EP4108918B1 - Vorrichtung und verfahren zur kontrolle von hydraulischen instabilitäten in einem mechanisch gepumpten zweiphasen-flüssigkeitskreislauf - Google Patents

Vorrichtung und verfahren zur kontrolle von hydraulischen instabilitäten in einem mechanisch gepumpten zweiphasen-flüssigkeitskreislauf Download PDF

Info

Publication number
EP4108918B1
EP4108918B1 EP22180652.4A EP22180652A EP4108918B1 EP 4108918 B1 EP4108918 B1 EP 4108918B1 EP 22180652 A EP22180652 A EP 22180652A EP 4108918 B1 EP4108918 B1 EP 4108918B1
Authority
EP
European Patent Office
Prior art keywords
fluid
evaporator
closed circuit
condenser
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22180652.4A
Other languages
English (en)
French (fr)
Other versions
EP4108918A1 (de
Inventor
Giacomo SACCONE
Rémi DOMPNIER
Anthony DELMAS
Kevin MIGNON
Alain Chaix
Julien Hugon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4108918A1 publication Critical patent/EP4108918A1/de
Application granted granted Critical
Publication of EP4108918B1 publication Critical patent/EP4108918B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Definitions

  • the present invention lies in the field of thermal control of sets of dissipative equipment.
  • the invention relates to a device and method for controlling hydraulic instabilities in a two-phase fluid loop with mechanical pumping. It is described in the field of satellite-type spacecraft but it applies to any two-phase fluid loop system with mechanical pumping.
  • a two-phase fluid loop with mechanical pumping comprises a closed circuit in which a heat transfer fluid circulates, at least one evaporator, through which the fluid circulates in predominantly liquid form at the inlet of the evaporator, the evaporator being configured to transform the fluid in liquid form into fluid in partially gaseous form, at least one condenser, through which the fluid in partially gaseous form circulates at the inlet of the condenser, the condenser being configured to transform the fluid in partially gaseous form into fluid in liquid form, a pump, arranged between the outlet of the condenser and the inlet of the evaporator, intended to set in motion the fluid in the closed circuit from the evaporator towards the condenser in partially gaseous form and from the condenser towards the evaporator in liquid form , a fluid reservoir connected to the closed circuit, intended to compensate for variations in fluid volume in the closed circuit.
  • thermo-fluidic systems aiming to produce steam to be spread in a turbine, can set the thermal power at the input of the thermo-fluidic system. They can therefore set the sizing parameters of the problem (in particular pressure, flow and thermal power) as best as possible before opening the path to the turbine.
  • thermo-fluidics This type of application can be classified as: “Thermal power serving thermo-fluidics”.
  • thermo-fluidics serving thermal power a two-phase loop for the thermal management of satellites.
  • the optimization of the mentioned parameters becomes more difficult: power plants work at constant power while a satellite constantly changes its thermal power depending on the environment (exposure to the sun), user traffic and the mode of operation. use of equipment.
  • the thermo-hydraulics of the loop are constantly changing while the land applications mentioned work at constant thermal power and therefore in constant hydraulic conditions as well.
  • the accumulator or expansion tank
  • the evaporator form a single component. This is a notable difference from MPL, where the pressure is managed elsewhere relative to the boiling location.
  • the accumulator expansion tank or reservoir
  • the evaporator are two separate components for the MPL.
  • the invention aims to manage violent transients and design a two-phase fluid loop serving the equipment to be cooled.
  • the invention aims to overcome all or part of the problems cited above by proposing thermal control of a two-phase fluid loop with mechanical pumping, in particular for a space application.
  • Thermal control here is a control of hydraulic instabilities in the two-phase fluid loop with mechanical pumping. This thermal control makes it possible to guarantee stable hydraulic behavior of the loop, to guarantee the health of the pump, guarantee the health of the product itself and optimize system performance.
  • the dynamic two-phase thermal management device is the fluid reservoir connected to the closed circuit downstream of the pump and upstream of the evaporator.
  • the dynamic two-phase thermal management device may include a restriction of the conduit.
  • the device for adjusting the pressure in the closed circuit is a mechanical pressure control device or a device for heating the fluid in the tank.
  • the MPL can find itself faced with the problem of absorbing up to 100% power variation of the spacecraft equipment, located at the evaporators.
  • the invention therefore aims to provide good management of transients.
  • FIG. 1 schematically represents a device for thermal control of a heat transfer fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the two-phase fluid loop with mechanical pumping comprises a closed circuit 11 in which a heat transfer fluid 20 circulates.
  • the loop comprises at least one evaporator 12 comprising an inlet 13 and an outlet 14, through which the fluid circulates from the inlet 13 of the evaporator 12 in liquid form 20-liq towards the outlet 14 of the evaporator 12, the evaporator 12 being configured to transform the fluid in liquid form 20-liq into fluid in partially gaseous form 20-g.
  • the fluid circulates from the inlet 13 of the evaporator 12 in mainly liquid form, that is to say that it is not necessarily only in liquid form, towards the outlet 14 of the evaporator 12.
  • the evaporator is configured to recover and capture a certain quantity of thermal energy from outside the loop, in particular from dissipative equipment on the satellite.
  • the loop comprises at least one condenser 15 comprising an inlet 16 and an outlet 17, through which the fluid in partially gaseous form 20-g circulates from the inlet 16 of the condenser 15 towards the outlet 17 of the condenser 15, the condenser 15 being configured to transform the fluid in partially gaseous form 20-g into fluid in liquid form 20-liq.
  • the condenser is configured to return a certain quantity of thermal energy to the outside of the loop, for example to the cold space around the satellite.
  • the loop comprises a pump 18, arranged between the outlet 17 of the condenser 15 and the inlet 13 of the evaporator 12, intended to set in motion the fluid in the closed circuit 11 from the evaporator 12 towards the condenser 15 in partially gaseous form 20 -g, and from the condenser 15 to the evaporator 12 in liquid form 20-liq.
  • the loop comprises a fluid reservoir 19 connected to the closed circuit 11, intended to compensate for variations in fluid volume in the closed circuit 11, in connection with the quantity of vapor, due to evaporation, present in the closed circuit .
  • the pump can be a centrifugal pump. More generally, the term pump is used to designate a fluid circulation device. A person skilled in the art will understand that any fluid circulation device is possible, for example a compressor. The invention is described in the case of a pump, but it applies similarly to the case with a compressor.
  • control device 10 comprises a dynamic two-phase thermal management device 80 capable of absorbing variations in thermal power to which the mechanically pumped two-phase fluid loop is subjected without any constraint on the use of the dissipative equipment or on the variation in their dissipation and therefore without constraint on operational performance.
  • the device according to the invention makes it possible to control a two-phase fluid loop during thermal power transients.
  • the goal is achieved thanks to the invention by stabilizing the hydraulic parameters in order to respect certain operational constraints of the installed dissipative equipment and the constituent elements of the loop. This guarantees the proper functioning of the pump, one of the critical components of the MPL, over the lifespan of the satellite. Indeed, thanks to the invention, the pump can operate within a narrow range of its point of maximum efficiency.
  • dissipative equipment also has certain operational constraints, such as a maximum temperature. The invention also allows to ensure the operation of this equipment within its optimal operating range.
  • FIG. 2 schematically represents an embodiment of a thermal control device 50 of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the dynamic two-phase thermal management device 80 is the fluid reservoir 19 connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.
  • FIG. 3 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the tank 19 being connected to the closed circuit 11 by a conduit through which fluid passes between the tank 19 and the closed circuit, the dynamic two-phase thermal management device comprises a restriction 81 of the conduit.
  • the restriction 81 can be a butterfly valve, a micrometric valve, a manual valve, a reduction in the section of the conduit or any other device for restricting the conduit.
  • FIG. 4 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • This embodiment is identical to the embodiment presented in Figure 3 , except that the tank 19, the conduit of which includes a restriction, is connected to the closed circuit 11 downstream of the evaporator 12 and upstream of the condenser 15.
  • restriction 81 The role of restriction 81 is to prevent, or at least limit, the entry of fluid into the reservoir.
  • FIG. 5 schematically represents another embodiment of a device 60 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • This embodiment is identical to the embodiment presented in figure 2 , except that the tank conduit 19 also includes a restriction.
  • the reservoir 19 is connected to the closed circuit 11 downstream of the pump 18 and upstream of the evaporator 12.
  • FIG. 6 schematically represents another embodiment of a device 70 for thermal control of a fluid in a two-phase fluid loop with mechanical pumping according to the invention.
  • the thermal management device 80 further comprises a fluid temperature measuring device 21 capable of providing a measured value 22 of fluid temperature.
  • the thermal management device 80 comprises a device 25 for adjusting the pressure in the closed circuit 11.
  • the thermal management device 80 comprises a means 26 for controlling the device 25 for adjusting the pressure as a function of the measured value 22 of fluid temperature.
  • the control means 26 is configured to activate the device 25 for adjusting the pressure in the closed circuit 11 if the measured value 22 of fluid temperature is greater than a threshold value 43 previously defined.
  • the device 25 for adjusting the pressure in the closed circuit 11 can be a mechanical pressure control device or a device for heating the fluid in the tank 19.
  • the thermal management device 80 corresponds to an anticipatory regulator of the state of the payload. This is an active control law which anticipates the transient phase of the payload. On the basis of a temperature measurement, the comparison between the measured value 22 of fluid temperature and a threshold value 43 (which can be variable depending on the phases of use of the dissipative equipment) gives an indication of the occurrence of a transitional phase. It can also be a comparison between a calculated temperature variation and a threshold value 43 of authorized variation. If this is the case, the reservoir 19 is then put under pressure for a transitional phase increasing in power. Pressurizing the reservoir prevents the fluid from entering the liquid form into the reservoir.
  • a threshold value 43 which can be variable depending on the phases of use of the dissipative equipment
  • the invention is therefore based on the anticipation of transient phases and thus makes it possible to adapt the behavior of the device 70 for thermal control of the loop.
  • the comparison between the measured value 22 of the current and a threshold value 43 gives a indication of the occurrence of a transitional phase.
  • the device 21 is a current measuring device 21.
  • the reservoir 19 is then put under pressure for a transitional phase increasing in power.
  • the device 21 is configured to calculate a variation of temperature or current, in particular to carry out a differential calculation of temperature variation with respect to the temporal variation and/or a differential calculation of the variation of the current intensity with respect to the temporal variation .
  • it is the variation in temperature or current which is used in comparison with a threshold value. Indeed, a sudden variation in this value, for example of the order of 30%, must cause the device 25 for adjusting the pressure in the closed circuit 11 to be activated.
  • two or three embodiments of the invention can be combined to include both a reservoir positioned downstream of the pump, a restriction at the inlet of the reservoir and the active control law dedicated to the reservoir pressure in relation to the planned transient.
  • FIG. 7 represents the evolution of the maximum thermal power (denoted Pth, curve 91), of the pressure (denoted P, curve 92) in the loop and the activation of the reservoir (curve 93) as a function of time according to the invention.
  • This graph makes it possible to visualize the activation of the reservoir (that is to say the heating of the fluid in the reservoir 19 or the pressurization through a membrane under pressure) during the rising power transients.
  • the break in slope for the pressure rise is linked to boiling: a considerable volume of liquid enters the tank making the heating of the tank less effective. We see that by activating the tank, it is possible to absorb the thermal power while maintaining the pressure at a certain level.
  • the triggering of tank activation can be adapted depending on the use cases. As a non-limiting example, it is possible to consider a variation of 30% of the current consumed by the payload to initiate heating of the fluid in the tank.
  • the invention makes it possible to manage more severe ignition transients, therefore configuring the payload faster and more safely.
  • the invention also allows flexibility in the use of the payload without precedent in the history of two-phase loops while guaranteeing the NPSHR (abbreviation of “Net Positive Suction Head Required” for minimum difference required between the total absolute pressure of the liquid at this point and its saturated vapor pressure This is a limit to guarantee the absence of cavitation) and hydraulic stability.
  • the solutions proposed by the invention also have the advantage of offering a system controlled by the use made of it by guaranteeing the good health of the loop and the dissipative equipment mounted on the evaporators. Indeed, thanks to the invention, it is no longer necessary to set strict thermal power variation constraints, or even no variation, as is the case in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (5)

  1. Vorrichtung (10, 50, 60, 70) zur thermischen Steuerung eines Fluids in einem mechanisch gepumpten Zweiphasen-Fluidkreislauf, wobei der mechanisch gepumpte Zweiphasen-Fluidkreislauf Folgendes umfasst:
    - einen geschlossenen Kreis (11), in dem ein Wärmeträgerfluid (20) zirkuliert;
    - mindestens einen Verdampfer (12), der einen Eingang (13) und einen Ausgang (14) umfasst, durch den das Fluid von dem Eingang (13) des Verdampfers (12) in flüssiger Form (20-liq) zum Ausgang (14) des Verdampfers (12) zirkuliert, wobei der Verdampfer (12) dafür konfiguriert ist, das Fluid in flüssiger Form (20-liq) in ein Fluid in teilweise gasförmiger Form (20-g) umzuwandeln;
    - mindestens einen Kondensator (15), der einen Eingang (16) und einen Ausgang (17) umfasst, durch den das Fluid in teilweise gasförmiger Form (20-g) von dem Eingang (16) des Kondensators (15) zum Ausgang (17) des Kondensators (15) zirkuliert, wobei der Kondensator (15) dafür konfiguriert ist, das Fluid in teilweise gasförmiger Form (20-g) in ein Fluid in flüssiger Form (20-liq) umzuwandeln;
    - eine Pumpe (18), die zwischen dem Ausgang (17) des Kondensators (15) und dem Eingang (13) des Verdampfers (12) angeordnet ist, die dazu bestimmt ist, das Fluid in dem geschlossenen Kreis (11) von dem Verdampfer (12) zum Kondensator (15) in teilweise gasförmiger Form (20-g) und von dem Kondensator (15) zum Verdampfer (12) in flüssiger Form (20-liq) in Bewegung zu setzen;
    - einen Fluidbehälter (19), der mit dem geschlossenen Kreis (11) verbunden ist, der dazu bestimmt ist, die Fluidvolumenschwankungen in dem geschlossenen Kreis (11) auszugleichen;
    wobei die Steuervorrichtung (10) dadurch gekennzeichnet ist, dass sie eine Vorrichtung (80) zum dynamischen thermischen Zweiphasenmanagement umfasst, das geeignet ist, thermische Energieschwankungen, denen der mechanisch gepumpte Zweiphasen-Fluidkreislauf unterworfen ist, aufzunehmen, wobei die Vorrichtung (80) zum dynamischen thermischen Zweiphasenmanagement der Fluidbehälter (19) ist, der stromabwärts der Pumpe (18) und stromaufwärts des Verdampfers (12) mit dem geschlossenen Kreis (11) verbunden ist.
  2. Steuervorrichtung (60) nach Anspruch 1, wobei der Behälter (19) mit dem geschlossenen Kreis (11) durch eine Leitung verbunden ist, durch welche Fluid von dem Behälter (19) zu dem geschlossenen Kreis transportiert wird, wobei die Vorrichtung zum dynamischen thermischen Zweiphasenmanagement eine Einschränkung (81) der Leitung umfasst.
  3. Steuervorrichtung (70) nach einem der Ansprüche 1 bis 2, wobei die Vorrichtung (80) zum thermischen Management ferner Folgendes umfasst:
    - eine Vorrichtung (21) zum Messen der Temperatur des Fluids am Ausgang des Verdampfers, die geeignet ist, einen Temperaturmesswert (22) des Fluids bereitzustellen; und/oder
    - eine Vorrichtung (21) zum Messen von einem Strom, der von einer Nutzlast, mit der die Steuervorrichtung verbunden ist, verwendet wird, wobei die Messvorrichtung (21) geeignet ist, einen Strommesswert (22) bereitzustellen; wobei die Messvorrichtung (21) dafür konfiguriert ist, eine Temperatur- oder Stromschwankung anhand der Messwerte (22) zu berechnen;
    - eine Vorrichtung (25) zum Einstellen des Drucks in dem geschlossenen Kreis (11);
    - ein Mittel (26) zum Regeln der Vorrichtung (25) zum Einstellen des Drucks in Abhängigkeit von dem Messwert (22) und wobei das Regelungsmittel (26) dafür konfiguriert ist, die Vorrichtung (25) zum Einstellen des Drucks in dem geschlossenen Kreis (11) zu aktivieren, wenn der Messwert (22) oder die berechnete Schwankung über einem im Voraus definierten Schwellenwert (43) liegt.
  4. Steuervorrichtung (10, 50, 60) nach Anspruch 3, wobei die Vorrichtung (25) zum Einstellen des Drucks in dem geschlossenen Kreis (11) eine mechanische Drucksteuervorrichtung oder eine Vorrichtung zum Erwärmen des Fluids in dem Behälter (19) ist.
  5. Verfahren zur thermischen Steuerung eines Fluids in einem mechanisch gepumpten Zweiphasen-Fluidkreislauf, wobei der mechanisch gepumpte Zweiphasen-Fluidkreislauf Folgendes umfasst:
    - einen geschlossenen Kreis (11), in dem ein Wärmeträgerfluid (20) zirkuliert;
    - mindestens einen Verdampfer (12), der einen Eingang (13) und einen Ausgang (14) umfasst, durch den das Fluid von dem Eingang (13) des Verdampfers (12) in flüssiger Form (20-liq) zum Ausgang (14) des Verdampfers (12) zirkuliert, wobei der Verdampfer (12) dafür konfiguriert ist, das Fluid in flüssiger Form (20-liq) in ein Fluid in teilweise gasförmiger Form (20-g) umzuwandeln;
    - mindestens einen Kondensator (15), der einen Eingang (16) und einen Ausgang (17) umfasst, durch den das Fluid in teilweise gasförmiger Form (20-g) von dem Eingang (16) des Kondensators (15) zum Ausgang (17) des Kondensators (15) zirkuliert, wobei der Kondensator (15) dafür konfiguriert ist, das Fluid in teilweise gasförmiger Form (20-g) in ein Fluid in flüssiger Form (20-liq) umzuwandeln;
    - eine Pumpe (18), die zwischen dem Ausgang (17) des Kondensators (15) und dem Eingang (13) des Verdampfers (12) angeordnet ist, die dazu bestimmt ist, das Fluid in dem geschlossenen Kreis (11) von dem Verdampfer (12) zum Kondensator (15) in teilweise gasförmiger Form (20-g) und von dem Kondensator (15) zum Verdampfer (12) in flüssiger Form (20-liq) in Bewegung zu setzen;
    - einen Fluidbehälter (19), der mit dem geschlossenen Kreis (11) verbunden ist, der dazu bestimmt ist, die Fluidvolumenschwankungen in dem geschlossenen Kreis (11) auszugleichen;
    - eine Vorrichtung (80) zum dynamischen thermischen Zweiphasenmanagement, die geeignet ist, thermische Energieschwankungen, denen der mechanisch gepumpte Zweiphasen-Fluidkreislauf unterworfen ist, aufzunehmen, wobei die Vorrichtung (80) zum dynamischen thermischen Zweiphasenmanagement der Fluidbehälter (19) ist, der mit dem geschlossenen Kreis (11) stromabwärts der Pumpe (18) und stromaufwärts des Verdampfers (12) verbunden ist,
    wobei das Steuerverfahren dadurch gekennzeichnet ist, dass es Folgendes umfasst:
    - einen Schritt (101) zum Messen der Temperatur des Fluids am Ausgang des Verdampfers (12) in dem geschlossenen Kreis (11) und/oder zum Messen eines Stroms, der von einer Nutzlast verwendet wird, mit der der mechanisch gepumpte Zweiphasen-Fluidkreislauf verbunden ist;
    - optional einen Schritt zum Berechnen einer Temperatur- oder Stromschwankung anhand der Messwerte;
    - wenn der Messwert (22) einer Temperatur des Fluids und/oder eines Stroms und/oder einer Schwankung entweder der Temperatur des Fluids am Ausgang des Verdampfers oder des von der Nutzlast verwendeten Stroms über einem im Voraus definierten Schwellenwert (43) liegt, einen Schritt (103) zum Einstellen des Drucks in dem geschlossenen Kreis (11).
EP22180652.4A 2021-06-24 2022-06-23 Vorrichtung und verfahren zur kontrolle von hydraulischen instabilitäten in einem mechanisch gepumpten zweiphasen-flüssigkeitskreislauf Active EP4108918B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2106765A FR3124552B1 (fr) 2021-06-24 2021-06-24 Dispositif et procédé de contrôle des instabilités hydrauliques dans une boucle fluide diphasique à pompage mécanique

Publications (2)

Publication Number Publication Date
EP4108918A1 EP4108918A1 (de) 2022-12-28
EP4108918B1 true EP4108918B1 (de) 2024-05-01

Family

ID=77821848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22180652.4A Active EP4108918B1 (de) 2021-06-24 2022-06-23 Vorrichtung und verfahren zur kontrolle von hydraulischen instabilitäten in einem mechanisch gepumpten zweiphasen-flüssigkeitskreislauf

Country Status (2)

Country Link
EP (1) EP4108918B1 (de)
FR (1) FR3124552B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2753887B1 (de) * 2011-09-09 2020-08-12 CERN - European Organization For Nuclear Research Kompaktes kühlsystem und verfahren zur genauen temperaturregelung
US10591221B1 (en) * 2017-04-04 2020-03-17 Mainstream Engineering Corporation Advanced cooling system using throttled internal cooling passage flow for a window assembly, and methods of fabrication and use thereof
US10775110B2 (en) * 2018-04-12 2020-09-15 Rolls-Royce North American Technologies, Inc. Tight temperature control at a thermal load with a two phase pumped loop, optionally augmented with a vapor compression cycle
IT201800009390A1 (it) * 2018-10-12 2020-04-12 Francesco Romanello Sistema di raffreddamento bifase a convezione forzata

Also Published As

Publication number Publication date
FR3124552A1 (fr) 2022-12-30
EP4108918A1 (de) 2022-12-28
FR3124552B1 (fr) 2023-10-06

Similar Documents

Publication Publication Date Title
EP2802834B1 (de) Kühlvorrichtung zur regulierung der temperatur einer wärmequelle eines satelliten und verfahren zur herstellung der zugehörigen kühlvorrichtung und satellit
FR2721353A1 (fr) Circuit de carburant sans retour pour moteur à combustion interne.
EP4158169A1 (de) Anlage zum erwärmen eines kryogenen kraftstoffs
WO2014131973A1 (fr) Procede et dispositif de regulation de refroidissement d'huile d'une turbomachine
EP0006040B1 (de) Verfahren zur Regelung des Wasserstandes in Dampfkesseln oder Dampferzeugern
EP4108918B1 (de) Vorrichtung und verfahren zur kontrolle von hydraulischen instabilitäten in einem mechanisch gepumpten zweiphasen-flüssigkeitskreislauf
FR2519793A1 (fr) Procede et appareil pour la suppression d'une surpressurisation du refrigerant dans un appareil de generation d'energie electrique nucleaire lorsque le pressuriseur est a l'etat plein d'eau
EP1970649A1 (de) Vorrichtung zum Regulieren der Unterkühlung des Kühlmittels stromabwärts des Verflüssigers einer Kühlanlage und Kühlanlage, die diese Vorrichtung enthält
WO2018055307A1 (fr) Système de refroidissement d'un circuit d'un premier fluide d'une turbomachine
EP3026246B1 (de) Vorrichtung zur energierückgewinnung über einen rankine-zyklus, die mit einem geregelten wärmereservoir tieferer temperatur ausgestattet ist, und mit einer solchen vorrichtung ausgerüstetes fahrzeug sowie entsprechendes energierückgewinnungsverfahren
EP3408723A1 (de) Drucksteuerungssystem, brennstoffzellenanordnung und verwendung des besagten steuerungssystems
EP2791595B1 (de) Verfahren zur steuerung eines tieftemperaturkühlsystems
FR2995497A1 (fr) Systeme de refroidissement d'au moins un dispositif electronique d'un turbomoteur d'aeronef.
FR2934890A1 (fr) Installation de pompe a chaleur pour le chauffage d'un fluide.
FR2537707A1 (fr) Regulation de temperatures de differences de temperatures ou de niveaux dans des circuits de fluide frigorigene
EP2618038B1 (de) Anlage und Verfahren zur Versorgung mit flüssigem Xenon
FR2935749A1 (fr) Circuit de carburant de turbomachine aeronautique
EP2981781B1 (de) Wärmerohr mit abgeschirmtem gasstecker
EP4108917A1 (de) Vorrichtung und verfahren zur steuerung des drucks eines fluids in einem mechanisch gepumpten zweiphasigen fluidkreislauf
FR2775339A1 (fr) Installation frigorifique a compression
FR3038656A1 (fr) Ensemble de turbomachine pour le refroidissement et le controle du jeu a performances ameliorees
FR2986849A1 (fr) Circuit de circulation de fluide muni d'un dispositif de limitation de debit
EP3044521B1 (de) Solarenergieanlage zur brauchwasserbereitung und kühlung
FR2496240A1 (en) Air to water heat pump - has evaporator pre-heater with heat exchanger connected parallel to radiators
EP3746647B1 (de) Entgasungsgefäss für kraftfahrzeugkühlkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230628

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022003174

Country of ref document: DE