EP4110989B1 - Device and method for producing a pulp web - Google Patents

Device and method for producing a pulp web Download PDF

Info

Publication number
EP4110989B1
EP4110989B1 EP20829551.9A EP20829551A EP4110989B1 EP 4110989 B1 EP4110989 B1 EP 4110989B1 EP 20829551 A EP20829551 A EP 20829551A EP 4110989 B1 EP4110989 B1 EP 4110989B1
Authority
EP
European Patent Office
Prior art keywords
drying
transfer
pulp web
area
clothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20829551.9A
Other languages
German (de)
French (fr)
Other versions
EP4110989C0 (en
EP4110989A1 (en
Inventor
Klaus Gissing
Boris JANCIC
Lukas GISSING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz AG
Original Assignee
Andritz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz AG filed Critical Andritz AG
Publication of EP4110989A1 publication Critical patent/EP4110989A1/en
Application granted granted Critical
Publication of EP4110989B1 publication Critical patent/EP4110989B1/en
Publication of EP4110989C0 publication Critical patent/EP4110989C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/0272Wet presses in combination with suction or blowing devices
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F9/00Complete machines for making continuous webs of paper
    • D21F9/003Complete machines for making continuous webs of paper of the twin-wire type
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/006Making patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/02Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines of the Fourdrinier type
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper
    • D21F11/145Making cellulose wadding, filter or blotting paper including a through-drying process
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/0281Wet presses in combination with a dryer roll
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/04Arrangements thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/08Pressure rolls
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/18Drying webs by hot air
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/18Drying webs by hot air
    • D21F5/182Drying webs by hot air through perforated cylinders
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/08Felts
    • D21F7/12Drying
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F9/00Complete machines for making continuous webs of paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F2/00Transferring webs from wet ends to press sections

Definitions

  • the invention relates to a method for producing a fibrous web, in particular a tissue web or hygiene paper web, with a first press dewatering of the fibrous web, the fibrous web being in a first pressing area between a first covering, the first covering being a felt, and a rotating press jacket with line forces between 80 kN/m to 600 kN/m is pressed and the fibrous web is transferred to the rotating press jacket, with a guidance of the fibrous web directly on the press jacket from the first pressing area to a first transfer area, with a transfer of the fibrous web in the first transfer area from which rotating press jacket on a transfer clothing and a transfer of the fibrous web in a second transfer area from the transfer clothing to a drying cylinder.
  • the invention also relates to a device for producing a fibrous web, as specified in the preamble of claim 6.
  • a fibrous suspension is introduced via a headbox between two coverings and dewatered centrifugally.
  • the Crescent Former concept is used particularly in the area of tissue production, i.e. the fibrous suspension is introduced between a felt and a forming fabric, with the fibrous web being formed by dewatering the fibrous suspension.
  • the forming fabric is lifted off the fibrous web, with the fibrous web lying on the felt being fed to the further process steps, including further mechanical and / or thermal dewatering and rolling up to the end product.
  • AT 508 331 A1 discloses a method and apparatus for treating a fibrous web in a Langnip press unit.
  • a method for tissue production is provided in which the dewatering and transport of the fibrous web is carried out in a simple and compact press arrangement.
  • the DE 2805494 A1 refers to the pressing part of a wet web former for pulp or the like, which consists of at least two consecutive pressing points, a preheater being arranged between the pressing points and the preheater operating in such a way that evaporation of the water from the pulp web does not take place to a significant extent.
  • the WO2017139125A1 discloses a "molding roll" for producing paper products, with a cylindrical jacket, with a vacuum box being arranged within the cylindrical jacket.
  • 3 shows a paper machine with belt creping, the paper web being dewatered in a shoe press and, after belt creping, being passed over a vacuum box, the vacuum increasing the caliper of the paper web by sucking the paper web into it the topography of the creping belt allows.
  • a paper machine is disclosed in Figure 5, wherein the paper web is fed to a molding nip on a transfer fabric and further fed to a transfer nip via the molding roll.
  • the US2002088577A1 discloses impingement drying for producing an absorbent fibrous web and particularly relates to a method for producing a non-compressively dewatered absorbent sheet which is dried by impingement drying.
  • the WO9713031A1 discloses a method in a paper machine, wherein a web is dewatered in at least one press nip and subsequently dried in a drying group.
  • the aim of the invention is to produce a fibrous web with improved quality properties while maintaining low energy consumption, low operating costs and low investment costs.
  • the fibrous web is pressed in the first pressing area at line forces between 80 kN/m and 600 kN/m, with the fibrous web being pressed directly between the first covering, a felt, and a rotating press jacket.
  • the fibrous web is transferred from the first covering to the rotating press jacket in the first pressing area and then directly onto it the press jacket - from the first pressing area to a first transfer area.
  • the fibrous web is transferred from the rotating press jacket to a transfer clothing.
  • an improvement in the quality properties of the fibrous web is achieved in this first transfer area when the fibrous web is transferred to the transfer clothing, with a deterioration in the quality properties again occurring when the fibrous web is transferred in the second transfer area from the transfer clothing to the drying cylinder.
  • This deterioration results from the existing compression of the fibrous web when it is transferred from the transfer clothing to the drying cylinder.
  • the dry content of the fibrous web after the first transfer area is typically between 35% and 50%, with the dry content being defined as the quotient of the mass of dry fiber and the sum of the mass of dry fiber and mass of water.
  • the dry content of the fibrous web in the second transfer area is increased by 3% to 10%, whereby the percentages are again to be understood as percent dry content in accordance with the definition above.
  • an increase in the dry content of the fibrous web of approximately 1% (to 43%) is possible through further thermal drying between the first transfer area and the second transfer area if the drying of the fibrous web is over a length of 1 meter in the machine direction. A linear scalability of drying over the drying length is obvious in this dry content range.
  • a favorable embodiment of the invention is characterized in that the fibrous web is structured in the first transfer area, the structuring of the fibrous web taking place by transferring the fibrous web from the faster rotating rotating press jacket to the slower rotating transfer clothing and the transfer clothing being structured Transfer covering is carried out.
  • This is advantageous because the structuring of the fibrous web in the first transfer area results in an improvement in the quality properties of the fibrous web, with the transfer of the fibrous web from the faster rotating rotating press jacket to the slower rotating structured transfer covering resulting in an improvement, ie an increase, in the fibrous web thickness or .of the bulk [cm 3 /g], which is defined as the ratio of leaf thickness [mm] to leaf weight [g/m 2 ], and an improvement in water absorption in terms of water absorption capacity is achieved.
  • Structured transfer coverings include coverings that are typically used on TAD (Through Air Dryer) machines / through-flow drying machines for through-flow drying of the tissue web or sanitary paper web and therefore in particular TAD drying screens.
  • a further favorable embodiment of the invention is characterized in that the thermal drying of the fibrous web guided on the transfer covering comprises convection drying of the fibrous web, with drying air being applied directly to the fibrous web via a drying device and the drying air being sucked back into the drying device.
  • the fibrous web guided on the transfer covering after the first transfer area is advantageously first dried by convection drying, for example impingement drying. Since the fibrous web after the first transfer region has a lower initial permeability corresponding to the dry content, ie permeability for the drying air, convection drying is advantageous because hardly or only a small part of the drying air flows through the fibrous web guided on the transfer covering.
  • the drying air from the drying device is therefore applied directly to the fibrous web, whereby when the drying air hits the fibrous web, the drying air is deflected and the water evaporated from the fibrous web is absorbed into the drying air. The drying air is then sucked back into the drying device.
  • the drying device is typically designed as a drying hood or as an impingement flow drying hood, with the drying air typically being applied directly to the fibrous web via slot or hole nozzles.
  • the drying air is blown out at a temperature between 100°C and 150°C and a blow-out speed between 60 m/s and 100 m/s Drying hood applied directly to the fibrous web.
  • the maximum temperature of the drying air is limited to 240°C. This limitation results from the heat resistance of the usual structured transfer coverings. Heat resistance of the structured transfer coverings would be achieved by choosing special plastics, even at higher temperatures, but it would hardly be economical.
  • a further favorable embodiment of the invention is characterized in that the thermal drying of the fibrous web guided on the transfer covering further comprises through-flow drying of the fibrous web, the drying air being applied directly to the fibrous web via the drying device, and a first part of the drying air being sucked back into the drying device is and a second part of the drying air is sucked through the fibrous web into a suction device, the transfer covering being guided between the fibrous web and the suction device.
  • the drying air from the drying device is applied directly to the fibrous web.
  • a first part of the drying air is deflected, the water evaporated from the fibrous web is absorbed into the drying air and then this first part of the drying air is sucked back into the drying device.
  • a second part of the drying air is sucked through the fibrous web into a suction device, the fibrous web being dried as the drying air flows through it.
  • a suction device can be designed, for example, as a vacuum box or suction box or as a vacuum roller.
  • the first part of the drying air typically comprises two thirds or more of the applied drying air and the second part of the drying air comprises up to one third of the applied drying air.
  • the drying device can comprise separate drying devices for convective drying and flow drying, or can be designed as a drying device for both convection drying and flow drying. Again the drying air is provided with a Temperature between 100°C and 150°C and a blow-out speed between 60 m/s and 100 m/s from the drying hood directly onto the fibrous web.
  • An advantageous embodiment of the invention is characterized in that for thermal drying of the fibrous web between the first transfer area and the second transfer area, drying air is applied directly to the fibrous web, the temperature of the drying air being adjusted by direct and/or indirect use of process waste heat and the Process waste heat occurs during the thermal drying of the fibrous web after the second transfer area and / or in secondary systems, in particular in a vacuum system.
  • the energy efficiency of the entire system is improved because process waste heat can be used.
  • the increase in the dry content of the fibrous web between the first transfer area and the second transfer area improves the quality properties of the fibrous web, which is not to be expected since improvements in the quality properties are often accompanied by a deterioration in the energy efficiency of the entire system.
  • High-temperature convection drying refers to drying with drying air with a temperature above 280°C and typically in a range between 350°C to 500°C, although temperatures up to 650°C can also be used.
  • the waste heat from high-temperature hood drying has a lower temperature level, with the temperature of the waste heat being at least above 200 ° C and typically above 250 ° C. Reducing the temperature of the waste heat is possible simply by mixing it with cold ambient air or cooler process air. Drying the fibrous web on a drying cylinder - for example a Yankee dryer - also involves a steam and condensate system, with the drying cylinder being heated with the steam from the steam and condensate system.
  • the condensate produced in the steam and condensate system is available at a pressure level above atmospheric and can be used directly by pressure relief, ie throttling, of the condensate to a lower pressure level, whereby the condensate is partially evaporated and the steam obtained in this way is added to the drying air can be.
  • a direct removal of steam from the steam and condensate system for addition to the drying air is also conceivable.
  • the waste heat from secondary systems in particular from a vacuum system, can also be used. When using vacuum blowers to create a vacuum, exhaust air from the vacuum system is hot at up to 150°C. Direct use of this process waste heat from the vacuum system to dry the fibrous web in the area between the first transfer area and the second transfer area is advantageous.
  • the process waste heat can be used directly and/or indirectly to adjust the temperature of the drying air, whereby with direct use, waste heat or waste heat air is used directly as drying air and with indirect use, waste heat is used indirectly to heat the drying air.
  • indirect heating involves the use of heat exchangers to transfer the waste heat to the drying air.
  • cooler process air or ambient air can be used to set a desired drying air temperature or to reduce a drying air temperature that is too high.
  • the invention also relates to a device for drying a fibrous web, in particular a tissue web or sanitary paper web, according to claim 6, wherein a drying device for thermally drying the fibrous web is arranged in the area between the first transfer area and the second transfer area. According to the invention, a better preservation of the quality properties of the fibrous web in the second transfer area is possible, as a result of which overall improved quality properties of the fibrous web can be achieved.
  • the drying device is located between the first transfer area and the second transfer area comprises a convection drying area, via the drying device drying air can be applied directly to the fibrous web, wherein in the convection drying area the drying air can be sucked back into the drying device.
  • the drying device further comprises a flow drying area, wherein drying air can be applied directly to the fibrous web via the drying device, a suction device is arranged in the flow drying area opposite the drying device and at least part of the drying air can be sucked into the suction device.
  • the transfer clothing is guided between the drying device and the suction device, with the drying air from the drying device being able to be applied directly to the fibrous web.
  • the drying device is typically designed as a drying hood or as an impingement flow drying hood, whereby the drying air can be applied directly to the fibrous web via slot or hole nozzles.
  • a suction device can be designed, for example, as a vacuum box or suction box or as a vacuum roller.
  • the transfer clothing can be suctioned in the area where the vacuum roll is wrapped.
  • Guide rollers can serve as clothing-stabilizing elements, with the guide rollers being designed on the side of the suction device and the transfer clothing being guided directly over the guide rollers. Depending on the distance between the guide rollers, the transfer clothing is also supported at this distance and deflection of the transfer clothing is limited.
  • the suction device can be arranged between the clothing-stabilizing elements, for example suction boxes can be arranged between the guide rollers.
  • a further favorable embodiment of the device is characterized in that the drying device is connected directly or indirectly to a process waste heat line for the use of process waste heat that is generated during the thermal drying of the fibrous web after the second transfer area and / or in secondary systems, in particular in a vacuum system.
  • a process waste heat line can, for example, be assigned to a process comprising the thermal drying of the fibrous web after the second transfer area and / or a secondary system, in particular the vacuum system.
  • the waste heat or exhaust air from high-temperature hood drying has a temperature level of over 200°C and typically over 250°C.
  • the waste heat from a vacuum system especially when using vacuum blowers to create vacuum, delivers hot exhaust air of up to 150°C.
  • the process waste heat can be used directly and/or indirectly to adjust the temperature of the drying air.
  • Fig. 1 shows a device for producing a fibrous web 1 according to the prior art, wherein to produce the fibrous web 1 a fibrous suspension is introduced via a headbox 14 between two coverings and centrifugally dewatered. The fiber suspension is introduced between a first covering 3, a felt, and a forming fabric and dewatered. After the formation of the fibrous web 1, the fibrous web 1 is guided on the first covering 3 to a first pressing area 2, where the fibrous web 1 is pressed between the first covering 3 and a rotating press jacket 4.
  • the fibrous web 1 is transferred to the rotating press jacket 4 and guided directly on the press jacket 4 from the first pressing area 2 to a first transfer area 5, with a transfer of the fibrous web 1 in the first transfer area 5 from the rotating press jacket 4 to a transfer clothing 6, followed by a transfer of the fibrous web 1 in a second transfer area 7 from the transfer clothing 6 on a drying cylinder 8. After drying the fibrous web 1 on the drying cylinder 8, the fibrous web 1 is rolled up 15.
  • Fig. 2 shows a system for producing a fibrous web 1 with the device according to the invention for drying the fibrous web 1.
  • the fibrous web 1 is guided on the first covering 3 to a first pressing area 2, where the fibrous web 1 is between the first covering 3 and a rotating press jacket 4 is pressed.
  • the fibrous web 1 is transferred to the rotating press jacket 4 and guided directly on the press jacket 4 from the first pressing area 2 to a first transfer area 5, with a transfer of the fibrous web 1 in the first transfer area 5 from the rotating press jacket 4 to a transfer clothing 6.
  • the fibrous web 1 is structured in the first transfer area 5, the structuring of the fibrous web 1 taking place by transferring the fibrous web 1 from the faster rotating press jacket 4 to the slower rotating transfer clothing 6 and the transfer clothing 6 being designed as a structured transfer clothing.
  • thermal drying takes place after the first transfer area 5 and before a second transfer area 7, in which the fibrous web 1 is transferred from the transfer clothing 6 to a drying cylinder 8.
  • drying air is applied directly to the fibrous web 1 via a drying device 9, the drying device 9 having a convection drying area 11. In the convection drying area 11, the drying air is applied directly to the fibrous web 1 and sucked back into the drying device 9.
  • the drying device 9 further has a through-flow drying area 12, whereby the drying air is applied directly to the fibrous web 1 via the drying device 9, a first part of the drying air is sucked back into the drying device 9 after drying and a second part of the drying air is fed through the fibrous web a suction device 10 is sucked.
  • clothing-stabilizing elements 13 are advantageously implemented.
  • the clothing-stabilizing elements 13 include guide rollers, with a design as a suction roller 17 also being possible.
  • the drying air is used directly and/or indirectly from process exhaust air.
  • the exhaust air from the High-temperature drying hood 18 can be used as a supply air drying device 19.
  • the present invention therefore offers numerous advantages. It allows the production of a fibrous web with improved quality properties while maintaining low energy consumption and therefore low operating costs. Low investment costs are also possible because the drying cylinder for thermally drying the fibrous web after the second transfer area can be made smaller.

Description

Die Erfindung betrifft eine Verfahren zur Herstellung einer Faserstoffbahn, insbesondere einer Tissuebahn oder Hygienepapierbahn, mit einer ersten Pressentwässerung der Faserstoffbahn, wobei die Faserstoffbahn in einem ersten Pressbereich zwischen einer ersten Bespannung, wobei die erste Bespannung ein Filz ist, und einem rotierenden Pressmantel mit Linienkräften zwischen 80 kN/m bis 600 kN/m gepresst wird und die Faserstoffbahn auf den rotierenden Pressmantel übergeben wird, mit einer Führung der Faserstoffbahn direkt auf dem Pressmantel aus dem ersten Pressbereich zu einem ersten Transferbereich, mit einer Übergabe der Faserstoffbahn in dem ersten Transferbereich von dem rotierenden Pressmantel auf eine Transferbespannung und einer Übergabe der Faserstoffbahn in einem zweiten Transferbereich von der Transferbespannung auf einen Trockenzylinder. Die Erfindung betrifft auch eine Vorrichtung zur Herstellung einer Faserstoffbahn, wie im Oberbegriff des Anspruchs 6 angegeben.The invention relates to a method for producing a fibrous web, in particular a tissue web or hygiene paper web, with a first press dewatering of the fibrous web, the fibrous web being in a first pressing area between a first covering, the first covering being a felt, and a rotating press jacket with line forces between 80 kN/m to 600 kN/m is pressed and the fibrous web is transferred to the rotating press jacket, with a guidance of the fibrous web directly on the press jacket from the first pressing area to a first transfer area, with a transfer of the fibrous web in the first transfer area from which rotating press jacket on a transfer clothing and a transfer of the fibrous web in a second transfer area from the transfer clothing to a drying cylinder. The invention also relates to a device for producing a fibrous web, as specified in the preamble of claim 6.

Im Allgemeinen wird zur Herstellung einer Faserstoffbahn, insbesondere einer Tissuebahn oder Hygienepapierbahn, eine Faserstoffsuspension über einen Stoffauflauf zwischen zwei Bespannungen eingebracht und zentrifugal entwässert. Insbesondere im Bereich der Tissue Herstellung findet dabei das Crescent Former Konzept Anwendung, d.h. die Faserstoffsuspension wird zwischen einem Filz und einem Formiersieb eingebracht, wobei durch die Entwässerung der Faserstoffsuspension die Faserstoffbahn gebildet wird. Nach der Bildung der Faserstoffbahn wird das Formiersieb von der Faserstoffbahn abgehoben, wobei die Faserstoffbahn auf dem Filz liegend den weiteren Prozessschritten zugeführt wird, umfassend weitere mechanische und / oder thermische Entwässerung und Aufrollung zum Endprodukt.In general, to produce a fibrous web, in particular a tissue web or sanitary paper web, a fibrous suspension is introduced via a headbox between two coverings and dewatered centrifugally. The Crescent Former concept is used particularly in the area of tissue production, i.e. the fibrous suspension is introduced between a felt and a forming fabric, with the fibrous web being formed by dewatering the fibrous suspension. After the formation of the fibrous web, the forming fabric is lifted off the fibrous web, with the fibrous web lying on the felt being fed to the further process steps, including further mechanical and / or thermal dewatering and rolling up to the end product.

In der AT 508 331 A1 ist ein Verfahren und eine Vorrichtung zur Behandlung einer Faserstoffbahn in einer Langnip-Presseinheit enthüllt. Es wird ein Verfahren zur Tissueherstellung bereitgestellt, bei dem die Entwässerung und der Transport der Faserstoffbahn in einer einfach und kompakt aufgebauten Pressenanordnung realisiert wird.In the AT 508 331 A1 discloses a method and apparatus for treating a fibrous web in a Langnip press unit. A method for tissue production is provided in which the dewatering and transport of the fibrous web is carried out in a simple and compact press arrangement.

Die DE 2805494 A1 bezieht sich auf den Pressteil eines Nassbahnformers für Halbstoff oder dergleichen, der aus mindestens zwei aufeinanderfolgenden Pressstellen besteht, wobei zwischen den Pressstellen ein Vorwärmer angeordnet ist und der Vorwärmer so arbeitet, dass Verdampfen des Wassers aus der Halbstoffbahn in einem wesentlichen Ausmaß nicht stattfindet.The DE 2805494 A1 refers to the pressing part of a wet web former for pulp or the like, which consists of at least two consecutive pressing points, a preheater being arranged between the pressing points and the preheater operating in such a way that evaporation of the water from the pulp web does not take place to a significant extent.

Die WO2017139125A1 offenbart eine "molding roll" zur Herstellung von Papierprodukten, mit einem zylindrischen Mantel, wobei eine Vakuumbox innerhalb des zylindrischen Mantels angeordnet ist. Zum Stand der Technik ist in Figur 3 eine Papiermaschine mit belt-creping dargestellt, wobei die Papierbahn in einer Schuhpresse entwässert und nach dem belt-creping über eine Vakuumbox geführt wird, wobei das Vakuum eine Vergrößerung des calipers der Papierbahn durch ein Einsaugen der Papierbahn in die Topographie des creping belts erlaubt. Weiters ist in Figur 5 eine Papiermaschine offenbart, wobei die Papierbahn auf einem transfer fabric einem molding nip zugeführt und über die molding roll weiter einem transfer nip zugeführt wird.The WO2017139125A1 discloses a "molding roll" for producing paper products, with a cylindrical jacket, with a vacuum box being arranged within the cylindrical jacket. 3 shows a paper machine with belt creping, the paper web being dewatered in a shoe press and, after belt creping, being passed over a vacuum box, the vacuum increasing the caliper of the paper web by sucking the paper web into it the topography of the creping belt allows. Furthermore, a paper machine is disclosed in Figure 5, wherein the paper web is fed to a molding nip on a transfer fabric and further fed to a transfer nip via the molding roll.

Die US2002088577A1 offenbart eine impingement Trocknung zur Herstellung einer absorbierenenden Faserstoffbahn und bezieht sich insbesondere auf ein Verfahren zur Herstellung eines nicht-kompressiv entwässerten, absorbierenden Blattes, welches durch impingement Trockung getrocknet wird.The US2002088577A1 discloses impingement drying for producing an absorbent fibrous web and particularly relates to a method for producing a non-compressively dewatered absorbent sheet which is dried by impingement drying.

Die WO9713031A1 offenbart ein Verfahren in einer Papiermaschine, wobei eine Bahn in zumindest einem Pressnip entwässert und nachfolgend in einer Trockengruppe getrocknet wird.The WO9713031A1 discloses a method in a paper machine, wherein a web is dewatered in at least one press nip and subsequently dried in a drying group.

Ziel der Erfindung ist die Herstellung einer Faserstoffbahn, mit verbesserten Qualitätseigenschaften bei gleichzeitig geringem Energieverbrauch, geringen Betriebskosten und niedrigen Investitionskosten.The aim of the invention is to produce a fibrous web with improved quality properties while maintaining low energy consumption, low operating costs and low investment costs.

Dies gelingt erfindungsgemäß dadurch, dass die Faserstoffbahn zwischen dem ersten Transferbereich und dem zweiten Transferbereich thermisch getrocknet wird. Erfindungsgemäß wird die Faserstoffbahn im ersten Pressbereich bei Linienkräften zwischen 80 kN/m bis 600 kN/m gepresst, wobei die Faserstoffbahn direkt zwischen der ersten Bespannung, einem Filz, und einem rotierenden Pressmantel gepresst wird. Dabei wird die Faserstoffbahn im ersten Pressbereich von der ersten Bespannung auf den rotierenden Pressmantel übergeben und weiter - direkt auf dem Pressmantel - aus dem ersten Pressbereich zu einem ersten Transferbereich geführt. Im ersten Transferbereich erfolgt die Übergabe der Faserstoffbahn vom rotierenden Pressmantel auf eine Transferbespannung. Erfindungsgemäß wird in diesem ersten Transferbereich bei der Übergabe der Faserstoffbahn auf die Transferbespannung eine Verbesserung der Qualitätseigenschaften der Faserstoffbahn erzielt, wobei bei der Übergabe der Faserstoffbahn in dem zweiten Transferbereich von der Transferbespannung auf den Trockenzylinder wieder eine Verschlechterung der Qualitätseigenschaften gegeben ist. Diese Verschlechterung folgt aus der doch vorhandenen Pressung der Faserstoffbahn bei der Übergabe von der Transferbespannung auf den Trockenzylinder. Überraschenderweise wurde erkannt, dass bei einer weiteren Trockengehaltssteigerung der Faserstoffbahn durch eine thermische Entwässerung zwischen dem ersten Transferbereich und dem zweiten Transferbereich ein besserer Erhalt der Qualitätseigenschaften der Faserstoffbahn im zweiten Transferbereich möglich ist, wodurch insgesamt verbesserte Qualitätseigenschaften der Faserstoffbahn erzielbar sind. Dabei liegt der Trockengehalt der Faserstoffbahn nach dem ersten Transferbereich typischerweise zwischen 35% und 50%, wobei der Trockengehalt als Quotient aus Masse trockene Faser und der Summe aus Masse trockene Faser und Masse Wasser definiert ist. Durch die thermische Trocknung der Faserstoffbahn zwischen dem ersten Transferbereich und dem zweiten Transferbereich, wird der Trockengehalt der Faserstoffbahn im zweiten Transferbereich um 3% bis 10% gesteigert, wobei die Prozentangaben wieder als Prozent Trockengehalt entsprechend der obigen Definition zu verstehen sind. So ist beispielsweise bei einem Trockengehalt der Faserstoffbahn von 42% durch eine weitere thermische Trocknung zwischen dem ersten Transferbereich und dem zweiten Transferbereich eine Steigerung des Trockengehalts der Faserstoffbahn von ca. 1% (auf 43%) möglich, wenn die Trocknung der Faserstoffbahn über eine Länge von 1 Meter in Maschinenrichtung erfolgt. Eine lineare Skalierbarkeit der Trocknung über die Trocknungslänge ist in diesem Trockengehaltsbereich naheliegend.This is achieved according to the invention by thermally drying the fibrous web between the first transfer area and the second transfer area. According to the invention, the fibrous web is pressed in the first pressing area at line forces between 80 kN/m and 600 kN/m, with the fibrous web being pressed directly between the first covering, a felt, and a rotating press jacket. The fibrous web is transferred from the first covering to the rotating press jacket in the first pressing area and then directly onto it the press jacket - from the first pressing area to a first transfer area. In the first transfer area, the fibrous web is transferred from the rotating press jacket to a transfer clothing. According to the invention, an improvement in the quality properties of the fibrous web is achieved in this first transfer area when the fibrous web is transferred to the transfer clothing, with a deterioration in the quality properties again occurring when the fibrous web is transferred in the second transfer area from the transfer clothing to the drying cylinder. This deterioration results from the existing compression of the fibrous web when it is transferred from the transfer clothing to the drying cylinder. Surprisingly, it was recognized that with a further increase in the dry content of the fibrous web through thermal dewatering between the first transfer area and the second transfer area, a better preservation of the quality properties of the fibrous web in the second transfer area is possible, whereby overall improved quality properties of the fibrous web can be achieved. The dry content of the fibrous web after the first transfer area is typically between 35% and 50%, with the dry content being defined as the quotient of the mass of dry fiber and the sum of the mass of dry fiber and mass of water. By thermally drying the fibrous web between the first transfer area and the second transfer area, the dry content of the fibrous web in the second transfer area is increased by 3% to 10%, whereby the percentages are again to be understood as percent dry content in accordance with the definition above. For example, with a dry content of the fibrous web of 42%, an increase in the dry content of the fibrous web of approximately 1% (to 43%) is possible through further thermal drying between the first transfer area and the second transfer area if the drying of the fibrous web is over a length of 1 meter in the machine direction. A linear scalability of drying over the drying length is obvious in this dry content range.

Eine günstige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Faserstoffbahn im ersten Transferbereich strukturiert wird, wobei die Strukturierung der Faserstoffbahn durch die Übergabe der Faserstoffbahn von dem schneller umlaufenden rotierenden Pressmantel auf die langsamer umlaufende Transferbespannung erfolgt und die Transferbespannung als strukturierte Transferbespannung ausgeführt wird. Dies ist vorteilhaft, da durch die Strukturierung der Faserstoffbahn im ersten Transferbereich eine Verbesserung der Qualitätseigenschaften der Faserstoffbahn erzielt wird, wobei durch den Transfer der Faserstoffbahn von dem schneller umlaufenden rotierenden Pressmantel auf die langsamer umlaufende strukturierte Transferbespannung eine Verbesserung, d.h. eine Erhöhung, der Faserstoffbahndicke bzw. des bulk [cm3/g], der definiert ist als Verhältnis von Blattdicke [mm] zu Blattgewicht [g/m2], sowie eine Verbesserung der Wasseraufnahme im Sinne der Wasseraufnahmekapazität erzielt wird. Strukturierte Transferbespannungen umfassen Bespannungen, wie sie typischerweise an TAD (Through Air Dryer) Maschinen / Durchströmtrocknungsmaschinen zur Durchströmtrocknung der Tissuebahn oder Hygienepapierbahn eingesetzt werden und damit insbesondere TAD-Trocknungs-Siebe.A favorable embodiment of the invention is characterized in that the fibrous web is structured in the first transfer area, the structuring of the fibrous web taking place by transferring the fibrous web from the faster rotating rotating press jacket to the slower rotating transfer clothing and the transfer clothing being structured Transfer covering is carried out. This is advantageous because the structuring of the fibrous web in the first transfer area results in an improvement in the quality properties of the fibrous web, with the transfer of the fibrous web from the faster rotating rotating press jacket to the slower rotating structured transfer covering resulting in an improvement, ie an increase, in the fibrous web thickness or .of the bulk [cm 3 /g], which is defined as the ratio of leaf thickness [mm] to leaf weight [g/m 2 ], and an improvement in water absorption in terms of water absorption capacity is achieved. Structured transfer coverings include coverings that are typically used on TAD (Through Air Dryer) machines / through-flow drying machines for through-flow drying of the tissue web or sanitary paper web and therefore in particular TAD drying screens.

Eine weitere günstige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die thermische Trocknung der auf der Transferbespannung geführten Faserstoffbahn eine Konvektionstrocknung der Faserstoffbahn umfasst, wobei eine Trocknungsluft über eine Trocknungsvorrichtung direkt auf die Faserstoffbahn aufgebracht wird und die Trocknungsluft wieder in die Trocknungsvorrichtung rückgesaugt wird. Die nach dem ersten Transferbereich auf der Transferbespannung geführte Faserstoffbahn wird vorteilhafterweise zunächst durch eine Konvektionstrocknung, beispielsweise eine Prallströmtrocknung, getrocknet. Da die Faserstoffbahn nach dem ersten Transferbereich eine dem Trockengehalt entsprechende geringere anfängliche Permeabilität, d.h. Durchlässigkeit für die Trocknungsluft, aufweist, ist die Konvektionstrocknung vorteilhaft, da kaum bzw. nur ein geringer Teil der Trocknungsluft die auf der Transferbespannung geführte Faserstoffbahn durchströmt. Es wird daher die Trocknungsluft aus der Trocknungsvorrichtung direkt auf die Faserstoffbahn aufgebracht, wobei beim Auftreffen der Trocknungsluft auf die Faserstoffbahn die Trocknungsluft umgelenkt und das aus der Faserstoffbahn verdampfte Wasser in die Trocknungsluft aufgenommen wird. Die Trocknungsluft wird dann wieder in die Trocknungsvorrichtung rückgesaugt. Die Trocknungsvorrichtung ist typischerweise als Trocknungshaube oder als Prallströmtrocknungshaube ausgeführt, wobei die Trocknungsluft typischerweise über Schlitz- oder Lochdüsen direkt auf die Faserstoffbahn aufgebracht wird. Die Trocknungsluft wird dabei mit einer Temperatur zwischen 100°C und 150°C und einer Ausblasgeschwindigkeit zwischen 60 m/s und 100 m/s aus der Trocknungshaube direkt auf die Faserstoffbahn aufgebracht. Die maximale Temperatur der Trocknungsluft ist mit 240°C beschränkt. Diese Limitierung folgt aus der Wärmebeständigkeit der üblichen strukturierten Transferbespannungen. Eine Wärmebeständigkeit der strukturierten Transferbespannungen wäre zwar durch Wahl von speziellen Kunststoffen auch bei höheren Temperaturen gegeben, aber kaum wirtschaftlich.A further favorable embodiment of the invention is characterized in that the thermal drying of the fibrous web guided on the transfer covering comprises convection drying of the fibrous web, with drying air being applied directly to the fibrous web via a drying device and the drying air being sucked back into the drying device. The fibrous web guided on the transfer covering after the first transfer area is advantageously first dried by convection drying, for example impingement drying. Since the fibrous web after the first transfer region has a lower initial permeability corresponding to the dry content, ie permeability for the drying air, convection drying is advantageous because hardly or only a small part of the drying air flows through the fibrous web guided on the transfer covering. The drying air from the drying device is therefore applied directly to the fibrous web, whereby when the drying air hits the fibrous web, the drying air is deflected and the water evaporated from the fibrous web is absorbed into the drying air. The drying air is then sucked back into the drying device. The drying device is typically designed as a drying hood or as an impingement flow drying hood, with the drying air typically being applied directly to the fibrous web via slot or hole nozzles. The drying air is blown out at a temperature between 100°C and 150°C and a blow-out speed between 60 m/s and 100 m/s Drying hood applied directly to the fibrous web. The maximum temperature of the drying air is limited to 240°C. This limitation results from the heat resistance of the usual structured transfer coverings. Heat resistance of the structured transfer coverings would be achieved by choosing special plastics, even at higher temperatures, but it would hardly be economical.

Eine weitere günstige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die thermische Trocknung der auf der Transferbespannung geführten Faserstoffbahn weiter eine Durchströmungstrocknung der Faserstoffbahn umfasst, wobei die Trocknungsluft über die Trocknungsvorrichtung direkt auf die Faserstoffbahn aufgebracht wird, ein erster Teil der Trocknungsluft wieder in die Trocknungsvorrichtung rückgesaugt wird und ein zweiter Teil der Trocknungsluft durch die Faserstoffbahn in eine Absaugvorrichtung gesaugt wird, wobei die Transferbespannung zwischen der Faserstoffbahn und der Absaugvorrichtung geführt wird. Nach einer ersten Konvektionstrocknung der Faserstoffbahn ist typischerweise eine Verbesserung der Permeabilität, d.h. der Durchlässigkeit der Faserstoffbahn für die Trocknungsluft gegeben, und somit bessere Bedingungen für eine Durchströmungstrocknung der Faserstoffbahn. Dabei wird im Bereich der Durchströmungstrocknung die Trocknungsluft aus der Trocknungsvorrichtung direkt auf die Faserstoffbahn aufgebracht. Beim Auftreffen der Trocknungsluft auf die Faserstoffbahn wird ein erster Teil der Trocknungsluft umgelenkt, dabei das aus der Faserstoffbahn verdampfte Wasser in die Trocknungsluft aufgenommen und dann dieser erste Teil der Trocknungsluft wieder in die Trocknungsvorrichtung rückgesaugt. Ein zweiter Teil der Trocknungsluft wird durch die Faserstoffbahn in eine Absaugvorrichtung gesaugt, wobei die Faserstoffbahn bei der Durchströmung durch die Trocknungsluft getrocknet wird. Eine Absaugvorrichtung kann beispielsweise als Vakuumkasten bzw. Saugkasten oder als Vakuumrolle ausgeführt sein. Zur Orientierung - der erste Teil der Trocknungsluft umfasst typischerweise zwei Drittel oder mehr der aufgebrachten Trocknungsluft und der zweite Teil der Trocknungsluft umfasst bis zu einem Drittel der aufgebrachten Trocknungsluft. Die Trocknungsvorrichtung kann getrennte Trocknungsvorrichtungen für die konvektive Trocknung und die Durchströmungstrocknung umfassen, oder als eine Trocknungsvorrichtung sowohl zur Konvektionstrocknung als auch zur Durchströmungstrocknung ausgeführt sein. Wieder wird die Trocknungsluft mit einer Temperatur zwischen 100°C und 150°C und einer Ausblasgeschwindigkeit zwischen 60 m/s und 100 m/s aus der Trocknungshaube direkt auf die Faserstoffbahn aufgebracht.A further favorable embodiment of the invention is characterized in that the thermal drying of the fibrous web guided on the transfer covering further comprises through-flow drying of the fibrous web, the drying air being applied directly to the fibrous web via the drying device, and a first part of the drying air being sucked back into the drying device is and a second part of the drying air is sucked through the fibrous web into a suction device, the transfer covering being guided between the fibrous web and the suction device. After a first convection drying of the fibrous web, there is typically an improvement in the permeability, ie the permeability of the fibrous web for the drying air, and thus better conditions for through-flow drying of the fibrous web. In the area of through-flow drying, the drying air from the drying device is applied directly to the fibrous web. When the drying air hits the fibrous web, a first part of the drying air is deflected, the water evaporated from the fibrous web is absorbed into the drying air and then this first part of the drying air is sucked back into the drying device. A second part of the drying air is sucked through the fibrous web into a suction device, the fibrous web being dried as the drying air flows through it. A suction device can be designed, for example, as a vacuum box or suction box or as a vacuum roller. For guidance - the first part of the drying air typically comprises two thirds or more of the applied drying air and the second part of the drying air comprises up to one third of the applied drying air. The drying device can comprise separate drying devices for convective drying and flow drying, or can be designed as a drying device for both convection drying and flow drying. Again the drying air is provided with a Temperature between 100°C and 150°C and a blow-out speed between 60 m/s and 100 m/s from the drying hood directly onto the fibrous web.

Eine vorteilhafte Ausführung der Erfindung ist dadurch gekennzeichnet, dass zur thermischen Trocknung der Faserstoffbahn zwischen dem ersten Transferbereich und dem zweiten Transferbereich eine Trocknungsluft direkt auf die Faserstoffbahn aufgebracht wird, wobei die Temperatur der Trocknungsluft durch direkte und / oder indirekte Nutzung einer Prozessabwärme eingestellt wird und die Prozessabwärme bei der thermischen Trocknung der Faserstoffbahn nach dem zweiten Transferbereich und / oder in Nebensystemen, insbesondere in einem Vakuumsystem anfällt. Vorteilhafterweise wird so die Energieeffizienz der Gesamtanlage verbessert, da Prozessabwärme genutzt werden kann. Gleichzeitig werden durch die Trockengehaltssteigerung der Faserstoffbahn zwischen dem ersten Transferbereich und dem zweiten Transferbereich die Qualitätseigenschaften der Faserstoffbahn verbessert, was nicht zu erwarten ist, da sehr oft Verbesserungen der Qualitätseigenschaften mit einer Verschlechterung der Energieeffizienz der Gesamtanlage einhergehen. Als nutzbare Prozessabwärme bietet sich Prozessabwärme aus der thermischen Trocknung der Faserstoffbahn nach dem zweiten Transferbereich und / oder aus Nebensystemen, insbesondere aus einem Vakuumsystem, an. Als Beispiele für eine thermische Trocknung nach dem zweiten Transferbereich sind zu nennen die Trocknung der Faserstoffbahn auf einem Trockenzylinder (beispielsweise einem Yankee Trockner, d.h. einem Trockenzylinder mit einem Durchmesser von 1800 mm bis 6000 mm), oder die Hochtemperaturhaubentrocknung, wobei die Hochtemperaturtrocknungshaube dem Trockenzylinder zugeordnet ist und eine Hochtemperaturkonvektionstrocknung der auf dem Trockenzylinder geführten Faserstoffbahn ermöglicht. Hochtemperaturkonvektionstrocknung bezieht sich dabei auf eine Trocknung mit einer Trocknungsluft mit einer Temperatur über 280°C und typischerweise in einem Bereich zwischen 350°C bis 500°C, wobei auch Temperaturen bis 650°C eingesetzt werden können. Die Abwärme aus einer Hochtemperaturhaubentrocknung weist ein niedrigeres Temperaturniveau auf, wobei die Temperatur der Abwärme zumindest über 200°C und typischerweise über 250°C liegt. Ein Verringern der Temperatur der Abwärme ist einfach durch Mischen mit kalter Umgebungsluft oder kühlerer Prozessluft möglich. Die Trocknung der Faserstoffbahn auf einem Trockenzylinder - beispielsweise einem Yankee Trockner - involviert auch ein Dampf- und Kondensatsystem, wobei der Trockenzylinder mit dem Dampf des Dampf- und Kondensatsystems beheizt wird. Das im Dampf- und Kondensatsystem anfallende Kondensat steht auf einem über-atmosphärischen Druckniveau zur Verfügung und kann direkt genutzt werden durch Druckentspannung, d.h. Drosselung, des Kondensats auf ein niedrigeres Druckniveau, wobei eine teilweise Verdampfung des Kondensats erfolgt und der so gewonnene Dampf der Trocknungsluft zugesetzt werden kann. Eine direkte Entnahme von Dampf aus dem Dampf- und Kondensatsystem zur Zumischung zur Trocknungsluft ist ebenso denkbar. Ebenso kann die Abwärme aus Nebensystemen, insbesondere aus einem Vakuumsystem, genutzt werden. Bei Einsatz von Vakuumgebläsen zur Herstellung von Vakuum fällt bis zu 150°C heiße Abluft aus dem Vakuumsystem an. Eine direkte Nutzung dieser Prozessabwärme aus dem Vakuumsystem zur Trocknung der Faserstoffbahn im Bereich zwischen dem ersten Transferbereich und dem zweiten Transferbereich ist vorteilhaft. Generell kann die Prozessabwärme direkt und / oder indirekt zur Einstellung der Temperatur der Trocknungsluft genutzt werden, wobei bei direkter Nutzung Abwärme bzw. Abwärmeluft direkt als Trocknungsluft genutzt wird und bei indirekter Nutzung Abwärme indirekt zur Aufheizung der Trocknungsluft eingesetzt wird. Typischerweise umfasst die indirekte Aufheizung den Einsatz von Wärmeübertragern bzw. Wärmetauschern zum Übertragen der Abwärme auf die Trocknungsluft. Weiter kann kühlere Prozessluft oder Umgebungsluft genutzt werden um eine gewünschte Temperatur der Trocknungsluft einzustellen, bzw. um eine zu hohe Temperatur der Trocknungsluft zu verringern.An advantageous embodiment of the invention is characterized in that for thermal drying of the fibrous web between the first transfer area and the second transfer area, drying air is applied directly to the fibrous web, the temperature of the drying air being adjusted by direct and/or indirect use of process waste heat and the Process waste heat occurs during the thermal drying of the fibrous web after the second transfer area and / or in secondary systems, in particular in a vacuum system. Advantageously, the energy efficiency of the entire system is improved because process waste heat can be used. At the same time, the increase in the dry content of the fibrous web between the first transfer area and the second transfer area improves the quality properties of the fibrous web, which is not to be expected since improvements in the quality properties are often accompanied by a deterioration in the energy efficiency of the entire system. Process waste heat from the thermal drying of the fibrous web after the second transfer area and/or from secondary systems, in particular from a vacuum system, can be used as usable process waste heat. Examples of thermal drying after the second transfer area include drying the fibrous web on a drying cylinder (for example a Yankee dryer, ie a drying cylinder with a diameter of 1800 mm to 6000 mm), or high-temperature hood drying, where the high-temperature drying hood is assigned to the drying cylinder and enables high-temperature convection drying of the fibrous web guided on the drying cylinder. High-temperature convection drying refers to drying with drying air with a temperature above 280°C and typically in a range between 350°C to 500°C, although temperatures up to 650°C can also be used. The waste heat from high-temperature hood drying has a lower temperature level, with the temperature of the waste heat being at least above 200 ° C and typically above 250 ° C. Reducing the temperature of the waste heat is possible simply by mixing it with cold ambient air or cooler process air. Drying the fibrous web on a drying cylinder - for example a Yankee dryer - also involves a steam and condensate system, with the drying cylinder being heated with the steam from the steam and condensate system. The condensate produced in the steam and condensate system is available at a pressure level above atmospheric and can be used directly by pressure relief, ie throttling, of the condensate to a lower pressure level, whereby the condensate is partially evaporated and the steam obtained in this way is added to the drying air can be. A direct removal of steam from the steam and condensate system for addition to the drying air is also conceivable. The waste heat from secondary systems, in particular from a vacuum system, can also be used. When using vacuum blowers to create a vacuum, exhaust air from the vacuum system is hot at up to 150°C. Direct use of this process waste heat from the vacuum system to dry the fibrous web in the area between the first transfer area and the second transfer area is advantageous. In general, the process waste heat can be used directly and/or indirectly to adjust the temperature of the drying air, whereby with direct use, waste heat or waste heat air is used directly as drying air and with indirect use, waste heat is used indirectly to heat the drying air. Typically, indirect heating involves the use of heat exchangers to transfer the waste heat to the drying air. Furthermore, cooler process air or ambient air can be used to set a desired drying air temperature or to reduce a drying air temperature that is too high.

Gegenstand der Erfindung ist auch eine Vorrichtung zur Trocknung einer Faserstoffbahn, insbesondere einer Tissuebahn oder Hygienepapierbahn, gemäß Anspruch 6, wobei im Bereich zwischen dem ersten Transferbereich und dem zweiten Transferbereich eine Trocknungsvorrichtung zur thermischen Trocknung der Faserstoffbahn angeordnet ist. Erfindungsgemäß ist so ein besserer Erhalt der Qualitätseigenschaften der Faserstoffbahn im zweiten Transferbereich möglich, wodurch insgesamt verbesserte Qualitätseigenschaften der Faserstoffbahn erzielbar sind.The invention also relates to a device for drying a fibrous web, in particular a tissue web or sanitary paper web, according to claim 6, wherein a drying device for thermally drying the fibrous web is arranged in the area between the first transfer area and the second transfer area. According to the invention, a better preservation of the quality properties of the fibrous web in the second transfer area is possible, as a result of which overall improved quality properties of the fibrous web can be achieved.

Eine ebenso vorteilhafte Ausführung der Vorrichtung ist dadurch gekennzeichnet, dass die Trocknungsvorrichtung zwischen dem ersten Transferbereich und dem zweiten Transferbereich einen Konvektionstrocknungsbereich umfasst, über die Trocknungsvorrichtung Trocknungsluft direkt auf die Faserstoffbahn aufbringbar ist, wobei im Konvektionstrocknungsbereich die Trocknungsluft in die Trocknungsvorrichtung rücksaugbar ist. Vorteilhafterweise umfasst die Trocknungsvorrichtung weiter einen Durchströmungstrocknungsbereich, wobei über die Trocknungsvorrichtung Trocknungsluft direkt auf die Faserstoffbahn aufbringbar ist, im Durchströmungstrocknungsbereich eine Absaugvorrichtung gegenüber der Trocknungsvorrichtung angeordnet ist und zumindest ein Teil der Trocknungsluft in die Absaugvorrichtung saugbar ist. Dabei ist im Durchströmtrocknungsbereich die Transferbespannung zwischen der Trocknungsvorrichtung und der Absaugvorrichtung geführt, wobei die Trocknungsluft aus der Trocknungsvorrichtung direkt auf die Faserstoffbahn aufbringbar ist. Die Trocknungsvorrichtung ist typischerweise als Trocknungshaube oder als Prallströmtrocknungshaube ausgeführt, wobei die Trocknungsluft über Schlitz- oder Lochdüsen direkt auf die Faserstoffbahn aufbringbar ist. Eine Absaugvorrichtung kann beispielsweise als Vakuumkasten bzw. Saugkasten oder als Vakuumrolle ausgeführt sein. Im Falle der Vakuumrolle kann eine Besaugung der Transferbespannung im Bereich der Umschlingung der Vakuumrolle erfolgen. Durch die Aufbringung der Trocknungsluft auf die Faserstoffbahn wirkt der Impuls der Trocknungsluft auf die Transferbespannung, wodurch eine Kraftwirkung auf die Transferbespannung in Strömungsrichtung der aufgebrachten Trocknungsluft gegeben ist. Aus der Kraftwirkung auf die Transferbespannung folgt eine Durchbiegung der Transferbespannung in Strömungsrichtung der aufgebrachten Trocknungsluft. Es ist daher vorteilhaft im Bereich der Absaugvorrichtung bespannungsstabilisierende Elemente auszuführen, welche eine Durchbiegung der Transferbespannung beschränken. Als bespannungsstabilisierende Elemente können Leitwalzen dienen, wobei die Leitwalzen auf der Seite der Absaugvorrichtung ausgeführt sind und die Transferbespannung direkt über die Leitwalzen geführt wird. Entsprechend dem Abstand zwischen den Leitwalzen ist auch die Transferbespannung in diesem Abstand unterstützt und eine Auslenkung der Transferbespannung beschränkt. Insbesondere kann die Absaugvorrichtung zwischen den bespannungsstabilisierenden Elementen angeordnet sein, z.B. können Saugkästen zwischen den Leitzwalzen angeordnet sein.An equally advantageous embodiment of the device is characterized in that the drying device is located between the first transfer area and the second transfer area comprises a convection drying area, via the drying device drying air can be applied directly to the fibrous web, wherein in the convection drying area the drying air can be sucked back into the drying device. Advantageously, the drying device further comprises a flow drying area, wherein drying air can be applied directly to the fibrous web via the drying device, a suction device is arranged in the flow drying area opposite the drying device and at least part of the drying air can be sucked into the suction device. In the through-flow drying area, the transfer clothing is guided between the drying device and the suction device, with the drying air from the drying device being able to be applied directly to the fibrous web. The drying device is typically designed as a drying hood or as an impingement flow drying hood, whereby the drying air can be applied directly to the fibrous web via slot or hole nozzles. A suction device can be designed, for example, as a vacuum box or suction box or as a vacuum roller. In the case of the vacuum roll, the transfer clothing can be suctioned in the area where the vacuum roll is wrapped. By applying the drying air to the fibrous web, the impulse of the drying air acts on the transfer clothing, which creates a force effect on the transfer clothing in the flow direction of the applied drying air. The effect of force on the transfer clothing causes the transfer clothing to bend in the direction of flow of the applied drying air. It is therefore advantageous to implement clothing-stabilizing elements in the area of the suction device, which limit deflection of the transfer clothing. Guide rollers can serve as clothing-stabilizing elements, with the guide rollers being designed on the side of the suction device and the transfer clothing being guided directly over the guide rollers. Depending on the distance between the guide rollers, the transfer clothing is also supported at this distance and deflection of the transfer clothing is limited. In particular, the suction device can be arranged between the clothing-stabilizing elements, for example suction boxes can be arranged between the guide rollers.

Eine weitere günstige Ausgestaltung der Vorrichtung ist dadurch gekennzeichnet, dass die Trocknungsvorrichtung direkt oder indirekt mit einer Prozessabwärmeleitung verbunden ist zur Nutzung einer Prozessabwärme, die bei der thermischen Trocknung der Faserstoffbahn nach dem zweiten Transferbereich und / oder in Nebensystemen, insbesondere in einem Vakuumsystem, anfällt. Eine solche Prozessabwärmeleitung kann beispielsweise einem Prozess zugeordnet sein, umfassend die thermische Trocknung der Faserstoffbahn nach dem zweiten Transferbereich und / oder einem Nebensystem, insbesondere dem Vakuumsystem. Dabei weist die Abwärme bzw. die Abluft aus einer Hochtemperaturhaubentrocknung ein Temperaturniveau von über 200°C und typischerweise über 250°C auf. Die Abwärme aus einem Vakuumsystem, insbesondere bei Einsatz von Vakuumgebläsen zur Herstellung von Vakuum, liefert bis zu 150°C heiße Abluft. Generell kann die Prozessabwärme direkt und / oder indirekt zur Einstellung der Temperatur der Trocknungsluft genutzt werden.A further favorable embodiment of the device is characterized in that the drying device is connected directly or indirectly to a process waste heat line for the use of process waste heat that is generated during the thermal drying of the fibrous web after the second transfer area and / or in secondary systems, in particular in a vacuum system. Such a process waste heat line can, for example, be assigned to a process comprising the thermal drying of the fibrous web after the second transfer area and / or a secondary system, in particular the vacuum system. The waste heat or exhaust air from high-temperature hood drying has a temperature level of over 200°C and typically over 250°C. The waste heat from a vacuum system, especially when using vacuum blowers to create vacuum, delivers hot exhaust air of up to 150°C. In general, the process waste heat can be used directly and/or indirectly to adjust the temperature of the drying air.

Die Erfindung wird nun anhand der Zeichnungen beispielhaft beschrieben.

  • Fig. 1 zeigt eine Anlage zur Herstellung einer Faserstoffbahn entsprechend dem Stand der Technik.
  • Fig. 2 zeigt eine erfindungsgemäße Vorrichtung zum Trocknen einer Faserstoffbahn.
The invention will now be described by way of example with reference to the drawings.
  • Fig. 1 shows a system for producing a fibrous web according to the state of the art.
  • Fig. 2 shows a device according to the invention for drying a fibrous web.

Fig. 1 zeigt eine Vorrichtung zur Herstellung einer Faserstoffbahn 1 entsprechend dem Stand der Technik, wobei zur Herstellung der Faserstoffbahn 1 eine Faserstoffsuspension über einen Stoffauflauf 14 zwischen zwei Bespannungen eingebracht und zentrifugal entwässert. Dabei wird die Faserstoffsuspension zwischen einer ersten Bespannung 3, einem Filz, und einem Formiersieb eingebracht und entwässert. Nach der Bildung der Faserstoffbahn 1 wird die Faserstoffbahn 1 auf der ersten Bespannung 3 zu einem ersten Pressbereich 2 geführt, wo die Faserstoffbahn 1 zwischen der ersten Bespannung 3 und einem rotierenden Pressmantel 4 gepresst wird. Dabei wird die Faserstoffbahn 1 auf den rotierenden Pressmantel 4 übergeben und direkt auf dem Pressmantel 4 aus dem ersten Pressbereich 2 zu einem ersten Transferbereich 5 geführt, mit einer Übergabe der Faserstoffbahn 1 in dem ersten Transferbereich 5 von dem rotierenden Pressmantel 4 auf eine Transferbespannung 6, gefolgt von einer Übergabe der Faserstoffbahn 1 in einem zweiten Transferbereich 7 von der Transferbespannung 6 auf einen Trockenzylinder 8. Nach Trocknung der Faserstoffbahn 1 auf dem Trockenzylinder 8 folgt eine Aufrollung 15 der Faserstoffbahn 1. Fig. 1 shows a device for producing a fibrous web 1 according to the prior art, wherein to produce the fibrous web 1 a fibrous suspension is introduced via a headbox 14 between two coverings and centrifugally dewatered. The fiber suspension is introduced between a first covering 3, a felt, and a forming fabric and dewatered. After the formation of the fibrous web 1, the fibrous web 1 is guided on the first covering 3 to a first pressing area 2, where the fibrous web 1 is pressed between the first covering 3 and a rotating press jacket 4. The fibrous web 1 is transferred to the rotating press jacket 4 and guided directly on the press jacket 4 from the first pressing area 2 to a first transfer area 5, with a transfer of the fibrous web 1 in the first transfer area 5 from the rotating press jacket 4 to a transfer clothing 6, followed by a transfer of the fibrous web 1 in a second transfer area 7 from the transfer clothing 6 on a drying cylinder 8. After drying the fibrous web 1 on the drying cylinder 8, the fibrous web 1 is rolled up 15.

Fig. 2 zeigt eine Anlage zur Herstellung einer Faserstoffbahn 1 mit der erfindungsgemäßen Vorrichtung zum Trocknen der Faserstoffbahn 1. Nach der Bildung der Faserstoffbahn 1 wird die Faserstoffbahn 1 auf der ersten Bespannung 3 zu einem ersten Pressbereich 2 geführt, wo die Faserstoffbahn 1 zwischen der ersten Bespannung 3 und einem rotierenden Pressmantel 4 gepresst wird. Dabei wird die Faserstoffbahn 1 auf den rotierenden Pressmantel 4 übergeben und direkt auf dem Pressmantel 4 aus dem ersten Pressbereich 2 zu einem ersten Transferbereich 5 geführt, mit einer Übergabe der Faserstoffbahn 1 in dem ersten Transferbereich 5 von dem rotierenden Pressmantel 4 auf eine Transferbespannung 6. Vorteilhafterweise wird die Faserstoffbahn 1 im ersten Transferbereich 5 strukturiert, wobei die Strukturierung der Faserstoffbahn 1 durch die Übergabe der Faserstoffbahn 1 von dem schneller umlaufenden rotierenden Pressmantel 4 auf die langsamer umlaufende Transferbespannung 6 erfolgt und die Transferbespannung 6 als strukturierte Transferbespannung ausgeführt ist. Erfindungsgemäß wird nach dem ersten Transferbereich 5 und vor einem zweiten Transferbereich 7, in dem die Faserstoffbahn 1 von der Transferbespannung 6 auf einen Trockenzylinder 8 übergeben wird, thermisch getrocknet. Zur thermischen Trocknung der Faserstoffbahn 1 wird eine Trocknungsluft über eine Trocknungsvorrichtung 9 direkt auf die Faserstoffbahn 1 aufgebracht, wobei die Trocknungsvorrichtung 9 einen Konvektionstrocknungsbereich 11 aufweist. Im Konvektionstrocknungsbereich 11 wird die Trocknungsluft direkt auf die Faserstoffbahn 1 aufgebracht und wieder in die Trocknungsvorrichtung 9 rückgesaugt. Die Trocknungsvorrichtung 9 weist weiter einen Durchströmtrocknungsbereich 12 auf, wobei die Trocknungsluft über die Trocknungsvorrichtung 9 direkt auf die Faserstoffbahn 1 aufgebracht wird, ein erster Teil der Trocknungsluft nach der Trocknung wieder in die Trocknungsvorrichtung 9 rückgesaugt wird und ein zweiter Teil der Trocknungsluft durch die Faserstoffbahn in eine Absaugvorrichtung 10 gesaugt wird. Im Bereich der Absaugvorrichtung 10 sind vorteilhafterweise bespannungsstabilisierende Elemente 13 ausgeführt. Die bespannungsstabilisierenden Elemente 13 umfassen Leitwalzen, wobei auch eine Ausführung als Saugwalze 17 möglich ist. Die Trocknungsluft wird direkt und / oder indirekt aus einer Prozessabluft genutzt. So kann beispielsweise die Abluft der Hochtemperaturtrocknungshaube 18 als Zuluft-Trocknungsvorrichtung 19 genutzt werden. Fig. 2 shows a system for producing a fibrous web 1 with the device according to the invention for drying the fibrous web 1. After the formation of the fibrous web 1, the fibrous web 1 is guided on the first covering 3 to a first pressing area 2, where the fibrous web 1 is between the first covering 3 and a rotating press jacket 4 is pressed. The fibrous web 1 is transferred to the rotating press jacket 4 and guided directly on the press jacket 4 from the first pressing area 2 to a first transfer area 5, with a transfer of the fibrous web 1 in the first transfer area 5 from the rotating press jacket 4 to a transfer clothing 6. Advantageously, the fibrous web 1 is structured in the first transfer area 5, the structuring of the fibrous web 1 taking place by transferring the fibrous web 1 from the faster rotating press jacket 4 to the slower rotating transfer clothing 6 and the transfer clothing 6 being designed as a structured transfer clothing. According to the invention, thermal drying takes place after the first transfer area 5 and before a second transfer area 7, in which the fibrous web 1 is transferred from the transfer clothing 6 to a drying cylinder 8. For thermal drying of the fibrous web 1, drying air is applied directly to the fibrous web 1 via a drying device 9, the drying device 9 having a convection drying area 11. In the convection drying area 11, the drying air is applied directly to the fibrous web 1 and sucked back into the drying device 9. The drying device 9 further has a through-flow drying area 12, whereby the drying air is applied directly to the fibrous web 1 via the drying device 9, a first part of the drying air is sucked back into the drying device 9 after drying and a second part of the drying air is fed through the fibrous web a suction device 10 is sucked. In the area of the suction device 10, clothing-stabilizing elements 13 are advantageously implemented. The clothing-stabilizing elements 13 include guide rollers, with a design as a suction roller 17 also being possible. The drying air is used directly and/or indirectly from process exhaust air. For example, the exhaust air from the High-temperature drying hood 18 can be used as a supply air drying device 19.

Die vorliegende Erfindung bietet somit zahlreiche Vorteile. Sie erlaubt die Herstellung einer Faserstoffbahn, mit verbesserten Qualitätseigenschaften bei gleichzeitig geringem Energieverbrauch und somit bei geringen Betriebskosten. Ebenso werden niedrige Investitionskosten möglich, da der Trockenzylinder zur thermischen Trocknung der Faserstoffbahn nach dem zweiten Transferbereich kleiner ausführbar ist.The present invention therefore offers numerous advantages. It allows the production of a fibrous web with improved quality properties while maintaining low energy consumption and therefore low operating costs. Low investment costs are also possible because the drying cylinder for thermally drying the fibrous web after the second transfer area can be made smaller.

BezugszeichenReference symbols

(1)(1)
Faserstoffbahnfibrous web
(2)(2)
erster Pressbereichfirst pressing area
(3)(3)
erste Bespannungfirst covering
(4)(4)
rotierender Pressmantelrotating press jacket
(5)(5)
erster Transferbereichfirst transfer area
(6)(6)
TransferbespannungTransfer covering
(7)(7)
zweiter Transferbereichsecond transfer area
(8)(8th)
TrockenzylinderDrying cylinder
(9)(9)
TrocknungsvorrichtungDrying device
(10)(10)
AbsaugvorrichtungSuction device
(11)(11)
KonvektionstrocknungsbereichConvection drying area
(12)(12)
DurchströmtrocknungsbereichFlow drying area
(13)(13)
bespannungsstabilisierendes Elementtension-stabilizing element
(14)(14)
StoffauflaufHeadbox
(15)(15)
AufrollungRoll up
(16)(16)
HochtemperaturtrocknungshaubeHigh temperature drying hood
(17)(17)
als Saugwalze ausgeführtes bespannungsstabilisierendes ElementA tension-stabilizing element designed as a suction roller
(18)(18)
Abluft HochtemperaturtrocknungshaubeExhaust air high temperature drying hood
(19)(19)
Zuluft-TrocknungsvorrichtungSupply air drying device

Claims (11)

  1. Method for producing a pulp web (1), especially a tissue or sanitary paper web, with a first dewatering of the pulp web (1) by pressing, the pulp web (1) being pressed in a first pressing area (2) between a first clothing (3), the first clothing (3) being a felt, and a rotating press belt (4) with line loads between 80 kN/m and 600 kN/m, and the pulp web (1) being transferred to the rotating press belt (4), with the pulp web (1) being guided directly on the press belt (4) out of the first pressing area (2) to a first transfer area (5), with transfer of the pulp web (1) in the first transfer area (5) from the rotating press belt (4) to a transfer clothing (6) and transfer of the pulp web (1) in a second transfer area (7) from the transfer clothing (6) to a dryer (8), characterized in that the pulp web (1) is dried thermally between the first transfer area (5) and the second transfer area (7).
  2. Method according to claim 1, where the pulp web (1) is structured in the first transfer area (5), where structuring of the pulp web (1) takes place by transferring the pulp web (1) from the rotating press belt (4), revolving at a higher speed, to the transfer clothing (6), revolving at a lower speed, and the transfer clothing (6) being designed as a structured transfer clothing.
  3. Method according to claim 1, where thermal drying of the pulp web (1) on the transfer clothing (6) comprises convection drying of the pulp web (1), drying air being applied directly to the pulp web (1) by a drying device (9) and the drying air then being sucked back into the drying device (9) again.
  4. Method according to claim 3, where thermal drying of the pulp web (1) carried on the transfer clothing (6) also comprises through-air drying of the pulp web (1), the drying air being applied through the drying device (9) directly to the pulp web (1), a first part of the drying air being sucked back into the drying device (9) again and a second part of the drying air being sucked through the pulp web (1) into a suction device (10), the transfer clothing (6) running between the pulp web (1) and the suction device (10).
  5. Method according to claim 1, where drying air is applied directly to the pulp web (1) for thermal drying of the pulp web (1) between the first transfer area (5) and the second transfer area (7), the temperature of the drying air being set by direct and/or indirect use of process waste heat and the process waste heat being produced in thermal drying of the pulp web (1) after the second transfer area (7) and/or in sub-systems, particularly in a vacuum system.
  6. Device for producing a pulp web (1), especially a tissue or sanitary paper web, with a first pressing area (2) for dewatering the pulp web (1) between a first clothing (3) designed as a felt and a rotating press belt (4), with line loads between 80 kN/m and 600 kN/m, with a first transfer area (5) for transferring the pulp web (1) from the rotating press belt (4) to a transfer clothing (6), the pulp web (1) being guided directly on the rotating press belt (4) between the first pressing area (2) and the first transfer area (5), and with a second transfer area (7) for transferring the pulp web (1) from the transfer clothing (6) to a dryer (8), where a drying device (9) for thermal drying of the pulp web (1) is disposed in the area between the first transfer area (5) and the second transfer area (7).
  7. Device according to claim 6, where the transfer clothing (6) is designed as a structured transfer clothing (6) in the first transfer area (5), the speed of the structured transfer clothing (6) being slower than the circumferential speed of the rotating press belt (4) in the first transfer area (5).
  8. Device according to claim 6, where the drying device (9) between the first transfer area (5) and the second transfer area (7) comprises a convection drying area (11) and drying air can be applied directly to the pulp web (1) by the drying device (9), where the drying air can be sucked back into the drying device (9) in the convection drying area (11).
  9. Device according to claim 8, where the drying device (9) also comprises a through-air drying area (12), where the drying air can be applied directly to the pulp web (1) by the drying device (9), a suction device (10) being disposed opposite the drying device (9) in the through-air drying area (12) and where at least some of the drying air can be sucked into the suction device (10).
  10. Device according to claim 9, where clothing stabilizing elements (13) are included in the area of the suction device (10), the clothing stabilizing elements (13) being disposed on the side of the suction device (10) and the transfer clothing (6) being guided between the drying device (9) and the clothing stabilizing elements (13).
  11. Device according to claim 6, where the drying device (9) is connected directly or indirectly to a process waste heat duct in order to make use of process waste heat produced during thermal drying of the pulp web (1) after the second transfer area (7) and/or in sub-systems, especially in a vacuum system.
EP20829551.9A 2020-02-25 2020-12-11 Device and method for producing a pulp web Active EP4110989B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50138/2020A AT522784B1 (en) 2020-02-25 2020-02-25 DEVICE AND METHOD FOR MANUFACTURING A FIBER WEB
PCT/EP2020/085678 WO2021170278A1 (en) 2020-02-25 2020-12-11 Device and method for producing a pulp web

Publications (3)

Publication Number Publication Date
EP4110989A1 EP4110989A1 (en) 2023-01-04
EP4110989B1 true EP4110989B1 (en) 2023-11-15
EP4110989C0 EP4110989C0 (en) 2023-11-15

Family

ID=74068258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20829551.9A Active EP4110989B1 (en) 2020-02-25 2020-12-11 Device and method for producing a pulp web

Country Status (8)

Country Link
US (1) US11702796B2 (en)
EP (1) EP4110989B1 (en)
CN (1) CN115151693B (en)
AT (1) AT522784B1 (en)
BR (1) BR112022011348A2 (en)
CA (1) CA3164106A1 (en)
PL (1) PL4110989T3 (en)
WO (1) WO2021170278A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116876250A (en) * 2023-07-07 2023-10-13 浙江金龙再生资源科技股份有限公司 Device and process for producing exposed-bottom-ash-free paperboard with increased bulk

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI770538A (en) * 1977-02-18 1978-08-19 Valmet Oy PRESS SPRAYER FOER CELLULOSA ELLER DYLIKT
FI102623B (en) 1995-10-04 1999-01-15 Valmet Corp Method and apparatus in a paper machine
US6447640B1 (en) 2000-04-24 2002-09-10 Georgia-Pacific Corporation Impingement air dry process for making absorbent sheet
DE10333139A1 (en) * 2003-07-22 2005-02-17 Voith Paper Patent Gmbh Press section to extract water from a wet web, in a machine for the production/finishing of paper/cardboard/tissue, has a suction roller and a suction unit to take the web with a fourdrinier and blanket between them
EP2072672B1 (en) * 2007-12-20 2011-08-03 Metso Paper, Inc. Arrangement for the press section of a web-forming machine
AT508331B1 (en) 2009-05-19 2011-05-15 Andritz Ag Maschf METHOD AND DEVICE FOR TREATING A FIBROUS CAR TRACK IN A LANGNIP PRESS UNIT
AT517329B1 (en) * 2015-10-05 2017-01-15 Andritz Ag Maschf METHOD FOR PRODUCING A FIBROUS WEB
DE102015223660A1 (en) * 2015-11-30 2017-06-01 Voith Patent Gmbh DEVICE AND METHOD FOR PRODUCING A FIBROUS WEB
ES2959239T3 (en) 2016-02-08 2024-02-22 Gpcp Ip Holdings Llc Molding roller for paper products manufacturing
BR112020014019A2 (en) * 2018-01-11 2021-02-09 A. Celli Paper S.P.A. machine and method for making tissue paper
AT520319B1 (en) * 2018-03-01 2019-03-15 Andritz Ag Maschf METHOD AND DEVICE FOR TREATING A FIBROUS WEB IN A LANGNIP PRESS UNIT
SE542214C2 (en) * 2018-10-12 2020-03-10 Valmet Oy A tissue paper making machine and a method of operating a tissue paper making machine
CA3087188A1 (en) * 2019-07-19 2021-01-19 Structured I, Llc Papermaking machine with press section

Also Published As

Publication number Publication date
EP4110989C0 (en) 2023-11-15
US11702796B2 (en) 2023-07-18
AT522784B1 (en) 2021-02-15
EP4110989A1 (en) 2023-01-04
PL4110989T3 (en) 2024-04-08
US20230064891A1 (en) 2023-03-02
WO2021170278A1 (en) 2021-09-02
CN115151693A (en) 2022-10-04
BR112022011348A2 (en) 2022-08-30
CN115151693B (en) 2023-10-20
CA3164106A1 (en) 2021-09-02
AT522784A4 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
EP0640158B1 (en) Process for drying paper webs
EP0988417B1 (en) Dryer section
AT508331B1 (en) METHOD AND DEVICE FOR TREATING A FIBROUS CAR TRACK IN A LANGNIP PRESS UNIT
EP4110989B1 (en) Device and method for producing a pulp web
EP1072722B1 (en) Dryer section
DE102006003910A1 (en) Press section of a papermaking machine comprises three nips, two conveyor belts and a transfer belt
DE69922041T2 (en) METHOD AND DEVICE FOR TREATING PAPER OR PAPER WEBSTS
EP0989233A2 (en) Drying section and convection dryer for such a drying section
EP1586697B1 (en) Paper machine
EP3623525A1 (en) Method and machine for manufacturing a sheet of fibrous material
WO2007003504A1 (en) Method for the production of a paper web, especially rotogravure paper
EP1780331A1 (en) Drying assembly
DE60027328T2 (en) METHOD OF DRYING PAPER
DE19935138A1 (en) Fiber web drying section with a deflection flow dryer, with good drying rate, shortest web drying path and trouble-free web movement through the drying stage
WO2012007297A1 (en) Machine having a press section and method for producing a fiber web
DE19602492C2 (en) Machine for the production of a paper or cardboard web
WO2003002814A1 (en) Drying section
WO2022248116A1 (en) Method and device
DE102012212071A1 (en) Dryer section for paper machine utilized to manufacture e.g. paper, has cover guided over deflecting- and guide rollers, and pressed over tensioning arrangement in wrap-around region with respect to writing surface of drying cylinders
DE10137095A1 (en) Machine for the production of a fibrous web
DE102009045416A1 (en) Press arrangement
EP1785524A1 (en) Apparatus for smoothing a fibrous web
DE10358189B4 (en) Method and device for treating a web of paper or cardboard
EP1698727A1 (en) Paper machine
DE202005020882U1 (en) Dewatering and drying station for paper mill, e.g. for carton, paper or tissue paper has nip gap formed by drying cylinder and smoothing drum

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006090

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231116

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231122

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240131

Year of fee payment: 4