mischkammer (3) Wasser mittels Zerstäuberluft zuzuführen, wobei die Düse (11) bevorzugt derart eingerichtet ist, dass der Mischkammer 5 bis 80 Gewichtsprozent, bevorzugt 10 bis 50 g Wasser pro Liter des Volumens der Mischkammer (3) zuführbar ist.
  11. Vorkonditionierer (1) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass wenigstens einem Anschluss (9, 10) ein Mengensensor (12), wie Durchflussmengenmesser vorgeschaltet ist, um die der Mischkammer zugeführte Menge an Wasser oder Dampf zu erfassen oder einzustellen.
  12. Vorkonditionierer (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass dem Vorkonditionierer (1) ein Sensor (13) zur Aufnahme der Temperatur in der Mischkammer (3) oder des Gehäuses (2) zugeordnet ist.
EP22185926.7A 2021-07-22 2022-07-20 Vorkonditionierer für den labor- oder versuchsbetrieb, insbesondere zum behandeln von trockenen lebens- oder futtermitteln Withdrawn EP4122590A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021119066.5A DE102021119066A1 (de) 2021-07-22 2021-07-22 Vorkonditionierer für den labor- oder versuchsbetrieb,insbesondere zum behandeln von trockenen lebens- oder futtermitteln

Publications (1)

Publication Number Publication Date
EP4122590A1 true EP4122590A1 (de) 2023-01-25

Family

ID=82656295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22185926.7A Withdrawn EP4122590A1 (de) 2021-07-22 2022-07-20 Vorkonditionierer für den labor- oder versuchsbetrieb, insbesondere zum behandeln von trockenen lebens- oder futtermitteln

Country Status (2)

Country Link
EP (1) EP4122590A1 (de)
DE (1) DE102021119066A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049071A2 (en) * 1999-02-19 2000-08-24 Equistar Chemicals, Lp Non-blocking polymeric particles and method and apparatus for preparing them
WO2009047013A2 (en) * 2007-10-12 2009-04-16 Bayer Cropscience Ag Process for producing transparent pasta by extrusion
US20110086130A1 (en) * 2009-10-09 2011-04-14 Axelrod Glen S Continuous Production Of Edible Food Products With Selected Shapes
EP2930172A1 (de) * 2012-12-04 2015-10-14 Suzhou Tianma Specialty Chemicals Co., Ltd. Vorrichtung und verfahren zur kontinuierlichen herstellung von hochreinem akd ohne lösungsmittel
WO2021222049A1 (en) * 2020-05-01 2021-11-04 Merck Sharp & Dohme Corp. Modular blender and method of using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1568671T3 (da) 2004-02-24 2010-07-26 Lafarge Platres Proces og apparatur til produktion af en hærdet, cellulær, cementlignende masse
US11224990B2 (en) 2016-08-05 2022-01-18 United States Gypsum Company Continuous methods of making fiber reinforced concrete panels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049071A2 (en) * 1999-02-19 2000-08-24 Equistar Chemicals, Lp Non-blocking polymeric particles and method and apparatus for preparing them
WO2009047013A2 (en) * 2007-10-12 2009-04-16 Bayer Cropscience Ag Process for producing transparent pasta by extrusion
US20110086130A1 (en) * 2009-10-09 2011-04-14 Axelrod Glen S Continuous Production Of Edible Food Products With Selected Shapes
EP2930172A1 (de) * 2012-12-04 2015-10-14 Suzhou Tianma Specialty Chemicals Co., Ltd. Vorrichtung und verfahren zur kontinuierlichen herstellung von hochreinem akd ohne lösungsmittel
WO2021222049A1 (en) * 2020-05-01 2021-11-04 Merck Sharp & Dohme Corp. Modular blender and method of using same

Also Published As

Publication number Publication date
DE102021119066A1 (de) 2023-01-26

Similar Documents

Publication Publication Date Title
DE102005025016B4 (de) Verfahren und Gerät zur kontinuierlichen Herstellung von homogenen Mischungen
EP1932427B1 (de) Vorrichtung und Verfahren zum Einarbeiten von Flüssigkeit in schütt- oder rieselfähige Trockenstoffe
EP0835882A2 (de) Verfahren und Vorrichtung zum gleichzeitigen Mahlen und Trocknen eines feuchten Celluloseether enthaltenden Mahlgutes
DE1457182B2 (de) Vorrichtung zum kontinuierlichen Mischen
DE2952544C2 (de)
EP2353707B1 (de) Vorrichtung und Verfahren zum Mischen und Kneten von Massen, insbesondere Schokoladenmassen
WO2001085323A1 (de) Knetmaschine mit dosiervorrichtung
DE2056611B2 (de) Verfahren und vorrichtung zur herstellung von farbstoff-dispersionen
EP1157736A1 (de) Anlage und Verfahren zur quasi-kontinuierlichen Behandlung eines teilchenförmigen Gutes
DE10139413B4 (de) Vorrichtung zum Mischen und Dispergieren von pulverförmigen feinst- bis grobkörnigen Substanzen mit mindestens einer Flüssigkeit
EP1273341A1 (de) Verfahren zum vertikalen Mischen und Vorrichtung dazu
EP0450012B1 (de) Einrichtung und verfahren zum mischen und/oder granulieren eines gutes
DE102006007485B3 (de) Dosiervorrichtung zum Dosieren eines Pulvers
EP4122590A1 (de) Vorkonditionierer für den labor- oder versuchsbetrieb, insbesondere zum behandeln von trockenen lebens- oder futtermitteln
DE1118959B (de) Verfahren und Vorrichtung zur Aufbereitung von Thermoplasten oder Duroplasten
EP3102318B1 (de) Verfahren und vorrichtung zum mischen und dosieren fester dosiergüter in eine trägerflüssigkeit
DE2341639B2 (de) Verfahren und Vorrichtung zur Herstellung von Schokoladenmassen
EP1285586B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Förderung von Süsswarenmassen
EP0390809B2 (de) Mahlvorrichtung
EP2683487A2 (de) Rührwerkskugelmühle
DE102019205147A1 (de) Verfahren zur Entleerung einer Vorrichtung zur Herstellung von Granulaten oder Extrudaten
WO2011044941A1 (de) Zentrifugalmischer, verfahren und verwendung zur verfeinerung
DE4133604C2 (de) Vorrichtung zum Fördern und Mischen eines Feststoffes mit einer Flüssigkeit
DE1910255B2 (de) Vorrichtung zum kontinuierlichen Herstellen von Speisefettemulsionen wie Butter und Margarine
DE19835347A1 (de) Vorrichtung zum Conchieren von Schokoladenmassen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230718

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20240305